
M A N N I N G

Peter Sbarski
Yan Cui
Ajay Nair

SECOND EDITION



Praise for the First Edition

“A comprehensive, clear and very practical guide to making the best use of AWS
throughout an application’s lifecycle. Highly recommended for anyone wanting to
use AWS for real-life applications!”

—Alain Couniot, Head of Enterprise Architecture, STIB-MIVB, Belgium

“Peter’s tome not only dives deep on Lambda, it also covers all the AWS components
your apps will need to run serverless. A soup-to-nuts tour de force. Well done!”

—Sean Hull, Founder, iHeavy, Inc.

“A great introduction for those using AWS, who want to implement a serverless
architecture.”

—John Huffman, Senior Technical Consultant, Summa Technologies

“This book is a fantastic introduction to serverless architectures and AWS. I wish
every technical book was as well written and easy to read! The book walks you step-by-
step through building a video portal, including integrating AWS Lambda, API
Gateway, S3, auth0 and Firebase. By the end you feel confident not only that you
understand all the pieces and how everything fits together, but also that you are ready
to start building your own app.”

—Kent R. Spillner, Sr. Software Engineer, DRW



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Serverless Architectures on AWS
SECOND EDITION

PETER SBARSKI, YAN CUI, AJAY NAIR

M A N N I N G
SHELTER ISLAND



For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity. 
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2022 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in 
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written 
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are 
claimed as trademarks. Where those designations appear in the book, and Manning 
Publications was aware of a trademark claim, the designations have been printed in initial caps 
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have 
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are 
printed on paper that is at least 15 percent recycled and processed without the use of elemental 
chlorine.

The author and publisher have made every effort to ensure that the information in this book 
was correct at press time. The author and publisher do not assume and hereby disclaim any 
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether 
such errors or omissions result from negligence, accident, or any other cause, or from any usage 
of the information herein.

Manning Publications Co. Development editor: Toni Arritola
20 Baldwin Road Technical development editor: Brent Stains
PO Box 761 Review editor: Aleksandar Dragosavljević
Shelter Island, NY 11964 Production editor: Andy Marinkovich

Copy editor: Frances Buran
Proofreader: Jason Everett

Technical proofreader: Niek Palm
Typesetter: Gordan Salinovic

Cover designer: Marija Tudor

ISBN 9781617295423
Printed in the United States of America

http://www.manning.com


 To my mum and dad, who always supported and
encouraged my passion for computing. 

                                                                                       —Peter Sbarski
 
 

 To my wife, who always supports and encourages me, and
puts up with all my late-night coding sessions.

                                                                                       —Yan Cui
 
 

 To my wife, my kids, my brother, and my parents, thank you
for giving me the purpose and time to do this.

                                                                                       —Ajay Nair
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



v

brief contents
PART 1 FIRST STEPS.....................................................................1

1 ■ Going serverless 3
2 ■ First steps to serverless 18
3 ■ Architectures and patterns 40

PART 2 USE CASES.....................................................................55

4 ■ Yubl: Architecture highlights, lessons learned 57
5 ■ A Cloud Guru: Architecture highlights, lessons 

learned 70
6 ■ Yle: Architecture highlights, lessons learned 84

PART 3 PRACTICUM ...................................................................97

7 ■ Building a scheduling service for ad hoc tasks 99
8 ■ Architecting serverless parallel computing 132
9 ■ Code Developer University 146

PART 4 THE FUTURE................................................................165

10 ■ Blackbelt Lambda 167
11 ■ Emerging practices 183



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



vii

contents
preface xiii
acknowledgments xv
about this book xviii
about the authors xx
about the cover illustration xxii

PART 1 FIRST STEPS ...........................................................1

1 Going serverless 3
1.1 What’s in a name? 4

1.2 Understanding serverless architectures 5
Service-oriented architecture and microservices 7 ■ Implementing 
architecture the conventional way 7 ■ Implementing architecture 
the serverless way 9

1.3 Making the call to go serverless 11

1.4 Serverless pros and cons 14

1.5 What’s new in this second edition? 16

2 First steps to serverless 18
2.1 Building a video-encoding pipeline 19

A quick note on AWS costs 19 ■ Using Amazon Web Services (AWS) 20



CONTENTSviii

2.2 Preparing your system 21
Setting up your system 22 ■ Working with Identity and Access 
Management (IAM) 22 ■ Let’s make a bucket 25 ■ Creating 
an IAM role 26 ■ Using AWS Elemental MediaConvert 28
Using MediaConvert Role 29

2.3 Starting with the Serverless Framework 29
Setting up the Serverless Framework 29 ■ Bringing Serverless 
Framework to The 24-Hour Video 31 ■ Creating your first Lambda 
function 33

2.4 Testing in AWS 36

2.5 Looking at logs 37

3 Architectures and patterns 40
3.1 Use cases 40

Backend compute 41 ■ Internet of Things (IoT) 41 ■ Data 
processing and manipulation 42 ■ Real-time analytics 42
Legacy API proxy 43 ■ Scheduled services 44 ■ Bots and 
skills 44 ■ Hybrids 44

3.2 Patterns 45
GraphQL 45 ■ Command pattern 46 ■ Messaging 
pattern 47 ■ Priority queue pattern 49 ■ Fan-out pattern 50
Compute as glue 51 ■ Pipes and filters pattern 52

PART 2 USE CASES ...........................................................55

4 Yubl: Architecture highlights, lessons learned 57
4.1 The original Yubl architecture 58

Scalability problems 59 ■ Performance problems 59 ■ Long 
feature delivery cycles 59 ■ Why serverless? 60

4.2 The new serverless Yubl architecture 61
Rearchitecting and rewriting 62 ■ The new search API 62

4.3 Migrating to new microservices gracefully 64

5 A Cloud Guru: Architecture highlights, lessons learned 70
5.1 The original architecture 71

The journey to 43 microservices 75 ■ What is GraphQL 77
Moving to GraphQL 79 ■ Service discovery 80 ■ Security in 
the BFF world 82

5.2 Remnants of the legacy 82



CONTENTS ix

6 Yle: Architecture highlights, lessons learned 84
6.1 Ingesting events at scale with Fargate 85

Cost considerations 85 ■ Performance considerations 85

6.2 Processing events in real-time 86
Kinesis Data Streams 86 ■ SQS dead-letter queue (DLQ) 87
The Router Lambda function 88 ■ Kinesis Data Firehose 88
Kinesis Data Analytics 89 ■ Putting it altogether 90

6.3 Lessons learned 91
Know your service limits 91 ■ Build with failure in mind 93
Batching is good for cost and efficiency 94 ■ Cost estimation is 
tricky 95

PART 3 PRACTICUM .........................................................97

7 Building a scheduling service for ad hoc tasks 99
7.1 Defining nonfunctional requirements 101

7.2 Cron job with EventBridge 102
Your scores 104 ■ Our scores 105 ■ Tweaking the 
solution 107 ■ Final thoughts 109

7.3 DynamoDB TTL 109
Your scores 110 ■ Our scores 111 ■ Final 
thoughts 113

7.4 Step Functions 113
Your scores 115 ■ Our scores 115 ■ Tweaking the 
solution 116 ■ Final thoughts 119

7.5 SQS 119
Your scores 120 ■ Our scores 120 ■ Final thoughts 122

7.6 Combining DynamoDB TTL with SQS 122
Your scores 123 ■ Our scores 124 ■ Final thoughts 125

7.7 Choosing the right solution for your application 125

7.8 The applications 125
Your weights 126 ■ Our weights 126 ■ Scoring the solutions 
for each application 128

8 Architecting serverless parallel computing 132
8.1 Introduction to MapReduce 133

How to transcode a video 134 ■ Architecture overview 135



CONTENTSx

8.2 Architecture deep dive 137
Maintaining state 138 ■ Step Functions 141

8.3 An alternative architecture 144

9 Code Developer University 146
9.1 Solution overview 147

Requirements listed 147 ■ Solution architecture 148

9.2 The Code Scoring Service 150
Submissions Queue 152 ■ Code Scoring Service summary 153

9.3 Student Profile Service 153
Update Student Scores function 155

9.4 Analytics Service 157
Kinesis Firehose 158 ■ AWS Glue and Amazon Athena 160
QuickSight 163

PART 4 THE FUTURE ......................................................165

10 Blackbelt Lambda 167
10.1 Where to optimize? 167

10.2 Before we get started 169
How a Lambda function handles requests 169 ■ Latency: 
Cold vs. warm 173 ■ Load generation on your function and 
application 173 ■ Tracking performance and availability 174

10.3 Optimizing latency 176
Minimize deployment artifact size 176 ■ Allocate sufficient 
resources to your execution environment 178 ■ Optimize function 
logic 179

10.4 Concurrency 180
Correlation between requests, latency, and concurrency 181
Managing concurrency 181

11 Emerging practices 183
11.1 Using multiple AWS accounts 184

Isolate security breaches 184 ■ Eliminate contention for shared 
service limits 185 ■ Better cost monitoring 185 ■ Better 
autonomy for your teams 185 ■ Infrastructure-as-code for 
AWS Organizations 186



CONTENTS xi

11.2 Using temporary stacks 186
Common AWS account structure 186 ■ Use temporary stacks for 
feature branches 187 ■ Use temporary stacks for e2e tests 188

11.3 Avoid sensitive data in plain text in environment variables 188
Attackers can still get in 189 ■ Handle sensitive data 
securely 189

11.4 Use EventBridge in event-driven architectures 190
Content-based filtering 190 ■ Schema discovery 191 ■ Archive 
and replay events 191 ■ More targets 192 ■ Topology 192

appendix  A Services for your serverless architecture 195
appendix  B Setting up your cloud 200
appendix  C Deployment frameworks 212

index 225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



xiii

preface
Serverless technologies occupy an exciting space at the moment. Products like AWS
Lambda and DynamoDB have been around for a few years, yet they still feel new and
thrilling, sometimes mysterious or puzzling. Many folks worldwide discuss, learn, and
implement systems with serverless architectures, yet we haven’t yet seen a mass level of
adoption like that of containers. Cloud providers such as AWS continue to grow. How-
ever, individuals and organizations still ask questions such as, is serverless right for me,
and how do I architect a system correctly from the myriad of available components
and options? 

 We’ve written this book to address some of the more interesting questions we’ve
seen across the industry and our technical community. We decided to look at use cases
for serverless and explore problems that usually wouldn’t seem like a good fit. More
importantly, we’ve tried to convey what it is to have a serverless-first mindset. Our rec-
ipe is simple: When you have a problem, offload as much of the undifferentiated
heavy lifting onto AWS or another provider and apply the principles of serverless
architectures. And, if that doesn’t produce a satisfactory answer, only then go and look
at other technologies that may help. It’s important to reiterate that you should always
use the right tool for the right job. However, having a set of principles and practices,
like viewing a potential solution through a serverless prism first, gives you a map and
helps make better, more robust decisions.

 This book shows a few examples of us doing it in practice. We discuss how to
approach several problems using serverless architectures, what criteria to consider, and
how to deal with architectural trade-offs. We also present three real-world companies



PREFACExiv

that have built interesting systems using serverless architectures. These companies
dealt with the same kinds of problems you might be solving right now, so it’s worth
checking out those chapters to see what potential solutions or ideas exist. 

 If you are entirely new to serverless architectures, do not worry! The first three
chapters introduce you to serverless and even get you building a small application. If
you are an expert already, you will enjoy the last two chapters that go deeper into AWS
Lambda and discuss emerging practices. And, before we let you go, one other thing:
the vast majority of this second edition is new. If you read our first edition, we think
that you will find this a very different book. We hope you find something interesting
and helpful in this book and come with us on this exciting serverless journey.



xv

acknowledgments
The second edition of Serverless Architectures on AWS couldn’t have been written with-
out the encouragement and support from my peers, colleagues, family, and friends. I
am lucky to be surrounded by passionate technologists who continuously encourage,
give feedback, and provide invaluable advice.

 First and foremost, I want to say thank you to my two co-authors: Yan Cui and Ajay
Nair. I am fortunate to know these two fantastic world-class experts to whom educa-
tion and community is always foremost. I cannot describe how thankful I am to Yan
and Ajay for helping to write this book and making it uniquely special among the
technical literature available today. I am forever grateful to both of you for being
there through this journey, teaching me, and sharing the benefit of your experience.

 Second, I would like to thank our editor, Toni Arritola, who once again made the
writing of this book a great experience. Toni did a lot of work on the first edition of
this book, and she worked just as hard on the second edition. It bears repeating again
that Toni’s thoughtful feedback on the book’s structure, language, and narrative was
extraordinarily helpful. And, after all these years of dealing with my slipping dead-
lines, her attention to detail and enthusiasm kept the book and its authors going.

 It goes without saying that I want to thank Sam Kroonenburg too. Sam originally
introduced me to AWS Lambda and the serverless mindset. He co-founded A Cloud
Guru, the first truly serverless startup, and gave me the opportunity to hone my skills.
If it wasn’t for Sam and my experience at A Cloud Guru, this book wouldn’t exist. I
would be amiss if I also didn’t thank Ryan Kroonenburg, the other co-founder of A
Cloud Guru and Sam’s brother. Both Sam and Ryan played a big part in the



ACKNOWLEDGMENTSxvi

popularization of serverless technologies with A Cloud Guru, and also the founding of
the first technology conference focused entirely on serverless called Serverlessconf
(ask me for stories over a drink!). Thank you, Sam and Ryan! 

 I’d also like to thank a few others who for years have given me great feedback and
encouragement. A big thank you to Tim Wagner, Drew Firment, Allan Brown, Nick
Triantafillou, Tait Brown, Alicia Cheah, Forrest Brazeal, Peter Hanssens, Kim Bonilla,
Ilia Mogilevsky, as well as my fellow AWS serverless heroes and all my colleagues and
friends at A Cloud Guru/Pluralsight. I’d also like to thank Mike Stephens from Man-
ning for helping to bring this book to fruition. 

 To all the reviewers: Aliaksandra Sankova, Bonnie Malec, Borko Djurkovic, Camal
Çakar, Carl Nygard, Chris Kottmyer, Christopher Fry, Daniel Vásquez, Eugene Serdi-
ouk, Giampiero Granatella, Gregory Reshetniak, Javier Collado Cabeza, Jose San
Leandro, Julien Pohie, Kelly E. Hair, Kirstie G. McKenzie, Lucian-Paul Torje, Matteo
Gildone, Michael Kumm, Michal Rutka, Miguel Montalvo, Mikołaj Wawrzyniak, Pat-
rick Steger, Paul Mcilwaine, Robert Kulagowski, Sal DiStefano, Sau Fai Fong, Shaun
Hickson, Steve Hansen, Valeriy Arsentyev, Vignesh Muthuthurai, and William Dixon,
your suggestions and feedback made this a better book. 

 Finally, I’d like to thank my family, including my dad, my brothers Igor and Dimi-
tri, and their spouses Rita and Alexandra. They’ve had to find more strength to listen
to me go on about the book for yet another year. And thank you to Durdana Masud,
who helped me greatly throughout my writing, with both the first edition and the sec-
ond edition.

                    —Peter Sbarski

I would like to thank Peter Sbarski for the opportunity to contribute to this book, and
Toni Arritola for her help and guidance every step of the way. It has truly been a plea-
sure and honor to work with them over the past 12 months.

 I would also like to thank Anahit Pogosova for sharing details of the amazing work
that she and her team at Yle have done. The knowledge she shared with me was very
valuable and contained so many useful and actional tips for anyone building data
pipelines using serverless technologies. I hope I have done her work justice in chapter
6, even though I had to leave out so much. We can easily fill a whole book with the
information she shared with me.

 I would also like to thank a few friends and colleagues who have given me opportu-
nities and guidance along the way. I wouldn’t be the man I am today without you, and
your friendship means everything to me; I can’t wait to catch up with you all in person
soon. Big thanks to Darryl Jennings, Tom Newton, Brett Johansen, Domas Lasauskas,
Scott Smethurst, Diana Ionita, Simon Coutts, Bruno Tavares, Heitor Lessa, Erez
Berkner, Aviad Mor, John Earner, Simone Basso, and Alessandro Simi.

 Last, but not least, I would like to thank my wonderful wife, Yinan Xue, for all the
support and encouragement she has given me and continues to give me over the
years. You are my best friend and the love of my life, and I look forward to growing old
and wrinkly with you!



ACKNOWLEDGMENTS xvii

 Oh, I almost forgot, I would like to thank my cat, Ada, for bringing so much joy
into our lives and all the love she has given us. That scar you left on my thigh five years
ago is still visible to this day, I really . . . wait a minute. . . .

             —Yan Cui

I always hoped to create a lasting contribution to the developer community and am so
excited to see that finally happen with the second edition of Serverless Architectures on
AWS. My biggest thanks to Peter Sbarski for making this happen and for the opportunity
to create this work with Yan Cui and him. It has been an honor and a pleasure to be a
part of the team with these serverless luminaries. Thank you to the crew at Manning, and
our editor Toni Arritola, for their everlasting patience, thoroughness, and guidance.

 This book is dedicated to the serverless community. We at AWS and other provid-
ers may build the technology, but it is you, the community and the customers, that put
it to work to the benefit of the world. I hope this book captures the passion, depth,
and breadth that you deserve. Keep raising the bar and changing the world, one event
at a time.

 Finally, a special shout out to Tim Wagner for getting the whole serverless universe
started.

             —Ajay Nair



xviii

about this book
Serverless technologies and architectures are fascinating and unique. They present a
different way of building software in a cloud environment. This is because serverless is
about offloading the undifferentiated heavy lifting to others, reducing certain opera-
tional concerns, moving toward event-driven computing, and giving yourself space to
focus on what’s important—the core goals of your business or project. This book
teaches about the serverless approach to the design of systems. You will read how
other companies have solved problems using a serverless approach on AWS and dive
into numerous discussions about architecture. 

 Along the way, you will learn more about event-driven computing, useful design
patterns, organizing and deploying your code, and security. This book isn’t a collec-
tion of tutorials you can find online. Instead, it is an attempt to share our thinking
and understanding of the future of cloud computing, which we think is serverless.

 This book is in four parts. The first part takes you through basic serverless princi-
ples as well as crucial architectures and patterns. You will also build a small serverless
application in AWS to get your hands dirty. It’ll be a fun one; your application will con-
vert video files from one format to another without running a server.

 The second part focuses on three case studies from Yubl, A Cloud Guru, and Yle.
You will read how other companies have solved business and technical challenges with
a serverless approach. The third part is about architecture. Here you will learn how to
adopt the serverless-first mindset, think about the pros and cons of different architec-
tural implementations, and tackle unexpected challenges. The three examples we



ABOUT THIS BOOK xix

present are all different, showing that a serverless approach to the design of systems is
versatile and flexible. 

 The fourth and final part of the book looks at the internals of AWS Lambda and
emerging AWS practices. If you are already an expert on AWS and serverless, you may
find this section to be particularly fascinating. 

 The second edition of Serverless Architectures on AWS is for serverless veterans and
beginners alike. No matter your experience, we think you will find something valuable
in these pages. We hope that this book will inspire you to think serverless first. Now,
let’s read and build!

About the code
This book provides many examples of code. These appear throughout the text and as
separate code listings. To accommodate long lines of code, listings include line-
continuation markers (➥). Code appears in a fixed-width font just like this, so
you’ll know when you see it.

 This book is about architecture and, as such, it is not heavy on source code. Chap-
ter 2 is the only practical chapter. The source for chapter is available on GitHub at
http://github.com/sbarski/serverless-architectures-aws-2. If you’d like to contribute,
open a pull request and we’d be happy to consider your changes. If you see a prob-
lem, please file an issue. 

liveBook discussion forum
Purchase of Serverless Architectures on AWS, Second Edition includes free access to liveBook,
Manning’s online reading platform. Using liveBook’s exclusive discussion features, you
can attach comments to the book globally or to specific sections or paragraphs. It’s a
snap to make notes for yourself, ask and answer technical questions, and receive
help from the authors and other users. To access the forum, go to    https://livebook
.manning.com/#!/book/serverless-architectures-on-aws-second-edition/discussion. You
can also learn more about Manning’s forums and the rules of conduct at https://livebook
.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of
the authors, whose contribution to the forum remains voluntary (and unpaid). We
suggest you try asking the authors some challenging questions lest their interest stray!
The forum and the archives of previous discussions will be accessible from the pub-
lisher’s website as long as the book is in print.

http://github.com/sbarski/serverless-architectures-aws-2
https://livebook.manning.com/#!/book/serverless-architectures-on-aws-second-edition/discussion
https://livebook.manning.com/#!/book/serverless-architectures-on-aws-second-edition/discussion
https://livebook.manning.com/#!/book/serverless-architectures-on-aws-second-edition/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion


xx

about the authors
PETER SBARSKI is VP of Education & Research at A Cloud Guru, AWS Serverless Hero, and
the organizer of Serverlessconf, the world’s first conference dedicated entirely to server-
less architectures and technologies. His work at A Cloud Guru allows him to research and
write about serverless architectures, cloud computing and AWS. Peter is always happy to
talk about serverless technologies at conferences and meetups year round. His other pas-
sions include technical education, and innovation in technology and cloud computing.
Peter holds a Ph.D. in Computer Science from Monash University, Australia. He can be
found on Twitter (@sbarski) and LinkedIn (linkedin.com/in/petersbarski).

YAN CUI is a developer advocate at Lumigo and an independent consultant who helps cli-
ents around the world go faster for less by successfully adopting serverless technologies.
He has over a decade of experience running production workloads at scale on AWS and
has worked as architect and principal engineer within a variety of industries including
banking, e-commerce, sports streaming, and mobile gaming. Yan is an AWS Serverless
Hero and a regular speaker at conferences internationally. He is the author of Production-
Ready Serverless (Manning, 2018) and co-author of F# Deep Dives (Manning, 2014), and he
has also self-published several popular courses such as the AppSync Masterclass. He can
be found on Twitter (@theburningmonk) and LinkedIn (linkedin.com/in/theburning-
monk) and writes regularly on his blog (theburningmonk.com).

AJAY NAIR is a Director of Product and Engineering with Amazon Web Services. He is the
founding product leader for AWS Lambda and helped build the AWS serverless portfolio
over the last several years. Ajay has spent his career focusing on cloud native platforms,

https://linkedin.com/in/theburningmonk
https://linkedin.com/in/theburningmonk
https://theburningmonk.com/
http://linkedin.com/in/petersbarski


ABOUT THE AUTHORS xxi

developer productivity, and big data systems. He loves spending his days helping
developers do more with less and delighting customers with the power of technology.
Ajay holds a Masters in Information Systems Management from Carnegie Mellon, USA,
with a Bachelors in Electrical and Electronics Engineering from Kerala University, India.
You can find Ajay sharing thoughts on everything from serverless to product
management on Twitter (@ajaynairthinks) or on LinkedIn (linkedin.com/in/ajnair).

http://linkedin.com/in/ajnair


xxii

about the cover illustration
The figure on the cover of Serverless Architectures on AWS, Second Edition is “Man from
Stupno/Sisak, Croatia,” from a book by Nikola Arsenović, published in 2003. The
book includes finely colored illustrations of figures from different regions of Croatia,
accompanied by descriptions of the costumes and of everyday life.

 In those days, it was easy to identify where people lived and what their trade or sta-
tion in life was just by their dress. Manning celebrates the inventiveness and initiative
of today’s computer business with book covers based on the rich diversity of regional
culture centuries ago, brought back to life by pictures from collections such as this
one.



Part 1

First steps

If you are new to serverless architectures, you’ve come to the right place. The
first three chapters of this book will give you an introduction to this exciting
technology and even get you to build a small serverless application of your own.
The first chapter provides an overview of serverless technologies and a discus-
sion about where we are today. The second chapter is more practical; it focuses
on giving you a hands-on experience with AWS and services such as AWS
Lambda. The third chapter describes popular and useful serverless patterns.
Let’s get started!

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3

Going serverless

If you ask software developers what software architecture is you might get answers
ranging from “it’s a blueprint or a plan” to “a conceptual model” to “the big pic-
ture.” This book is about an emerging architectural approach that has been
adopted by developers and companies around the world to build their modern
applications—serverless architectures. 

 Serverless architectures have been described as somewhat of a “nirvana” for an
application architectural approach. It promises developers the ability to iterate as
fast as possible while maintaining business critical latency, availability, security, and
performance guarantees, with minimal effort on the developers’ part.

 This book teaches you how to think about serverless systems that can scale and
handle demanding computational requirements without having to provision or

This chapter covers
 Traditional system and application architectures
 Key characteristics and benefits of serverless 

architectures
 How serverless architectures and microservices 

fit into the picture
 Considerations when transitioning from server to 

serverless
 What’s new in this second edition?



4 CHAPTER 1 Going serverless

manage a single server. Importantly, this book describes techniques that can help
developers quickly deliver products to market while maintaining a high level of quality
and performance by using services and architectures offered by today’s cloud platforms.

1.1 What’s in a name?
Before going in any further, we think it’s important to come to terms with the word
serverless. There are various attempts at this already, including an official one from
AWS (https://aws.amazon.com/serverless/) and a community favorite from Martin
Fowler (https://martinfowler.com/articles/serverless.html). Here’s how we define it:

DEFINITION Serverless is a qualifier that can be applied to any software or ser-
vice offering, which requires that it is consumed as a utility service and incurs
cost only when used.

Simple enough, right? But there’s a lot to unpack in that simple definition. Let’s dive
into each of the following two required criteria to call something serverless:

 Consumed as a utility service—The “software as a service” consumption model is
well understood. It means that anyone using the software uses a prescribed
application programming interface (API) or web interface to use the software
and customize it, while staying within any published constraints for the software
and usage policies for the API. Salesforce, Office365, and Google Maps are well-
known software packages delivered as a service. What’s key here is that the
actual infrastructure (servers, networking, storage, etc.) hosting the software
and powering the API is completely abstracted from you as the consumer; all
that is visible (and all that matter) is what the API permits. 

A service also typically comes with accompanying availability, reliability, and
performance guarantees from the service provider. A utility service, further, has
the billing characteristics that we’d expect from any utility computing offering;
that is, you pay for usage not for reservation, subscriptions, or provisioning. All
existing public cloud offerings have some form of utility billing associated with
them. For example, Amazon Elastic Compute Cloud (EC2) allows you to pay by
the second for the rent of virtual machines.

 Incurs cost only when used—This means there’s zero cost for having the software
deployed and ready to use. Think of this as the same cost model we expect from
our public utilities like electricity and water. You, as the consumer, pay a per
granular usage unit cost if you use any, but you pay zero if you use nothing. This
aspect of pure usage-based pricing is a distinguishing criterion of serverless
offerings from the other utility services that came before it.

In the rest of the book, we will use the “serverless” qualifier only for software that fits
these criteria. For example, software that requires you to provide a server to host a
website (like the Apache web server) would not qualify because it does not meet the
first criterion. Software that is available as a service but requires you to pay by subscrip-
tion (like Salesforce) would not qualify as well because it does not meet the second

https://aws.amazon.com/serverless/
https://martinfowler.com/articles/serverless.html


5Understanding serverless architectures

criterion. A serverless architecture, by extension, is one composed entirely of serverless
components. But which components of an architecture need to be serverless for it to
be called as such? Let’s look at this next with an example.

1.2 Understanding serverless architectures
Let’s take the example of a typical data-driven web application, not unlike the systems
powering most of today’s web-enabled software. These typically consist of a backend
(server) that accepts requests from a client and then processes the requests. 

 The backend server performs various forms of computation, and the frontend cli-
ent provides an interface for users to operate via their browser, mobile, or desktop
device. Data might travel through numerous application layers before being saved to a
database. The backend then generates a response that could be in the form of JSON
or in fully rendered markup, which is sent back to the client (figure 1.1). These kinds
of applications are conventionally architected as tiers (a presentation tier that controls
how the information is captured and provided to the user, an application tier that
controls the business logic of the application, and a data tier with the database and
corresponding access controls).

Just to clear up any misperceptions . . .
One of the common misunderstandings is that the “-less” in “serverless” implies
“absence of or without” (think “sugarless,” “boneless,” and so on), which leads to
some colorful debates on social media on how any application architecture can claim
to run without servers. We think “-less” here means “invisible in context of usage”
(think “wireless,” “tasteless”). There obviously are servers somewhere! The differ-
ence is that these servers are hidden from you. There’s no infrastructure for you to
think about and no way to tweak the underlying operating system or virtual hardware
configuration. Someone else takes care of the nitty-gritty details of infrastructure
management, freeing you from that operational overhead and giving back to you the
most expensive commodity there is—time.

1. User performs an action 
that requires data from a 
database to be displayed.

2. A request is formed 
and sent from the client 
to the web server.

3. The request is 
processed and the 
database is queried.

4. Data is retrieved.5. An appropriate response 
is generated and sent back.

6. Information is displayed 
to the user.

Application user Web client
(presentation tier)

Web server
(application tier)

Database
(data tier)

Figure 1.1 A basic request-response (client-server) message-exchange pattern that most developers 
are familiar with. There’s only one web server and one database in this figure. Most systems are much 
more complex.



6 CHAPTER 1 Going serverless

Software architectures have evolved from the days of code running on a mainframe to
a multitier architecture where the presentation, data, and application/logic tiers are
traditionally separated. Within each tier, there may be multiple logical layers that deal
with the particular aspects of functionality or domain. There are also cross-cutting
components such as logging or exception handling systems that can span numerous
layers. The preference for layering is understandable. Layering allows developers to
decouple concerns and have more maintainable applications. Figure 1.2 shows an
example of a tiered architecture with multiple layers including the API, the business
logic, the user authentication component, and the database. 

Application user

User interface components
Layering helps to 
segregate concerns, but 
more layers can also 
make changes harder 
and slower to implement.

Cross-cutting concerns 
span numerous layers. 
A good example of this is 
logging, which can happen 
at every layer.

Application tier

Cross-cutting
concerns

Presentation
tier

Data tier

Presentation logic

Client-side model

Client-side service layer

Application programming interface

Server-side service layer

Business/domain layer

Business entities/model

Data access/persistence layer

Exception m
anagem

ent

C
aching

Logging

C
om

m
unications

Security

Database File storage

Figure 1.2 A typical three-tier application is usually made up of presentation, application, and data 
tiers. A tier can have multiple layers with specific responsibilities.

Tiers vs. layers
There is some confusion among developers about the difference between layers and
tiers. A tier is a module boundary that provides isolation between major components
of a system. For example, a presentation tier that’s visible to the user is separate
from the application tier, which encompasses the business logic. In turn, a data tier
is another separate system that manages, persists, and provides access to data.
Components grouped in a tier can physically reside on different infrastructures.

Layers are logical slices that carry out specific responsibilities in an application. Each
tier can have multiple layers that are responsible for different elements of function-
ality, such as domain services.



7Understanding serverless architectures

1.2.1 Service-oriented architecture and microservices

One blunt approach would be to combine all the layers (the API, the business logic,
the user authentication) into one single, monolithic code base. This may sound like
an antipattern today, but that was indeed the approach we adopted in the early days of
cloud-based development. Most modern approaches, however, dictate that you archi-
tect with reusability, autonomy, composability, and discoverability in mind. 

 Among the veterans of our industry, service-oriented architecture (SOA) is a well-
known buzzword. SOA encourages an architectural approach in which developers cre-
ate autonomous services that communicate via message passing and often have a
schema or a contract that defines how messages are created or exchanged. 

 The modern incarnation of the service-oriented approach is often referred to as
microservices architecture. Modern application architectures are composed of ser-
vices communicating through events and APIs with business logic inserted as appro-
priate. We define microservices as small, standalone, fully independent services built
around a particular business purpose or capability. Ideally, microservices should be
easy to replace, with each service written in an appropriate framework and language. 

 The mere fact that microservices can be written in a different general-purpose lan-
guage or a domain-specific language (DSL) is a drawing card for many developers.
Benefits can be gained from using the right language or a specialized set of libraries
for the job. Each microservice can maintain state and store data. And if microservices
are correctly decoupled, development teams can work and deploy microservices inde-
pendently from one another. This approach of building and deploying applications as
a collection of loosely coupled services is considered the default approach to develop-
ment in the cloud today (the “cloud native” approach, if you will).

1.2.2 Implementing architecture the conventional way

Once you have decided how your application is going to be architected, and all the
software required for each of the layers is ready to go, you would think the hardest
part is done. The truth is, that’s when some of the more complex tasks begin. Devel-
oping your desired services traditionally requires servers running in data centers or in

Microservices all the time?
Microservice approaches aren’t all a bed of roses. Having a mix of languages and
frameworks can be hard to support and, without strict discipline, can lead to confu-
sion down the road. Eventual consistency, coordination, discovery, and complex error
recovery can make things difficult in a microservices universe. 

Software engineering is always a game of tradeoffs. Because something is in fashion
(like microservices) doesn’t make it universally right for all problems and use cases.
What matters is knowing about the different architectural options, understanding
their pros and cons, and, importantly, understanding the requirements and needs of
your own problem. (And, yes, in some cases and situations, having a monolith is OK.)



8 CHAPTER 1 Going serverless

the cloud that need to be managed, maintained, patched, and backed up. Today, you
would pick from a few options:

 Directly build on VMs—The physical deployment of each service requires you to
have a set of instances with additional tasks to address required activities such as
load balancing, transactions, clustering, caching, messaging, and data redun-
dancy. Provisioning, managing, and patching of these servers is a time-consuming
task that often requires dedicated operations people. 

A non-trivial environment is hard to set up and operate effectively. Infra-
structure and hardware are necessary components of any IT system, but they’re
often also a distraction from what should be the core focus—solving the busi-
ness problem. In our simple web application example, you would have to
become an expert in building distributed systems and cloud infrastructure
management. In a cloud environment, this form of computing is often referred
to as infrastructure as a service (IaaS).

 Use a PaaS—Over the past few years, technologies such as platform as a service
(PaaS) and containers have appeared as potential solutions to the headache of
inconsistent infrastructure environments, conflicts, and server management
overhead. PaaS is a form of cloud computing that provides a platform for users
to run their software while hiding some of the underlying infrastructure. 

To make effective use of PaaS, developers need to write software that targets
the features and capabilities of the platform. Moving a legacy application
designed to run on a standalone server to a PaaS service often leads to addi-
tional development effort because of the ephemeral nature of most PaaS imple-
mentations. Still, given a choice, many developers would understandably
choose to use PaaS rather than more traditional, manual solutions thanks to
reduced maintenance and platform support requirements.

 Use containers—Containerization is considered ideal for microservices architec-
tures because it is a way of isolating an application with its own environment.
It’s a lightweight alternative to full-blown virtualization that traditional cloud
servers use. 

Containers are an excellent deployment and packaging solution especially
when dependencies are in play (although they can come with their own house-
keeping challenges and complexities). Containers are isolated and lightweight,
but they need to be deployed to a server, whether in a public or private cloud or
on site. 

While each of these models are perfectly valid and offer varying degrees of simplicity
and speed of development for your service, your costs are still driven by the lifecycle of
the infrastructure or servers you own, not to your application usage. If you purchase a
rack at the data center, you pay for it 24/7. If you purchase a cloud instance (wrapped
in a PaaS or running containers or otherwise), you pay for it when it runs, indepen-
dent of whether it is serving traffic for your web app or not. 



9Understanding serverless architectures

 This leads to an entire discipline of engineers investing in improving server effi-
ciency or trying to match infrastructure lifecycle to application usage and server sizes
to traffic patterns. This also means that all the effort spent on these tasks is time taken
away from improving the functionality and differentiating aspects of your application.
This is equivalent to asking for a place to plug in your appliance and having to pay for
a share of the power generators at your utility company, as well as configuring the gen-
erator to deliver the power in the phase, frequency, and wattage you desire no matter
how much you use. The actual outcome (plug in your appliance) is dwarfed by the
effort and cost for the infrastructure required (the generators). This is where the
serverless approach comes in. It aims for the moral equivalent of the utility approach
we know and love today—there when you need it, complexity abstracted away, and you
only pay for when you use it. 

1.2.3 Implementing architecture the serverless way

A serverless architecture for our sample application could be composed of different
layers. For example, to build the API, we would use a service that does not cost us any-
thing if there are no API calls. To build the authentication service, we would use a ser-
vice that does not cost us anything if there are no authentication calls. To build the
storage service, we would use . . . you get the picture. 

 Much like the public cloud approach that offered virtual infrastructure Lego to
assemble our cloud stack in the early days, a serverless architecture uses existing ser-
vices from cloud providers like AWS to implement its architectural components. As an
example, AWS offers services to build our application primitives like APIs (Amazon
API Gateway), workflows (AWS Step Functions), queues (Amazon Simple Queue Ser-
vice), databases (Amazon DynamoDB and Amazon Aurora), and more.

 The idea of using off-the-shelf services to implement parts of our architecture is
not new; indeed, it’s been a best practice since the days of SOA. What’s changed in the
last few years is the capability to also implement the custom aspects of our applications
(like the business logic) in a serverless manner. This ability to run arbitrary code with-
out having to provision infrastructure to run it as a service or to pay for the infrastruc-
ture is referred to as functions as a service (FaaS). 

 FaaS allows you to provide custom code, associated dependencies, and some con-
figuration to dictate your desired performance and access control characteristics.
FaaS then executes this unit (referred to as a function) on an invisible compute fleet
with each execution of your code receiving an isolated environment with its own disk,
memory, and CPU allocation. You pay only for the time your code runs. A function is
not a lightweight instance; instead, think of it as akin to processes in an OS, where you
can spawn as many as needed by your application and then spin them down when
your application isn’t running. 

 Serverless architectures are really the culmination of shifts that have been going
on for a long time: from monoliths to services and from managing infrastructure to
increasingly delegating the undifferentiating responsibilities. Serverless architectures



10 CHAPTER 1 Going serverless

can help with the problem of layering and having to update too many things. There’s
room for developers to remove or minimize layering by breaking the system into func-
tions and allowing the frontend to securely communicate with services and even the
database directly. A well-planned serverless architecture can make future changes eas-
ier, which is an important factor for any long-term application. 

 To recap, a serverless architecture leverages a serverless implementation for each
of its components, using FaaS (like AWS Lambda) for custom logic. This means each
component is built as a service, with utility pricing that incurs cost only when used.
Each component is a service and exposes no configuration or cost related to the infra-
structure it is running on, which means these architectures don’t rely on direct access
to a server to work. By making use of various powerful single-purpose APIs and web
services, developers can build loosely coupled, scalable, and efficient architectures
quickly. Moving away from servers and infrastructure concerns, as well as allowing the
developer to primarily focus on code, is the ultimate goal behind serverless.

More on FaaS
AWS’s FaaS offering is called AWS Lambda and is one of the first from the major
cloud providers. Note that Lambda isn’t the only game in town. Microsoft Azure Func-
tions (http://bit.ly/2DWx5Gn), IBM Cloud Functions (http://bit.ly/2l1PWbd), and
Google Cloud Functions (http://bit.ly/2CbzOem) are other FaaS services you might
want to look at.

Many developers conflate serverless with FaaS offerings like AWS Lambda, which
often leads to confusing arguments around the adoption of containers or serverless
when they really mean containers or functions. We like how TJ Hallowaychuk, the cre-
ator of the Apex framework, defines what serverless is about. He once tweeted,
“serverless != functions, FaaS == functions, serverless == on-demand scaling and
pricing characteristics (not limited to functions).” We couldn’t agree more.

An emerging trend is that of serverless containers; that is, leveraging containers
instead of functions to implement the custom logic and using the container as a util-
ity service and incurring costs only when the container runs. Services like AWS Far-
gate or Google Cloud Run offer this capability. The difference between the two
(functions vs. containers) is just the degree to which developers want to shift the
boundaries of shared responsibilities. Containers give you a bit more control over
user space libraries and network capabilities. Containers are an evolution of the
existing server-based/VM model, offering an easy packaging and deployment model
for your application stack. You are still required to define your operating system’s
requirements, your desired language stack, and dependencies to deploy code, which
means you continue to carry some of the infrastructure complexity. For the purpose
of this book, we are going to focus on using FaaS for our custom logic, though you
can explore the usage of serverless containers for the same as well.

http://bit.ly/2DWx5Gn
http://bit.ly/2l1PWbd
http://bit.ly/2CbzOem


11Making the call to go serverless

1.3 Making the call to go serverless
The web application example we went through is one of the simplest demonstrations
of what can be achieved with serverless architectures. A serverless approach can also
work exceptionally well for organizations that want to innovate and move quickly. 

 Functions and serverless architectures, in general, are versatile. You can use them
to build backends for CRUD applications, e-commerce, back-office systems, complex
web apps, and all kinds of mobile and desktop software. Tasks that used to take weeks
can be done in days or hours as long as we chose the right combination of technolo-
gies. Lambda functions are stateless and scalable, which makes them perfect for
implementing any logic that benefits from parallel processing. 

 The most flexible and powerful serverless designs are event-driven, which means
each component in the architecture reacts to a state change or notification of some
kind rather than responding to a request or polling for information. In chapter 2, for
example, you’ll build an event-driven, push-based pipeline to see how quickly you can
put together a system to encode video to different bit rates and formats. 

NOTE You will find the use of events as a communication mechanism
between components to be a recurring theme in serverless architectures;
indeed, AWS Lambda’s initial launch was as an event-driven computing ser-
vice. Building event-driven, push-based systems will often reduce cost and
complexity (you won’t need to run extra code to poll for changes) and,
potentially, make the overall user experience smoother. It goes without saying
that although event-driven, push-based models are a good goal, they might
not be appropriate or achievable in all circumstances. 

Serverless architecture allows developers to focus on software design and code rather
than infrastructure. Scalability and high availability are easier to achieve, and the pric-
ing is often more fair because you pay only for what you use. More importantly, you
have the potential to reduce some of the complexity of the system by minimizing the
number of layers and amount of code needed. 

 Adopting a serverless approach to application development comes with significant
agility, elasticity, and cost efficiency gains. However, it is easy to fall into the trap of try-
ing to adopt a serverless approach for all applications. We recommend keeping a few
principles in mind as you start your serverless journey:

 Avoid lift-and-shift—In practice, serverless architectures are more suited for new
applications rather than porting existing applications over. This is because exist-
ing application code bases have a lot of code that is made redundant by the
serverless services. For example, porting a Java Spring app into Lambda brings
a heavy framework into a function, most of which exists to interact with a web
server (which doesn’t exist inside Lambda). 

 Adopt a serverless first approach, not a serverless only approach—While there are
companies like A Cloud Guru that have adopted a serverless only approach, where
100% of their application runs as a serverless implementation, the more



12 CHAPTER 1 Going serverless

widespread approach that companies like Expedia and T-Mobile have adopted is
to go serverless first. What this means is that their developers attempt to first build
any new application in the following priority order: build as much as possible using
third-party services, fall back to custom services built using AWS serverless primi-
tives like AWS Lambda, and finally, fall back to custom services built using custom
software running on infrastructure like EC2. We talk about the reasons why you
may have to fall back beyond custom serverless services in the next section.

 It doesn’t have to be all or nothing—One advantage of the serverless approach is
that existing applications can be gradually converted to serverless architecture.
If a developer is faced with a monolithic code base, they can gradually tease it
apart and convert individual components into a serverless implementation (the
strangler pattern). 

The best approach is to initially create a prototype to test developer assump-
tions about how the system would function if it is going to be partly or fully server-
less. Legacy systems tend to have interesting constraints that require creative
solutions, and as with any architectural refactors at a large scale, compromises
are inevitably going to be made. The system may end up being a hybrid (as in fig-
ure 1.3), but it may be better to have some of its components use Lambda and
third-party services rather than remain with an unchanged legacy architecture
that no longer scales or that requires expensive infrastructure to run.

Lambda
function

Lambda
function

Lambda
function

IaaS

PaaS

Containers

Monolithic application
Lambda
function

Analytics
service

Payment
service

Notification
service

Search
service

A monolithic application 
can be deconstructed  
into Lambda functions, 
third-party services, IaaS, 
PaaS, and containers.

The combination of 
technologies should depend 
on your needs and constraints. 
However, more technologies 
require more overhead, time, 
and energy. 

Containers, PaaS, IaaS, Lambda functions, and services 
can talk to one another. If you have designed a system 
using a combination of these technologies, you must 
consider how the orchestration of events take place.

Figure 1.3 Serverless architecture is not an all-or-nothing proposition. If you currently have 
a monolithic application, you can begin to gradually extract components and run them in 
isolated services or compute functions. You can decouple a monolithic application into an 
assortment of IaaS, PaaS, containers, functions, and third-party services if it helps.



13Making the call to go serverless

The transition from a legacy, server-based application to a scalable serverless architec-
ture may take time to get right. It needs to be approached carefully and slowly, and
developers need to have a good test plan and a great DevOps strategy in place before
they begin.

 Pick applications suited for a service-oriented architecture—Serverless architectures
are a natural extension of ideas raised in SOAs. In a serverless architecture, all
custom code is written and executed as isolated, independent, and often granu-
lar functions that are run in a compute service such as AWS Lambda. Because
every component is a service, serverless architectures share a lot of advantages
and complexities with event-driven microservices architectures. This also means
applications likely need to be architected to meet the requirements of these
approaches (like making the individual services stateless, for example). 

Keep in mind that the serverless approach is all about reducing the amount
of code you have to own and maintain, so you can iterate and innovate faster.
This means you should strive to minimize the number of components that are
required to build your application. For example, you may architect your web
application with a rich front end (in lieu of a complex backend) that can talk to
third-party services directly. That kind of architecture can be conducive to a bet-
ter user experience. Fewer hops between online resources and reduced latency
will result in a better perception of performance and usability of the applica-
tion. In other words, you don’t have to route everything through a FaaS; your
frontend may be able to communicate directly with a search provider, a data-
base, or another useful API. 

Also keep in mind that moving from a monolithic approach to a more
decentralized serverless approach doesn’t automatically reduce the complexity

What about NoOps?
Early on, around the time of the first conference on serverless technologies and archi-
tectures (https://serverlessconf.io) in 2016, there was talk that serverless technol-
ogies foreshadowed the era of NoOps. Some people believed that thanks to
serverless, companies would no longer need to think about infrastructure operations.
The cloud vendor will take care of everything was the thought. That assumption, that
NoOps was a real thing, proved not to be the case.

When it comes to building and running serverless applications, DevOps engineers are
essential, except now they have a different focus. Their attention is on deployment
automation, testing, and working with the operations/support teams of their pre-
ferred cloud provider (rather than tweaking servers and patching operating systems). 

Companies can get away with smaller, more specialized DevOps teams; however,
ignoring operations entirely is a recipe for disaster (and don’t let anyone else tell you
otherwise). Remember, when your application fails, customers hold you accountable,
not your cloud provider, so be ready and have the right people and processes in place.

https://serverlessconf.io


14 CHAPTER 1 Going serverless

of the underlying system. The distributed nature of the solution can introduce
its own challenges because of the need to make remote rather than in-process
calls and the need to handle failures and latency across a network, which your
application will need to be resilient to.

 Minimize custom code—The rise of serverless means many standard application
components like APIs, workflows, queues, and databases are available as server-
less offerings from cloud providers and third parties. It’s far more useful for
developers to spend time solving a problem unique to their domain rather than
recreating functionality already implemented by someone else. Don’t build for
the sake of building if viable third-party services and APIs are available. Stand
on the shoulders of giants to reach new heights. 

Appendix A has a short list of Amazon Web Services and non-Amazon Web
Services that we’ve found useful. We’ll look at most of those services in more
detail as we move through the book. However, it goes without saying that when
a third-party service is considered, factors such as price, capability, availability,
documentation, and support must be carefully assessed. 

If you have to build a piece of custom functionality, our advice is simple: try
to solve your problem using functions first, and if that doesn’t work explore
containers and more traditional server-based architectures second. Developers
can write functions to carry out almost any common task, such as reading and
writing to a data source, calling out to other functions, and performing calcula-
tions. In more complex cases, developers can set up more elaborate pipelines
and orchestrate invocations of multiple functions. 

1.4 Serverless pros and cons
The serverless approach of building applications by quickly assembling services pro-
vides two significant advantages: less code to write and maintain per application and
per activity pricing for our applications. This translates into a disruptive gain in agility
and developer productivity, and a much more streamlined alignment between devel-
opment and finance (because any application inefficiencies or optimizations show a
direct, tangible financial impact). Here are a few of the specific benefits you will real-
ize by adopting serverless architecture:

 High scale and reliability without server management—Building large scale, distrib-
uted systems is hard. Tasks such as server configuration and management,
patching, and maintenance are taken care of by the vendor, as is managing the
infrastructure architecture for high scale and reliability, which saves time and
money. For example, Amazon looks after the health of its fleet of servers that
power AWS Lambda. 

If you don’t have specific requirements to manage or modify server
resources, then having Amazon or another vendor look after them is a great
solution. You’re responsible only for your own code, leaving operational and
administrative tasks to a different set of capable hands. 



15Serverless pros and cons

 Competitive pricing—Traditional server-based architecture requires servers that
don’t necessarily run at full capacity all of the time. Scaling, even with auto-
mated systems, involves a new server, which is often wasted until there’s a tem-
porary upsurge in traffic or new data. 

Serverless systems are much more granular with regard to scaling and are cost-
effective, especially when peak loads are uneven or unexpected. Because of their
utility pay-per-use billing, serverless services can be extremely cost-effective; how-
ever, they’re not cheaper than traditional (server and container) technologies in
all circumstances. The best thing is to do some modeling before embarking on
a big project.

 Less code—We mentioned at the start of the chapter that serverless architecture
provides an opportunity to reduce some of the complexity and code, in com-
parison to more traditional systems. Adopting a serverless approach eliminates
undifferentiated code such as that required for orchestrating server fleets or
routing requests and events between components, which forms a surprisingly
large part of modern code bases. 

Serverless is not a silver bullet in all circumstances, however. Here are some reasons
where you would want to avoid serverless architectures:

 You are not comfortable with public cloud-based architectures. Serverless development
is a natural extension of the move to cloud-based development, where more
and more of the undifferentiated heavy lifting is moved to the providers. There
are applications and business scenarios where you need to maintain your own
data center; in such cases, you cannot build a serverless architecture (though
you are welcome to host your own primitives on your infrastructure and use
those to build applications).

 The services don’t meet the availability, performance, compliance, or scale needs of your
customers. AWS serverless services offer an availability SLA, but their threshold
may be below what you need for your business. They also have a variety of com-
pliance certifications, but you must validate if they need what your business
needs. Services like AWS Lambda also do not offer a performance SLA, which
means you may need to evaluate their performance against your desired levels.
Non-AWS, third-party services are in the same boat. Some may have strong
SLAs, whereas others may not have one at all. 

 Your application and business needs more control or you need to customize the infrastruc-
ture. When it comes to Lambda, the efficiencies gained from having Amazon
look after the platform and scale functions come at the expense of being able to
customize the operating system or tweak the underlying instance. You can mod-
ify the amount of RAM allocated to a function and change timeouts, but that’s
about it. Similarly, different third-party services will have varying levels of cus-
tomization and flexibility. 



16 CHAPTER 1 Going serverless

 Your application and business needs require you to stay vendor agnostic. If a developer
decides to use third-party APIs and services, including AWS, there’s a chance
that architecture could become strongly coupled to the platform being used.
The implications of vendor lock-in and the risk of using third-party services—
including company viability, data sovereignty and privacy, cost, support, docu-
mentation, and available feature set—need to be thoroughly considered.

In this chapter, you learned what serverless architecture is, looked at its principles,
and how it compares to traditional architectures. In the next chapter, we’ll get our
hands dirty by creating a small serverless, event-driven application. This will help you
get a good taste for serverless if this is your first time trying this approach. From there,
we’ll explore important architectures and patterns and discuss use cases where server-
less architectures are used to solve a problem.

1.5 What’s new in this second edition?
For all intent and purposes, this is a completely different book from the first edition of
Serverless Architectures on AWS. Most of the chapters have been written from the ground
up to provide a completely different experience from the first edition.

 When the first edition of this book came out in 2017, serverless was still new and
many of us were learning about serverless for the first time. As such, the first edition
gave a gentle introduction to serverless and walked the reader through a build of a
serverless application. Since then a lot of new educational content has crossed our
desks, including numerous books and video courses to help us get started with server-
less technologies on AWS.

 If you’re looking for an introduction to serverless architectures on AWS, we have
included some introductory content in chapter 2 and in appendices A and B. You can
also find the first edition of this book on the Manning website (https://www.manning
.com/books/serverless-architectures-on-aws). Most of the content from the first edi-
tion is still relevant today, and with that book, you will learn to build a serverless appli-
cation from scratch.

 But, just as serverless technologies allow us to focus on the things that differentiate
our business, we want to focus on things that can differentiate this book with this sec-
ond edition. Instead of yet another getting started guide to serverless, this book
focuses on serverless use cases and interesting architectures. It is aimed at developers
with some experience of serverless technologies already and answers the questions
that many of you have been asking us. Given the switch in focus, this book does not
have many actual code samples. Instead, we hope to challenge the way you think
about serverless architecture and help you get the most out of serverless technologies
on AWS.

https://www.manning.com/books/serverless-architectures-on-aws
https://www.manning.com/books/serverless-architectures-on-aws
https://www.manning.com/books/serverless-architectures-on-aws


17Summary

Summary
 The cloud has been and continues to be a game changer for IT infrastructure

and software development. 
 Software developers need to think about the ways they can maximize the use of

cloud platforms to gain a competitive advantage. 
 Serverless architectures are the latest step forward for developers and organiza-

tions to think about, study, and adopt. This exciting shift in implementing
application architectures will grow quickly as software developers embrace com-
pute services such as AWS Lambda. 

 In many cases, serverless applications will be cheaper to run and faster to imple-
ment. There’s also a need to reduce complexity and costs associated with run-
ning infrastructure and carrying out development of traditional software
systems. 

 The reduction in cost and time spent on infrastructure maintenance and the
benefits of scalability are good reasons for organizations and developers to con-
sider serverless architectures.



18

First steps to serverless

To give you an understanding of serverless architectures, you’re going to build a
small, event-driven serverless application: specifically, a video-encoding pipeline.
Your service will transcode videos, uploaded to an S3 bucket, from their existing
format, resolution or bit rate to a different format or bit rate (kind of like YouTube
only without the frontend website).

 To build this video-encoding pipeline, you will use AWS Lambda, S3, and Ele-
mental MediaConvert. Later, if you so desire, you can build a frontend around it,
but we’ll leave that for you as an exercise. If you want to see how we’ve done it our-
selves, you can refer to our first edition that covers the frontend in some detail. 

This chapter covers
 Writing and deploying AWS Lambda functions

 AWS services such as Simple Storage Service 
(S3) and Elemental MediaConvert

 Using the Serverless Framework to organize and 
deploy services



19Building a video-encoding pipeline

2.1 Building a video-encoding pipeline
In this section, you’ll begin to build a small, event-driven serverless application. At a
high level, you’ll learn the following in this chapter:

 How to construct a rudimentary serverless architecture using three AWS ser-
vices including Lambda

 How to use the Serverless Framework to organize and deploy a serverless
application

 How to run, debug, and test the serverless pipeline that you built

Let’s talk about the event-driven pipeline you are going to build (we’ll call it The 24-Hour
Video). Your pipeline will encode videos that were uploaded to a designated S3 bucket
into different formats, resolutions, and bit rates. Because the entire process is event-
driven, once a file is uploaded to S3, the system triggers automatically to process the file
and create a new version with a different encoding in a separate bucket. And because
everything is done automatically, there’s no need for any intervention on your behalf.

2.1.1 A quick note on AWS costs

Most AWS services have a free tier. Following this example, you should stay within the
free tier of most AWS services. AWS Elemental MediaConvert, however, is one service
that may end up costing you a little bit of money. You’ll use MediaConvert to
transcode video files. This service is pay-as-you-go without any upfront cost. Pricing is
based solely on the duration of the new videos MediaConvert creates, and you are
charged in 10-second increments.

 MediaConvert offers two pricing tiers for on-demand services: Basic and Profes-
sional. You will use the Basic tier in this book, although we invite you to investigate the
Professional tier if you are going to take your application to the next level (remember
us if you end up building the next YouTube!). The Basic tier supports features such as

Frameworks for serverless
You might have heard that there are several frameworks that you can use to organize
and deploy serverless applications. These include the AWS Serverless Application
Model (https:// github.com/awslabs/serverless-application-model), the Serverless
Framework (https://serverless.com), Chalice (https://github.com/aws/chalice), and
a few others. In this chapter, you’ll use Serverless Framework to organize and auto-
mate the deployment of your serverless application. 

Our advice is to always use a framework like the Serverless Framework or Serverless
Application Model (SAM). Once you understand the principles of serverless architec-
tures, a framework accelerates everything you do by leaps and bounds. Appendix C
contains more information on the different frameworks we have found useful. There’s
even an introduction and a bit of a primer on the Serverless Framework that you’ll
use in this chapter. Have a look at appendix C when you get a chance.

https://github.com/awslabs/serverless-application-model
https://serverless.com
https://github.com/aws/chalice


20 CHAPTER 2 First steps to serverless

single-pass encoding, clipping, stitching, and overlays. The Professional tier supports
quite a few more features.

 The per-minute rate in the Basic tier depends on the resolution and the frame rate
of the desired output. It ranges from $0.0075 per minute for basic SD quality output to
$0.0450 per minute for UHD output. This rate also differs based on the region you are
in. US East 1 (North Virginia), for example, is cheaper than US West 1 (Northern Cal-
ifornia), but US East 1 is the region you’ll use throughout this book. You can see the
tiers and the pricing information at https://aws.amazon.com/mediaconvert/pricing/.
Just remember that there’s no free tier for MediaConvert, so you’ll start paying some-
thing almost immediately.

 The S3 free tier allows users to store 5 GB of data with standard storage, issue
20,000 GET requests and 2,000 PUT requests, and transfer 15 GB of data each month.
Lambda provides a free tier with 1 M free requests and 400,000 GB seconds of com-
pute time. You should be well within the free tier limitations of those services. The fol-
lowing lists the high-level requirements for The 24-Hour Video: 

 The transcoding process converts uploaded source videos to three different res-
olutions and bit rates: 
– 6 Mbps with a 16 × 9 aspect ratio and a resolution of 1920 × 1080
– 4.5 Mbps with a 16 × 9 aspect ratio and a resolution of 1280 × 720
– 1.5 Mbps with a 4 × 3 aspect ratio and a resolution of 640 × 480

 There will be two S3 buckets: 
– Original files will go into the upload bucket. 
– Files created by AWS MediaConvert will be saved to the transcoded video

bucket.

To make things simpler to manage, you’ll set up a build and deployment system using
the Node Package Manager (npm) and the Serverless Framework. First, here’s an
overview on the AWS services we’ll use in this example.

2.1.2 Using Amazon Web Services (AWS)

To create your serverless backend, you’ll use several services provided by AWS. These
include Simple Storage Service (S3) for file storage, MediaConvert for video conver-
sion, and Lambda for running custom code and orchestrating key parts of the system.
In this chapter, you’ll create your first Lambda function to kick off MediaConvert jobs.
Here’s a brief description for each of the AWS services that we’ll use: 

 S3 provides the storage service. Amazon S3 stores the uploaded and newly
transcoded videos.

 Lambda handles parts of the system that require coordination or that can’t be done directly
by other services. This function automatically runs when a file is uploaded to an S3
bucket.

 MediaConvert encodes your videos to different resolutions and bit rates. Default presets
remove the need to create custom encoding profiles.

https://aws.amazon.com/mediaconvert/pricing/


21Preparing your system

Figure 2.1 shows a detailed flow of the proposed approach. Note that the only point
where a user needs to interact with the system is at the initial upload stage. This figure
and the architecture may look complex, but we’ll break the system into manageable
chunks and tackle them one by one over the course of this chapter.

2.2 Preparing your system
It’s time to set up AWS services and install the software on your computer. Here’s what
you’ll install on your machine:

 Node.js and its package manager (npm) to help manage Lambda functions and
keep track of dependencies

 The AWS command-line interface (CLI) to help with deployments and future
use cases and examples

 The Serverless Framework (npm package) to help you organize and deploy
your application to AWS

In AWS, you’ll create

 An Identity and Access Management (IAM) user and roles
 S3 buckets to store video files
 The first Lambda function

This section may seem lengthy, but it explains a number of things that will help you
throughout the book. If you’ve already used AWS, you’ll be able to move through this
section quickly. 

Upload new
video file

Transcode
video

2. Trigger
Lambda

4. Submit 
job

1. S3 bucket

Create
transcode

job

3. Lambda

5. AWS 
MediaConvert

7. S3 bucket

6. Save 
file

Save
transcoded

video

Figure 2.1 The 24-Hour Video backend is built with AWS S3, MediaConvert, and 
Lambda. This pipeline may seem to have a lot of steps initially, but in this chapter, 
we’ll break this down, and you’ll build a scalable serverless system in no time at all.



22 CHAPTER 2 First steps to serverless

2.2.1 Setting up your system

To begin, you need to create an AWS account and install a number of software pack-
ages and tools on your computer. Let’s take these in order:

1. Create an AWS account. It’s free but you will need to provide your credit card
details in case there are any charges if you go over the free tier allotment. 

You can create your account at https://aws.amazon.com. We highly recom-
mend that you set up 2 Factor Authentication (2FA) on your account as soon as
possible. The instructions for 2FA are here: https://amzn.to/2ZASm33. 

2. After your account is created, download and install the appropriate version of
the AWS CLI for your system from here:

http://docs.aws.amazon.com/cli/latest/userguide/installing.html 

There are different ways to install the CLI, including an MSI installer if
you’re using Windows, pip (a Python-based tool), or a bundled installer if
you’re using Mac or Linux. 

3. Install Node.js and npm. You can download Node.js from https://nodejs.org/
en/download/ (npm comes bundled with Node.js). 

You can install the latest version of Node.js but, at the time of writing, the
most up-to-date version supported by Lambda was 14. Node 14.x is what you will
target when you deploy code. 

Just a heads up: in a short while you’ll need to install Serverless Framework. However,
you don’t need to do it now. We’ll cover that when it is time.

2.2.2 Working with Identity and Access Management (IAM)

Having an AWS account is good, but you cannot do too much with it just yet. For
example, the AWS CLI you have just installed isn’t going to function. You will not be
able to create resources, deploy, or do anything, really. To make AWS work, you’ll
need to create an IAM user, assign permissions to the user, and then configure the
CLI to use the IAM user’s credentials. Let’s do that now: 

1. In the AWS console, click IAM (Identity and Access Management), click Users,
and then click Add User. 

2. Give your IAM user a name (in figure 2.2, we used lambda-upload for the
name) and select the Programmatic Access check box. Selecting this check box
allows you to generate an access key ID and a secret access key. (You’ll need
these keys to run aws configure in a few steps.) 

3. Click Next: Permissions to proceed.
 
 
 
 
 

https://aws.amazon.com
https://amzn.to/2ZASm33
http://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/


23Preparing your system

4. Select Attach Existing Policies Directly and then click the checkbox next to
AdministratorAccess (figure 2.3). Choose Next: Tags to proceed.

Enable Programmatic 
Access to generate the 
access key ID and the 
secret access key.

Figure 2.2 Creating a new IAM user is straightforward when using the IAM console.

You are going to give 
AdministratorAccess to 
this user because the 
Serverless Framework 
will require it at a 
later stage. 

Figure 2.3 Make sure to select the AdministratorAccess policy. You will need it to upload functions and 
deploy other services.



24 CHAPTER 2 First steps to serverless

5. Tags are useful for keeping an inventory and metadata, but for this example,
you don’t need to do anything. Click Next: Review to go forward.

6. On the final page, you can review your user details and the permissions sum-
mary. Choose Create User to proceed. 

You should now see a table with the username, the access key ID, and the secret access
key. You can also download a CSV file with this information. Go ahead and download
it now to retain a copy of the keys on your computer and click Close to exit (figure 2.4).

Run aws configure from a terminal on your system. The AWS CLI prompts for several
things: 

1. At the prompt for user credentials, enter the access and secret keys generated
for the lambda-upload username or the username that you selected previously. 

2. You’ll also be prompted to enter a region. Type us-east-1 and press Enter. We
recommend that you use the same region for all services (you’ll find that it’s
cheaper and makes things easier to configure). The N. Virginia (us-east-1)

Click Show to see the 
secret access key.

Download the CSV file to 
your computers. It has 
the access key ID and 
the secret acess key.

Figure 2.4 Remember to save the access key ID and the secret access key. You won’t be able to 
get the secret access key again once you close this window.



25Preparing your system

region supports everything we’ll use for the duration of this book so make sure
to use us-east-1 at all times.

3. There will be one more prompt asking you to select the default output format.
Set it as json. 

You are now done with the AWS CLI configuration. You created an IAM user and used
that user’s credentials to configure the CLI on your system. Good job! 

2.2.3 Let’s make a bucket

The next step is to create a bucket in S3. This bucket will contain transcoded video
put there by Elemental MediaConvert. All users of S3 share the same bucket name-
space, which means that you have to come up with bucket names that are not in use.
In this book, we’ll assume that this bucket is named something like serverless-video-
transcoded.

To create a bucket

1. In the AWS console, choose S3 and then click Create Bucket (figure 2.5). 
2. Type in a name for the bucket and choose US East (N. Virginia) as the region. 
3. Scroll to the bottom of the page and click Create Bucket to confirm. Your

bucket should immediately appear in the console.

Granular permissions
The best practice when it comes to permissions in AWS is to make them granular.
This means that your IAM users and roles should have only the specific permissions
needed to carry out their purpose. They shouldn’t have all administrator-level permis-
sions, for example, unless there is a good reason for it. 

You just created an IAM user that has administrator-level permissions. This flies in
the face of the advice we’ve just given. The reason for this is that the Serverless
Framework, which you will use shortly, is going to need administrator-level access.
The Framework calls to a lot of APIs, and it’s difficult to configure an IAM user with
just the right permissions. If you aren’t going to use the Serverless Framework and
want to deploy functions using the AWS CLI instead, then we’d recommend creating
an IAM user and assigning a few specific permissions needed to upload your functions.

Bucket names
Bucket names must be unique throughout the S3 global resource space. We’ve
already taken serverless-video-transcoded, so you’ll need to come up with a different
name. We suggest adding your initials (or a random string of characters) to these
bucket names to help identify them throughout the book (for example, serverless-
video-upload-ps and serverless-video-transcoded-ps).



26 CHAPTER 2 First steps to serverless

NOTE You are going to end up needing another S3 bucket to which you will
upload videos in the first place. The Serverless Framework creates this bucket
for you automatically in the next section, so you don’t need to do anything
yet. You can create the transcoded video bucket using CloudFormation inside
the Serverless Framework’s serverless.yml file too, but explaining that is out-
side the scope of this chapter (good exercise, though).

2.2.4 Creating an IAM role

Now you need to create an IAM role for your first Lambda function (you will create
this function in a little while). The role allows your function to interact with S3 and
Elemental MediaConvert. You’ll add two policies to this role: 

 AWSLambdaExecute 

 AWSElementalMediaConvertFullAccess

The AWSLambdaExecute policy allows Lambda to interact with S3 and CloudWatch.
CloudWatch is an AWS service for collecting log files, tracking metrics, and setting

Set the right region to reduce costs 
and minimize latency. Your Lambda 
functions should be in the same region. 

If the bucket name is taken, AWS 
shows you an error message.

Figure 2.5 Creating a bucket from the AWS S3 console. Remember that bucket names are globally 
unique, so you’ll have to come up with your own new name.



27Preparing your system

alarms. The AWSElementalMediaConvertFullAccess policy allows Lambda to submit
new transcoding jobs to Elemental MediaConvert.

1. In the AWS console, find and click IAM.
2. Choose Roles. 
3. Click the Create Role button to begin. You will see a list of different AWS tech-

nologies under AWS Service. Select Lambda and the Next: Permissions button. 
4. In this view, you can search for and attach premade policies. Find and attach

(by clicking the checkbox on the left) the following two policies: 
– AWSLambdaExecute

– AWSElementalMediaConvertFullAccess 

5. Click Next: Tags to advance.
6. Click Next: Review to proceed to the Review page.
7. Name your role transcode-video and click Create Role.

After the role is created, you’ll see the list of your existing roles again. Choose
transcode-video to see what’s inside. It should look like figure 2.6.

Two policies have been added to the role. 
Permissions are embedded within policies.

Figure 2.6 Two managed policies are needed for the transcode-video role to access S3 and 
create Elemental MediaConvert jobs.



28 CHAPTER 2 First steps to serverless

2.2.5 Using AWS Elemental MediaConvert

You are going to use Elemental MediaConvert to convert uploaded video files from
one format to another. At a high level, MediaConvert works by taking a file uploaded
to an S3 bucket, transcoding the file to one or more different versions, and then plac-
ing these versions in to another S3 bucket. 

 When you create a MediaConvert job, you’ll have to specify this information,
including input and output buckets, and what conversion you’d like to carry out. You
will also have to specify a MediaConvert endpoint. Each user has a custom endpoint,
and you need to know where it is. Let’s find it now so that you’ll know where to look.

1. In the AWS console, select MediaConvert (it will be under the Media Services
category).

2. Click the hamburger icon in the top left corner (it looks like three parallel
lines).

3. Choose Account from the menu.

You should see the API endpoint that you will need to use in this chapter (figure 2.7).
Note that you can always refer to these instructions to find the MediaConvert API end-
point if you forget where it is.

You are nearly there! There’s one more IAM role you need to create now to make
things easier later.

This API endpoint will be needed 
for your first Lambda function.

Figure 2.7 Viewing the API endpoint that you will use in this chapter



29Starting with the Serverless Framework

2.2.6 Using MediaConvert Role

You need to create a role for the MediaConvert service. MediaConvert needs to have
access to S3 as well as the API Gateway. Without this role, MediaConvert simply will
not run when you try to invoke it from Lambda. To create the role, follow these steps
(or try it on your own!):

1. In the AWS console, click IAM and then click Roles. 
2. Click the Create Role button. You will see a list of different AWS technologies

under AWS Service. Select MediaConvert and the Next: Permissions button.
AWS has already predefined what policies you need for this role. These are S3
Full Access and API Gateway Full Invoke. 

3. Choose Next: Tags, then click Next: Review to proceed to the next page.
4. Name your role media-convert-role and click Create Role.
5. Copy the ARN of the role to a notepad or someplace where it can be easily

retrieved. You’ll need the role ARN as well as the API endpoint later (in listing 2.3).

2.3 Starting with the Serverless Framework
The Serverless Framework is going to help you organize your functions and deploy
them to AWS. This framework is powerful, so you will get a lot of flexibility in terms of
how to package code, what variables to use, and environments to deploy to. 

 If you get stuck with the Serverless Framework, have a look at appendix C or check
out https://serverless.com/framework/docs. Appendix C features a thorough walk-
through of the Serverless Framework as well as useful hints and tips. However, if you
don’t find your answer there, then the online documentation is the way to go.

2.3.1 Setting up the Serverless Framework

Install the Serverless Framework by running npm install -g serverless from the ter-
minal. At the time of writing, we used Serverless Framework 2.63. If you are using a
later version of the framework and something doesn’t work, you may have to apply
your best detective skills to figure out what’s wrong and fix it (or downgrade to 2.63).

CREDENTIALS

The Serverless Framework needs access to your AWS account so that it can create and
manage resources on your behalf. By default, Serverless Framework uses the AWS pro-
file you have already configured on your machine using the AWS CLI.

Source code on GitHub
The source code for this chapter can be found at https://github.com/sbarski/serverless
-architectures-aws-2.

https://serverless.com/framework/docs
https://github.com/sbarski/serverless-architectures-aws-2
https://github.com/sbarski/serverless-architectures-aws-2
https://github.com/sbarski/serverless-architectures-aws-2


30 CHAPTER 2 First steps to serverless

HELLO WORLD!
Having installed the Serverless Framework and configured credentials, let’s test that it
works. In your terminal, run the following command:

serverless create --template aws-nodejs --path hello-world

Change to the newly created directory by typing cd hello-world. You should see two
files in this directory: serverless.yml and handler.js. The first file, serverless.yml, is a
project file (a service) that describes functions, events, and resources that the func-
tion can use. The second file, handler.js, is an example Lambda function that you can
change! Open handler.js and modify the implementation of the function as the fol-
lowing listing shows.

'use strict';

module.exports.hello = async (event) => {
  return {
    statusCode: 200,
    body: JSON.stringify(
      {
        message: 'Hello Serverless World!',
        input: event,
      },
      null,
      2
    ),
  };
};

Once you have finished modifying the function, remember to save the file. You are
now ready to deploy. Run serverless deploy from the terminal and press Enter
(make sure you are in the same directory as the serverless.yml file before you deploy;
otherwise, you’ll get an error message). 

 You’ll see the Serverless Framework package up files, prepare a CloudFormation
stack, and deploy your function to AWS. As soon as the deployment finishes, you’ll see
a bit of useful information such as the stage used for the function (dev), the region
(us-east-1), and the name of the service (hello-world). Your function will be called
hello-world-dev-hello a combination of the service name, stage, and the function
export.

 You can finally check that the function was successfully deployed by opening the
Lambda console in AWS and running the function from there. Another option is to
invoke the deployed function from the terminal. 

 To run the function in AWS and return a response, execute the following com-
mand in the terminal: serverless invoke --function hello. The Serverless Frame-
work will know to invoke this function from the cloud environment.

Listing 2.1 A new hello-world Lambda function

Because this is a basic function, you 
can run it in AWS Lambda and see a 
message.

The only line of code that you need to 
modify before running this example



31Starting with the Serverless Framework

2.3.2 Bringing Serverless Framework to The 24-Hour Video
Now that you have gotten the Serverless Framework to work, let’s get busy with The 24-
Hour Video. You are going to create a new function and reference it in serverless.yml.
You will be able to deploy the function (and then add additional functions) with a single
command and, later, sustainably grow and organize your entire serverless application.

1. In a terminal window, run the following command: 
sls create --template aws-nodejs --path twentyfour-hour-video

The reason we used twentyfour instead of 24 is because a service name must
begin with an alphabetic character.

2. Change to the new twentyfour-hour-video directory that was just created.
3. Delete handler.js but leave serverless.yml intact.
4. Create a new subfolder called transcode-video.

In a moment, you’ll begin changing serverless.yml. You can stick to our implementa-
tion (listing 2.2), however, there are five parameters that you must change to correctly
reflect your environment. These parameters are bolded in listing 2.2:

 The name of the upload bucket
 The name of the transcoded video bucket
 The video role ARN for your function
 The MediaConvert endpoint
 The MediaConvert role

service: twentyfour-hour-video 

provider:
  name: aws  
  runtime: nodejs14.x  
  region: us-east-1        
    
custom:
  upload-bucket: upload-video-bucket  
  transcode-bucket: transcoded-video-bucket 
  transcode-video-role:
  ➥ arn:aws:iam::038221756127:role/transcode-video 

Listing 2.2 Changing serverless.yml for your function

Serverless deploy
You don’t need to type serverless (as in serverless deploy) each time you want
to deploy or do an operation. You can use the sls abbreviation. The following com-
mands are entirely valid: sls deploy or sls invoke --function hello.

The provider is AWS, but Serverless Framework supports 
other Cloud providers like Azure and Google Cloud too.

Set this to nodejs14.x if it’s not already set.

Defines the region to deploy to. You can override 
this setting and deploy to other regions.

Set this custom variable to the 
name of your upload bucket.

Set the transcode-bucket to the name 
of your transcoded video bucket. You 
created this bucket in section 2.2.3.

Set the transcode-video role 
ARN you created in section 2.2.4. 
Update the ARN to your value.



32 CHAPTER 2 First steps to serverless

  media-endpoint:
  ➥ https://u4ac0ytu.mediaconvert.us-east-1.amazonaws.com 
  media-role:
  ➥ arn:aws:iam::038221756127:role/media-convert-role 

functions:
  transcode-video: 
    handler: transcode-video/index.handler
    role: ${self:custom.transcode-video-role}
    package:
      individually: true
    environment:
      MEDIA_ENDPOINT: ${self:custom.media-endpoint}
      MEDIA_ROLE: ${self:custom.media-role}
      TRANSCODED_VIDEO_BUCKET: ${self:custom.transcode-bucket}
    events:
      - s3: ${self:custom.upload-bucket}  

Here’s a brief explanation of everything you need to update in listing 2.2 to make it
work for you. Let’s begin with the upload bucket.

UPLOAD BUCKET

In listing 2.2, you must specify the name of the upload bucket. This is a new bucket
that doesn’t yet exist. Remember, you need to use a bucket name that is globally
unique. One way to do this is to prefix or postfix your full name (unless you have a
common name) or add a few random letters and numbers. 

 Serverless Framework via CloudFormation creates the bucket for you automati-
cally. You can go for something like upload-bucket-firstname-lastname. If the bucket
name is already taken, Serverless Framework will tell you during deployment. You’ll
be able to change it and try again.

TRANSCODED VIDEO BUCKET

In listing 2.2, there’s a custom property called transcode-bucket. This property con-
tains the name of your transcoded video bucket. Update this property to the name of
the bucket you manually created in section 2.2.3. 

LAMBDA ROLE ARN
You must specify an IAM role for the function. Luckily, you created a role in section
2.2.4. You need to find the ARN of that role, copy it, and then update the parameter
called transcode-video-role. To get the role ARN and update serverless.yml, follow
these easy steps:

1. In the IAM console, select Roles.
2. Find the transcode-video role and select it.
3. Copy the value for the role ARN.
4. Paste the value in to the serverless.yml file for the transcode-video-role.

MEDIACONVERT ENDPOINT

In listing 2.2, you’ll find a line that creates a media-endpoint variable. To get this end-
point, refer to section 2.2.5 or follow these steps:

Set your personal 
MediaConvert endpoint 
for the service to work. 
Your URL will be different 
so be sure to change this.

Set the MediaConvert role 
ARN you created in section 
2.2.6. If you kept the same 
name, change the account 
number (e.g., 038221751234) 
to your account number and 
everything should work.

Specifies the event trigger for the Lambda 
function, which is the S3 upload bucket



33Starting with the Serverless Framework

1. In the AWS console, select MediaConvert (it will be under the Media Services
category).

2. Click the hamburger icon in the top left corner (it’s the button that looks like
three parallel lines).

3. Choose Account from the menu. You’ll see the API endpoint that you should
copy into listing 2.2.

MEDIACONVERT ROLE

In section 2.2.6, you created an IAM role for the Element MediaConvert service. In list-
ing 2.2, you needed to specify the ARN for that role. Make sure to look it up and copy
it over correctly. Be careful not to confuse the two IAM roles that you have. The IAM
role created in section 2.2.4 is intended for the transcode-video Lambda function. The
role created in 2.2.6 is intended for MediaConvert and is the one you should use.

2.3.3 Creating your first Lambda function

Now that you’ve created a serverless.yml file, change to the transcode-video folder,
and in your terminal window, run npm init. Agree to all the options by pressing
Enter. You can change anything you want; it will not affect your function. 

 You’ll get a new file called package.json. This file can be used later if you want to
add additional dependencies or libraries into your function. Now, let’s discuss how
your new function will work and what it will do:

 The function will invoke as soon as a new file is uploaded to an S3 bucket. 
 Information about the uploaded video will pass to the Lambda function via the

event object. It will include the bucket name and the name (key) of the file
being uploaded. 

 The Lambda function will prepare a transcoding job for AWS MediaConvert.
 The function will submit the job to MediaConvert and writes a message to an

Amazon CloudWatch log stream. 

Create a new file named index.js and open it in your favorite text editor. This file con-
tains the first function. The important thing to note is that you must define a function
handler, which will be invoked by the Lambda runtime.

 Listing 2.3 shows this function’s implementation. Copy this listing into index.js.
Before you can deploy and run this code though, you’ll need to make a few small
changes as detailed in the text after the code listing.

'use strict';

const AWS = require('aws-sdk');
const mediaConvert = new AWS.MediaConvert({
    endpoint: process.env.MEDIA_ENDPOINT 
});

Listing 2.3 Creating the transcode video Lambda

Gets the MediaConvert endpoint 
environment variable that’s set 
in serverless.yml (listing 2.2)



34 CHAPTER 2 First steps to serverless

const outputBucketName =

➥ process.env.TRANSCODED_VIDEO_BUCKET;  

exports.handler = async (event, context) => { 
    const key = event.Records[0].s3.object.key; 
    const sourceKey = decodeURIComponent(key.replace(/\+/g, ' ')); 
    const outputKey = sourceKey.split('.')[0]; 

    const input = 's3://' + event.Records[0].s3.bucket.name + '/' +  
    ➥ event.Records[0].s3.object.key; 
    const output = 's3://' + outputBucketName + '/' + outputKey + '/';

    try {

        const job = {
            "Role": process.env.MEDIA_ROLE, 
            "Settings": {
                "Inputs": [{
                    "FileInput": input,     
                    "AudioSelectors": {     
                        "Audio Selector 1": {
                            "SelectorType": "TRACK",
                            "Tracks": [1]
                        }
                    }
                }],
                "OutputGroups": [{ 
                    "Name": "File Group",
                    "Outputs": [{
                        "Preset": "System-
                         ➥ Generic_Hd_Mp4_Avc_Aac_16x9_1920x1080p_24Hz_6Mbps",
                        "Extension": "mp4",
                        "NameModifier": "_16x9_1920x1080p_24Hz_6Mbps"
                    }, {
                        "Preset": "System-
                         ➥ Generic_Hd_Mp4_Avc_Aac_16x9_1280x720p_24Hz_4.5Mbps",
                        "Extension": "mp4",
                        "NameModifier": "_16x9_1280x720p_24Hz_4.5Mbps"
                    }, {
                        "Preset": "System-
                         ➥ Generic_Sd_Mp4_Avc_Aac_4x3_640x480p_24Hz_1.5Mbps",
                        "Extension": "mp4",
                        "NameModifier": "_4x3_640x480p_24Hz_1.5Mbps"
                    }],
                    "OutputGroupSettings": {
                        "Type": "FILE_GROUP_SETTINGS",
                        "FileGroupSettings": {
                            "Destination": output 
                        }
                    }
                }]
            }
        };

        const mediaConvertResult = await 
        ➥ mediaConvert.createJob(job).promise();

Gets the transcoded video bucket name 
that’s specified in serverless.yml

Gets the MediaConvert role ARN 
that’s specified in serverless.yml

Sets the location of
the input video for
the MediaConvert

job definition

Specifies the Audio Selector for the 
MediaConvert job definition. You’ll 
default to naming a single audio 
track in the video.

Sets the output bucket 
for the new video files



35Starting with the Serverless Framework

        console.log(mediaConvertResult);

    } catch (error) {
        console.error(error);
    }
};

MEDIACONVERT OUTPUTS

The function in listing 2.3 declares three new outputs that define the format for your
newly transcoded videos (this includes bit rate, resolution, and so forth). The tem-
plates specified in listing 2.3 are generic templates built in to MediaConvert. Luckily,
you aren’t forced to use the ones we’ve selected; you can choose from different tem-
plates or even create your own. To look at other available presets in MediaConvert do
the following:

1. In the AWS console, select MediaConvert.
2. Click the hamburger icon in the top left corner. 
3. Choose Output Presets.
4. From the dropdown that says Custom Presets, select System Presets. 

You’ll see a grid of different presets you can use (figure 2.8). Note that the grid has mul-
tiple pages and that you can choose to see different categories (MP4, HLS, Broadcast-
XDCAM, and so on).

Filter by category to see how 
many different options you 
can choose from.

Figure 2.8 The MediaConvert Output Presets page lets you select system presets or configure your 
own.



36 CHAPTER 2 First steps to serverless

If you want to create a different type of video using the code in listing 2.3, select the
name of the desired preset, and copy it into the function as you did for the others
(remember to specify the extension and a modified name). As an example, if you
want to add HLS output, you’d need to include something like this in the Outputs
array in the function:

{
   "Preset": "System-Ott_Hls_Ts_Avc_Aac_16x9_1280x720p_30Hz_3.5Mbps",
   "Extension": "hls",
   "NameModifier": "_Hls_Ts_Avc_Aac_16x9_1280x720p_30Hz_3.5Mbps "
}

DEPLOYMENT

Deploy your first function from the terminal by typing sls deploy (make sure you
issue sls deploy from the directory where serverless.yml is located). The deployment
should succeed, and you should see your functions in AWS. The first function is going
to be named something like twentyfour-hour-video-dev-transcode-video. Later, if
you want, you can remove this function from AWS by running sls remove from the
terminal. 

 One other note: the deployment process may create an additional bucket named
something like twentyfour-hour-video-de-serverlessdeploymentbuck-sq06y6wjku9z.
This is normal. The Serverless Framework creates this bucket to upload the Cloud-
Formation templates it generates. You can safely ignore this bucket, but do not manu-
ally delete! The sls remove command will remove it for you (along with the deployed
Lambda function). 

2.4 Testing in AWS
To test your first function, upload a video to the upload bucket. Follow these steps: 

1. Go to the S3 console.
2. Click into your upload bucket and then select Upload to open the Upload page

(figure 2.9).
3. Click Add Files, select a video file from your computer, and click the Upload

button. All other settings can be left as is. If you don’t have any video files to
test, go to https://sample-videos.com and grab one of the MP4 videos. 

After a time, you should see three new videos in your transcoded video bucket. These
files should appear in a folder rather than in the root of the bucket (figure 2.10). The
length of time to produce a new video depends on the duration of the file you’ve
uploaded. It may take five minutes (or even longer) to produce a new file so grab a
cup of tea while you wait. 

 
 
 

https://sample-videos.com


37Looking at logs

2.5 Looking at logs
Having performed a test in the previous section, you should see three new files in your
transcoded video bucket. But things may not always go as smoothly (although we hope
they do)! In case of problems, such as new files not appearing, you can check two dif-
ferent logs for errors. The first and most important one is Lambda’s log in Cloud-
Watch. To view the log, perform the following steps: 

 
 

Click Add Files to bring 
up the dialog box.

Figure 2.9 To test in ASW, it’s better to upload a small file initially because it makes the upload and 
transcoding go a lot quicker.

These files are in an output 
folder created in the root 
of the bucket. 

Figure 2.10 MediaConvert generates three new files and places them in a folder in the transcoded 
video S3 bucket.



38 CHAPTER 2 First steps to serverless

1. Choose Lambda in the AWS console and then click your function name.
2. Choose the Monitor tab. You should see different graphs with numbers. One of

those graphs will be labeled Error Count and Success Rate. If there is a spike
(that is, the count is more than 0), it means there is a problem. 

3. Click View Logs in CloudWatch to open CloudWatch. You’ll see all the log
entries ordered by date. On the right, you’ll see which stream they belong to. 

4. Click each log entry to see more details including error messages. 
5. If you previously saw that your Invocation error rate was more than 0, find the

log entry with the error and fix the problem. 

If the Lambda logs reveal nothing out of the ordinary, take a look at the AWS Media-
Convert logs. To view these logs: 

1. Click MediaConvert in the AWS console. 
2. Choose the hamburger icon on the left to open the sidebar. 
3. Choose Jobs from the menu. On the right you should see a list of jobs. 
4. Click a job (if it failed) to see more information (figure 2.11).  

 
 
  

Choose the job ID to view 
details about the error.

Figure 2.11 MediaConvert failures can occur for a variety of reasons including the source file being 
deleted before the job started, an error with the code in the Lambda function, or a misconfiguration.



39Summary

Summary
 The best way to organize serverless applications is to use an Infrastructure as

Code (IaC) framework like the Serverless Framework. 
 Deploying functions and manually setting up services is great for learning, but

it is not sustainable in the long term. The Serverless Framework can help to
organize and deploy even the most complex serverless applications.

 Serverless applications and pipelines usually consist of different services
connected together. In The 24-Hour Video example, we use AWS Lambda, S3,
and Elemental MediaConvert. Most serverless applications use a combination
of services.

 AWS CloudWatch is an important service for logging what happens within your
AWS Lambda functions. It’s vital that you learn how to use it as you are most
definitely going to need it.

 Security in AWS is controlled primarily via Identity and Access Manage-
ment (IAM), although there are some exceptions. If you want to become an
expert at AWS and serverless applications, knowing how IAM works is essential.

 Estimating cost in AWS can be tricky. A lot of services have generous free tiers
but can end up costing a lot if used incorrectly. Make sure you review the costs
of all services you want to use and understand what the potential cost can be.

When problems happen
In our experience, problems often occur because IAM permissions haven’t been con-
figured correctly or there was a typo somewhere in your function code. AWS doesn’t
always have the most descriptive error messages so, sometimes, a bit of digging
around and investigative work with CloudWatch is required.



40

Architectures
 and patterns

What are the use cases for serverless architectures and what kinds of architectures
and patterns are useful? We’re often asked these questions and queried about use
cases as people learn about a serverless approach to designing systems. We find that
it’s helpful to look at how others have applied this technology and what kinds of
use cases, designs, and architectures they’ve produced. 

 This chapter gives you a solid introduction to where serverless architectures are
a good fit and how to think about the design of serverless systems. The rest of the
book focuses on real-world use cases and goes deep into a number of serverless
architectures that we’ve found particularly fascinating. 

3.1 Use cases
Serverless technologies and architectures can be used to build entire systems, cre-
ate isolated components, or implement specific granular tasks. The scope for use of

This chapter covers
 Use cases for serverless architectures

 Examples of patterns and architectures



41Use cases

serverless design is broad, and one of its advantages is that it’s possible to use it for
small as well as large tasks alike. We’ve designed serverless systems that power web and
mobile applications for tens of thousands of users, and we’ve built simple systems to
solve specific minute problems. 

 It’s worth remembering that serverless is not just about running code in a compute
service such as Lambda. It’s also about using third-party services and APIs to cut down
on the amount of work you must do. With this in mind, let’s look at some basic use cases.

3.1.1 Backend compute

Technologies such as AWS Lambda are a few years old, but we’ve already seen large
serverless backends that power entire businesses. A Cloud Guru (https://acloudguru
.com), for example, supports many thousands of users collaborating in real time and
streams hundreds of gigabytes of video. Another example is the insurance company,
Branch, which from the start adopted a serverless-first approach (https://amzn.to/
3vRumYU). 

 Indeed, it is possible to create and run an entire business while having a serverless-
first mindset. If you articulate that kind of philosophical approach to technology your-
self, it will help you answer questions such as what services to adopt or how to best
solve a particular architectural problem. 

 Startups are not the only organizations looking for agility and efficiencies from
serverless. Established companies with long histories are also using serverless technol-
ogies and architectures to deliver value to their customers. Some of these bigger com-
panies include well-known names like Comcast, Coinbase, Fender, Nordstrom, and
Netflix (https://aws.amazon.com/serverless/customers/). 

3.1.2 Internet of Things (IoT)

Putting aside web and mobile applications, serverless is a great fit for the Internet of
Things (IoT) applications. Amazon Web Services (AWS) has a useful IoT platform
(https://aws.amazon.com/iot-platform/how-it-works/) that combines

 Authentication and authorization
 Communications gateway
 Registry (a way to assign a unique identity to each device)
 Device shadowing (to persist device state)
 Rules engine (to transform and route device messages to AWS services)

The rules engine, for example, can save files to Amazon’s Simple Storage Service (S3),
push data to an Amazon Simple Queue Service (SQS) queue, and invoke AWS
Lambda functions. Amazon’s IoT platform makes it easy to build scalable IoT back-
ends for devices without having to run a server. A serverless application backend is
appealing because it removes a lot of infrastructure management, has granular and
predictable billing (especially when a serverless compute service such as Lambda is
used), and can scale well to meet uneven demands.

https://acloudguru.com
https://acloudguru.com
https://acloudguru.com
https://amzn.to/3vRumYU
https://amzn.to/3vRumYU
https://amzn.to/3vRumYU
https://aws.amazon.com/serverless/customers/
https://aws.amazon.com/iot-platform/how-it-works/


42 CHAPTER 3 Architectures and patterns

3.1.3 Data processing and manipulation

A common use for serverless technologies is data processing, conversion, manipula-
tion, and transcoding. We’ve seen Lambda functions built by other developers for pro-
cessing CSV, JSON, and XML files; collation and aggregation of data; image resizing;
and format conversion. Lambda and AWS services are well suited for building event-
driven pipelines for data-processing tasks.

 In chapter 2, you built a powerful pipeline for converting videos from one format
to another. This pipeline runs only when a new video file is added to a designated S3
bucket, meaning that you only pay for the execution of Lambda when there’s some-
thing to do and never while the system is idle. More broadly, however, we find data
processing to be an excellent use case for serverless technologies, especially when we
use Lambda in concert with other services.

3.1.4 Real-time analytics

Ingestion of data such as logs, system events, transactions, or user clicks can be accom-
plished using services such as Amazon Kinesis Data Streams and Amazon Kinesis Fire-
hose. Kinesis Data Streams and Lambda functions are a good fit for applications that
generate a lot of data that needs to be analyzed, aggregated, and stored. When it
comes to Kinesis, the number of functions spawned to process messages from a stream
is the same as the number of shards (therefore, there’s one Lambda function per
shard as figure 3.1 shows). 

 If a Lambda function fails to process a batch, it retries the operation. This can
keep going for up to 24 hours (which is how long Kinesis will keep data around before
it expires) each time processing fails. 

Kinesis Streams can ingest a lot of messages 
that can be processed with Lambda functions. 
Data-intensive applications that perform real-time 
reporting and analytics can benefit from this architecture. 

File
storage (S3)

Lambda
(retrieve

batch of 100)

Database

Lambda
(retrieve

batch of 50)

Kinesis
Streams

Kinesis
Streams

Events/messages

Events/messages

Figure 3.1 Lambda is a perfect tool to process data in near real time.



43Use cases

Amazon Kinesis Firehose is another Kinesis service designed to ingest gigabytes of
streaming data and then push it into other services like S3, RedShift, or Elasticsearch
for further analytics. Firehose is a true serverless service because it is fully managed, it
scales automatically depending on the volume of data coming in, and there’s no need
to think about sharding as is the case with Kinesis Data Streams. 

 A great feature of Kinesis Firehose is that a Lambda function can be added to the
stream to seamlessly process data as it is added and before it is sent to its final destina-
tion. You can use this to transform data while it’s in flight without having to provision
any other infrastructure. We are not going to go into much more depth right now
because chapter 6 and chapter 9 discuss use cases and applications for the Kinesis
products in more detail. 

3.1.5 Legacy API proxy

One innovative use case of the Amazon API Gateway and Lambda that we’ve seen a
few times is what we refer to as the legacy API proxy. Here, developers use API Gate-
way and Lambda to create a new API layer over legacy APIs and services, which makes
them easier to use. 

 The API Gateway creates a RESTful interface, and Lambda functions modify
request/response and marshal data to formats that legacy services understand. The
API Gateway and Lambda functions can transform requests made by clients and
invoke legacy services directly as figure 3.2 illustrates. This approach makes legacy ser-
vices easier to consume for modern clients that may not support older protocols and
data formats. 

Most legacy services will 
require a Lambda function 
to convert data and to 
correctly invoke it.

API
Gateway

Lambda 
(convert/
invoke)

Lambda 
(convert/
invoke)

Lambda 
(convert/
invoke)

Legacy API

Legacy API

Legacy
service
(SOAP)

Legacy API

Legacy
service
(XML)

Figure 3.2 We can use the API proxy architecture to build a modern API interface over old services 
and APIs.



44 CHAPTER 3 Architectures and patterns

It’s important to note that the API Gateway can transform (to an extent) and issue
requests against other HTTP endpoints. But it works only in a number of fairly basic
and limited use cases where JSON transformation is needed. In more complex scenar-
ios, however, a Lambda function is needed to convert data, issue requests, and process
responses. 

 Take a Simple Object Access Protocol (SOAP) service as an example. You’d need
to write a Lambda function to connect to a SOAP service and then map responses to
JSON. Thankfully, there are libraries that can take care of much of the heavy lifting in
a Lambda function; for example, there are SOAP clients that can be downloaded
from the npm registry for this purpose (see https://www.npmjs.com/package/soap).

3.1.6 Scheduled services
Lambda functions can run on a schedule, which makes them effective for repetitive
tasks like data backups, imports and exports, reminders, and alerts. We’ve seen devel-
opers use Lambda functions on a schedule to periodically ping their websites to see if
they’re online and send an email or a text message if they’re not. You’ll find Lambda
blueprints available for this (a blueprint is a template with sample code that can be
selected when creating a new Lambda function). 

 We’ve also seen developers write Lambda functions to perform nightly downloads
of files off their servers and send daily account statements to users. Repetitive tasks
such as file backup and file validation can also be done easily with Lambda thanks to
the scheduling capability that you can set and forget. Check out chapter 7 for an in-
depth analysis on how to go about thinking and building a scheduling service. 

3.1.7 Bots and skills
Another popular use of Lambda functions and serverless technologies is to build bots
(a bot is an app or a script that runs automated tasks) for services such as Slack. A bot
made for Slack can respond to commands, carry out small tasks, and send reports and
notifications. We, for example, built a Slack bot in Lambda to report on the number
of online sales made each day. And we’ve seen developers build bots for Telegram,
Skype, and Facebook’s messenger platform. 

 Similarly, developers write Lambda functions to power Alexa skills for Amazon
Echo. Amazon Echo is a hands-free speaker that responds to voice commands. It runs
a virtual assistant called Alexa. Developers can implement skills to extend Alexa’s capa-
bilities even further (a skill is essentially an app that can respond to a person’s voice;
for more information, see http://amzn.to/2b5NMFj). You can write a skill to order a
pizza or quiz yourself on geography. Alexa is driven entirely by voice, and skills are
powered by Lambda.

3.1.8 Hybrids
As we mentioned in chapter 1, serverless technologies and architectures are not an all-
or-nothing proposition. They can be adopted and used alongside traditional systems.
This hybrid approach may work especially well if a part of the existing infrastructure is
already in AWS. We’ve also seen adoption of serverless technologies and architectures

https://www.npmjs.com/package/soap
http://amzn.to/2b5NMFj


45Patterns

in organizations with developers initially creating standalone components (often to
do additional data processing, database backups, and basic alerting) and, over time,
integrating these components into their main systems (figure 3.3).

3.2 Patterns
Patterns are architectural solutions to problems in software design. They’re designed
to address common problems found in software development. They’re also an excel-
lent communications tool for developers working together on a solution. It’s far easier
to find an answer to a problem if everyone in the room understands which patterns
are applicable, how they work, their advantages, and their disadvantages. 

 The patterns presented in this section are useful for solving design problems in
serverless architectures. But these patterns aren’t exclusive to serverless. They were
used in distributed systems long before serverless technologies became viable. 

 Apart from the patterns presented in this chapter, we recommend that you
become familiar with patterns relating to authentication, data management (e.g.,
CQRS, event sourcing, materialized views), and error handling (e.g., Retry Pattern).
Learning and applying these patterns will make you a better software engineer,
regardless of the platform you choose to use. Let’s look at a few of these patterns.

3.2.1 GraphQL
GraphQL (http://graphql.org) is a popular data query language developed by Face-
book in 2012 and released publicly in 2015. It was designed as an alternative to REST
(Representational State Transfer) because of its perceived weaknesses (multiple
round-trips, over-fetching, and problems with versioning). GraphQL attempts to solve

Any legacy system can use functions and services. This 
can allow you to slowly introduce serverless technologies 
without disturbing too much of the world order.

API
Gateway

Load
balancer

Database

File
storage

Lambda
(calculate

cost)

Server Server

Lambda
(save

profile)

Lambda
function

Figure 3.3 The hybrid approach is useful if you have a legacy system that uses servers.

http://graphql.org


46 CHAPTER 3 Architectures and patterns

these problems by providing a hierarchical, declarative way of performing queries
from a single endpoint (e.g., api/graphql). Figure 3.4 shows an example of a
GraphQL and AWS Lambda implementation. 

GraphQL gives power to the client. Instead of specifying the structure of the response
on the server, it’s defined on the client (http://bit.ly/2aTjlh5). The client can specify
what properties and relationships to return. GraphQL aggregates data from multiple
sources and returns it to the client in a single round trip, which makes it an efficient
system for retrieving data. According to Facebook, GraphQL serves millions of
requests per second from nearly 1,000 different versions of its application. 

 A GraphQL library (server) can be hosted and run from a Lambda function. You’ll
also find managed solutions of GraphQL such as the ever-popular AWS AppSync at
https://aws.amazon.com/appsync/.

WHEN TO USE THIS

GraphQL is a type of composite pattern that lets you aggregate data from multiple
places. Reading and hydrating data from multiple data sources is common in web
applications and especially so in those that adopt the microservices approach. There
are other benefits too, including smaller payloads, avoiding the need to rebuild the
data model, and no more versioned APIs (as compared to REST). These are just some
of the reasons why GraphQL has become so popular in the past few years. 

3.2.2 Command pattern
In the previous section, we mentioned the fact that a single endpoint can be used to
cater to different requests with different data (a single GraphQL endpoint, for exam-
ple, can accept any combination of fields from a client and create a response that
matches the request). The same idea can be applied more generally. You can design a

Only a single GraphQL Lambda function is needed 
to query multiple data sources. It can be a viable 
alternative to building a full RESTful interface.

API Gateway/
GraphQL

Lambda
(GraphQL)

Database

Database

Database

Database

Database

Figure 3.4 The GraphQL and Lambda architecture has become popular in the serverless community.

http://bit.ly/2aTjlh5
https://aws.amazon.com/appsync/


47Patterns

system in which a specific Lambda function controls and invokes other functions. You
can connect it to an API Gateway or invoke it manually and pass messages to it to
invoke other Lambda functions. 

 In software engineering, the command pattern (figure 3.5) is used to “encapsulate a
request as an object, thereby letting you parameterize clients with different requests,
queue or log requests, and support undoable operations” because of the “need to issue
requests to objects without knowing anything about the operation being requested or the
receiver of the request” (http://bit.ly/29ZaoWt). The command pattern lets you decou-
ple the caller of the operation from the entity that carries out the required processing.

In practice, this pattern can simplify an API Gateway implementation because you
may not want or need to create a RESTful URI for every request. It can also make ver-
sioning simpler. The command Lambda function could work with different versions
of your clients and invoke the right Lambda function that’s needed by the client.

WHEN TO USE THIS

This pattern is useful if you want to decouple the caller and the receiver. Having a way
to pass arguments as an object and allowing clients to be parametrized with different
requests can reduce coupling between components and help make the system more
extensible. 

3.2.3 Messaging pattern
Messaging patterns (figure 3.6) are popular in distributed systems because they allow
developers to build scalable and robust systems by decoupling functions and services
from direct dependence on one another and allowing storage of events/records/
requests in a queue. The reliability comes from the fact that if the consuming service
goes offline, the queue retains messages (for some period), which can still be pro-
cessed at a later time.

A command function is used to 
invoke other functions and services. 
It knows which functions to invoke 
in response to data/events and how 
to call those functions.

Lambda
function

Lambda
function

File
storage

Database

Lambda
function

Lambda
function

Lambda
function

(command)
API Gateway

Figure 3.5 The command pattern invokes and controls functions and services from a single function.

http://bit.ly/29ZaoWt


48 CHAPTER 3 Architectures and patterns

This pattern features a message queue with a sender that can post to the queue and a
receiver that can retrieve messages from the queue. In terms of implementation in
AWS, you can build this pattern on top of the SQS.

 Depending on how the system is designed, a message queue can have a single
sender/receiver or multiple senders/receivers. SQS queues typically have one
receiver per queue. If you need to have multiple consumers, a straightforward way to
do it is to introduce multiple queues into the system (figure 3.7). A strategy you could
apply is to combine SQS with Amazon SNS. SQS queues can subscribe to an SNS topic
so that pushing a message to the topic would automatically push the message to all of
the subscribed queues.

Similar to the command pattern, there 
is one function that reads messages 
from a queue. It invokes appropriate 
Lambda functions based on the message.

Lambda
function

Lambda
function

Lambda
function

Lambda
function

(dispatch)

Queue (SQS) / 
stream (Kinesis)

Data source

Data source

Data source

Figure 3.6 The messaging pattern and its many variations are popular in distributed environments.

Use multiple queues/streams to decouple 
multiple components in your system. 

Lambda
function

Lambda
function

Lambda
function

Lambda
function

(dispatch)

Queue (SQS) / 
stream (Kinesis)

Lambda
function

Lambda
function

Lambda
function

(dispatch)

Queue #2 (SQS) / 
stream #2 (Kinesis)

Data source

Data source

Data source

Figure 3.7 Your system may have multiple queues or streams and Lambda functions to process all 
incoming data.



49Patterns

WHEN TO USE THIS

The messaging pattern handles workloads and data processing. The queue serves as a
buffer, so if the consuming service crashes, data isn’t lost. It remains in the queue until
the service can restart and begin processing it again. 

 A message queue can make future changes easier, too, because there’s less cou-
pling between functions. In an environment that has a lot of data processing, mes-
sages, and requests, try to minimize the number of functions that are directly
dependent on other functions and use the messaging pattern instead. 

3.2.4 Priority queue pattern

A great benefit of using a platform such as AWS and serverless architectures is that
capacity planning and scalability are more of a concern for Amazon’s engineers than
for you. But, in some cases, you may want to control how and when messages get dealt
with by your system. This is where you might need to have different queues, topics, or
streams to feed messages to your functions. 

 Your system might go one step further, having entirely different workflows for mes-
sages of different priority (the priority queue pattern). Messages that need immediate
attention might go through a flow that expedites the process by using more expensive
services and APIs with more capacity. Messages that don’t need to be processed
quickly can go through a different workflow as figure 3.8 shows.

Messages with different priorities can 
be dealt with by different workflows 
and different Lambda functions.

Lambda
function

Lambda
function

Lambda
function

Priority 1

Priority 2

Priority 3

Lambda
function

Lambda
function

Lambda
function

Lambda
function

Lambda
function Notification service (SNS) / Queue (SQS)

Notification service (SNS) / Queue (SQS)

Notification service (SNS) / Queue (SQS)

Notification service (SNS) / Queue (SQS)

Figure 3.8 The priority queue pattern is an evolution of the messaging pattern.



50 CHAPTER 3 Architectures and patterns

The priority queue pattern might involve the creation and use of entirely different
SNS topics, SQS queues, Lambda functions, and even third-party services. Use this pat-
tern sparingly, however, because additional components, dependencies, and work-
flows result in more complexity. 

WHEN TO USE THIS

This pattern works when you need to have a different priority for processing mes-
sages. Your system can implement workflows and use different services and APIs to
cater to many types of needs and users (for example, paying versus nonpaying users).

3.2.5 Fan-out pattern

Fan-out is a type of messaging pattern that’s familiar to many AWS users. Generally,
the fan-out pattern pushes a message to all listening/subscribed clients of a particular
queue or a message pipeline. In AWS, this pattern is usually implemented using SNS
topics that allow multiple subscribers to be invoked when a new message is added to a
topic. 

 Take S3 as an example. When a new file is added to a bucket, S3 can invoke a sin-
gle Lambda function with information about the file. But what if you need to invoke
two, three, or more Lambda functions at the same time? The original function could
be modified to invoke other functions (like the command pattern), but that’s a lot of
work if all you need is to run functions in parallel. The solution is to use the fan-out
pattern with SNS (see figure 3.9).

A message added to an SNS topic can force invocation 
of multiple Lambda functions in parallel.

Lambda
function Database

Lambda
function

Lambda
function

Lambda
function

Lambda
function

Notification 
service (SNS)

Lambda
function

Lambda
function

Lambda
function

Notification 
service (SNS)

Figure 3.9 The fan-out pattern is useful because many AWS services (such as S3) can’t invoke more 
than one Lambda function at a time when an event takes place.



51Patterns

SNS topics are communications or messaging channels that can have multiple pub-
lishers and subscribers (including Lambda functions). When a new message is added
to a topic, it forces invocation of all the subscribers in parallel, thus causing the event
to fan out. 

 Going back to the S3 example discussed earlier, instead of invoking a single
Lambda function, you can configure S3 to push a message to an SNS topic, which
invokes all subscribed functions simultaneously. It’s an effective way to create event-
driven architectures and perform operations in parallel. Chapter 8 shows how to use
this pattern to perform video encoding at scale.

WHEN TO USE THIS

This pattern is useful if you need to invoke multiple Lambda functions at the same
time. An SNS topic will retry, invoking your Lambda functions, if it fails to deliver the
message or if the function fails to execute (see https://go.aws/3DTdCEK). 

 Furthermore, the fan-out pattern can be used for more than just invocation of
multiple Lambda functions. SNS topics support other subscribers such as email and
SQS queues. Adding a new message to a topic can invoke Lambda functions, send an
email, or push a message on to an SQS queue, all at the same time.

3.2.6 Compute as glue 

The compute-as-glue architecture (figure 3.10) describes the idea that we can use
Lambda functions to create powerful execution pipelines and workflows. This often
involves using Lambda as glue between different services, coordinating and invoking
them. With this style of architecture, the focus of the developer is on the design of
their pipeline, coordination, and data flow. The parallelism of serverless compute ser-
vices like Lambda helps to make these architectures appealing.

 
 
 
 
 
 

SQS vs. SNS vs. EventBridge
Sometimes it’s hard to know which AWS service to use in which situation. When it
comes to event messaging, we’ve discussed SQS and SNS already, but there’s also
Amazon EventBridge to round out the family. The following Lumigo blog post features
an excellent summary and comparison of these services: https://bit.ly/3AYdJga. We
highly recommend that you take a look at it if you are trying to understand their dif-
ferences and use cases. Another good explanation comes from AWS themselves:
https://go.aws/3phPOWW.

https://go.aws/3DTdCEK
https://bit.ly/3AYdJga
https://go.aws/3phPOWW


52 CHAPTER 3 Architectures and patterns

3.2.7 Pipes and filters pattern

The purpose of the pipes and filters pattern is to decompose a complex processing
task into a series of manageable, discrete services organized in a pipeline (figure
3.11). Components designed to transform data are traditionally referred to as filters,
whereas connectors that pass data from one component to the next component are
referred to as pipes. Serverless architecture lends itself well to this kind of pattern. This
is useful for all kinds of tasks where multiple steps are required to achieve a result.

Lambda
(create

thumbnail) 

Notification
service
(SNS)

File
storage Database

File
storage (S3)

Lambda
(write log)

Log service
(CloudWatch)

Search
service

Notification
service
(SNS)

Lambda
(update)

Figure 3.10 The compute-as-glue architecture uses Lambda functions to connect different services 
and APIs to achieve a task. In this pipeline, a simple image transformation results in a new file, an 
update to a database, an update to a search service, and a new entry to a log service.

Functions and services 
are reused in pipelines.

Data source Lambda 
function

Lambda 
function

Notification
service (SNS)

Lambda 
function

Database File
storage

Data source Lambda 
function

Search 
service

Lambda 
function

Lambda 
function

Figure 3.11 The pipes and filters pattern encourages the construction of pipelines to pass and 
transform data from its origin (pump) to its destination (sink).



53Summary

With this pattern, we recommend that every Lambda function be written as a granular
service or a task with the single-responsibility principle in mind. Inputs and outputs
should be clearly defined (there should be a clear interface) and any side effects min-
imized. Following this advice will allow you to create functions that can be reused in
pipelines and, more broadly, within your serverless system. 

 You might notice that this pattern is similar to the compute-as-glue architecture we
described previously. You are right, compute as glue and this pattern are closely
related and are simply a variation of the same concept. 

WHEN TO USE THIS

When you have a complex task, try to break it down into a series of functions (a pipe-
line) and apply the following rules:

 Make sure your function follows the single-responsibility principle.
 Clearly define an interface for the function. Make sure inputs and outputs are

clearly stated.
 Create a black box. Consumers of the function shouldn’t have to know how it

works, but they must know to use it and what kind of output to expect.

Throughout the rest of this book, we’ll discuss and give more context to the patterns
and architecture we explored here. With that in mind, let’s jump into the next chap-
ter and read a story about a social network called Yubl.

Summary
 Serverless architecture can support different use cases including building

backends for web, mobile, and IoT applications, as well as data processing and
analytics.

 Serverless technologies like AWS Lambda are flexible. They can be combined
with containers or virtual machines into hybrid architectures. You don’t need to
be a serverless purist to achieve great outcomes.

 Certain patterns and approaches like GraphQL are well suited to serverless
architectures because AWS services such as AppSync are on hand and can inte-
grate nicely with the rest of your architecture. 

 Classic software engineering patterns like messaging patterns work exception-
ally well with serverless architectures and AWS products such as SQS.

 The fan-out pattern is one of the more common patterns. Knowing how to set it
up using Amazon SNS is important to be effective with AWS.

 AWS has a lot of different services and products that overlap. Having a thorough
understanding of when to use each service will help you make better decisions.

 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Part 2

Use cases

You’ve read through part 1 and now, we hope, you have a good understand-
ing of what serverless is all about. It’s time to take a look at how three companies
use serverless architectures to solve problems and delight their customers. In
part 2, we present three use-case studies from Yubl, A Cloud Guru, and Yle. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



57

Yubl: Architecture
 highlights, lessons learned

In April 2016, I joined a social network based in London called Yubl. There I inher-
ited a monolithic backend system written in Node.js and running on a handful of
Elastic Compute Cloud (EC2) instances. The original system took 2.5 years to imple-
ment and had a long list of performance and scalability issues once it went live. With
a small team of six engineers, we managed to move the platform to serverless over the
course of six months. Along the way, we added many new features and addressed the
existing performance and scalability issues. We reduced feature delivery time from
months to days, and in some cases, hours. Although cost was not the main motivation
for undertaking this transformation, we made a 95% savings on our AWS bill in the
process. Let’s take a peek at the original Yubl architecture.

This chapter covers
 The original Yubl architecture and its problems

 The new serverless architecture and the 
decisions behind it

 Strategies and patterns for moving monolith 
applications to serverless

 Lessons learned from this migration



58 CHAPTER 4 Yubl: Architecture highlights, lessons learned

4.1 The original Yubl architecture
Yubl (short for “your social bubble”) was a mobile-first, social network designed for
the 17 to 25-year-old demographic. The user-generated posts (called yubls) contained
videos as well as animated and interactive elements. The app had all the social fea-
tures you’d find in other social networks: follow users, private and group chat, liking
and resharing content, and others.

 The original architecture (figure 4.1) consisted of the following:

 A monolithic REST API written in Node.js and running on EC2
 A WebSockets API written in Node.js and running on EC2
 A monolithic MongoDB database hosted in MongoLab
 A CloudAMQP message queue
 A cluster of background workers written in Node.js and running on EC2   

MongoLab

Route53 ELB API

Route53 ELB WebSockets

Workers

Figure 4.1 A high-level overview of the original Yubl architecture

What is MongoDB and MongoLab?
MongoDB is a popular document-oriented NoSQL database that allows you to store
JSON documents. You can learn more about it at https://www.mongodb.com.

MongoLab is an online service that provides MongoDB hosting as a service. You can
create a MongoDB cluster with a few clicks, and MongoLab takes care of the under-
lying infrastructure for you. You can learn more about it at https://mlab.com. Back
in 2016, MongoLab was a viable service for running MongoDB without having to man-
age the underlying infrastructure yourself.

https://www.mongodb.com
https://mlab.com


59The original Yubl architecture

4.1.1 Scalability problems

Being an early stage social network, the baseline traffic at Yubl was low, but they man-
aged to attract several high-profile Instagram influencers to the platform. These influ-
encers brought many of their Instagram followers along, and with tens of thousands of
followers, these influencers drove unpredictable and spiky traffic through the system
whenever they posted new content. 

 We often saw 100x spikes in traffic as thousands of users flooded in all at once to
see their favorite influencer’s new content. These traffic spikes were usually short-
lived, which was problematic for the EC2-based system because EC2 autoscaling
couldn’t react fast enough. It typically takes EC2 instances a few minutes to spin up. By
the time they are ready to serve user requests, it’s too late. The traffic spikes have
come and gone, and many users would have left after having experienced a laggy
response time.

 As a workaround, we ran a much larger EC2 cluster, scaling up much earlier than
we wanted. This resulted in a lot of wasted cost because we had to pay for lots of EC2
resources that we were not using. Our cluster of API web servers had an average utili-
zation of from 2% to 5%.

4.1.2 Performance problems

The monolithic MongoDB database was also a constant source of performance and
scalability problems. Every read and write operation hit the database directly; some
API operations can take a heavy toll on a MongoDB server. One example of this is a
user search, which is a frequently used API call and executes a complex regex query
against MongoDB. Another example included user recommendations, which exe-
cuted a complex query to find second- and third-degree connections to the current
user (those who follow your followers or those followed by users you follow).

4.1.3 Long feature delivery cycles

The codebase was complex, and many features were intertwined through shared
MongoDB collections and implicit coupling through shared libraries. Although there
were plenty of unit tests with a reasonable code coverage, these did not prove useful
because code changes often passed all the tests, only to fail when deployed to the AWS

What is RabbitMQ and CloudAMQP?
Advanced Message Queueing Protocol (AMQP) is an application protocol for mes-
sage-oriented middlewares. It supports message queueing and routing and is often
used in publish-and-subscribe systems.

 RabbitMQ is an open-source message broker that implements the AMQP proto-
col. You can learn more abo9ut RabbitMQ at https://www.rabbitmq.com/.

 CloudAMQP is an online service that provides RabbitMQ hosting. You can learn
more about it at https://cloudamqp.com.

https://www.rabbitmq.com/
https://cloudamqp.com


60 CHAPTER 4 Yubl: Architecture highlights, lessons learned

environment. The interaction with external services was mocked thoroughly and,
therefore, not covered by the tests. In many cases, the tests simply confirmed the
mocks were working and returned what was requested even if the MongoDB query
contained syntax errors. We had little faith in the tests because they gave us too many
false-positives.

 To make matters worse, every deployment required taking the whole system down
for 30 minutes or more, during which time users received no feedback and the app
just appeared broken. Features used to take months to go to production. Even simple
changes often took weeks to complete, which was frustrating to everyone involved.

4.1.4 Why serverless?

Based on the requirements for our system and the problems the current implementa-
tion experienced, serverless was a great fit for the following reasons:

 AWS Lambda autoscales the number of concurrent executions based on load. This
happens instantly and handles those unpredictable spikes we experience
effortlessly.

 AWS Lambda deploys functions to three availability zones by default, which provides sig-
nificant redundancy without incurring extra costs. We pay only when a function
runs, whereas with EC2, we paid for the redundancy in a multi-AZ setup, which
also dilutes the traffic and reduces the resource utilization even further.

 AWS manages the underlying physical infrastructure as well as the operating system that
our code runs on. AWS applies patches and security updates regularly and does a
much better job of keeping the operating system secure than we could. This
removes a whole class of vulnerabilities that plague so many software systems
around the world.

 With tools such as the Serverless framework, the deployment pipeline for our application is
drastically simplified. A typical deployment takes less than a minute and has no
downtime because AWS Lambda automatically routes requests to the new code.

 When using serverless technologies such as API Gateway, Lambda, and DynamoDB, we
don’t have to worry about the underlying infrastructure. This lets us focus on address-
ing core business needs. Almost every line of our code is business logic! And it
allows the development team to move quickly, knowing that what we build is
scalable and resilient by default.

 The number of production deployments went from four to six per month to averaging more
than 80 per month with the same sized team. We didn’t have to hire more people to
go faster, we allowed each developer to be more productive instead.

 As we migrated more and more of the system to serverless, scalability, cost and reliability all
improved. There were far fewer production issues, and we were spending a frac-
tion of what we spent on EC2 previously.



61The new serverless Yubl architecture

4.2 The new serverless Yubl architecture
By November 2016, less than 8 months after I joined the company and started us on
the journey to serverless, almost the entire backend system was migrated to serverless;
this using a combination of services such as API Gateway, Lambda, DynamoDB, Kine-
sis, and so much more. Along the way, we enhanced existing features and imple-
mented countless new features. We also addressed many security issues with the
previous system. 

 Overall, the system’s reliability increased drastically. We experienced only one
minor outage to our production environment because of a brief Simple Storage Ser-
vice (S3) outage. The following points are some key highlights of the new serverless
architecture on AWS:

 The monolith was broken up into many microservices.
 Every microservice has its own GitHub repository and one Continuous Integration/

Continuous Delivery (CI/CD) pipeline. All the components that make up this
microservice (API Gateway, Lambda functions, DynamoDB tables, etc.) are
deployed together as one CloudFormation stack using the Serverless Framework.

 Most microservices have an API Gateway REST API running under its own sub-
domain, such as search.yubl.com.

 Every microservice has its own database for the data it needs. Most use
DynamoDB, but it’s not universal because different microservices have different
data needs.

 Every state change in the system is captured as an event and published to a
Kinesis Data Stream (for example, a user created new content, a user posted
new content, and so on).

 Most of the time, we prefer to synchronize data between microservices through
events rather than synchronous API calls at run time. This helps prevent cas-
cade failures when one microservice experiences an outage in production.
Instead, microservices subscribe to the relevant Kinesis Data Stream and copy
needed data from the appropriate events.

This diagram (https://d2qt42rcwzspd6.cloudfront.net/overall.png) shows a birds-eye
view of this new architecture. Don’t worry about making sense of everything in the fig-
ure. It merely demonstrates the fact that you can build even complex systems using
serverless components.

 It’s worth mentioning that the move to serverless was not one of our goals. The goal
was to deliver a better user experience with less downtime, more responsiveness, and
more scalability. Serverless technologies like Lambda, API Gateway, and DynamoDB
happen to be a great way to achieve our goals while also making our lives a lot easier and
allowing us to ship features faster.

https://d2qt42rcwzspd6.cloudfront.net/overall.png


62 CHAPTER 4 Yubl: Architecture highlights, lessons learned

4.2.1 Rearchitecting and rewriting 

To fully realize our goals, we had to rearchitect and rewrite large parts of the system.
But we didn’t want to migrate everything to serverless for the sake of migrating them.
We wanted to accelerate feature development and deliver value to our users faster
than before. For this, we took a pragmatic approach, whereby we made a case-by-case
decision on whether to rearchitect a feature when we needed to work on it. 

 To mitigate our risks, we rearchitected and migrated features that had the least
business impact first. Business critical features such as timelines (which is the first
thing you see in the app) were tackled only when we had gained sufficient confidence
and know-how. This approach of migrating a large system piece-by-piece is commonly
referred to as the strangler pattern.

 In the Yubl app, you could search other users by first name, last name, and user-
name. This was a simple feature, but it caused crippling performance issues with the
monolith as the number of users grew. This was because a search was implemented
with regex queries against MongoDB. The old implementation also didn’t allow for
more sophisticated ranking, so users often couldn’t find who they were looking for.
There was a push from the marketing team to surface influencers further up the
search results as many users had followed these influencers onto the platform.

 This was the first feature that we rearchitected and migrated to serverless because
it was both low-risk and could have a high impact. Let’s dive into how we extracted the
search feature out of the monolith and built a microservice around it with its own
REST API.

4.2.2 The new search API

One of the first and most important steps was to ensure that our legacy monolith
would publish its state changes to Kinesis Data Streams. This gave us a foundation to
build the new microservices by building on top of these events. To extract the search
capability out of the monolith, we created a new search microservice. Figure 4.2 shows
the high-level architecture of this search microservice.

EC2 Kinesis Data Stream Lambda CloudSearch

LambdaAPI GatewayRoute53

search.yubl.com

The new search microservice

1 2 3

4 56

Figure 4.2 A high-level overview of the new architecture running on 
serverless components



63The new serverless Yubl architecture

If you follow the numbered arrows in figure 4.2, this is how all the pieces fit together:

1. The legacy monolith publishes all user-related events to a Kinesis Data Stream
called users. These include the user-created and user-profile-updated events
that tell us when a new user joins or a user has updated their profile.

2. A Lambda function subscribes to the users stream.
3. The Lambda function uses these events to insert, update, or delete user docu-

ments in the users index in Amazon CloudSearch.
4. A new API in API Gateway with a POST /?query={string} endpoint proxies to

another Lambda function to handle the HTTP request.
5. The Lambda function translates a user’s query string into a search request

against the users index in Amazon CloudSearch.
6. To create a user-friendly subdomain for the new REST API, a custom domain

name in API Gateway for search.yubl.com is registered in Route53.

For this microservice, we chose Amazon CloudSearch instead of Amazon Elastic-
Search because, at the time, Amazon ElasticSearch didn’t allow you to change the
number of write nodes in an ElasticSearch cluster, which is a scalability concern for
the write throughput. But Amazon CloudSearch was not without its problems. 

 Although you can autoscale the read and write nodes independently, scaling up a
CloudSearch cluster takes as long as 30 minutes. This did not match well with our
spiky workload, and we had to overprovision the read cluster as a result. If I imple-
mented this service again today, I would definitely use Amazon ElasticSearch or a
third-party service such as Algolia (https://algolia.com) instead.

 Before we launched the new service, we also needed to ensure all existing user
data was available in the CloudSearch index. To do this, we ran a one-off task to copy
all existing user data (~800,000 users) from MongoDB to CloudSearch, while tracking
the most recent user profile update. Only after this was complete, did we enable the
function at step 2 (figure 4.2) to start processing user updates. 

 Another important detail to note here is that when we enabled the function’s Kine-
sis subscription, we processed events from when the one-off task started. With Kinesis,
you are able to specify the StartingPosition of the subscription. You can configure
this to AT_TIMESTAMP to start processing events from a specific timestamp. Processing
events from when a one-off task started ensured that we didn’t miss any updates that
happened while Yubl was running.

 Once live, performance of the new search service was significantly improved over
the old search. It also removed a lot of the load on the monolith MongoDB database
in the process, which had a positive impact on the general responsiveness of the app.
It also gave us a template on how to build other microservices using serverless technol-
ogies such as API Gateway and Lambda.

https://algolia.com


64 CHAPTER 4 Yubl: Architecture highlights, lessons learned

4.3 Migrating to new microservices gracefully
Building the new microservices was the easy part. The difficult part was how to
migrate them safely and be able to roll back quickly if there were any unforeseen
issues. Another concern was how to do it gracefully without downtime and impact on
our users. Suppose your starting position is a monolith where all the features are
accessing directly a shared database (figure 4.3). Where will you begin?

We started to break apart this monolith into microservices built with serverless compo-
nents such as API Gateway, Lambda, and DynamoDB. As we moved a feature out of
the monolith into its own microservice, we wanted the microservice to be the author-
ity over some part of the system, be it user profiles or product catalogue or customer
orders. The microservice has its own database, and other microservices (or the mono-
lith) should not be able to reach into its database and access or manipulate data
directly.

 Instead, to instigate some change in state, other microservices need to communi-
cate with this microservice through its API. This can be HTTP-based in the form of a
REST API call or message-based in the form of publishing an event/message to a
queue. The important thing is to cut off direct access to and manipulation of data that
the microservice is supposed to be the authority of (figure 4.4). How do you do this
gracefully without causing significant disruption to your users?

 The challenge here is that it’s risky to do a big-bang migration because it usually
requires downtime. That is not to say that you should never entertain the idea of a big-
bang migration. If you’re a small startup and have few users on your current platform,
then a big-bang migration with downtime is quite possibly the fastest and most effi-
cient approach for you. But for many organizations that are undergoing such migra-
tion, it’s important to minimize the risk and disruption caused by moving to a new
microservice.

 
 
 
 

Monolith DB

Monolith

Feature A Feature B

Feature C Feature D

Feature E Feature F

Figure 4.3 A monolithic system where 
everything has direct access to a shared 
database



65Migrating to new microservices gracefully

A common strategy is to perform the migration in multiple steps to maximize safety.
For example, the following process describes some likely steps as figure 4.5 illustrates:

1. Move the business logic for a particular feature into a separate service and cre-
ate its own API. The new service will still use the monolith database until it has
authority over the data.

2. Find the places where the monolith accesses this feature’s data directly and
redirect those access points to go through the new service’s API instead. Start
with the least critical component first to minimize the blast radius of any
unforeseen problems or impacts.

3. Move all other direct access points to the new service’s data to go through its
API (probably, one at a time).

4. Now that the new service is the authority over its data, you can plan a course to
migrate the data out of the monolith database into its own database. You might
use a different database, based on your requirements for this new service. If
your access pattern is simple and mostly key lookups, then DynamoDB is proba-
bly a good choice.

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Monolith DB

Monolith

Feature A Feature B

Feature C Feature D

Feature F

Service

Feature E DB

Figure 4.4 A monolithic system where everything has direct access to a shared database



66 CHAPTER 4 Yubl: Architecture highlights, lessons learned

Monolith DB

Monolith

Feature A Feature B

Feature C Feature D

Feature F

Service

Feature E

3

Monolith DB

Monolith

Feature A Feature B

Feature C Feature D

Feature F

1

Service

Feature E

Monolith DB

Monolith

Feature A Feature B

Feature C Feature D

Feature F

2

Migrate the least
critical component first.

Service

Feature E

Monolith DB

Monolith

Feature A Feature B

Feature C Feature D

Feature F

Service

Feature E DB

4

Figure 4.5 Gradually cut off the direct access to the shared monolith database by moving 
access to go through the new microservice’s API instead.



67Migrating to new microservices gracefully

5. Once you have created the new database, you need to migrate data from the
monolith database. To do so without downtime, you can treat the new database
as a read-through and write-through cache: any updates and inserts are written
to the monolith database and then copied to the new database (figure 4.6). 

When attempting to read, you will read from the new database first. If the
data is not found, then read from the monolith database and save the data in
the new database.

6. Run a one-off task in the background to copy over all existing data (figure 4.6).
Take care to ensure that you don’t overwrite newer updates. (With DynamoDB,
https://amzn.to/2IbE818, this can be done using conditional writes.)

This is a useful pattern for extracting features from a monolith and moving them into
microservices that can scale and fail independently. There is more you can do to ensure
that you do so safely and gracefully to minimize the potential impact on your users. For
example, you can route only a small percentage of traffic to the new microservice when
it first goes live. This limits the blast radius of any unforeseen problems with the new
microservice. It is especially important for microservices that are user-facing and that

Monolith DB

Monolith

Feature A Feature B

Feature C Feature D

Feature F

Service

Feature E DB

5

Treat new DB as read-through/
write-through cache.

read

write

Monolith DB

Monolith

Feature A Feature B

Feature C Feature D

Feature F

Service

Feature E DB

6

Also run one-off migration 
job in the background.

Read

Write

Migration

Figure 4.6 Migrate data to the new database gradually, without downtime.

https://amzn.to/2IbE818


68 CHAPTER 4 Yubl: Architecture highlights, lessons learned

handle requests from the mobile/web client directly because they can have a big impact
on user experience. 

 This approach is commonly known as the canary pattern and is not limited to sys-
tem migrations. The term canary deployment refers to a deployment strategy where the
pattern is used for every deployment when a small percentage of traffic is directed at
the new version of the application, which limits the blast radius of any unforeseen
problems. If you’re using the Application Load Balancer (ALB) in front of your appli-
cation, then you can configure this routing behavior there (figure 4.7). 

Where this approach is not possible (or in the case of Yubl where ALB didn’t exist at
the time), you can also proxy requests from the monolith for a configurable percent-
age of requests. Figure 4.8 shows this approach.

Summary
 You need to re-architect most applications to reap the full benefit of a serverless

architecture. Although there are solutions to lift and shift existing applications
into serverless, these don’t deliver optimal performance and scalability.

 To get the full benefit of a serverless architecture, you need small, autonomous
teams who are capable of making their own architectural decisions. Developers
should be responsible for more than just the code and empowered to own their
system. As Amazon’s motto goes, “You build it, you run it.” 

90% 10%

Monolith DB

Monolith

Feature E Feature F

Service

Feature E DB

ALB

Figure 4.7 You can use the Application Load Balancer (ALB) to distribute traffic between 
the monolith and the new microservices. This allows you to minimize impact of unforeseen 
problems to a subset of users.

10%

Monolith DB

Monolith

Feature E Feature F

Service

Feature E DB

Figure 4.8 Even without ALBs, you can still proxy requests by modifying the monolith.



69Summary

 DevOps is simpler with serverless. You get a lot of automation out of the box,
and tools such as Serverless Framework takes care of the rest. You still need to
know what metrics to pay attention to and what alerts to add, however, as opera-
tional experience of running a production system is still valuable.

 Unit tests have a low return on investment when it comes to serverless architec-
tures. Most functions are simple and often integrate with other services such as
Amazon’s DynamoDB and Simple Queuing Service (SQS). Unit tests that mock
these integration points do not test those service interactions and give you a
false sense of security.

 Prefer integration tests that exercise the real AWS services for the happy paths
and use mocks only for failure cases that are difficult to simulate otherwise. For
example, execute the function code locally but have it talk to the real DynamoDB
tables. Then use mocks when you need to test your error handling for
DynamoDB’s throughput exceeded errors.

 Services often have to call each other in a microservices architecture. For inter-
nal APIs that are more prone to breaking in the development environments
(compared to AWS services), use mocks to isolate the failures. The last thing
you want is for an error in one service to fail the tests for all other services that
depend on it.

 Simulating AWS services (for example, DynamoDB, SNS, SQS) locally is not
worth the effort. It’s easier and quicker to deploy a temporary stack, than using
local simulation tools.

 When dealing with batched event sources like Kinesis and SQS, you need to
think about how to handle partial failures. You either have to make sure that
the operations are idempotent and can be retried without problem, or you
need to ensure that successfully processed items in a failed batch are not pro-
cessed again when the batch is retried.



70

A Cloud Guru:
 Architecture highlights,

 lessons learned

In the first edition of this book, we described a serverless LMS (Learning Manage-
ment System) built by A Cloud Guru (https://acloudguru.com). At that time, A
Cloud Guru built a RESTful API backend using Amazon API Gateway, AWS
Lambda, and Google’s Firebase as its primary database. Since we published our first
edition, A Cloud Guru has gone through a major transformation. The company
moved from a RESTful monolithic design to a GraphQL-driven microservices
architecture. This chapter describes this journey. We’ll look at the original RESTful
design, the transition to microservices, how GraphQL plays a major part, and the
lessons learned along the way. 

This chapter covers
 A Cloud Guru’s original REST architecture

 The reasons the team decided to migrate from 
REST to microservices and GraphQL

 Lessons learned through the migration

https://acloudguru.com


71The original architecture

 One thing is clear though, serverless technologies allowed A Cloud Guru to re-
architect their platform rapidly and with minimal fuss. As a developer, you can be
more agile with a serverless application than with a traditional three-tier behemoth.
This is because, in a serverless approach, your primary focus is on the architecture of
the system, your data, and the code. A Cloud Guru developers didn’t need to spend
time and energy worrying about provisioning servers, updating server software, or
managing Kubernetes clusters. That alone saved them time and gave them the oppor-
tunity to focus on the platform elements that were critical to the business.

5.1 The original architecture
A Cloud Guru is an online educational platform for anyone wanting to learn Amazon
Web Services (AWS), Microsoft Azure, and Google Cloud Platform, as well as Cloud-
related technologies. The core features of the platform include the following: 

 On-demand video courses 
 Practice exams and quizzes
 A real-time discussion forum
 Dashboards and reporting
 User profiles and gamification
 Educational features like learning paths
 Interactive sandbox environments for students wanting to test their skills

A Cloud Guru is also an ecommerce platform that allows students to pay for a monthly
or yearly subscription and have access to content and features. The training architects
who create courses for A Cloud Guru can upload videos directly to S3. These videos
are immediately transcoded to a variety of formats and resolutions (1080p, 720p, HLS,
and so on).

 In 2017–2018, the A Cloud Guru platform used Firebase as its primary database. A
nice feature of this database is that it allows client devices (the browser on your com-
puter or phone) to receive updates in near real time without refreshing or polling.
(Firebase uses web sockets to push updates to all connected devices at the same time.)
The other main components were API Gateway and AWS Lambda. Figure 5.1 shows a
basic high-level view of how that initial REST architecture looked. 

 In the first edition of this book, we described how to build a serverless system with
a RESTful interface. We wanted to illustrate the fact that you can create sophisticated,
scalable, and highly available platforms using functions and services provided by AWS
and Google Cloud Platform. The A Cloud Guru team was able to do that and go far
beyond. They built a system that would go on to serve tens of thousands of concurrent
users. Figure 5.2 shows a slightly more advanced version of the same architecture as
was presented in the first edition of this book.

 
 
 



72 CHAPTER 5 A Cloud Guru: Architecture highlights, lessons learned

API
Gateway

Lambda
function

Firebase

Client Web Browser connects 
to Firebase directly.

There are multiple Lambda 
functions connected to the 
API Gateway.

Figure 5.1 A basic high-level view of the initial 
A Cloud Guru architecture. Their system was 
more complex (there were many more Lambda 
functions), but in a nutshell, this is how it worked.

Students are given 
permission to read files 
from S3 via CloudFront.

Lecturers are given 
permission to upload 
to S3.

API
Gateway

Auth0
(auth)

Firebase
(database)

S3 
(file storage)

Lambda
(transcode

start)

S3 
(file storage)

Lambda
(transcode

finish)
Firebase

Firebase

Media transcoding pipeline

Firebase

S3 
(file storage)

CloudFront

Lambda
(forum

answer)

Lambda
(answer 
submit)

Lambda
(read file)

Lambda
(upload file)

Figure 5.2 This is a slightly more advanced version of the A Cloud Guru architecture. The actual 
production architecture had Lambda functions and services for performing payments, managing 
administration, gaming, reporting, and analytics.



73The original architecture

The original system worked well and scaled as the development team expected. It was
also inexpensive to run with the AWS bill being just a few thousand dollars (the
Lambda and the API Gateway bill was under $1,000). Note the following about the
original A Cloud Guru architecture (figure 5.2):

 The frontend was built using AngularJS and was hosted by Netlify (https://
netlify.com).

 Auth0 was used to provide registration and authentication. It creates delegation
tokens that allow an AngularJS website to directly and securely communicate
with other services such as Firebase.

 Every client created a connection to Firebase using web sockets and received
updates from it in near real time. This meant that clients received updates as
they happened without having to poll (which led to a nicer user experience). 

 The training architects who created content for the platform uploaded files
(usually videos) straight to an S3 bucket via their browser. 

For this to work, the web application invoked a Lambda function to first
request the necessary upload credentials. As soon as the credentials were
retrieved, the client web application uploaded the file to S3 via HTTP. All of this
happened behind the scenes and was invisible to the training architects.

 Once a file was uploaded to S3, the system automatically kicked off a chain of
events that transcoded the videos, saved the new files in another bucket,
updated the database, and immediately made the transcoded videos available to
other users.

 To view the videos, students were given permission by another Lambda func-
tion. Permissions were valid for 24 hours, after which they were to be renewed. 

 Files were accessed via CloudFront. CloudFront ensures that users have low-
latency access to videos wherever they may be.

Over time, the A Cloud Guru development team began considering the future of
their serverless REST architecture. The company wanted to further accelerate the
development of the platform, reduce blockers, and allow independent teams to focus
on different high-value features. The following were some of the considerations that
drove the decision to change the architecture:

 The existing architecture that was created was, in a sense, a serverless monolith.
There were a large number of Lambda functions, but they connected to the
same Firebase database. Making a change to the database would affect nearly
every Lambda function and the developers working on them. This made it easy
in the existing system for developers to step on each other’s toes.

 The business wanted to have separate development teams owning different
parts of the product. For example, the student-experience team would need to
be able to update a database and deploy a Lambda function without affecting
the team responsible for billing and reporting. 

https://netlify.com
https://netlify.com
https://netlify.com


74 CHAPTER 5 A Cloud Guru: Architecture highlights, lessons learned

 Transitioning to a true microservices approach (where each microservice owns
its data and its own view of the world) would allow teams to develop the plat-
form in parallel. Each development team would look after a number of micros-
ervices and iterate on them as needed. This would mean moving away from a
single Firebase database to multiple databases and yet still provide a way to read
and hydrate data as needed.

 Moving to a microservices approach would give the teams a greater level of iso-
lation. This would mean that different subsystems and components within the
code base would have clearer boundaries in terms of ownership and a looser
coupling. 

 The team wanted to find a way to minimize round trips to the backend and
fetch only the data that was needed. Devs also wanted to be able to serve multi-
ple clients like mobile and web. While this can be accomplished with REST, the
team determined that GraphQL was a better fit.

 Finally, the company felt that Firebase was getting a little bit too expensive.

Given the platform’s access usage patterns, Amazon’s DynamoDB looked like the right
database to move to. Migrating to DynamoDB would allow teams to better manage
infrastructure using CloudFormation and use built-in DynamoDB features like event
triggers. And it would allow teams to stay entirely within the AWS environment.

 Refactoring to a proper microservices approach and moving to DynamoDB as the
primary database necessitated a rethink of the entire architecture. One of the main
questions to consider was how to get data from disparate microservices and do it as
effectively as possible (without multiple round trips or data hydration on the client)
when a user made a request. This is where GraphQL entered the picture and became
the focus of the new architecture. But before we get to GraphQL, let’s see how the A
Cloud Guru team split up their monolith and created their microservices first.

A serverless monolith
The RESTful API design that A Cloud Guru originally created was a serverless mono-
lith. There was a single database and functions that needed to save or load data con-
nected to it. There is nothing wrong with building a serverless monolith. For A Cloud
Guru, it scaled well for a long time and helped build the company. The core reason
for the move to a microservices design was the need for multiple teams to work in
parallel. 

If you are starting out today, know that it is OK to go with a monolithic approach.
When you need to, you can migrate to microservices. Remember, you don’t have to
follow the trend and do the microservices road if it isn’t right for you.



75The original architecture

5.1.1 The journey to 43 microservices

Let’s take a look at the serverless microservices approach the company came up with.
First, here are some stats of the new GraphQL re-architected A Cloud Guru platform
at the start of 2020:

 240 million Lambda invocations per month (100 per second)
 180 million API Gateway calls per month (70 per second)
 90 TB of data transferred from CloudFront per month (274 MB per second)

The team began to break apart the monolith and move to a microservices architec-
ture during 2018. API Gateway and Lambdas were separated into discrete microser-
vices, each with their own responsibilities and view of the world. In the new world of
microservices, each service could be as simple as a single DynamoDB table, a couple
of Lambda functions, and an API Gateway. Figure 5.3 shows an example of how a cou-
ple of basic microservices could look.

The packaging of the microservices is also interesting to note. A Cloud Guru uses
Serverless Framework and CloudFormation to organize and deploy microservices.
Some services in a microservice are stateful, whereas others are stateless. A Lambda

Two basic examples of how simple microservices could be 
structured with Lambda, API Gateway, DynamoDB, and S3.

Lambda
function

Lambda
function

API Gateway

Lambda
function

DynamoDB

DynamoDB

S3 bucketLambda
function

API Gateway

Lambda
function

Sample Microservice #1

Sample Microservice #2

Figure 5.3 The two microservices here are akin to the simplified RESTful architecture we 
discussed before.



76 CHAPTER 5 A Cloud Guru: Architecture highlights, lessons learned

function is stateless, meaning that it can be overwritten on each deployment. It’s
always ephemeral. A DynamoDB table or an S3 bucket is stateful; you must be careful
to preserve the data that is already there. Your deployment process cannot overwrite
it. Also, there can be global services and resources that don’t belong to any specific
microservice. How do you think they should be deployed and managed?

 The A Cloud Guru team designed their microservice so they would have different
CloudFormation stacks for stateless and stateful resources, as well as a stack for config-
uration and core dependencies. Figure 5.4 shows what that looks like. 

This approach to different CloudFormation stacks for different kinds of resources
allows the development team to deploy the stack with the stateless resources when they
need to be updated without having to touch stateful resources. The same goes for the
configuration and the core-dependencies stack. They can be updated without modify-
ing anything else within the microservices. This kind of separation of concerns is
advantageous because it can help to avoid accidental modification of stateful resources.

 There are also a few other global dependencies that exist as well, but these are not
within any microservice. They include infrastructure components such as Amazon
RedShift (data warehouse), AWS WAF (firewall), and VPCs (virtual private cloud).
Microservices were designed to avoid having a hard dependency on these global
resources. In fact, there is quite a loose coupling between them. 

 For example, if a microservice needs to push data into RedShift, it doesn’t do it
directly. Instead, a regular ETL job pulls data out of microservices and writes it to Red-
Shift. That means microservices don’t have to know about RedShift. A microservice
can live and breathe on its own while a separate ETL task does its own job. Figure 5.5
shows that it’s necessary for some resources to live outside specific microservices.

Stateless 
resources

Stateful 
resources

Configuration 
and core 

dependencies 

Microservice 1 Microservice 2 Microservice 3

CloudFormation stack 

CloudFormation stack 

CloudFormation stack 

Amazon API 
Gateway

AWS Lambda

Amazon 
DynamoDB

Amazon S3

Parameter 
store

Custom 
resources

CloudFormation stack 

CloudFormation stack 

CloudFormation stack 

Amazon API 
Gateway

AWS Lambda

Amazon 
DynamoDB

Amazon S3

Parameter 
store

Custom 
resources

CloudFormation stack 

CloudFormation stack 

CloudFormation stack 

Amazon API 
Gateway

AWS Lambda

Amazon 
DynamoDB

Amazon S3

Parameter 
store

Custom 
resources

Figure 5.4 Each microservice is in its own CloudFormation stack, which makes it easy to deploy.



77The original architecture

The A Cloud Guru team gradually teased apart the serverless monolith that was cre-
ated in the first place and re-implemented it with microservices. Moving from one
architecture to a another always takes time but a nice advantage here was that the
team could primarily focus on code. There was no hardware, servers, or a container
orchestration engine (like Kubernetes) to worry about. The team carefully and gradu-
ally reimplemented various components making sure that no users were affected
during the change.

 As part of the move to microservices, GraphQL became the solution to the ques-
tion of how to pull the right data from different microservices when a client makes a
request. After all, each microservice may have its own database and its own view of the
world. When a user needs to get data, how does it all happen? Which microservice has
asked for it? And, what if multiple microservices have the required information, and
the client needs an aggregate response? GraphQL became the tool to query microser-
vices and, with schema-stitching, create responses needed for the clients.

5.1.2 What is GraphQL

We already mentioned GraphQL in chapter 3, but let’s do a quick recap about what it
is. GraphQL is a popular data query language developed by Facebook in 2012 and

These resources exist outside 
of any individual microservice. 

Amazon 
Redshift

AWS WAF

Amazon VPC

Microservice 1 Microservice 2 Microservice 3

CloudFormation stack 

CloudFormation stack 

CloudFormation stack 

Amazon API 
Gateway

AWS Lambda

Amazon 
DynamoDB

Amazon S3

Parameter 
store

Custom 
resources

CloudFormation stack 

CloudFormation stack 

CloudFormation stack 

Amazon API 
Gateway

AWS Lambda

Amazon 
DynamoDB

Amazon S3

Parameter 
store

Custom 
resources

CloudFormation stack 

CloudFormation stack 

CloudFormation stack 

Amazon API 
Gateway

AWS Lambda

Amazon 
DynamoDB

Amazon S3

Parameter 
store

Custom 
resources

Figure 5.5 Global dependencies reside outside of each individual microservice. Not everything has to exist 
within a microservice.



78 CHAPTER 5 A Cloud Guru: Architecture highlights, lessons learned

released publicly in 2015. It was designed as an alternative to REST because of REST’s
perceived weaknesses (multiple round-trips, over-fetching, and problems with version-
ing). GraphQL attempted to solve these problems by providing a hierarchical, declar-
ative way of performing queries from a single endpoint (for example, api/graphql).
Figure 5.6 provides an illustration of how this looks.

GraphQL gives power to the client. Instead of specifying the structure of the response
on the server, it’s defined on the client. The client can specify which properties and
relationships to return. GraphQL aggregates data from multiple sources and returns it
to the client in a single round trip, which makes it an efficient system for retrieving data. 

 According to Facebook, GraphQL serves millions of requests per second from
nearly 1,000 different versions of its application. To further illustrate what GraphQL
looks like, here’s a simple query taken from https://graphql.org/learn/queries/:

{
  hero {
    name
  }
}

And one possible response to that query:

{
  "data": {
    "hero": {
      "name": "R2-D2"
    }
  }
}

GraphQL allows you to query multiple 
databases from a single endpoint.  

API Gateway/
GraphQL

Lambda
(GraphQL)

Database

Database

Database

Database

Database

GraphQL

Figure 5.6 A GraphQL library running in a Lambda function can query multiple databases and, 
using schema stitching, produce a result relevant for each individual client.

https://graphql.org/learn/queries/


79The original architecture

In a serverless architecture, GraphQL can be run from a single Lambda function con-
nected to the API Gateway (this is what A Cloud Guru did) or used through a service
like AWS AppSync. GraphQL can query and write to multiple data sources such as
DynamoDB tables and, using schema-stitching, assemble a response that matches the
request.

5.1.3 Moving to GraphQL

When A Cloud Guru began moving to GraphQL, AWS AppSync wasn’t yet released or
even announced for that matter. The team had one option, which was to run GraphQL
from a Lambda function using the Apollo GraphQL library (https://www.apollo
graphql.com). 

 Initially, getting the Apollo GraphQL implementation to work in a Lambda func-
tion presented a few interesting challenges. Apollo was originally designed for long-
running processes on servers and containers. The team had to make a certain number
of tweaks to optimize it for Lambda.

 The A Cloud Guru team began using GraphQL and a design pattern called Back-
ends for Frontends (BFF). The idea behind BFF is that each client has its own API or
endpoint that services its specific needs (for example, there’s a dedicated endpoint
for mobile and another for the web). Each of the endpoints can query the appropri-
ate microservices to save or load data as needed. The client doesn’t need to know
about the different microservices. It only needs to know which endpoint to query.
This pattern solves the decoupling issue present in many systems. Figure 5.7 shows an
example of the BFF architecture and what the A Cloud Guru team is driving toward.

Separate endpoints for different
clients like mobile or web

API Gateway/
GraphQL

Web app
(GraphQL)

Microservice 1
(Payments)

Mobile
(GraphQL)

Internal
dashboards
(GraphQL)

Different endpoints can query different
microservices and databases to get the
data needed for the given client.

Microservice 3
(Reporting)

Microservice 2
(Video)

BFF

Figure 5.7 An example of the 
BFF pattern that can be applied to 
microservices and multiple clients

https://www.apollographql.com
https://www.apollographql.com
https://www.apollographql.com


80 CHAPTER 5 A Cloud Guru: Architecture highlights, lessons learned

Throughout the chapter, we’ve called the Lambda function that contains the
GraphQL JavaScript library a GraphQL endpoint. But it’s probably better to call it a
BFF endpoint as we now understand this pattern. Here’s how the A Cloud Guru’s imple-
mentation works at a high level (excluding a few details like service discovery):

 A request from the user reaches the API Gateway.
 The API Gateway invokes a Lambda function with the Apollo GraphQL library.

This is the BFF endpoint we’ve discussed.
 The Apollo GraphQL library queries the microservices it knows about (more on

how it knows about which microservices to target in the service discovery section).
 Each microservice has an endpoint that is an API Gateway with a Lambda func-

tion (there is a /graphql endpoint in each microservice). 
 The Lambda function runs the GraphQL library with a number of thin schema

resolvers. It queries the databases contained within the microservice and pro-
duces a result, which is sent back to the BFF endpoint.

 The BFF endpoint receives responses from the different microservices it que-
ried. Using schema stitching, it assembles the final response.

 This final response is sent back to the client via the API Gateway.

The GraphQL Lambda function is aware of the multitude of microservices (more on
this in a moment) and is able to query those when it receives a client request. Figure
5.8 shows a high-level overview of this architecture.

5.1.4 Service discovery

With 43 microservices in the system, how does GraphQL know which services to query
when a client request comes in? The A Cloud Guru team built an internal service-
discovery service called Sputnik (note, this is an in-house, proprietary service that’s

4. Responses are combined together
    using schema stitching. 

API Gateway Lambda
(GraphQL)

Microservice 3

Microservice 2

Microservice 1

GraphQL

5. Final response is sent 
    back to the client.

1. User makes a request.

3. GraphQL queries the 
microservices it knows about.

2. GraphQL function/
    library is invoked.

Figure 5.8 The GraphQL endpoint serves as the central point for clients that need data.



81The original architecture

not available publicly). Sputnik consists of a database with API/URI definitions and
database schemas. The microservices know when to update Sputnik. Additionally, the
GraphQL Lambda function knows when to query Sputnik to get schemas for each
microservice and figure out where to route requests. 

DEFINITION Service discovery is a standard technique in microservices archi-
tecture, which solves the problem of knowing what services are available, how
to access them, and what their interface looks like.

Sputnik is made up of Lambda functions and DynamoDB tables that contain schemas
and URIs of different microservices. It is really a microservice that facilitates the com-
munication of BFF with other microservices in the system. Figure 5.9 shows how Sput-
nik helps the BFF endpoint know where to make a query.

TIP AWS has a service called Cloud Map, which is AWS’ own service discovery
product. It even has a tagline that simply says, “Service discovery for cloud
resources.” If you are looking for something like Sputnik, check out Cloud
Map. It may work for you. You can find Cloud Map at https://aws.amazon
.com/cloud-map/. 

The metadata about each microservice (URI and schema) is cached at the BFF endpoint
too, negating the need for the function to query Sputnik on every request. However,
Sputnik can invalidate the cache and force the Lambda function to requery it again. 

Microservices update 
Sputnik whenever their 
schema or URI changes. 

API Gateway Lambda
(GraphQL)

Microservice 3

Microservice 2

Microservice 1

Service discovery

Function queries Sputnik 
to find out URIs of all 
microservices and their 
schemas. 

Service 
discovery
(Sputnik)

Figure 5.9 The service discovery (Sputnik) mechanism for A Cloud Guru. There’s an AWS service 
called Cloud Map that you may want to check out if you are looking for something similar.

https://aws.amazon.com/cloud-map/
https://aws.amazon.com/cloud-map/
https://aws.amazon.com/cloud-map/


82 CHAPTER 5 A Cloud Guru: Architecture highlights, lessons learned

5.1.5 Security in the BFF world
A Cloud Guru practices security in depth with multiple layers of security built into the
system. Let’s talk about the two main components: user authentication/authorization
and BFF to microservice security. 

 In the A Cloud Guru platform, students are authenticated using the Auth0 service
that generates a unique JWT token for each user. All requests to AWS are made with
that JWT token, which is validated using a custom authorizer at the API Gateway. If
the JWT token is valid, the request is allowed to continue to the BFF endpoint. If it’s
not, then a response is generated and sent back to the client telling it that it is unau-
thorized. This is a simple mechanism, which was also used in the original REST design
of the platform.

 The second interesting element is how to authenticate a request made by the BFF
to the microservice. In this scenario, A Cloud Guru uses API keys to authenticate
requests. Each microservice has a unique API key that the BFF includes in its request
in the header (using the X-API-Key parameter). Microservices check the included key
and authorize requests if everything is OK.

5.2 Remnants of the legacy
The migration from REST to GraphQL took some time because the teams were care-
ful not to cause issues for users. An interesting side effect of this was the way the sys-
tem looked midway through the re-architecture. The team implemented new
microservices and a BFF, but the old Firebase database was still in use because it was
powering some of the elements of the user interface on the A Cloud Guru website.
Figure 5.10 shows how that mid-way architecture looked.

Figure 5.10 A high-level overview of the A Cloud Guru architecture as it was going through a transition

Microservices #A

Microservices #B

API Gateway GraphQL endpoint
DynamoDB

DynamoDB
CloudFront S3

Client

Firebase

Algolia

These are two non-AWS services 
at this stage in the architecture.



83Summary

An interesting note about figure 5.10: you can see that Firebase is still used to drive
some of the client-facing user interface elements. To keep the data in Firebase up to
date, the team used DynamoDB event streams and Lambdas to ensure that happened.
When a table is updated in any microservice, that change is pushed by DynamoDB to
the DynamoDB event stream, which in turn invokes a Lambda function. That Lambda
function analyses the change and then updates Firebase (and any other services like
Algolia as needed). 

 Now, Firebase becomes basically a materialized view that is used to drive some parts
of the interface. It is never directly queried, but it is there for older components that
depend on it. This is one of the creative decisions made by the team as they transi-
tioned from the old serverless architecture to the new one. They were able to use Fire-
base while they introduced DynamoDB and microservices and move everything
across. 

 There’s also an important lesson here in migration. You can gradually implement a
new architecture while keeping the old one going by splitting things into smaller
pieces and moving them one by one.

Summary
 Teams can work on a platform without affecting each other. Different teams are

responsible for different microservices, and they can work on those without
affecting anyone else.

 There has been a substantial improvement in performance for A Cloud Guru.
For example, a BFF pattern fetches only the data that’s needed (great for
mobile) and needs only one roundtrip to make that happen. This is an optimi-
zation on what was there previously.

 The BFF pattern helps to support multiple client types and devices. These can
be different depending on the requirements of the client.

 The team also had to do additional re-engineering to make Apollo work well
with Lambda. These days, it shouldn’t be much of a problem, but that’s the
pain when you are an early adopter.

 As always, security is a number one concern. More microservices create a larger
surface area for attacks. It’s therefore critical that microservices and endpoints
are secured. The use of machine keys to secure communications between back-
end components is an example of one good practice you should know about.



84

Yle: Architecture
 highlights, lessons learned

Yle is the national broadcaster for Finland and operates their own popular stream-
ing service called Yle Areena, which is used by millions of households. For a num-
ber of years now, Yle has used serverless technologies at scale in their architecture.
They use a combination of AWS Fargate (https://aws.amazon.com/fargate),
Lambda, and Kinesis to process more than 500 million user-interaction events per
day. These events feed Yle’s machine learning (ML) algorithm and help them pro-
vide better content recommendations, image personalization, smart notifications,
and more.1

This chapter covers
 Yle’s big data architecture 

 Scalability and resilience, lessons learned

1 I want to take this opportunity to thank Anahit Pogosova for sharing details of this architecture and the les-
sons she and her team learned along the way.

https://aws.amazon.com/fargate


85Ingesting events at scale with Fargate

6.1 Ingesting events at scale with Fargate
To provide better content recommendations, Yle needs to know which content the vis-
itors interact with the most. Yle ingests user-interaction data from streaming services
as well as mobile and TV apps via an HTTP API. The challenge with this API is that the
traffic can be spiky, such as during live sporting events. And sometimes events overlap
(for example, when the election results coverage was on at the same time as a hockey
game, which is the most popular sport in Finland)!

 As mentioned, Yle’s API ingests more than 500 million user-interaction events per
day with more than 600,000 requests per minute during peak time. Live sporting events
or special events (such as the election results) can cause peak traffic to go even higher.
The maximum traffic throughput they have observed is 2,500,000 requests per minute.

 Because the traffic is so spiky, the Yle team decided to use Fargate instead of AWS’s
API Gateway and Lambda. Fargate, also an AWS service, lets you run containers with-
out having to worry about underlying virtual machines. It’s part of an emerging trend
for serverless containers, where you use containers as a utility service.

6.1.1 Cost considerations

In general, AWS services that charge you based on up time tend to be orders of magni-
tude cheaper when running at scale, compared with those that charge based on
request count. With API Gateway and Lambda, you pay for individual API requests.
Fargate, on the other hand, charges a per-hour amount based on the vCPU, memory,
and storage resources that your containers use. You incur costs for as long as the con-
tainers run, even if they don’t serve any user traffic.

 Paying for up time can be inefficient for APIs that don’t receive a lot of requests.
For example, an API that receives a few thousand requests a day would cost signifi-
cantly less using API Gateway and Lambda. This is especially true when you consider
that you need some redundancy to ensure that your API stays up and running even if
a container fails or if one of the AWS availability zones (AZs) hosting your containers
experiences an outage. However, for high throughput APIs like the Yle API, which
handles hundreds of millions of requests per day, running the API in Fargate can be
more economical than using API Gateway and Lambda.

6.1.2 Performance considerations

A more important consideration for the Yle team was that, given how spikey their traf-
fic can be, they would likely run into throttling limits with API Gateway and Lambda.
A Lambda function’s concurrency is the number of instances of that function that
serve requests at a given time. This is known as the number of concurrent executions. 

 Most AWS regions have a default limit of 1,000 concurrent executions across all
your Lambda functions in that region. This is a soft limit, however, and can be raised by
a support request. Even though Lambda does not impose a hard limit on the maximum
number of concurrent executions, how quickly you reach the required number of con-
current executions is limited by two factors:



86 CHAPTER 6 Yle: Architecture highlights, lessons learned

 The initial burst limit, which ranges from 500 to 3,000 depending on the
region.

 After the initial burst limit, your functions’ concurrencies can increase by 500
instances per minute. This continues until there are enough instances to serve
all requests or until a concurrency limit is reached.

API traffic is often measured in requests per second (or RPS). It’s worth noting that
RPS is not equivalent to Lambda’s concurrent executions. For example, if an API
request takes an average of 100 ms to process, then a single instance of a Lambda
function can process up to 10 requests per second. If this API needs to handle 100
RPS at peak, then you will likely need around 10 Lambda concurrent executions at
peak to handle this throughput.

 If, however, an API’s throughput jumps from 100 RPS to 20,000 RPS in the span of
30 seconds, then you will likely exhaust the initial burst limit and the subsequent scal-
ing limit of 500 instances per minute. Eventually Lambda would be able to scale
enough instances of your API functions to handle this peak load, but in the mean-
time, many API requests would have been throttled.

 Another caveat to consider is that because live events are scheduled ahead of time,
the Yle team can use a broadcast schedule to prescale their infrastructure in advance.
There is no easy way to do this with Lambda except for using provisioned concurrency
(https://amzn.to/3faBkCU). But you’d need to allocate provisioned concurrency to
every Lambda function that needs to be prescaled; that would consume the available
concurrencies in the region. 

 When used broadly like this, it can significantly impact your ability to absorb fur-
ther spikes in traffic because there might not be enough concurrency left in the
region if most of it is taken up by provision concurrency. Because of these scaling lim-
its, AWS API Gateway and Lambda are not a
good fit for APIs with extremely spiky traffic.
It’s the main reason why the Yle team opted to
build their API with Fargate, and that was a sen-
sible decision.

6.2 Processing events in real-time
Once Yle’s API ingested the user-interaction
events, it published them to Amazon Kinesis
Data Stream in batches of 500 records at a time
with an Amazon Simple Queue Service (SQS)
queue as the dead-letter queue (DLQ). Figure
6.1 illustrates this process.

6.2.1 Kinesis Data Streams

Amazon’s Kinesis Data Streams is a fully man-
aged and massively scalable service that lets you

Fargate

Kinesis

SQS

Figure 6.1 High-level architecture of 
Yle’s ingestion API, which assimilates 
more than 500 million events per day at 
a peak throughput of more than 600,000 
events per minute. The events are 
forwarded to Kinesis Data Stream in 
batches of 500 records. If the Kinesis 
data stream is unavailable, the events 
are sent to an SQS dead-letter queue 
(DLQ) to be reprocessed later.

https://amzn.to/3faBkCU


87Processing events in real-time

stream data and process it in real time. Data is available to the consumers of the
stream in milliseconds and is stored in the stream for 24 hours, by default, but that
can be extended to a whole year, based on your configuration. (Keep in mind that
extra charges apply when you extend the retention period for your stream.)

 Within a Kinesis stream, the basic unit of parallelism is a shard. When you send
data to a Kinesis stream, the data is sent to one of its shards based on the partition key
you send in the request. Each shard can ingest 1 MB of data per second or up to 1,000
records per second and supports an egress throughput of up to 2 MB per second. The
more shards a stream has, the more throughput it can handle. 

 There is no upper limit to the number of shards you can have in a stream so, theo-
retically, you can scale a Kinesis stream indefinitely by adding more shards to it. But
there are cost implications that you have to consider when deciding how many shards
you will need for your workload.

 Kinesis charges based on two core dimensions: shard hours and PUT payload
units. One PUT payload unit equates one request to send a record with up to 25 KB to
a Kinesis stream. If you send a piece of data that is 45 KB in size, for example, then
that counts as two PUT payload units. It works the same way as Amazon’s DynamoDB’s
read and write request units.

 A Kinesis shard costs $0.015 per hour and $0.014 per million PUT payload units.
There are also additional charges if you enable optional features such as extending
the data retention period. Some of these additional costs are also charged at a per
hour rate, such as the cost for extended data retention and enhanced fan-out.

 Because of the hourly cost, it’s not economically efficient to over-provision the
number of shards you’ll need. Given the amount of throughput each shard supports,
you don’t need many shards to support even a high throughput system like Yle’s data
ingestion pipeline.

 Based on Yle’s prime-time traffic of 600,000 requests per minute, if we assume the
traffic is uniformly distributed across 1 minute, then we arrive at 10,000 requests per
second. And assuming that each event is less than 25 KB in size, then Yle needs about
10 shards to accommodate this traffic pattern. However, as we discussed, their traffic is
spiky and, because Kinesis doesn’t support autoscaling, the Yle team over-provisions
their stream, running 40 shards all the time. This gives the team plenty of headroom
to handle unexpected spikes and to minimize the risk of data loss.

6.2.2 SQS dead-letter queue (DLQ)

Because data is the blood supply for Yle’s ML algorithms, the team wants to ensure
that it’s not lost when the Kinesis service experiences an outage in Yle’s region. In the
event the Kinesis service is out of commission, the API sends the events to the SQS
DLQ so they can be captured and reprocessed later.



88 CHAPTER 6 Yle: Architecture highlights, lessons learned

6.2.3 The Router Lambda function

To process the constant stream of events, a Lambda function called Router subscribes
to the Kinesis data stream. This function routes events to different Kinesis Firehose
streams that the other microservices use.

 To make storing and querying the data more efficient, the Yle team stores the
events in Apache Parquet format. To do this, they use Amazon Kinesis Data Firehose
(to batch data into large files and deliver them to S3) with AWS Glue Data Catalog (to
provide the schema). Figure 6.2 shows this arrangement.

6.2.4 Kinesis Data Firehose

Kinesis Data Firehose is another member of the Amazon Kinesis family of services. It is
a fully managed service to load streaming data to a destination. Kinesis Firehose can
send data to Amazon S3, Amazon Redshift, Amazon Elasticsearch Service (Amazon
ES), and any HTTP endpoint owned by you or by external service providers such as
Datadog, New Relic, and Splunk.

 A Firehose stream allows you to load streaming data with zero lines of code. Unlike
Kinesis Data Streams, a Kinesis Firehose stream scales automatically, and you pay for
only the volume of data you ingest into the stream. The cost for ingesting data into
Kinesis Data Firehose starts at $0.029 per GB for the first 500 TB of data per month. It
gets cheaper the more data you ingest.

 In addition to the automated scaling, a Firehose stream can batch the incoming
data, compress it and, optionally, transform it using Lambda functions. It can also
convert the input data from JSON to Apache Parquet or to Apache ORC formats
before loading it into the destination.

 Like Kinesis Data Streams, it stores data in the stream for only up to 24 hours. You
can configure the batch size by the maximum number of records or for a certain period
of time. For example, you can ask the Firehose stream to batch the data into 128 MB
files or 5 minutes’ worth of data, whichever limit is reached first. It’s a convenient

Fargate

Kinesis

SQS

Lambda

Router

Kinesis Firehose

Kinesis Firehose

Figure 6.2 The Lambda Router function routes events to different Kinesis Firehose 
streams so they can be aggregated and converted to Apache Parquet files.



89Processing events in real-time

service with no management overhead for scaling, and you don’t have to write any
custom code to transport data to the intended target.

 To convert the data from JSON format to Apache Parquet or Apache ORC, you
need to use the AWS Glue Data Catalog service. A Kinesis Firehose stream uses the
schema captured in the Glue Data Catalog before sending it to a destination.

 The Yle team uses S3 as the data lake and the destination for the Kinesis Firehose
streams (figure 6.3). Once the data is delivered to S3, it is further processed and con-
sumed by a number of microservices to perform several ML tasks such as demo-
graphic predictions.

6.2.5 Kinesis Data Analytics

To personalize the icon image for videos, the Yle team uses the contextual bandits model,
which is a form of an unsupervised ML model. They use the user-interaction events to
reward the model so it can learn what the user likes. To do that, the team uses Kinesis
Data Analytics to filter and aggregate the data from the Firehose stream and deliver it
to a Lambda function called Reward Router. This function then calls several Reward
APIs to reward the personalization models the Yle team maintains (figure 6.4).

 Kinesis Data Analytics lets you run queries against streaming data using SQL or
Java and the Apache Flink framework. Using an SQL approach, you can join, filter,
and aggregate data across several streams without writing any custom code or running

Kinesis Lambda

Router

Kinesis Firehose

Kinesis Firehose

S3 Figure 6.3 The Router function 
routes incoming events to a number 
of Kinesis Firehose streams, one for 
each type of event. The streams then 
batch, transform, and convert the 
data into Apache Parque format and 
write it to S3.

Kinesis Firehose

S3

Kinesis Analytics Lambda

Reward
Router ...

Reward APIs

Figure 6.4 The Yle team uses Kinesis Data 
Analytics and Lambda to reward different 
personalization models in real time.



90 CHAPTER 6 Yle: Architecture highlights, lessons learned

any infrastructure. The Java approach, however, gives you the most control over how
your application runs and how it processes the data.

 You can output the result of your queries to Kinesis Data Stream, Kinesis Firehose,
or a Lambda function. Having a Lambda function as a destination gives you a lot of
flexibility, however. You can process the results further, forward the results to any-
where you want, or both. In Yle’s case, they use the Reward Router function as the des-
tination for the Kinesis Data Analytics application and reward the relevant
personalization models.

6.2.6 Putting it altogether

Taking a step back, you can see in figure 6.5 what Yle’s data pipeline looks like from a
high level. We have omitted some minor details, such as the fact that the Kinesis Fire-
hose streams also use Lambda functions to transform and format the data and the fact
that this is just the start of the journey for many of these user events. Once the data is
saved into S3 in Apache Parquet format, many microservices ingest the data, process
it, and use it to enrich their ML models.

What I would like to highlight in this architecture is the prevalent use of Kinesis and
its data analytics capabilities. This includes

 Kinesis Data Streams for ingesting large amounts of user events.

Fargate

Kinesis

SQS

Lambda

Router

Kinesis Firehose

Kinesis Firehose

S3

Kinesis Analytics Lambda

Reward
Router ...

Reward APIs

Figure 6.5 Yle’s data pipeline architecture. They use Fargate to run the ingestion API because of cost and 
performance considerations and then process the ingested events in real time using Kinesis Data Streams, 
Kinesis Firehose, and Lambda. The data is transformed, compressed, and converted to Apache Parquet format
and stored in S3 as the data lake. At the same time, they also use Kinesis Data Analytics to perform real-time
aggregations and use Lambda to reward the relevant personalization ML models.



91Lessons learned

 Kinesis Firehose Streams for batching, formatting, and outputting data into
large compressed files that are more easily consumable by the downstream ML
models.

 Kinesis Data Analytics for running aggregations over live streams of data in real
time and using a Lambda function as a destination to reward personalization
models.

6.3 Lessons learned
The use of these Kinesis capabilities and how they are combined is a common sight in
data analytics applications. However, Yle is processing events at a much higher scale
than most! Operating at such high scale comes with unique challenges, and the Yle
team has learned some valuable lessons along the way, including those that follow.

6.3.1 Know your service limits

Every service in AWS comes with service limits. These generally fall into three categories:

 Resource limits—How many of X can you have in a region. For example, Kinesis
Data Streams has a default quota of 500 shards per region in us-east-1, us-west-1,
and eu-west-1, and 200 shards per region in all other regions. Similarly, AWS
Identity and Access Management (IAM) has a default quota of 1,000 roles per
region.

 Control-plane API limits—How many requests per second you can send to a con-
trol plane API to manage your resources. For example, Kinesis Data Streams
limits you to five requests per second to the CreateStream API.

 Data-plane API limits—How many requests per second you can send to a data
plane API to act on your data. For example, Kinesis Data Streams limits you to
five GetRecords requests per second per shard.

These limits are published in the AWS Service Quotas console. In the console, you can
view your current limits and whether you can raise the limit.

SOFT VS. HARD LIMITS

Limits that can be raised are considered soft limits, and those that can’t be raised are
considered hard limits. You can ask for a soft limits raise via a support ticket, or you can
do it in the AWS Service Quotas console. But it’s worth keeping in mind that some-
times there is a limit to how far you can raise those soft limits. For example, the num-
ber of IAM roles in a region is a soft limit, but you can raise that limit to only 5,000
roles per region. If your approach relies on raising these soft limits indefinitely, then
there’s a good chance that you’re using the service in a way that it’s not designed for,
and you might have to reconsider your approach.

 Keeping an eye on your usage levels and your current limits is something that
every AWS user should do but is especially important when you need to operate at
scale and you run the risk of running into those limits. For the Yle team, one of the
important lessons they learned is that you need to raise the limit on the number of



92 CHAPTER 6 Yle: Architecture highlights, lessons learned

Fargate tasks you can run and give yourself plenty of headroom because it can take a
few days for AWS to raise the limit in your account. 

 At present, the default limit is 1,000 concurrent Fargate tasks per region. When
the Yle team started out, however, the default limit was only 100, and it took the team
three days to raise that limit to 200.

PROJECT THROUGHPUT AT EVERY POINT ALONG THE PIPELINE

To understand which service limits affect your application, look at every service along
the way and build a projection of how throughput changes with user traffic. Take Yle’s
case: as the number of concurrent users goes up, there’s more traffic going through
the ingestion API running in Fargate. 

 How does this increase affect the throughput that needs to be processed by
Kinesis and, therefore, the number of shards that need to be provisioned? 

 Based on the current BatchSize and ParallelizationFactor configurations,
how many concurrent Lambda executions would be required to process the
events at peak load? 

 Given that many concurrent Lambda executions, how many events would be
sent to each Kinesis Firehose stream? 

 Does your current throughput limit for Kinesis Data Firehose support that
many events per second?

ALWAYS LOAD TEST, DON’T ASSUME

Every service in the pipeline can become a bottleneck, and the best way to know that
your application can handle the desired throughput is to load test it. The services you
build your application on might be scalable, but it doesn’t mean that your application
is, not without the proper adjustment to its service limits. 

 If your target is to handle 100,000 concurrent users, then load test it to at least
200,000 concurrent users. Who knows, maybe your application will be successful!
That’s what you’re hoping for, right? Even if your application already comfortably
handles 50,000 concurrent users, load test it to 200,000 concurrent users anyway. You
can’t assume the system is infinitely scalable and that its performance characteristics
are perfectly consistent as throughput goes up. Don’t assume anything; find out.

SOME LIMITS HAVE A BIGGER BLAST RADIUS THAN OTHERS

It’s also worth mentioning that some service limits have a bigger blast radius than oth-
ers. Lambda’s regional concurrency limit is a great example of this.

 Whereas exhausting the write throughput limit on a Kinesis shard affects only
putRecord operations against that shard, the impact is localized to a single shard in a
single Kinesis stream and will not affect your application in a big way. On the other
hand, exhausting the Lambda concurrent executions limit can have a wide-reaching
impact on your application because you’re likely using Lambda functions to handle a
variety of different workloads: APIs, real-time event processing, transforming data for
Kinesis Firehose, and so on. 



93Lessons learned

 This is why you need to pay even more attention to those service limits that have a
big blast radius. In the case of Lambda, you can also use the ReservedConcurrency
configuration to restrain the maximum number of concurrent executions a function
can have in cases where it’s appropriate and necessary.

MIND CLOUDWATCH’S METRIC GRANULARITY

You should monitor your usage level and be proactive about raising service limits. One
way to do that is by setting up CloudWatch alarms against the relevant metrics. One
caveat to keep in mind here is that CloudWatch often reports usage metrics at a per-
minute granularity but the limits are per second, which applies to both Kinesis Data
Streams and DynamoDB’s throughput metrics. In these cases, when you set up those
CloudWatch alarms, make sure that you set up the thresholds correctly. For example,
if the per-second throughput limit is 1, then the corresponding per-minute threshold
should be 60.

6.3.2 Build with failure in mind

Notice that in figure 6.1, there is a SQS DLQ? It’s there as a backup for when there is
a problem with the Kinesis Data Streams service. Kinesis Data Streams is a robust and
highly scalable service, but it’s not infallible.

EVERYTHING FAILS, ALL THE TIME

AWS CTO, Werner Vogel, famously said, “Everything fails, all the time.” It’s a fact of life
that even the most reliable and robust service can have a hiccup from time to time.
Remember when S3 was down (https://aws.amazon.com/message/41926) for a few
hours in 2017? Or that time when Kinesis Data Streams had an outage and affected
CloudWatch and EventBridge as well (https://aws.amazon.com/message/11201)? Or
when Gmail, Google Drive, and YouTube went down (http://mng.bz/ExlO)?

 At the machine level, individual disk drives or CPU cores or memory chips con-
stantly fail and are replaced. Cloud providers such as AWS and Google have invested
heavily into their physical infrastructure as well as their software infrastructure to
ensure that such failures do not affect their customers. In fact, by using serverless
technologies such as API Gateway, Lambda, and DynamoDB, your application is
already protected from data center-wide failures because your code and data are
stored in multiple availability zones (data centers) within a given AWS region. How-
ever, there are occasional region-wide disruptions that affect one or more services in
an entire AWS region, such as the S3 and Kinesis outages mentioned previously.

 What this means is that you need to build your application with failure in mind
and have a plan B (and maybe even a plan C, D, and E) in case your primary service
has a bad day at the office. DLQs are a good way to capture traffic that can’t be deliv-
ered to the primary target when first asked. Many AWS services now offer DLQ sup-
port out of the box. For example, SNS, EventBridge, and SQS all support DLQs
natively in case the events they capture cannot be delivered to the intended target
after retries. If you process events from a Kinesis Data Stream with a Lambda function,
then you can also use the OnFailure configuration to specify a DQL. 

https://aws.amazon.com/message/41926
https://aws.amazon.com/message/11201
http://mng.bz/ExlO


94 CHAPTER 6 Yle: Architecture highlights, lessons learned

 The more throughput your system has to process, the more failures you will
encounter, and the more important these DLQs become. Remember, even a one-in-a-
million event would occur five times a minute if you have to process 5,000,000
requests a minute!

PAY ATTENTION TO RETRY CONFIGURATIONS

As you introduce more moving parts into your architecture and process more
throughput, you should also pay more attention to your timeout and retry configura-
tions. There are two problems that often plague applications that operate at scale:

 Thundering herd—A large number of processes waiting for an event are awaken
at the same time, but there aren’t enough resources to handle the requests
from all these newly awaken processes. This creates a lot of resource conten-
tion, potentially causing the system to grind to a halt or fail over.

 Retry storm—An anti-pattern in client-server communications. When a server
becomes unhealthy, the client retries aggressively, which multiplies the volume
of requests to the remaining healthy servers and, in turn, causes them to time-
out or fail. This triggers even more retries and exacerbates the problem even
further.

Retries are a simple and effective way to handle most intermittent problems, but set-
ting these needs to be done with care. A good practice is to use exponential backoff
between retry attempts and the circuit breaker pattern to mitigate the risk of retry
storms (https://martinfowler.com/bliki/CircuitBreaker.html).

6.3.3 Batching is good for cost and efficiency

Cost is one of those things that developers often don’t think about when they’re mak-
ing architectural decisions, but this can come back and bite them in a big way later.
This is especially true when you need to operate at scale and process large volumes of
events. As we discussed in section 6.1.1, one of the reasons why the Yle team decided
to use Fargate for ingesting user-interactions events instead of API Gateway and
Lambda was cost and efficiency. 

 In general, AWS services that charge you based on up time tend to be orders of
magnitude cheaper when running at scale, compared with those that charge based on
request count. And the bigger the scale, the more you need to batch events for cost
and efficiency. After all, processing 1,000 events with a single Lambda invocation is far
cheaper and more efficient than processing those with 1,000 Lambda invocations. 

 Processing events in a batch also reduces the number of concurrent Lambda exe-
cutions you need to run and minimizes the risk of exhausting the regional concurrent
executions limit. However, with batch processing comes the potential for partial failures.

 If you process one event at a time and that event fails enough times, then you put it
into the DLQ and move on to the next event. But when you process 1,000 events in a
single invocation and one event fails, what do you do about the other 999 events? Do
you throw an error and let the invocation be retried, potentially reprocessing the 999

https://martinfowler.com/bliki/CircuitBreaker.html


95Summary

successful events? Do you put the failed event into a DLQ and process it later? These
are the sort of questions that you have to answer.

6.3.4 Cost estimation is tricky

If you don’t pay attention to cost, then it can pile up quickly and catch you by surprise.
But trying to accurately predict your cost ahead of time is also difficult; there are a lot
of factors that can affect your cost in production. For example, looking at the architec-
ture diagram in figure 6.5, you might be focusing on the cost of Fargate, Lambda, and
the Kinesis family of services. There are also other peripheral services to consider,
such as the cost for CloudWatch, X-Ray, and data transfer costs.

 The cost of Lambda is usually a small part of the overall cost of a serverless applica-
tion. In fact, in most production systems, the cost of Lambda often pales in compari-
son with the cost of CloudWatch metrics, logs, and alarms.

Summary
 Yle’s ingestion API processes more than 500 million events per day and more

than 600,000 events per minute at peak times. The traffic is spiky and heavily
influenced by real-world events such as a live hockey match or the election
results.

 The Yle team uses Fargate for the ingestion API because of cost and perfor-
mance considerations.

 In general, AWS services that charge you based on up time are significantly
cheaper to use at scale compared to those services that charge you based on
usage (number of requests, volume of data processed, etc.).

 The Yle team uses Kinesis Data Stream, Kinesis Data Firehose, and Lambda to
process, transform, and convert the ingested events to Apache Parquet format.

 The ingested data is stored in S3 as the data lake.
 The Yle team uses Kinesis Data Analytics to perform real-time aggregation on

the ingested events.
 The aggregated events reward the relevant personalization ML models.

 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Part 3

Practicum

It’s time to take a look at three interesting problems and discuss how we
would tackle them using serverless architectures. We will not be providing
source code, but we will show sample architectures and discuss how to go about
designing three different and unique systems. Let’s sink our teeth into these
delicious serverless architectures.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



99

Building a scheduling
 service for ad hoc tasks

With serverless technologies, you can build scalable and resilient applications
quickly by offloading infrastructure responsibilities to AWS. Doing so allows you to
focus on the needs of your customers and your business. Ideally, all the code you
write is directly attributed to features that differentiate your business and add value
for your customers.

 What this means in practice is that you use many managed services instead of
building and running your own. For example, instead of running a cluster of
RabbitMQ servers on EC2, you use Amazon Simple Queue Service (SQS). Through-
out the course of this book, you have also read about other AWS services such as
DynamoDB and Step Functions.

This chapter covers
 Approaching architectural decisions when faced 

with a novel problem

 Defining nonfunctional requirements

 Choosing the right AWS service to satisfy 
nonfunctional requirements

 Combining different AWS services 



100 CHAPTER 7 Building a scheduling service for ad hoc tasks

 Therefore, an important skill is to be able to analyze the nonfunctional require-
ments of a system and choose the correct AWS service to work with. But the AWS eco-
system is enormous and consists of a huge number of different services. Many of these
services overlap in their use cases but have different operational constraints and scal-
ing characteristics. For example, to add a queue between two Lambda functions to
decouple them, you can use any of the following services:

 Amazon SQS
 Amazon Simple Notification Service (SNS)
 Amazon Kinesis Data Streams
 Amazon DynamoDB Streams
 Amazon EventBridge
 AWS IOT Core

These services have different characteristics when it comes to their scaling behavior,
cost, service limits, and how they integrate with Lambda. Depending on your require-
ments, some might be a better fit for you than others.

 Although AWS gives you a lot of different services to architect your system, it doesn’t
offer any guidance or opinion on when to use which. As a developer or architect working
with AWS, one of the most challenging tasks is figuring this out for yourself.

 This chapter shines a light on the problem by taking you through the design pro-
cess for a scheduling service for ad hoc tasks. It’s a common need for applications,
and AWS does not yet offer a managed service to solve this problem. The closest thing
in AWS is the scheduled events in EventBridge, but scheduling repeated tasks (e.g., do
X every Y seconds) is different than scheduling ad hoc tasks (e.g., do X at 2021-08-
30T23:59:59Z, do Y at 2021-08-20T08:05:00Z).

 The functional requirement for such a scheduling service is simple: you schedule
an ad hoc task to be run at a specified date and time (for example, “Remind me to call
mum on Monday, at 9:00”). What’s interesting about this is that it has to deal with dif-
ferent nonfunctional requirements depending on the application (for example, “It
needs to handle a million open tasks that are scheduled but not yet run”).

 For the rest of this chapter, you will see five different solutions for this scheduling
service using different AWS services and learn how to evaluate them. But first, let’s
define the nonfunctional requirements that we will evaluate the solutions against.
Here is the plan for this chapter:

 Define nonfunctional requirements. The four nonfunctional requirements we will
consider are precision, scalability (number of open tasks), scalability (hotspots),
and cost. All the following solutions will be evaluated against these requirements:
– Cron with EventBridge—A simple solution using cron jobs to find open tasks

and run them.
– DynamoDB TTL—A creative use of DynamoDB’s time-to-live (TTL) mecha-

nism to trigger and run the scheduled ad hoc tasks.
– Step Functions—A solution that uses Step Function’s Wait state to schedule

and run tasks.



101Defining nonfunctional requirements

– SQS—A solution that uses SQS’s DelaySeconds and VisibilityTimeout set-
tings to hide tasks until their scheduled execution time.

– Combining DynamoDB TTL and SQS—A solution that combines DynamoDB
TTL with SQS to compensate for each other’s shortcomings.

 Choose the right solution for your application. Different applications have different
needs, and some nonfunctional requirements may be more important than oth-
ers. In this section, you will see three different applications, understand their
needs, and pick the most appropriate solution for them.

7.1 Defining nonfunctional requirements
The ad hoc scheduling service is an interesting problem that often shows up in differ-
ent contexts and has different nonfunctional requirements. For example, a dating
app may require ad hoc tasks to remind users a date is coming up. A multiplayer game
may need to schedule ad hoc tasks to start or stop a tournament. A news site might use
ad hoc tasks to cancel expired subscriptions.

 User behaviors and traffic patterns differ between these contexts, which in turn
create different nonfunctional requirements the service needs to meet. It’s important
for you to define these requirements up front to prevent unconscious biases (such as a
confirmation bias) from creeping in. 

 Too often, we subconsciously put more weight behind characteristics that align
with our solution, even if they aren’t as important to our application. Defining
requirements up front helps us maintain our objectivity. For a service that allows you
to schedule ad hoc tasks to run at a specific time, the following lists some nonfunc-
tional requirements you need to consider:

 Precision—How close to the scheduled time is the task run?
 Scalability (number of open tasks)—Can the service support millions of tasks that

are scheduled but not yet processed?
 Scalability (hotspots)—Can the service run millions of tasks at the same time?
 Cost

Throughout this chapter, you will evaluate five different solutions against this set of
nonfunctional requirements. And remember, there are no wrong answers! The goal
of this chapter is to help you hone the skill of thinking through solutions and evaluat-
ing them. We’ll spend the rest of the chapter looking at these different solutions. Each
provides a different approach and utilizes different AWS services. However, every solu-
tion uses only serverless components, and there is no infrastructure to manage. The
five solutions include

 A cron job with EventBridge
 DynamoDB Time to Live (TTL)
 Step Functions
 SQS
 Combining DynamoDB TTL with SQS



102 CHAPTER 7 Building a scheduling service for ad hoc tasks

After each solution, we’ll ask you to score the solution against the aforementioned
nonfunctional requirements. You can compare your scores against ours and see the
rationale for our scores. Let’s start with the solution for a cron job with EventBridge.

7.2 Cron job with EventBridge
This solution uses a cron job in EventBridge to invoke a Lambda function every cou-
ple of minutes (figure 7.1). With this solution, you will need the following:

 A database (such as DynamoDB) to store all the scheduled tasks, including
when they should run

 An EventBridge schedule that runs every X minutes
 A Lambda function that reads overdue tasks from the database and runs them

There are a few things to note about this solution:

 The lowest granularity for an EventBridge schedule is 1 minute. Assuming the
service is able to keep up with the rate of scheduled tasks that need to run, the
precision of this solution is within 1 minute.

 The Lambda function can run for up to 15 minutes. If the Lambda function
fetches more scheduled tasks than it can process in 1 minute, then it can keep
running until it completes the batch. In the meantime, the cron job can start
another concurrent execution of this function. Therefore, you need to take
care to avoid the same scheduled tasks being fetched and run twice.

 The precision of individual tasks within the batch can vary, depending on their
relative position in the batch and when they are actually processed. In the case
of a large batch that cannot be processed within 1 minute, the precision for
some tasks may be longer than 1 minute (figure 7.2).

 It’s possible to increase the throughput of this solution by adding a Lambda
function as the target multiple times (figure 7.3).

EventBridge Lambda DynamoDB

Invokes Lambda
function every X minutes.

Defines cron job as a schedule
(e.g., every X minutes). Queries DynamoDB for

overdue tasks to execute.

All scheduled tasks are
stored in DynamoDB.

Figure 7.1 High-level architecture showing an EventBridge cron job with 
Lambda to run ad hoc scheduled tasks.



103Cron job with EventBridge

Time
23:00 UTC 23:01 UTC 23:02 UTC

Task 1’s scheduled time

Task 10001’s scheduled time

Cron job runs

Task 1 executed

Task 10001 executed

Task 1’s precision (~1 min)

Task 10001’s precision (> 1 min)

Figure 7.2 The precision of individual tasks inside a batch can vary greatly 
depending on their position inside the batch.

The same function can be configured as a target more than once. 
Each time the cron job runs, the function would be invoked 
multiple times, one for every time it's configured as a target.

Figure 7.3 You can add the same Lambda function as a target for an EventBridge rule multiple times.



104 CHAPTER 7 Building a scheduling service for ad hoc tasks

 Because EventBridge has a limit of five targets per rule, you can use this tech-
nique to increase the throughput fivefold. This means every time the cron job
runs, it creates five concurrent executions of this Lambda function. To avoid
them all picking up and running the same tasks, you can configure different
inputs for each target as figure 7.4 shows.

7.2.1 Your scores

What do you think of this solution? How would you rate it on a scale of 1 (worst) to 10
(best) against each of the nonfunctional requirements? Write down your scores in the
empty spaces in the tables provided for this (see table 7.1 as an example). And
remember, there are no right or wrong answers. Just use your best judgement based
on the information available.

Table 7.1 Your solution scores for a cron job

Score

Precision

Scalability (number of open tasks)

Scalability (hotspots)

Cost

You can configure a different input for 
each target, then each concurrent 
execution of the Lambda function 
picks up a different segment of the 
open tasks that need to be run.

Figure 7.4 You can configure a 
different input for each target to 
have them fetch different subsets 
of scheduled tasks. Then the tasks 
are not processed multiple times.



105Cron job with EventBridge

7.2.2 Our scores

The biggest advantage of this solution is that it’s really simple to implement. The com-
plexity of a solution is an important consideration in real-world projects because we’re
always bound by resource and time constraints. However, for the purpose of this book,
we will ignore these real-world constraints and only consider the nonfunctional require-
ments outlined in section 7.1. With that said, here are our scores for this solution (table
7.2). We’ll then explain our reasons for these scores in the following subsections.

PRECISION

We gave this solution a 6 for precision because EventBridge cron jobs can run at most
once per minute. That’s the best precision we can hope for with this solution. Further-
more, this solution is also constrained by the number of tasks that can be processed in
each iteration. When there are too many tasks that need to be run simultaneously,
they can stack up and cause delays. These delays are a symptom of the biggest chal-
lenge with this solution—dealing with hotspots. More on that next.

SCALABILITY (NUMBER OF OPEN TASKS)
Provided that the open tasks do not cluster together (hotspots), this solution would
have no problem scaling to millions and millions of open tasks. Each time the
Lambda function runs, it only cares about the tasks that are now overdue. Because of
this, we gave this solution a perfect 10 for scalability (number of open tasks).

SCALABILITY (HOTSPOTS)
We gave this solution a lowly 2 for this criteria because a cron job doesn’t handle
hotspots well at all. When there are more tasks than the Lambda function can handle
in one invocation, this solution runs into all kinds of trouble and forces us into diffi-
cult trade-offs.

 For example, do we allow the function to run for more than 1 minute? If we don’t,
then the function would time out, and there’s a strong possibility that some tasks
might be processed but not marked as so because the invocation was interrupted mid-
way through. We need to either make sure the scheduled tasks are idempotent or we
have to choose between:

Table 7.2 Our solution scores for a cron job with EventBridge

Score

Precision 6

Scalability (number of open tasks) 10

Scalability (hotspots) 2

Cost 7



106 CHAPTER 7 Building a scheduling service for ad hoc tasks

 Executing some tasks twice if we mark them as processed in the database after
successfully processing.

 Not executing some tasks at all if we mark them as processed in the database
before we finish processing them.

 Employing a mechanism such as the Saga pattern (http://mng.bz/AOEp) for
managing the transaction and reliably updating the database record after the
task is successfully processed. (This can add a lot of complexity and cost to the
solution.)

On the other hand, if we allow the function to run for more than 1 minute, then we
are less likely to experience this problem until we see a large enough hotspot that the
Lambda function can’t process in 15 minutes! Also, now there can be more than one
concurrent execution of this function running at the same time. To avoid the same
task being run more than once, we can set the function’s Reserved Concurrency set-
ting to 1. This ensures that at any moment, only one concurrent execution of the
Lambda function is running (see figure 7.5). However, this severely limits the poten-
tial throughput of the system.

 Imagine 1,000,000 tasks that need to be run at 00:00 UTC, but the Lambda func-
tion can process only 10,000 tasks per minute. If we do nothing, then the function
would timeout, be retried, and would take at least 100 invocations to finish all the

00:00 00:01 00:02 00:03 00:04 00:05

time

missed

missed

missed

On the next iteration of the cron 
job, it will try to invoke the function 
again. These invocations would be 
throttled by Lambda, and the cron 
job would miss those iterations.

When Reserved Concurrency is set 
to 1, only one concurrent execution 
of the function is allowed to run at 
the same time.

Tasks that are scheduled to execute 
at 00:01, 00:02, and 00:03 would 
not have been picked up by the 
invocation that started at 00:00 
and instead picked up here.

Figure 7.5 If we limit Reserve Concurrency to 1, then there will be only one concurrent execution of the 
Lambda function running at any moment. This means some cron job cycles will be skipped.

http://mng.bz/AOEp


107Cron job with EventBridge

tasks. In the meantime, other tasks are also delayed, further exasperating the impact
on user experience. This is the Achille’s heel of this solution. But we can tweak the
solution to increase its throughput and help it cope with hotspots better. More on this
later.

COST

With EventBridge, cron jobs are free, but we have to pay for the Lambda invocations
even when there are no tasks to run. You can minimize the Lambda cost if you use a mod-
erate memory size for the cron job. After all, it’s not doing anything CPU-intensive and
shouldn’t need a lot of memory (and therefore CPU).

 In our scenario, the main cost for this solution is the DynamoDB read and write
requests. For every task, you need one write request (when scheduling the task) and
one read request (when the cron job retrieves it). This access pattern makes it a good
fit for DynamoDB’s on-demand pricing and allows the cost of the solution to grow lin-
early with its scale. At $1.25 per million write units and $0.25 per million read units,
the cost per million scheduled tasks can be as low as $1.50. That’s just the DynamoDB
cost, and even that depends on the size of the items you need to store for each task as
DynamoDB read/write units are calculated based on payload size. You also have to fac-
tor in the Lambda costs too, which also depend on a number of factors such as mem-
ory size and execution duration.

 Nonetheless, this is still a cost-effective solution, even when you scale to millions of
scheduled tasks per day. And, hence, why we gave it a score of 7. Overall, this is a good
solution for applications that don’t have to deal with hotspots, and it is also easy to
implement. As we mentioned earlier, we can also tweak the architecture slightly to
address its problem with hotspots.

7.2.3 Tweaking the solution  

Earlier, we mentioned that we can increase the throughput of this solution by allowing
multiple concurrent executions of the Lambda to run in parallel. We can do this by
duplicating the Lambda function target in the EventBridge rule. Because there’s a limit
of five targets per EventBridge rule, we can only hope for a fivefold increase at best.
Beyond that, we can also duplicate the EventBridge rule itself as many times as we need.

 But even with these tricks, Lambda’s 15 minutes execution time limit is still loom-
ing over our head. We also have to shard the reads so that the concurrent executions
don’t process the same tasks. Doing that, we also incur higher operational cost and
complexity as well. There are more resources to configure and manage, and there are
more Lambda invocations and database reads, even though most of the time they’re
not necessary. Essentially, we have “provisioned” (for lack of a better term) our appli-
cation for peak throughput all the time.

 Increasing throughput this way is ineffective. A much better alternative is to fan-out
the processing logic based on the number of tasks that need to run. Lambda’s burst
capacity limit allows up to 3,000 concurrent executions to be created instantly (see
https://amzn.to/2BxRuVG). This allows for a huge potential for parallel processing

https://amzn.to/2BxRuVG


108 CHAPTER 7 Building a scheduling service for ad hoc tasks

even if we use just a fraction of it. For this to work, we need to move the business logic
to fetch and run tasks into another Lambda function. From here, we can invoke as
many instances of this new function as we deem necessary when faced with a large batch
of tasks (figure 7.6 shows this approach).

Once we know the number of tasks that needs to run, we can calculate the number of
concurrent executions we need. To alleviate the time pressure and minimize the dan-
ger of timeouts, we can add some headroom into our calculation.

 For example, if the throughput for the processing function is 10,000 tasks per min-
ute, then we can start a new concurrent execution for every 5,000 tasks. If there are
1,000,000 tasks, then we need 200 concurrent executions. This is well below the burst
capacity limit of 3,000 concurrent executions in the region. 

Count

Fetch tasks
Invoke
(async)

SQS

DLQSet InvocationType to Event to
make the invocation asynchronous.

cron-runner

task-runner

To prevent data loss, use a dead-
letter queue (DLQ) to capture
events that can’t be processed
due to persistent failures.

Instead of a DLQ, you can also configure
an On-Failure destination. The advantage
of using Lambda Destinations instead of
DLQ is that it captures the invocation error
too, not just the invocation event.

Instead of fetching and running the tasks,
the Lambda function triggered by the cron
job now only gets a count of the number
of tasks and invokes another Lambda
function (the task-runner function). The number of tasks in a given minute slot

should be recorded as an atomic counter.
This avoids expensive SCAN or QUERY 
requests, where you would pay for every
item and have to page through the results.

EventBridge Lambda DynamoDB

Lambda

Figure 7.6 An alternative architecture as a solution to our cron job. The solution fans out the 
processing logic to another function.

Exercise: Score the modified solution
Consider how the proposed changes would affect the nonfunctional requirements of
precision, scalability (number of open tasks), scalability (hotspots), and costs. How
would you score this modified solution?



109DynamoDB TTL

7.2.4 Final thoughts
Cron jobs can be a simple and yet effective solution. As you saw, with some small tweaks
it can also be scaled to support even large hotspots. However, it tends to push a lot of
the load onto the database. In the aforementioned scenario of 1,000,000 tasks that need
to be run in a single minute, it would require 1,000,000 reads from DynamoDB. Luckily
for us, DynamoDB can handle this level of traffic, although we need to be careful with
the throughput limits that are in place. For example, DynamoDB has a default limit of
40,000 read units per table for on-demand tables (https://amzn.to/3eH0THZ).

 What if there’s a way to implement the scheduling service without having to read
from the DynamoDB table at all? It turns out we can do that by taking advantage of
DynamoDB’s time-to-live (TTL) feature (https://amzn.to/2NRgARU).

7.3 DynamoDB TTL
DynamoDB lets you specify a TTL value on items, and it deletes the items after the
TTL has passed. This is a fully managed process, so you don’t have to do anything
yourself besides specifying a TTL value for each item.

 You can use the TTL value to schedule a task that needs to run at a specific time.
When the item is deleted from the table, a REMOVE event is published to the corre-
sponding DynamoDB stream. You can subscribe a Lambda function to this stream and
run the task when it’s removed from the table (figure 7.7).

Exercise: Other alternatives
While keeping to the same general approach of using cron jobs, are there any modi-
fications to the basic design that can compensate for its shortcomings in precision
and scaling for hotspots?

Lambda DynamoDB DynamoDB Streams Lambda

Scheduler scheduled_tasks REMOVE events Execute

This table holds all the tasks that have
been scheduled. The scheduled time for
the tasks are used as their TTL, then 
when their schedule time is up, they will 
be deleted by DynamoDB TTL.

This function writes the scheduled task
into the scheduled_tasks table with the
TTL set to the scheduled execution time.

When an item is deleted by DynamoDB
TTL, a corresponding REMOVE event
will be recorded in the table’s stream.

The Execute function listens
for the REMOVE event and
runs the corresponding task.

Figure 7.7 High-level architecture using DynamoDB TTL to run ad hoc scheduled tasks.

https://amzn.to/3eH0THZ
https://amzn.to/2NRgARU


110 CHAPTER 7 Building a scheduling service for ad hoc tasks

There are a couple of things to keep in mind about this solution. The first, and most
important, is that DynamoDB TTL doesn’t offer any guarantee on how quickly it deletes
expired items from the table. In fact, the official documentation (https://amzn.to/
2NRgARU) only goes as far as to say, “TTL typically deletes expired items within 48 hours
of expiration” (see figure 7.8). In practice, the actual timing is usually not as bleak.
Based on empirical data that we collected, items are usually deleted within 30 minutes
of expiration. But as figure 7.8 shows, it can vary greatly depending on the size and activ-
ity level of the table.

The second thing to consider is that the throughput of the DynamoDB stream is con-
strained by the number of shards in the stream. The number of shards is, in turn, deter-
mined by the number of partitions in the DynamoDB table. However, there’s no way for
you to directly control the number of partitions. It’s entirely managed by DynamoDB,
based on the number of items in the table and its read and write throughputs.

 We know we’re throwing a lot of information at you about DynamoDB, including
some of its internal mechanics such as how it partitions data. Don’t worry if these are
all new to you, you can learn a lot about how DynamoDB works under the hood by
watching this session from AWS re:invent 2018: https://www.youtube.com/watch?v=
yvBR71D0nAQ.

7.3.1 Your scores

What do you think of this solution? How would you rate it on a scale of 1 to 10 for
each of the nonfunctional requirements? As before, write your scores in the empty
spaces in table 7.3.

Table 7.3 Your scores for DynamoDB TTL

Score

Precision

Scalability (number of open tasks)

Scalability (hotspots)

Cost

Figure 7.8 DynamoDB TLL’s notification regarding its ability to delete expired items in tables

https://amzn.to/2NRgARU
https://amzn.to/2NRgARU
https://amzn.to/2NRgARU
https://www.youtube.com/watch?v=yvBR71D0nAQ
https://www.youtube.com/watch?v=yvBR71D0nAQ
https://www.youtube.com/watch?v=yvBR71D0nAQ


111DynamoDB TTL

7.3.2 Our scores

The biggest problem with this solution is that DynamoDB TTL does not delete the
scheduled items reliably. This limitation means it’s not suitable for any application
that is remotely time sensitive. With that said, here are our scores in table 7.4. Again,
we present how we arrived at these scores in the following subsections.

PRECISION

Scheduled tasks would be run within 48
hours of their scheduled time. A score of 1
might be considered a flattering score here.

SCALABILITY (NUMBER OF OPEN TASKS)
We gave this solution a perfect 10 because
the number of open tasks equals the num-
ber of items in the scheduled_tasks table.
Because DynamoDB has no limit on the
total number of items you can have in a
table, this solution can scale to millions of
open tasks. Unlike relational databases,
whose performance can degrade quickly
as the database gets bigger, DynamoDB
offers consistent and fast performance no
matter how big it gets. Figure 7.9 provides
a testimony to its performance.

SCALABILITY (HOTSPOTS)
We gave this solution a 6 because it can still
face throughput-related problems because
it’s constrained by the throughput of the
DynamoDB stream. But the tasks would be
simply queued up in the stream and would
run slightly later than scheduled.

 Let’s drill into this throughput constraint some more as that is useful for you to
understand. As mentioned previously, the number of shards in the DynamoDB stream
is managed by DynamoDB. For every shard the Lambda service would have a dedicated

Table 7.4 Our scores for DynamoDB TTL

Score

Precision 1

Scalability (number of open tasks) 10

Scalability (hotspots) 6

Cost 10

Figure 7.9 A satisfied customer’s statement 
regarding DynamoDB’s scalability and number 
of opened tasks



112 CHAPTER 7 Building a scheduling service for ad hoc tasks

concurrent execution of the execute function. You can read more about how Lambda
works with DynamoDB and Kinesis streams in the official documentation at
https://amzn.to/2ZIu3Cx.

 When a large number of tasks are deleted from DynamoDB at the same time, the
REMOVE events are queued in the DynamoDB stream for the execute function to
process. These events stay in the stream for up to 24 hours. As long as the execute
function is able to eventually catch up, then we won’t lose any data. 

 Although there is no scalability concern with hotspots per se, we do need to con-
sider the factors that affect the throughput of this solution. Ultimately, these through-
put limitations will affect the precision of this solution:

 How quickly the hotspots are processed depends on how quickly DynamoDB TTL deletes
those items. DynamoDB TTL deletes items in batches, and we have no control
over how often it runs and how many items are deleted in each batch.

 How quickly the execute function processes all the tasks in a hotspot is constrained by
how many instances of it runs in parallel. Unfortunately, we can’t control the num-
ber of partitions in the scheduled_tasks table, which ultimately determines the
number of concurrent executions of the execute function. However, we can
override the Concurrent Batches Per Shard configuration setting (https://
amzn.to/2YUGE59), which allows us to increase the parallelism factor tenfold
(see figure 7.10). 

Figure 7.10 You can find the Concurrent Batches Per Shard setting under Additional Settings for Kinesis 
and DynamoDB Stream functions.

https://amzn.to/2ZIu3Cx
https://amzn.to/2YUGE59
https://amzn.to/2YUGE59
https://amzn.to/2YUGE59


113Step Functions

COST

This solution requires no DynamoDB reads. The deleted item is included in the
REMOVE events in the DynamoDB stream. Because events in the DynamoDB stream
are received in batches, they are efficient to process and require fewer Lambda invo-
cations. Furthermore, DynamoDB Streams are usually charged by the number of read
requests, but it’s free when you process events with Lambda. Because of these charac-
teristics, this solution is extremely cost effective even when it’s scaled to many millions
of scheduled tasks. Hence, this is why we gave it a perfect 10 for Cost.

7.3.3 Final thoughts
This solution makes creative use of the TTL feature in DynamoDB and gives you an
extremely cost-effective solution for running scheduled tasks. However, because
DynamoDB TTL doesn’t offer any reasonable guarantee on how quickly tasks are
deleted, it’s ill-fitted for many applications. In fact, neither cron jobs nor DynamoDB
TTL are well-suited for applications where tasks need to be run within a few seconds of
their scheduled time. For these applications, our next solution might be the best fit as
it offers unparalleled precision at the expense of other nonfunctional requirements.

7.4 Step Functions
Step Functions is an orchestration service that lets you model complex workflows as state
machines. It can invoke Lambda functions or integrate directly with other AWS services
such as DynamoDB, SNS, and SQS when the state machine transitions to a new state.

 One of the understated superpowers of Step Functions is the Wait state (https://
amzn.to/38po884). It lets you pause a workflow for up to an entire year! Normally,
idle waiting is difficult to do with Lambda. But with Step Functions, it’s as easy as a few
lines of JSON:

"wait_ten_seconds": {
  "Type": "Wait",
  "Seconds": 10,
  "Next": "NextState"
}

You can also wait until a specific UTC timestamp:

"wait_until": {
  "Type": "Wait",
  "Timestamp": "2016-03-14T01:59:00Z",
  "Next": "NextState"
}

And using TimestampPath, you can parameterize the Timestamp value using data that
is passed into the execution:

"wait_until": {
  "Type": "Wait",
  "TimestampPath": "$.scheduledTime",
  "Next": "NextState"
}

https://amzn.to/38po884
https://amzn.to/38po884
https://amzn.to/38po884


114 CHAPTER 7 Building a scheduling service for ad hoc tasks

To schedule an ad hoc task, you can start a state machine execution and use a Wait
state to pause the workflow until the specified date and time. This solution is precise.
Based on the data we have collected, tasks are run within 0.01 second of the scheduled
time in the 90th percentile. However, there are several service limits to keep in mind
(see https://amzn.to/2C4fGPD):

 There are limits to the StartExecution API. This API limits the rate at which you can
schedule new tasks because every task has its own state machine execution (see
figure 7.11).

 There are limits to the number of state transitions per second. When the Wait state
expires, the scheduled task runs. However, when there are large hotspots where
many tasks all run simultaneously, these can be throttled because of this limita-
tion (see figure 7.12).

Figure 7.11 StartExecution API 
limit for AWS Step Functions

Figure 7.12 State transition limit for AWS Step Functions

https://amzn.to/2C4fGPD


115Step Functions

 There is a default limit of 1,000,000 open executions. Because there is one open exe-
cution per scheduled task, this is the maximum number of open tasks the sys-
tem can support.

Thankfully, all of these limits are soft limits, which means you can increase them with a
service limit raise. However, given that the default limits for some of these are pretty
low, it might not be possible to raise to a level that can support running a million
scheduled tasks in a single hotspot.

 There is also the hard limit on how long an execution can run, which is one year.
This limits the system to schedule tasks that are no further than a year away. For most
use cases, this would likely be sufficient. If not, we can tweak the solution to support
tasks that are scheduled for more than a year away (more on this later).

7.4.1 Your scores

What do you think of this solution? How would you rate it on a scale of 1 to 10 against
each of the nonfunctional requirements? As before, write down your scores in the
empty spaces provided by table 7.5.

7.4.2 Our scores

Step Functions gives us a simple and elegant solution for the problem at hand. How-
ever, it’s hampered by several service limits that makes it difficult to scale. We will dive
into these limitations, but first, table 7.6 shows our scores for this solution.

PRECISION

As we mentioned before, Step Functions is able to run tasks within 0.01 s precision at
the 90th percentile. It just doesn’t get more precise than that!

Table 7.5 Your solution scores for Step Functions

Score

Precision

Scalability (number of open tasks)

Scalability (hotspots)

Cost

Table 7.6 Our scores for Step Functions

Score

Precision 10

Scalability (number of open tasks) 7

Scalability (hotspots) 4

Cost 2



116 CHAPTER 7 Building a scheduling service for ad hoc tasks

SCALABILITY (NUMBER OF OPEN TASKS)
We gave this solution a 7 because the StartExecution API limit restricts how many
scheduled tasks we can create per second. Whereas solutions that store scheduled
tasks in DynamoDB can easily scale to scheduling tens of thousands of tasks per sec-
ond, here we have to contend with a default refill rate of just 300 per second in the
larger AWS regions. Luckily, it is a soft limit, so technically we can raise it to whatever
we need. But the onus is on us to constantly monitor its usage against the current limit
to prevent us from being throttled.

 The same applies to the limit on the number of open executions. While the
default limit of 1,000,000 is generous, we still need to keep an eye on the usage level.
Once we reach the limit, no new tasks can be scheduled until existing tasks are run.
User behavior would have a big impact here. The more uniformly the tasks are distrib-
uted over time, the less likely this limit would be an issue.

SCALABILITY (HOTSPOTS)
We gave this solution a 4 because the limit on StateTransition per second is problem-
atic if a large cluster of tasks needs to run during the same time. Because the limit
applies to all state transitions, even the initial Wait states could be throttled and affect
our ability to schedule new tasks.

 We can increase both the bucket size (think of it as the burst limit) as well as the
refill rate per second. But raising these limits alone might not be enough to scale this
solution to support large hotspots with, say, 1,000,000 tasks. Thankfully, there are
tweaks we can make to this solution to help it handle large hotspots better, but we
need to trade off some precision (more on this later).

COST

We gave this solution a 2 because Step Functions is one of the
most expensive services on AWS. We are charged based on
the number of state transitions. For a state machine that waits
until the scheduled time and runs the task, there are four
states (see figure 7.13), and every execution charges for these
state transitions (http://mng.bz/ZxGm).

 At $0.025 per 1,000 state transitions, the cost for schedul-
ing 1,000,000 tasks would be $100 plus the Lambda cost asso-
ciated with executing the tasks. This is nearly two orders of
magnitude higher than the other solutions considered so far. 

7.4.3 Tweaking the solution

So far, we have discussed several problems with this solution:
not being able to schedule tasks for more than a year and hav-
ing trouble with hotspots. Fortunately, there are simple modi-
fications we can make to address these problems.

Wait

Start

Execute

End

Figure 7.13 A simple 
state machine that waits 
until the scheduled time 
to run its task

http://mng.bz/ZxGm


117Step Functions

Wait

Start

Execute

End

Is it time to run?

Recurse

Figure 7.14 A revised state 
machine design that can 
support scheduled tasks that 
are more than one year away

EXTEND THE SCHEDULED TIME BEYOND ONE YEAR

The maximum time a state machine execution can run for
is one year. As such, the maximum amount of time a Wait
state can wait for is also one year. However, we can extend
this limitation by borrowing the idea of tail recursion
(https://www.geeksforgeeks.org/tail-recursion/) from
functional programming. Essentially, at the end of a Wait
state, we can check if we need to wait for even more time.
If so, the state machine starts another execution of itself
and waits for another year, and so on. Until eventually, we
arrive at the task’s scheduled time and run the task.

 This is similar to a tail recursion because the first exe-
cution does not need to wait for the recursion to finish.
It simply starts the second execution and then proceeds
to complete itself. See figure 7.14 for how this revised
state machine might look.

SCALING FOR HOTSPOTS

Sometimes, just raising the soft limits on the number of
StateTransitions per second alone is not going to be
enough. Because the default limits have a bucket size of
5,000 (the initial burst limit) and a refill rate of 1,500
per second, if we are to support running 1,000,000 tasks
around the same time, we will need to raise these limits by multiple orders of magni-
tude. AWS will be unlikely to oblige such a request, and we will be politely reminded
that Step Functions is not designed for such use cases.

 Fortunately, we can make small tweaks to the solution to make it far more scalable
when it comes to dealing with hotspots. Unfortunately, we will need to trade off some
of the precision of this solution for the new found scalability.

 For example, instead of running every task scheduled for 00:00 UTC at exactly
00:00 UTC, we can spread them across a 1-minute window. We can do this by adding
some random delay to the scheduled time. Following this simple change, some of the
aforementioned tasks would be run at 00:00:12 UTC, and some would be run at
00:00:47 UTC, for instance. This allows us to make the most of the available through-
put. With the default limit of 5,000 bucket size and refill rate of 1,500 per second, the
maximum number of state transitions per minute is 93,500:

 Uses all 5,000 state transitions in the first second
 Uses the 1,500 refill per second for the remaining 59 seconds

Doing this would reduce the precision to “run within a minute,” but we wouldn’t need
to raise the default limits by nearly as much. It’ll be a trivial change to inject a variable
amount of delay (0–59 s) to the scheduled time so that tasks are uniformly distributed
across the minute window. With this simple tweak, Step Functions is no longer the

https://www.geeksforgeeks.org/tail-recursion/


118 CHAPTER 7 Building a scheduling service for ad hoc tasks

scalability bottleneck. Instead, we will need to worry about the rate limits on the
Lambda function that will run the task. 

 Another alternative would be to have each state machine execution run all the
tasks that are scheduled for the same minute in batches and in parallel. For example,
when scheduling a task, add the task with the scheduled time in a DynamoDB table as
the HASH key and a unique task ID as the RANGE key. At the same time, atomically
increment a counter for the number of tasks scheduled for this timestamp. Both of
these updates can be performed in a single DynamoDB transaction. Figure 7.15 shows
how the table might look.

We would start a state machine execution with the timestamp as the execution name.
Because execution names have to be unique, the StartExe-
cution request will fail if there’s an existing execution
already. This ensures that only one execution is responsi-
ble for running all the tasks scheduled for that minute
(2020-07-04T21:53:22).

 Instead of executing the scheduled tasks immediately
after the Wait state, we could get a count of the number of
tasks that need to run. From here, we would use a Map
state to dynamically generate parallel branches to run
these tasks in parallel. See figure 7.16 for how this alterna-
tive design might look.

 Making these changes would not affect the precision
by too much, but it would reduce the number of state
machine executions and Lambda invocations required.
Essentially, we would need one state machine execution
for every minute when we need to run some scheduled
tasks. There is a total of 525,600 minutes in a 365 days cal-
endar year, so this also removes the need to increase the
limit on the number of open executions (again, the
default limit is 1,000,000). That’s the beauty of these com-
posable architecture components! Because there are so
many ways to compose them, it gives you lots of different
options and trade-offs.

Figure 7.15 Set the scheduled task as well as the count in the same DynamoDB table.

Wait

Start

Execute

End

GetCount

Figure 7.16 An alternative 
design for the state machine 
that can run tasks in batches 
in parallel



119SQS

7.4.4 Final thoughts
Step Functions offers a simple and elegant solution that can run tasks at great preci-
sion. The big drawback are its costs and the various service limits that you need to look
out for, which hampers its scalability. But as you can see, if we are willing to make
tradeoffs against precision, we can modify the solution to make it much more scalable. 

 We looked at a couple of possible modifications, including taking some elements
of the cron job solution and turning this solution into a more flexible cron job that
only runs when there are tasks that need to run. We also looked at a modification that
allows us to work around the 1-year limit by applying tail recursion to the state
machine design. In the next solution, we’ll apply the same technique to SQS as it is
bound by an even tighter constraint on how long a task can stay open.

7.5 SQS
The Amazon Simple Queue Service (SQS) is a fully managed queuing service. You can
send messages to and receive messages from the queue. Once a message has been
received by a consumer, the message is then hidden from all other consumers for a
period of time, which is known as the visibility timeout. You can configure the visibility time-
out value on the queue, but the setting can also be overridden for individual messages.

 When you send a message to SQS, you can also use the DelaySeconds attribute to
make the message become visible at the right time. You can implement the scheduling
service by using these two settings to hide a message until its scheduled time. However,
the maximum DelaySeconds is a measly 15 minutes, and the maximum visibility time-
out is only 12 hours. But all is not lost. 

 When the execute function receives the message after the initial DelaySeconds, it
can inspect the message and see if it’s time to run the task (see figure 7.17). If not, it
can call ChangeMessageVisibility on the message to hide the message for up to
another 12 hours (https://amzn.to/3e1GVY6). It can do this repeatedly until it’s
finally time to run the scheduled task.

 Before you score this solution, consider that there is a limit of 120,000 inflight mes-
sages. Unfortunately, this is a hard limit and cannot be raised. This limit has a pro-
found implication that can mean it’s not suitable for some use cases at all!

 Once a message is inflight, this solution would keep it inflight by continuously
extending its visibility timeout until its scheduled time. In this case, the number of
inflight messages equates to the number of open tasks. However, once you reach the

Exercise: Score the modified solutions
Repeat the same scoring exercise against the modified solutions we proposed. 

 How much would it impact the system’s ability to handle a large number of open
tasks or hotspots? 

 Is there any additional cost impact (e.g., one of the proposed tweaks uses a
DynamoDB table) that needs to be considered?

https://amzn.to/3e1GVY6


120 CHAPTER 7 Building a scheduling service for ad hoc tasks

120,000 inflight messages limit, then newer messages would stay in the queue’s back-
log, even if some of the newer messages might need to run sooner than the messages
that are already inflight. Priority is given to tasks based on when they were scheduled,
not by their execution time.

 This is not a desirable characteristic for a scheduling service. In fact, it’s the oppo-
site of what we want. Tasks that are scheduled to execute soon should be given the pri-
ority to ensure they’re executed on time. That being said, this is a problem that would
only arise when you have reached the 120,000 inflight messages limit. The further
away tasks can be scheduled, the more open tasks you would have, and the more likely
you would run into this problem.

7.5.1 Your scores
With this severe limitation in mind, how would you score this solution? Write down
your scores in the empty spaces in table 7.7.

7.5.2 Our scores
This solution is best suited for scenarios where tasks are not scheduled too far away in
time. Otherwise, we face the prospect of accumulating a large number of open tasks
and running into the limit on inflight messages. Also, we would need to call Change-
MessageVisibility on the message every 12 hours for a long time. If a task is sched-
uled to execute in a year, then that’s a total of 730 times. Multiplied that by 1,000,000

Table 7.7 Your solution scores for SQS

Score

Precision

Scalability (number of open tasks)

Scalability (hotspots)

Cost

sendMessage with
DelaySeconds

ChangeMessageVisibility

Messages are hidden in the 
queue for up to 15 minutes 
using the DelaySeconds attribute.

When the Execute function
receives a message, it can check
if it’s time to run the scheduled
task. If so, it runs the task and
deletes the message from SQS.

If it’s not yet time to run the 
scheduled task, then the message
can be put back into the queue and
hidden for up to another 12 hours.

Lambda

Scheduler

Lambda

Executetask_queue

SQS

Figure 7.17 High-level architecture of using SQS to schedule ad hoc tasks



121SQS

tasks and that’s a total of 730 million API requests or $292 for keeping 1,000,000 tasks
open for a whole year. With these in mind, table 7.8 shows our scores.

PRECISION

Under normal conditions, SQS messages that are delayed or hidden are run no more
than a few seconds after their scheduled times. Not as precise as Step Functions, but
still very good. This is why we gave this solution a score of 9.

SCALABILITY (NUMBER OF OPEN TASKS)
We gave this solution a low score because the hard limit of 120,000 inflight messages
severely limits this solution’s ability to support a large number of open tasks. Even
though the tasks can still be scheduled, they cannot run until the number of inflight
messages drops below 120,000. This is a serious hinderance and, in the worst cases,
can render the system completely unusable. For example, if 120,000 tasks are sched-
uled to run in one year, then nothing else that’s scheduled after that can run until
those first 120,000 tasks have been run.

SCALABILITY (HOTSPOTS)
The Lambda service uses long polling to poll SQS queues and only invokes our func-
tion when there are messages (http://mng.bz/Rqyj). These pollers are an invisible
layer between SQS and our function, and we do not pay for them. But we do pay for
the SQS ReceiveMessage requests they make. According to this blog post by Randall
Hunt (https://amzn.to/31MfVtl)

The Lambda service monitors the number of inflight messages, and when it detects that this
number is trending up, it will increase the polling frequency by 20 ReceiveMessage requests
per minute and the function concurrency by 60 calls per minute. As long as the queue
remains busy it will continue to scale until it hits the function concurrency limits. As the
number of inflight messages trends down Lambda will reduce the polling frequency by 10
ReceiveMessage requests per minute and decrease the concurrency used to invoke our
function by 30 calls per-minute.

By keeping the queue artificially busy with a high number of inflight messages, we are
artificially raising Lambda’s polling frequency and function concurrency. This is use-
ful for dealing with hotspots. 

 Because of the way this solution works, all open tasks are kept as inflight messages.
This means the Lambda service would likely be running a high number of concurrent

Table 7.8 Our solution scores for SQS

Score

Precision 9

Scalability (number of open tasks) 2

Scalability (hotspots) 8

Cost 5

http://mng.bz/Rqyj
https://amzn.to/31MfVtl


122 CHAPTER 7 Building a scheduling service for ad hoc tasks

pollers all the time. When a cluster of messages become available at the same time, they
will likely be processed by the execute function with a high degree of parallelism. And
Lambda scales up the number of concurrent executions as more messages become
available. We can, therefore, use the autoscaling capability that Lambda offers.

 Because of this, we gave this solution a really good score. But, on the other hand,
this behavior generates a lot of redundant SQS ReceiveMessage requests, which can
have a noticeable impact on cost when running at scale.

COST

Between the many ReceiveMessage requests Lambda makes on our behalf and the
cost of calling ChangeMessageVisibility on every message every 12 hours, most of
the cost for this solution will likely be attributed to SQS. While SQS is not an expen-
sive service, at $0.40 per million API requests, the cost can accumulate quickly because
this solution is capable of generating many millions of requests at scale. As such, we
gave this solution a 5, which is to say that it’s not great but also unlikely to cause you
too much trouble.

7.5.3 Final thoughts

If you put the scores for this solution side-by-side with DynamoDB TTL, you can see
that they perfectly complement each other. Where one is strong, the other is weak.
Table 7.9 shows the ratings for both services.

What if we can combine these two solutions to create a solution that offers the best of
both worlds? Let’s look at that next.

7.6 Combining DynamoDB TTL with SQS
So far, we have seen that the DynamoDB TTL solution is great at dealing with a large
number of open tasks, but lacks the precision required for most use cases. Conversely,
the SQS solution is great at providing good precision and dealing with hotspots but
can’t handle a large number of open tasks. The two rather complement each other
and can be combined to great effect.

 For example, what if long-term tasks are stored in DynamoDB until two days before
their scheduled time? Why two days? Because it’s the only soft guarantee that DynamoDB
TTL gives: 

Table 7.9 Our ratings for SQS vs. DynamoDB TTL

Score (SQS) Score (DynamoDB TTL)

Precision 9 1

Scalability (number of open tasks) 2 10

Scalability (hotspots) 8 6

Cost 5 10



123Combining DynamoDB TTL with SQS

TTL typically deletes expired items within 48 hours of expiration (https://amzn.to/
2NRgARU).

Once the tasks are deleted from the DynamoDB table, they are moved to SQS where
they are kept inflight until the scheduled time (using the ChangeMessageVisibility
API as discussed earlier). For tasks that are scheduled to execute in less than two days,
they are added to the SQS queue straight away. See figure 7.18 for how this solution
might look.

7.6.1 Your scores

How would you score this solution? Again, write your scores in the empty spaces in
table 7.10.

Table 7.10 Your solution scores for DynamoDB TTL with SQS

Score

Precision

Scalability (number of open tasks)

Scalability (hotspots)

Cost

Short-term task

Long-term task

Only long-term tasks are stored in
this table. Their TTL is set to be two
days before their scheduled time.

Short-term tasks (to be run in less
than two days) are pushed to SQS
right away, bypassing DynamoDB.

Unlike in the DynamoDB TTL
solution, this function doesn’t run 
the task but forwards it to SQS.

Like the SQS solution, this
function checks each message
to see if it should run the task 
or hide it again using the
ChangeMessageVisibility API.

DynamoDB DynamoDB Streams Lambda

scheduled_tasks REMOVE events Rescheduler

Lambda

Scheduler

ChangeMessageVisibility

Lambda

Executetask_queue

SQS

Figure 7.18 High-level architecture of combining DynamoDB TTL with SQS

https://amzn.to/2NRgARU
https://amzn.to/2NRgARU
https://amzn.to/2NRgARU


124 CHAPTER 7 Building a scheduling service for ad hoc tasks

7.6.2 Our scores

According to “The Fundamental theorem of software engineering” (https://dzone
.com/articles/why-fundamental-theorem):

We can solve any problem by introducing an extra level of indirection.

Like the other alternative solutions we saw earlier in this chapter, this solution solves
the problems with an existing solution by introducing an extra level of indirection. It
does so by composing different services together in order to make up for the short-
comings of each. Take a look at table 7.11 for our scores for this solution, then we’ll
discuss how we arrived at these scores.

PRECISION

As all the executions go through SQS, this solution has the same level of precision as
the SQS-only solution, 9.

SCALABILITY (NUMBER OF OPEN TASKS)
Storing long-term tasks in DynamoDB largely solves SQS’s problem with scaling the
number of open tasks. However, it is still possible to run into the 120,000 inflight mes-
sages limit with just the short-term tasks. It’s far less likely, but it is still a possibility that
needs to be considered. Hence, we marked this solution as an 8.

SCALABILITY (HOTSPOTS)
As all the executions go through SQS, this solution has the same score as the SQS-only
solution, 8.

COST

This solution eliminates most of the ChangeMessageVisibility requests because all the
long-term tasks are stored in DynamoDB. This cuts out a large chunk of the cost
associated with the SQS solution. However, in return, it adds additional costs for
DynamoDB usage and Lambda invocations for the reschedule function. Overall, the
costs this solution takes away are greater than the new costs it adds. Hence, we gave it
a 7, improving on the original score of 5 for the SQS solution.

Table 7.11 Our solution scores for DynamoDB TTL with SQS

Score

Precision 9

Scalability (number of open tasks) 8

Scalability (hotspots) 8

Cost 7

https://dzone.com/articles/why-fundamental-theorem
https://dzone.com/articles/why-fundamental-theorem
https://dzone.com/articles/why-fundamental-theorem


125The applications

7.6.3 Final thoughts

This is just one example of how different solutions or aspects of them can be com-
bined to make a more effective answer. This combinatory effect is one of the things
that makes cloud architectures so interesting and fascinating, but also, so complex
and confusing at times. There are so many different ways to achieve the same goal,
and depending on what your application needs, there’s usually no one-size-fits-all solu-
tion that offers the best results for all applications.

 So far, we have only looked at the supply side of the equation and what each solu-
tion can offer. We haven’t looked at the demand side yet or what application needs
what. After all, depending on the application, you might put a different weight
behind each of the nonfunctional requirements. Let’s try to match our solutions to
the right application next.

7.7 Choosing the right solution for your application
Table 7.12 shows our scores for the five solutions that we considered in this chapter.
The solutions in this table do not include the proposed tweaks. Depending on the
application, some of these requirements might be more important than others.

7.8 The applications
Let’s consider three applications that might use the ad hoc scheduling service:

 Application 1 is a reminder app, which we’ll call RemindMe. 
 Application 2 is a multi-player app for a mobile game, which we’ll call Tourna-

mentsRUs.
 Application 3 is a healthcare app that digitizes and manages your consent for

sharing your medical data with care providers, which we’ll call iConsent.

In the reminder app, RemindMe, users can create reminders for future events, and
the system will send SMS/push notifications to the users 10 minutes before the event.
While reminders are usually distributed evenly over time, there are hotspots around
public holidays and major sporting events such as the Super Bowl. During these
hotspots, the application might need to notify millions of users. Fortunately, because

Table 7.12 Our scores for all five solutions

Cron job
DynamoDB

TTL
Step

Functions
SQS

SQS + 
DynamoDB TTL

Precision 6 1 10 9 9

Scalability (number of 
open tasks)

10 10 7 2 8

Scalability (hotspots) 2 6 4 8 8

Cost 7 10 2 5 7



126 CHAPTER 7 Building a scheduling service for ad hoc tasks

the reminders are sent 10 minutes before the event, the system gives us some slack in
terms of timing.

 In application 2, the multi-player mobile app called TournamentsRUs, players
compete in user-generated tournaments that are 15–30 minutes long. As soon as the
final whistle blows, the tournament ends and all participants wait for a winner to be
announced via an in-game popup. TournamentsRUs currently has 1.5 million daily
active users (DAU) and hopes to double that number in 12 months’ time. At peak, the
number of concurrent users is around 5% of its DAU, and tournaments typically con-
sist of 10–15 players each.

 In application 3, the healthcare app iConsent, users fill in digital forms that allow
care providers to access their medical data. Each consent has an expiration date, and the
app needs to change its status to expired when the expiration date passes. iConsent cur-
rently has millions of registered users, and users have an average of three consents.

 Each of these applications need to use a scheduling service to run ad hoc tasks at spe-
cific times, but their use cases are drastically different. Some deal with tasks that are
short-lived, while others allow tasks to be scheduled for any future point in time. Some
are prone to hotspots around real-world events; others can accumulate large numbers
of open tasks because there is no limit to how far away tasks can be scheduled.

 To help us better understand which solution is the best for each application, we
can apply a weight against each of the nonfunctional requirements. For example,
TournamentsRUs cares a lot about precision because users will be waiting for their
results at the end of a tournament. If the tasks to finalize tournaments are delayed,
then it can negatively impact the users’ experience with the app.

7.8.1 Your weights

For each of the applications, write a weight between 1 (“I don’t care”) and 10 (“This is
critical”) for each of the nonfunctional requirements in table 7.13. Remember, there
are no right or wrong answers here! Use your best judgement based on the limited
amount of information you know about each app.

7.8.2 Our weights

Table 7.14 shows our weightings. Are these scores similar to yours? We’ll go through
each application and talk about how we arrived at these weights in the sections follow-
ing the table.

Table 7.13 Your ratings for RemindMe, TournamentsRUs, and iConsent

RemindMe TournamentsRUs iConsent

Precision

Scalability (number of open tasks)

Scalability (hotspots)

Cost



127The applications

REMINDME

We gave Precision a weight of 5 for this app because reminders are sent 10 minutes
before the event. This gives us a lot of slack. Even if the reminder is sent 5 minutes
late, it’s still OK.

 Scalability (number of open tasks) gets a weight of 10 because there are no upper
bounds on how far out the events can be scheduled. At any moment, there can be mil-
lions of open reminders. This makes scaling the number of open tasks an absolutely
critical requirement for this application. For Scalability (hotspots), we gave a weight of
8 because large hotspots would likely form around public holidays (for example,
mother’s day) and sporting events (for example, the Super Bowl or the Olympics).

 Finally, for Cost, we gave it a weight of 3. This perhaps reflects our general attitude
towards the cost of serverless technologies. Their pay-per-use pricing allows our cost to
grow linearly when scaling. Generally speaking, we don’t want to optimize for cost
unless the solution is going to burn down the house!

TOURNAMENTSRUS

For TournamentsRUs, Precision gets a weight of 10 because when a tournament fin-
ishes, players will all be waiting for the announcement of the winner. If the scheduled
task (to finalize the tournament and calculate the winner) is delayed for even a few
seconds, it would provide a bad user experience.

 We gave Scalability (number of open tasks) a weight of 6 because only a small per-
centage of its DAUs are online at once and because of the short duration of its tourna-
ments. At 1.5 M DAU, 5% concurrent users at peak and an average of 10–15 players in
each tournament, these numbers translate to approximately 5,000–7,500 open tour-
naments during peak times.

 For Scalability (hotspots), it received a lowly 3 because the tournaments are user-
generated and have different lengths of time (between 15–30 minutes). It’s unlikely
for large hotspots to form under these conditions. And, as with RemindMe, we gave
Cost a weight of 3 (just don’t burn my house down!).

ICONSENT

Lastly, for iConsent, Precision received a weight of 4. When a consent expires, it
should be shown in the UI with the correct status. However, because the user is proba-
bly not going to check the app every few minutes for updates, it’s OK if the status is
updated a few minutes (or maybe even an hour) later.

Table 7.14 Our scores for RemindMe, TournamentsRUs, and iConsent

RemindMe TournamentsRUs iConsent

Precision 5 10 4

Scalability (number of open tasks) 10 6 10

Scalability (hotspots) 8 3 1

Cost 3 3 3



128 CHAPTER 7 Building a scheduling service for ad hoc tasks

 We gave a weight of 10 for Scalability (number of open tasks). This is because med-
ical consents can be valid for a year or sometimes even longer: all of these active con-
sents are open tasks, so the system would have millions of open tasks at any moment.
For Scalability (hotspots) on the other hand, we gave it a weight of 1 because there is
just no natural clustering that can lead to hotspots. And finally, cost gets a weight of 3
because that’s just how we generally feel about cost for serverless applications.

7.8.3 Scoring the solutions for each application

So far, we have scored each solution based on its own merits. But this says nothing about
how well suited a solution is to an application because, as we have seen, applications have
different requirements. By combining a solution’s scores with an application’s weights,
we can arrive at something of an indicative score of how well they are suited for each
other. Let’s show you how this can be done and then you can do this exercise yourself.
If you recall, the following table shows our scores for the cron job solution:

For RemindMe, we gave the following weights:

Now, if we multiple the score with the weight for each nonfunctional requirement, we
will arrive at the scores in the following table:

Score (cron job)

Precision 6

Scalability (number of open tasks) 10

Scalability (hotspots) 2

Cost 7

Weight (RemindMe)

Precision 5

Scalability (number of open tasks) 10

Scalability (hotspots) 8

Cost 3

Weighted Score (Cron job × RemindMe)

Precision 6 × 5 = 30

Scalability (number of open tasks) 10 × 10 = 100

Scalability (hotspots) 2 × 8 = 16

Cost 7 × 3 = 21



129The applications

This adds up to a grand total of 30 + 100 + 16 + 21 = 167. On its own, this score means
very little. But if we repeat the exercise and score each of the solutions for RemindMe,
then we can see how well they compare with each other. This would help us pick the
most appropriate solution for RemindMe, which might be different than the solution
you would use for TournamentsRUs or iConsent. 

 With that in mind, use the whitespace in table 7.15 to calculate your weighted
scores for each of the five solutions that we have discussed so far for RemindMe. Then
do the same for TournamentsRUs and IConsent in tables 7.16 and 7.17, respectively.   

Table 7.15 Weighted scores for the app RemindMe

Cron
job

DynamoDB
TTL

Step
Functions

SQS
SQS + 

DynamoDB TTL

Precision

Scalability (number of 
open tasks)

Scalability (hotspots)

Cost

Total score

Table 7.16 Weighted scores for the app TournamentsRUs

Cron
job

DynamoDB
TTL

Step
Functions

SQS
SQS + 

DynamoDB TTL

Precision

Scalability (number of 
open tasks)

Scalability (hotspots)

Cost

Total score

Table 7.17 Weighted scores for the app iConsent

Cron
job

DynamoDB
TTL

Step
Functions

SQS
SQS + 

DynamoDB TTL

Precision

Scalability (number of 
open tasks)

Scalability (hotspots)

Cost

Total score



130 CHAPTER 7 Building a scheduling service for ad hoc tasks

Did the scores align with your gut instinct for which solution is best for each applica-
tion? Did you find something unexpected in the process? Did some solutions not fare
as well as you thought they might?

 If you find any uncomfortable outcomes as a result of these exercises, then they
have done their job. The purpose of defining requirements up front and putting a
weight against each requirement is to help us remain objective and combat cognitive
biases. Table 7.18 shows our total weighted scores for each solution and application.

These scores give you a sense as to which solutions are best suited for each applica-
tion. But they don’t give you definitive answers and you shouldn’t follow them blindly.
For instance, there are often factors that aren’t included in the scoring scheme but
need to be taken into account nonetheless. Factors such as complexity, resource con-
straints, and familiarity with the technologies are usually important for real-world
projects.

Summary
In this chapter, we analyzed five different ways to implement a service for executing ad
hoc tasks, and we judged these solutions on the nonfunctional requirements we set
out at the start of the chapter. Throughout the chapter we asked you to think critically
about how well each solution would perform for these nonfunctional requirements
and asked you to rate them. And we shared our scores with you and our rationale for
these scores. We hope through these exercises you have gained some insights into
how we approach problem solving and the considerations that goes into evaluating a
potential solution:

 What are the relevant service limits and how do they affect the scalability
requirements of the application?

 What are the performance characteristics of the services in question and do
they match up with the application’s needs?

 How are the services charged? Project the cost of the application by thinking
through how the application would need to use these AWS services and apply-
ing the services’ billing model to that usage pattern.

Table 7.18 Our total weighted scores for RemindMe, TournamentsRUs, and iConsent

RemindMe TournamentsRUs iConsent

Cron job 167 147 147

DynamoDB TTL 180 115 137

Step Functions 158 160 120

SQS 144 141 79

DynamoDB TTL with SQS 210 183 145



131Summary

These points are a lot easier said than done and it takes practice to become proficient
at them. The AWS services are always evolving and new services and features become
available all the time so you also have to continuously educate yourself as new options
and techniques emerge. Despite having worked with AWS for over a decade, we are
still learning ourselves and having to constantly update our own understanding of
how different AWS services operate.

 Furthermore, AWS do not publish the performance characteristics for many of its
services. For example, how soon does Step Functions execute a Wait state after the
specific timestamp. If your solution depends on assumptions about these unknown
performance characteristics, then you should design small experiments to test your
assumptions. In the course of writing this chapter, we conducted several experiments
to find out how soon Step Functions and SQS executes delayed tasks. Failing to vali-
date these assumptions early can have devastating consequences. Months of engineer-
ing work might go to waste if an entire solution was built on false assumptions.

 At the end of the chapter we also asked you to do an exercise of finding the best
solution for a given problem and gave you three example applications, each with a dif-
ferent set of needs. The scoring method we asked you to apply is not fool-proof but
helps you make objective decisions and combat confirmation biases.

 As you brainstormed and evaluated the solutions that have been put in front of you
in this chapter, I hope you picked up on the even more important lessons here: that
all architecture decisions have inherit tradeoffs and not all application requirements
are created equally. The fact that different applications care about the characteristics
of its architecture to different degrees gives us a lot of room to make smart tradeoffs.

 There are so many different AWS services to choose from, each offering a different
set of characteristics and tradeoffs. When you use different services together, they can
often create interesting synergies. All of these give us a wealth of options to mix and
match different architectural approaches and to engage in a creative problem-solving
process, and that’s beautiful!



132

Architecting serverless
 parallel computing

There’s a secret about AWS Lambda that we like to tell people: it’s a supercomputer
that can perform faster than the largest EC2 instance. The trick is to think about
Lambda in terms of parallel computation. If you can divide your problem into
hundreds or thousands of smaller problems and solve them in parallel, you will get
to a result faster than if you try to solve the same problem by moving through it
sequentially. 

 Parallel computing is an important topic in computer science and is often talked
about in the undergraduate computer science curriculum. Interestingly, Lambda,
by its very nature, predisposes us to think and apply concepts from parallel comput-
ing. Services like Step Functions and DynamoDB make it easier to build parallel
applications. 

 In this chapter, we’ll illustrate how to build a serverless video transcoder in
Lambda that outperforms bigger and more expensive EC2 servers.

This chapter covers
 Principles of MapReduce

 Serverless solution with Step Functions and EFS



133Introduction to MapReduce

8.1 Introduction to MapReduce
MapReduce is a popular and well-known programming model that’s often used to
process large data sets. It was originally created at Google by developers who were
themselves inspired by two well-known functional programming primitives (higher-
order functions): map and reduce. MapReduce works by splitting up a large data set
into many smaller subsets, performing an operation on each subset and then combin-
ing or summing up to get the result. 

 Imagine that you want to find out how many times a character’s name is men-
tioned in Tolstoy’s War and Peace. You can sequentially look through every page, one
by one, and count the occurrences (but that’s slow). If you apply a MapReduce
approach, however, you can do it much quicker:

1. You split the data into many independent subsets. In the case of War and Peace,
it could be individual pages or paragraphs. 

2. You apply the map function to each subset. The map function in this case scans
the page (or paragraph) and emits how many times a character’s name is
mentioned. 

3. There could be an optional step here to combine some of the data. That can
help make the computation a little easier to perform in the next step. 

4. The reduce function performs a summary operation. It counts the number of
times the map function has emitted the character’s name and produces the
overall result.

NOTE It’s important to understand that the power of MapReduce in the War
and Peace example comes from the fact that the map step can run in parallel
on thousands of pages or paragraphs. If this wasn’t the case, then this pro-
gram would be no different from a sequential count. 

Figure 8.1 shows what a theoretical MapReduce architecture looks like. We’ll build
something like this soon.

 As you may have already guessed, real-world MapReduce applications are often
more complex. In a lot of cases, there are intermediary steps between map and reduce
that combine or simplify data, and considerations such as locality of data become
important in order to minimize overhead. Nevertheless, we can take the idea of split-
ting a problem into smaller chunks, processing them in parallel, and then combining
and reducing them to achieve the outcome you need, and we can do that with
Lambda. 

 
 
 
 
 
 



134 CHAPTER 8 Architecting serverless parallel computing

8.1.1 How to transcode a video

In the second chapter of this book, you built a serverless pipeline that converted video
from one format to another. To do this, you used an AWS service called AWS Elemen-
tal MediaConvert. This service takes a video uploaded to an S3 bucket and transcodes
it to a range of different formats specified by you. Our goal in this chapter is to do
something crazy and implement our own video transcoder service using Lambda.
Note that this is just an experiment and an opportunity to explore highly parallelized
serverless architectures. Our major requirements for our serverless encoding service
are as follows:

 Build a transcoder that takes a video file and produces a transcoded version in a
different format or bit rate. We want complete control over the transcoding
process.

 Use only serverless services in AWS, such as Lambda and S3. Obviously, we are
not allowed to use an EC2 or a managed service to do transcoding for us.

 Build a product that is robust and fast. It should be able to beat a large EC2
instance most of the time. 

 Learn about parallel computing and how to think about solving these problems. 

The solution we are about to present works, but it’s not something we recommend
running in a production environment. Unless your core business is video transcoding,

A split procedure splits the data 
set into multiple chunks.

A map procedure performs
filtering and sorting.

A combine procedure (optional)
reduces data to a simplified form.

A reduce procedure performs 
summary options.

Split Reduce

Map

Map

Map

Map

Map

Problem

Combine

Combine

Combine

Figure 8.1 These are the steps a fictional MapReduce algorithm could take.



135Introduction to MapReduce

you should outsource as much of the undifferentiated heavy lifting as possible in
order to focus on your own unique problem. In most cases, a managed service like
AWS Elemental MediaConvert is better; you don’t have to worry about keeping it run-
ning. Take this as just an exercise and an opportunity to learn about MapReduce and
parallel computation (you never know when you might face a big problem that
requires the skill you may pick up here).

8.1.2 Architecture overview

To transcode a file using Lambda, we need to apply principles of MapReduce. We are
not implementing classical MapReduce here; instead, we are taking inspiration from
this algorithm to build our transcoder. 

 An interesting thing about Lambda (that we’ve mentioned before) is that it forces
us to think parallel. It’s impossible to process large video files in a Lambda function if
you treat a single function like a traditional computer. You’d run out of memory and
timeout quickly. If the video file is large enough, the function would either stop after
15 minutes of processing or exhaust all available RAM and crash. 

 To get around this, we decompose the problem into smaller problems that can be
processed within Lambda’s constraints. The implication is that we can try the follow-
ing to process a large video file:

1. Divide the video file into a lot of tiny segments. 
2. Transcode these segments in parallel.
3. Combine these small segments together to produce a new video file.

We need to parallelize as much as possible to get the most out of our serverless super-
computer. For example, if some segments are ready to be combined while others are
still processing, we should combine the ones that are ready. Performance is the name
of the game here. So, with that in mind, here’s an outline for our serverless transcod-
ing algorithm that, let’s say, is designed to transcode a video from one bit rate to
another:

1. A user uploads a video file to S3 that invokes a Lambda function.
2. The Lambda function analyzes the file and figures out how to cut up the source

file to produce smaller video files (segments) for transcoding.
3. To make things go a little bit faster, we strip away the audio from video and save

it to another file. Not having to worry about the audio makes executing steps
4–6 faster. 

How would you do video transcoding in Lambda?
Take a moment and think about how you would build a video transcoder using AWS
Lambda. All guesses are good, and we’d love to know how you would approach the
problem (twitter.com/sbarski). Can you build it yourself without reading the rest of the
chapter?

https://twitter.com/sbarski


136 CHAPTER 8 Architecting serverless parallel computing

4. This step performs the split process that creates small video segments for
transcoding.

5. Now comes the map process that transcodes segments to the desired format or
bit rate. The system can transcode a bunch of these segments in parallel.

6. The map process is followed by a combine step that begins to merge these small
video files together.

7. The final step merges audio and video together and presents the file to the
user. We have reduced our work to its final output. 

8. As the kids say, the real final step is profit.

Here are the main AWS services and software that we will use to build the transcoder:

 FFmpeg—In the first edition of our book, we briefly used FFmpeg, a cross-platform
library/application created for recording, converting, and streaming audio and
video. This is a powerhouse of an application that is used by everyone and anyone
ranging from hobbyists to commercial TV channels. 

We’ll use ffmpeg in this chapter to do the transcoding, splitting, and merg-
ing of video files. We’ll also use a utility called ffprobe to analyze the video file
and figure out how to cut it up on keyframes. The ffmpeg and ffprobe binaries
are shipped as a Lambda layer (http://mng.bz/N4MN), which allow other
Lambda functions to access and run them. You don’t necessarily have to use
Lambda layers (you can upload the ffmpeg binary with each function that will
use it), but that is redundant, inconvenient, and takes a long time to deploy.
Therefore, making ffmpeg available via a Lambda layer is the recommended
and preferred approach.

DEFINITION A keyframe stores the complete image in the video stream, while a
regular frame stores an incremental change from the previous frame. Cutting
on keyframes prevents us from losing information in the video. 

 AWS Lambda—It goes without saying that we’ll use Lambda for nearly every-
thing. Lambda runs ffmpeg and executes most of the logic. We’ll write six func-
tions to analyze the video, extract audio, split the original file, convert
segments, merge video segments, and then merge video and audio in the final
step. 

 Step Functions—To help us orchestrate this workflow, we’ll rely on Step Func-
tions. This service helps us to define how and in what order our execution steps
happen, makes the entire workflow robust, and provides additional visibility
into the execution. 

 S3—We’ll use Simple Storage Service (S3) for storing the initial and the final
video. We could also use it to store the temporary video chunks, but we’ll use
EFS for that. The reason why we chose EFS is because it is easy to mount and
access as a filesystem from Lambda. We’ll provide an alternative implementa-
tion that uses S3, but it is slightly harder to get right.

http://mng.bz/N4MN


137Architecture deep dive

 EFS—We’ll use the Elastic File System (EFS) for our serverless transcoder to
store the temporary files that we generate. There will be a lot of small video
files. Luckily, EFS can grow and shrink as needed.

 DynamoDB—Although Step Functions help to manage the overall workflow and
execution of Lambda functions, we still need to maintain some state. We need
to know whether certain video chunks were created or can be merged. We’ll use
DynamoDB to store this information. Everything that’s stored is ephemeral and
will be deleted using DynamoDB’s Time to Live (TTL) feature.

Figure 8.2 shows a high-level overview of the system we are about to build. We will
jump into individual components in the next section. 

8.2 Architecture deep dive
Let’s explore the architecture in more detail. There’s nuance to the implementation
and how things work. To avoid dealing with some pain later, let’s plan how we will
design, build, and deploy the serverless transcoder. Before going any further, recall
that the entire idea is to split a giant video file into many small segments, transcode
these segments in parallel, and then merge them together into a new file.

Simple Storage Service (S3)
(source file)

AWS Lambda
(Transcode Video)

AWS Lambda 
(Merge Video and Audio)

Simple Storage Service
(new File)

DynamoDBEFSAWS Lambda
(Merge Video)

Multiple Lambda’s run here in 
parallel to split the file using the 
Dynamic Parallelism feature of 
Step Functions.

AWS Cloud

AWS Step Functions workflow

AWS Lambda
(Split Audio)

EFSDynamoDB

EFSDynamoDB

AWS Lambda 
(Split and Convert Video)

EFS DynamoDB

Start

Figure 8.2 This is a simplified view of the serverless transcoder. There are a few more components to 
it, but we’ve avoided including them in this figure to focus on the essential elements of the architecture.



138 CHAPTER 8 Architecting serverless parallel computing

8.2.1 Maintaining state

We’ll use DynamoDB to maintain state across the entire operation of the serverless
pipeline. It’ll keep track of which videos have been created and which haven’t. To sim-
plify the pipeline and, in particular, to simplify the code that monitors which segments
have been created or transcoded, we are going to use a trick. (Before going any fur-
ther, think about how you would keep track of all small video segments that have been
created, transcoded, and merged given that segments will be created and processed in
parallel.) 

 The trick is to create n^2 smaller video segments. Out of one large video file, we
should generate 2, or 4, or 8, or 256, or 512, or more segments. Just remember to
keep the number of segments at n^2. Why is this? The idea is that once we’ve created
and transcoded our video segments, we can begin merging them in any order. Having
n^2 segments easily allows us to identify which two neighbor segments can be merged.
And, we can keep track of this information in the database. 

 We’ll create a basic binary tree that helps to make the logic around this algorithm
a little easier to manage. Let’s imagine that we have 8 segments. Here’s how the pro-
cess could take place: 

1. Segments 3 and 4 are transcoded quicker than the rest and can be merged
together (they are neighbors) into a new segment called 3-4.

2. Then segment 7 is created, but segment 8 is not yet available. The system waits
for segment 8 to become ready before merging 7 and 8 together. 

3. Segment 8 is created and segments 7 and 8 can be merged together into a new
segment 7-8.

4. Then segments 1 and 2 finish transcoding and are merged into a segment 1-2. 
5. The good news is that a neighboring segment 3-4 is already available. Therefore,

segments 3-4 and 1-2 can be merged together into a new segment called 1-4.
6. Segments 5 and 6 are transcoded and are merged into a segment 5-6. 
7. Segment 5-6 has a neighboring segment 7-8. These two segments are merged

together to create segment 5-8. 
8. Finally, segments 1-4 and 5-8 can be merged together to create the final video

that consists of segments 1 to 8. 

Because we have n^2 segments, we can keep track of neighboring segments and
merge them as soon as both neighbors (the left and the right) become available.
Another interesting aspect is that segments themselves can figure out who their neigh-
bors are for merging. A segment with an index that is cleanly divisible by 2 is always on
the right, whereas a segment that is not cleanly divisible by 2 is on the left. For exam-
ple, a segment with an index of 6 is divisible by 2, therefore, we can figure that it’s on
the right, and the neighbor it needs to merge with (when it becomes available) has an
index of 5. Figure 8.3 illustrates how blocks can be merged together.

 DynamoDB is an excellent tool for keeping track of which segments have been cre-
ated and merged. In fact, we will precompute all possible segments and add them to



139Architecture deep dive

DynamoDB. Then we will atomically increment counters in DynamoDB to have a
record of when segments have been created and merged. This allows the processing
engine to figure out which blocks haven’t been merged yet and which need to be
done next. 

 This is an important part of the algorithm, so it’s worth restating it again. Each
record in DynamoDB represents two neighboring segments (for example, segment 1
and segment 2). The split-and-convert operation increments a confirmation counter
each time a segment is created. When the confirmation counter equals 2, our system
knows that the two neighboring segments exist and that they can be merged together. 

 This information and logic are used in the Split and Convert function and in the
Merge Video function. Our algorithm continues to merge segments and increment
the confirmation counter in DynamoDB until there’s nothing left to merge.

Neighboring segments
are merged as soon as
they are ready.

Final video
Segment 1-8

Merge
Segment 1-4

Merge
Segment 5-8

Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 Segment 6 Segment 7 Segment 8

Merge
Segment 1-2

Merge
Segment 3-4

Merge
Segment 5-6

Merge
Segment 7-8

Figure 8.3 Segments are merged together into a new video. The beauty of our engine is that neighboring 
segments can be merged as soon as they are ready. There’s no need to wait for other, nonrelated, segments 
to finish processing.

There are more ways than one to do it
Our use of a binary tree is just one approach to solving this problem, keeping track
of segments and ultimately merging them together. There are myriad other ways this
can be done. How would you do it if you had to come up with a different approach?



140 CHAPTER 8 Architecting serverless parallel computing

TRANSCODE VIDEO

Our serverless transcoder kicks off once we upload a file into an S3 bucket. An S3
event invokes the Transcode Video Lambda and the process begins. Figure 8.4 shows
what this looks like.

 The Transcode Video function performs the following steps:

1. Downloads the file from S3 to a local directory on EFS.
2. Analyzes the downloaded video file and extracts metadata from it. Video key-

frames are provided in this metadata.
3. Creates the necessary directories in EFS for all future segments that are going

to be created.
4. Works out how many segments need to be created based on the number of

keyframes. 
Remember that we are always creating n^2 segments. This means that we

may have to create some fake segments in DynamoDB. These will not really do
anything. They are considered as segments that have already been created, so
they don’t need to be processed.

5. Creates the necessary records in DynamoDB including any fake records that are
needed.

6. Runs a Step Functions workflow with two different inputs. The first parameter
tells Step Functions to run a Lambda to extract and save the audio to EFS. The

AWS Cloud

The event that invokes Lambda 
carries information about the 
video file uploaded to S3.

Simple Storage Service (S3)
(source file)

AWS Lambda
(Transcode Video)

Figure 8.4 This is a basic and common serverless architecture. Invoking code from S3 is the bread and 
butter of Lambda functions.



141Architecture deep dive

second parameter is an array of objects that specify the start and end times of all
segments that need to be created. Step Functions takes this array and applies
the Map procedure. It fans out and creates a Lambda function for each object
in the array, thus causing the original file to be split up by many Lambda func-
tions in parallel.

The Transcode Video function is an example of a monolithic or “fat” Lambda func-
tion because it does a lot of different things. It may not be a bad idea to split it up, but
that also comes with its own set of tradeoffs. In the end, whether you think this func-
tion should be kept together or not may depend on your personal taste and philoso-
phy. We think that this function is a pragmatic solution for what we need to do, but we
wouldn’t be aghast if you decided to split it.

8.2.2 Step Functions

Step Functions plays a central role in our system. This service orchestrates and runs
the main workflow that splits the video file into segments, transcodes them, and then
merges them. Step Functions also run a function that extracts the audio from the
video file and saves it to EFS for safekeeping. The Lambda functions that Step Func-
tions invoke include:

 Split Audio—Extracts the audio from the video and saves it as a separate file in
EFS.

 Split and Convert Video—Splits the video file from a particular start point (for
example, 5 minutes and 25 seconds) to an end point (such as 6 minutes and 25
seconds) and then encodes the new segment to a different format or bit rate.

 Merge Video—Merges segments together after they have been transcoded. Multi-
ple Merge Video functions will run to merge segments until one final video file
is produced.

 Merge Video and Audio—Merges the newly created video file and the audio file to
create the final output. This function uploads the new file back to S3.

TIP You don’t have to extract the audio from the video and then transcode
just the video file separately. We decided to do that because in our tests, our sys-
tem ran a bit faster when the video was processed on its own and then recom-
bined with the audio. However, your mileage may vary, so we recommend that
you test video transcoding with and without extracting the audio first. 

Step Functions is a workflow engine that is fairly customizable. It supports different
states like Task (this invokes a Lambda function or passes a parameter to the API of
another service) or Choice (this adds branching logic). 

 The one important state that we’ll use is Map. This state takes in an array and exe-
cutes the same steps for each entry in that array. Therefore, if we pass in an array with
information on how to cut up a video into segments, Map runs enough Lambda func-
tions to process all of those arguments in parallel. This is exactly what we are going to
build. We will pass an array to a Split and Convert Lambda function using the Map



142 CHAPTER 8 Architecting serverless parallel computing

type. Step Functions will create as many functions as necessary to cut the original
video into segments. 

 Here comes the more interesting part. As soon as the segments are created, Step
Functions begins calling the Merge Video function until all segments are merged into
a new video. We’ll add some logic to the Step Functions execution workflow to figure
out if Merge Video needs to be called. Once all Merge Video tasks are called and pro-
cessed, Step Functions will take the result from Split Audio and from Merge Video
and invoke the final Merge Video and Audio function. Figure 8.5 shows what this pro-
cess looks like.

Now that you know what the Step Functions workflow does, let’s discuss each of the
Lambda functions in more detail.

SPLIT AUDIO

Step Functions runs the Split Audio Lambda function to extract audio from the video
file. As we’ve mentioned, this step is done to accelerate the overall workflow because,
from there on, the audio portion of the file isn’t considered, and only the video por-
tion is transcoded to another bit rate. We don’t have to do this. We can leave audio

AWS Step Functions workflow

This is the only tricky bit about 
Step Functions. The Merge Video 
function must repeat until all 
video segments have been merged.

Merge
video
choice

Task: Choice

Task: Pass
AWS Lambda (Merge Video)

This logic is running 
using the Map state.

AWS Cloud

AWS Lambda (Split and Convert Video)AWS Lambda
(Split Audio)

Merge
audio
task

AWS Lambda 
(Merge Video and Audio)

Start

Figure 8.5 The Step Functions execution workflow does all the work in our transcoder. The video is split, 
converted, and merged again using two main functions and a bit of logic.



143Architecture deep dive

and video together, but in our case, our testing showed that doing this improved the
overall performance. The Split Audio function executes the following steps:

1. Extracts audio using ffmpeg and saves it to a folder in EFS.
2. Updates the relevant DynamoDB record to record that this was done.
3. Returns a Success message and additional parameters (like the location of the

audio file) to the Step Functions orchestrator.

At a later stage, Step Functions invokes the Merge Video Audio function with the
parameters that were returned by the Split Audio and Merge Video functions.

SPLIT AND CONVERT VIDEO

The Split and Convert Video function splits the original video file into a segment and
converts that segment to a new bit rate or encoding. The original video file doesn’t get
changed in this process; instead, the function merely extracts a segment between a
start time and an end time, specified in the parameters that are passed to it. These
parameters are worked out by the Transcode Video function. 

 Many hundreds of Split and Convert Video functions can run in parallel. Here are
the main actions that it performs:

1. Using ffmpeg, the function creates a new video file from the original one.
2. It increments a confirmation counter in the appropriate DynamoDB record to

specify that the segment exists.
3. If the confirmation counter is equal to 2, it then returns to the Step Functions

workflow with a Merge message. Otherwise, it returns with a Success message,
which stops the execution of that particular Step Functions parallel execution. 

You may recall from the previous section that, with DynamoDB, each record rep-
resents two neighboring segments. When a record counter is incremented to 2, the
function knows that the two neighboring segments exist. The function returns a
Merge message to Step Functions, and Step Functions knows that it can begin calling
the Merge Video for these segments. 

MERGE VIDEO

Step Functions calls the Merge Video function when two neighboring segments are
ready to be merged into a new single segment. The merge operation happens using
ffmpeg, and the new segment is saved to EFS. Here’s what happens in a little more detail:

1. The Merge Video function is invoked with a number of parameters passed to it
by Step Functions. These parameters include the left and the right segments.

2. Using ffmpeg, the left and right segments are merged to create a new segment.
This new segment is saved to EFS.

3. DynamoDB confirmation is incremented. If there are two confirmations, then
the function returns to the workflow with a Merge message. 

4. However, if there are two confirmations and the last two remaining segments
have been merged, the function returns with a MergeAudio message to the
workflow.



144 CHAPTER 8 Architecting serverless parallel computing

As you can see, the Merge Video function creates a bit of a loop. It continues to merge
segments, returns the Merge message, and causes Step Functions to invoke itself
again. This happens until the last two segments are merged, then the return type is
changed to MergeAudio. This is when Step Functions knows that it’s time to combine
audio and video and invokes the Merge Video and Audio function.

MERGE VIDEO AND AUDIO

The final function is Merge Video and Audio. It takes input from the Split Audio and
Merge Video functions and merges the audio and the new video files together using
ffmpeg. The new file is saved somewhere else (in another directory) on EFS. The
function can also upload the new file to an S3 bucket for easier access.

8.3 An alternative architecture
You can build this serverless transcoder without using EFS (or Step Functions for that
matter). In fact, our first iteration used only S3 and SNS to perform fan-out. We
wanted to present you with an alternative architecture that shows that you don’t neces-
sarily have to use Step Functions or EFS if you don’t want to. This section demon-
strates that you can use SNS and S3 instead to achieve the same outcome. It’s nice that
AWS provides so many building blocks that we can build our desired architecture in
different ways. 

TIP One reason for adopting a different architecture could be because you
don’t want to pay for Step Functions and EFS. That is a reasonable concern.
Using S3 is likely going to be much cheaper than using EFS and will probably
perform just as well. Once you get the code working, using S3 is straightfor-
ward, and we don’t have a reason not to recommend it. Whether you should
use SNS instead of Step Functions is a tougher proposition. SNS is cheaper,
but you will lose a lot of the robustness and observability that you get with
Step Functions. Perhaps the best solution is to use Step Functions with S3?
We’ll leave it to you as an exercise to achieve. 

This alternative implementation closely resembles what we created in the previous sec-
tion except, as we mentioned, we’ll replace Step Functions with SNS and EFS with S3.
Figure 8.6 shows what this architecture looks like. 

 This architecture works well, but there are some improvements that can be made
to it. For one, the implementation should be improved in case of errors such as the
split or merge operation failing. Luckily, there is the Dead Letter Queue (DLQ) fea-
ture of Lambda that allows us to save, review, and even replay failed invocations. If you
want a challenge, we invite you to implement DLQ for this architecture to make it
more resilient to errors. 

 The second issue is observability and knowing what’s happening with the system.
Step Functions provides some level of visibility, but things get a little bit harder with
SNS. One tool you can use to help yourself is AWS X-Ray. This AWS service can help
you understand the interactions of different services within your system. It goes with-
out saying that CloudWatch is essential too.



145Summary

Summary
 MapReduce can work really well with a serverless approach. Lambda invites you

to think about parallelization from the start so take advantage of that.
 You can solve a lot of problems in Lambda and process vast amounts of data by

splitting it up into smaller chunks and parallelizing the operations.
 Step Functions is an excellent service for defining workflows. It allows you to

fan-out and fan-in operations. 
 EFS for Lambda is an endless local disk—it grows as much as you need. You can

run applications with EFS and Lambda that you couldn’t have run before. Hav-
ing said that, S3 is still likely to be cheaper so make sure to do your calculations
and analysis before choosing EFS.

 You can solve problems in different ways: 
– You don’t have to use Step Functions because you can use SNS (although

Step Functions adds an additional level of robustness and visibility). 
– You don’t need to use EFS because you can use S3. 

 When coming up with an architecture for your system, explore the available
options because there will be different alternatives with different tradeoffs. 

Amazon Simple 
Notification

Service (fan-out)

Amazon Simple 
Notification

Service

AWS Lambda
(Split Audio)

AWS Lambda
(Split and Covert

Segments)

AWS Lambda (final 
Video and Audio Merge)

Simple Storage 
Service (S3)

(final file)
AWS Lambda

(Merge Segments)

S3 temp

S3 temp

Start here

This is DynamoDB hiding in the 
back. It’s used to maintain state.

AWS Cloud

Simple Storage Service (S3)
(source file)

AWS Lambda
(Analyze Video)

S3 temp

Amazon Simple 
Notification

Service (fan-out)

Amazon Simple 
Notification

Service

S3 temp

Figure 8.6 The SNS and S3 architecture for the serverless transcoder



146

Code Developer University

One idea that we’ve been mulling for a while has been a web app designed to help
developers learn programming skills in a fun way with gamification and useful ana-
lytics. Our idea, let’s call it Code Developer University (CDU), evolved into a proof-
of-concept website with a collection of interesting programming challenges for
budding developers to solve and to build skills. 

 Each challenge would pose a problem. The student would have space to type in
their solution and then submit it to our system for processing. The system would
run the solution through a battery of tests and decide whether the solution passed
or failed. If the solution failed, the user would have a chance to update their code
and resubmit again. If the solution passed, the user would advance to the next chal-
lenge, receiving between 50 and 500 experience points (XP) based on the difficulty
of the problem. 

This chapter covers
 AWS Glue and Amazon Athena

 Using EventBridge to connect system 
components

 Using Kinesis Firehose and Lambda for at-scale 
data processing



147Solution overview

 To make the entire experience more interesting and exciting, there would be ele-
ments of gamification baked-in throughout the system. For instance, experience
points would be used to create various leaderboards. That way, users interested in a
friendly competition would be able to compete for a top 10 position. The more chal-
lenges solved, the higher the score. These leaderboards would show the overall top 10
performers and then the best performers for each language like Python or JavaScript. 

 If a student wanted to dig into more data and perhaps see, search, and filter more
advanced reports, that would be supported too. A student could, for example, look at
the most common mistakes that other users make (anonymized, of course) and learn
from that as well. 

 The original idea was lofty but doable. The key to building this project would be to
lean on as many different AWS services as possible. That way we could focus on the
unique aspects of the system and leave the rest of the undifferentiated heavy lifting,
like authentication, to AWS. At the end, and as you will see, we used the following ser-
vices to put everything together: 

 EventBridge (messaging) 
 Glue (data preparation and transformation) 
 Athena (data querying) 
 DynamoDB (database) 
 QuickSight (reporting) 
 S3 (storage) 
 Lambda and API Gateway 

In this chapter, we focus specifically on data, leaderboards, and reporting for CDU.
It’s a fascinating part of the system because it uses so many parts of the AWS ecosystem
and because you can build something similar just as rapidly yourself. Other features of
CDU are quite standard for a web app. There are user accounts, an HTML5 user inter-
face, and all the basic bolts and bits you would expect. If you want to learn how to
build such a system yourself, take a look at the first edition of this book, which
describes a similar, albeit video-focused web application.

9.1 Solution overview
The leaderboard and reporting aspect of CDU is interesting because it is serverless,
scalable, and, frankly, fun to implement. There are many serverless AWS services that
make data collection, aggregation, and analysis possible without resorting to tradi-
tional reporting and data-warehousing products of yesteryear. Let’s take a look first at
the requirements and then the overall solution.

9.1.1 Requirements listed
CDU is a website with user registration and account features, and the ability for users
to access and try code exercises and receive points if they are successful in implement-
ing and solving a coding challenge. To that end, the following sections provide a list of
high-level requirements for CDU.



148 CHAPTER 9 Code Developer University

GENERAL

 The user must be able to run their code solution and determine if it passes or
fails the tests.

 If the tests pass, then the solution is considered to be correct.
 A correct solution awards the user some number of points, which are saved to

the user’s profile. 
 There should be leaderboards and advanced reports for users to view.
 The entire system must be serverless, event-driven, and as automated as much

as possible (no intervention from the administrator should be needed to
update leaderboards and reports).

USERS AND EXPERIENCE POINTS

 Points are awarded for the programming language that is used to solve the chal-
lenge. For example, if the user codes in Python, then they get points allocated
toward Python. If they use JavaScript, then points are allocated to their Java-
Script score.

 The user’s profile should show the overall score (sum of all previous points for
all programming languages) and scores for each programming language indi-
vidually. The user’s profile and scores should be updated in near real time.

 The user shouldn’t receive points for the same challenge more than once.

LEADERBOARDS

 CDU should feature a leaderboard that shows the top scorers across different
programming languages (e.g., Python and JavaScript).

 An overall leaderboard should show the top performers (regardless of the pro-
gramming language) for last month, last year, and all time.

 Leaderboards don’t need to be updated in real time, however, but they should
refresh at least every 60 minutes. There should also be a way to refresh them on
demand by the administrator.

REPORTS

 Apart from the leaderboard, users should also have access to more in-depth
reports that they can search and filter. 

 The exact implementation of the reports can be left to the data team; however,
a basic report could show the best performers, similar to the leaderboard.

 Reports should be refreshed at least every 60 minutes but could also be
refreshed sooner (if needed) by the administrator.

 Any user, not just the administrator, should have access to the leaderboard.

9.1.2 Solution architecture

Let’s now take a look at a possible architecture that ought to address our major
requirements. Figure 9.1 shows most of the major architectural pieces. These include
the following three main microservices:



149Solution overview

 Code Scoring Service 
 Student Profile Service 
 Analytics Service

We will break down the solution in the coming sections, but let’s take a look at the
high-level architecture shown in figure 9.1. The Code Scoring Service runs a Lambda
function that processes submitted code. If it passes the test, information is sent across
to the EventBridge, which invokes two other microservices: 

 The Student Profile Service updates the student’s profile in the database and
adds to the student’s overall score. 

 The Analytics Service processes and stores the user’s test data in S3, which later
enables the creation of the QuickSight dashboards.

There’s actually quite a bit that happens in the Analytics Service. It is covered in detail
in section 9.4, but here’s a high-level overview of what actually takes place in this
microservice: 

 The message (with the user’s solution) is pushed into Kinesis Firehose, which
uses a Lambda function to modify the format of the message so that it can be
processed later by other AWS services.

Run Unit 
Test Lambda

Process Submission
Lambda

Submissions
queue

Results EventBridge Update Student 
Score Lambda

Student database

Student scores 
Kinesis Firehose

Process Firehose 
Submission Lambda

Student scores
bucket

Process results and
update summary
tables with Glue

Query summaries 
in Athena

 

Query 
LeaderBoard 

Summary Lambda

Process 
Leaderboard 

Summary Lambda

QuickSight
dashboard

Leaderboard
database

Code scoring service

Analytics service

Student profile service

Tests bucket

AWS Cloud

Student database

Lesson database

Schedule
(run every 

hour)

Figure 9.1 The architecture of Code Developer University (CDU) that’s responsible for scoring and 
leaderboards



150 CHAPTER 9 Code Developer University

 Kinesis then stores the newly processed message (as a JSON file) in an S3 bucket.
 AWS Glue runs on schedule, which is set to trigger every 60 minutes. When that

happens, Glue processes the aforementioned S3 bucket and updates a Glue
Data Catalog (think: a table with metadata) that points to the data stored in S3.

 Glue then triggers a Lambda function, which uses Amazon Athena to query the
data stored in S3 via the Glue Data Catalog.

 Once Athena finishes, it triggers another Lambda function that gets the result
of the query and updates the appropriate leaderboards saved in DynamoDB.

 Finally, there’s an Amazon QuickSight report that uses Athena to query the data
in the S3 bucket when a user wants to see more information.

There’s a little more detail to all the services, and you may have other questions,
which should be cleared up in coming sections. Read on!

9.2 The Code Scoring Service
The purpose of the Code Scoring Service is to receive submitted code from the user and
run it against a set of tests. If tests pass, the Run Unit Test Lambda creates a submission,
which it puts into the submissions queue. The submission is picked up from the queue
by the Process Submission Lambda and is enriched with data from a couple of Dyna-
moDB tables. Finally, the Process Submission Lambda pushes the newly enriched mes-
sage on to Amazon EventBridge for consumption by other services in our system. 

 The actual design of the Code Scoring Service is fairly straightforward, but let’s
take a look at its design in more detail. Figure 9.2 shows a closeup of the architecture
beginning with the Run Unit Test Lambda. This Run Unit Test Lambda function is
invoked via HTTPS (via the API Gateway) and receives a zip payload as part of the

QuickSight vs. DynamoDB
One question you may be asking yourself is why are we using Amazon QuickSight for
reporting and also storing leaderboards in DynamoDB? Isn’t that redundant? The
reason is that QuickSight is heavy, powerful, but also slow. You can integrate it into
your website (in an iFrame), but it takes a long time to load. If you are committed to
using QuickSight to explore data in detail, then you’ll wait for 10 or 20 seconds. But
if you want to see results quickly, waiting for it can be unbearable (AWS, please look
at performance!). 

This is why we store important leaderboard results in DynamoDB, which can be
loaded and displayed to the user quickly. Then it’s up to the user to choose to see
the QuickSight version of this data, especially if they need more detail. You can think
of our DynamoDB leaderboards as an informal cache for QuickSight. 

The negative aspect of this implementation is that the DynamoDB table and the data
in QuickSight must be synchronized. If the Student Profile Service updates the stu-
dent’s score, but the Analytics Service fails, DynamoDB may end up showing some-
thing different to QuickSight. There are ways to fix this though. What would you do?
We will discuss this in section 9.3.



151The Code Scoring Service

request body. The zip payload contains the user’s code submission and metadata, such
as what challenge the user is attempting and what programming language is being
used. The Lambda function looks up the appropriate test in the Tests bucket (it knows
which test to grab based on the lesson name) and downloads that test file from S3.

Now the Lambda function can execute the appropriate interpreter or compiler, run
the unit test, and test the user’s submission.

Prevent tight coupling of Lambda
functions by putting in a queue
between two Lambda functions.

EventBridge will push out a 
message to two other 
microservices.

AWS Cloud

Run Unit Test 
Lambda

Process Submission
Lambda

Submissions
queue

Results EventBridge

Code Scoring Service

Tests bucket

Student database

Lesson database

Figure 9.2 The Code Scoring Service runs the user’s code and, if it’s successful, kicks of 
the rest of the chain of events in our system.

Lambda layers
If you want to support multiple languages like Python, JavaScript, C++, C#, Java, and
so on, use Lambda layers. A layer is a zip file that can contain additional libraries or
custom runtimes. 

You can have a Lambda layer with a Python interpreter or a layer with a C compiler.
Moreover, you deploy layers separately from Lambda functions, thus keeping your
actual Lambda functions small. At run time, as long as it’s configured correctly, your
Lambda functions can access the contents of your layers (which are extracted to the
/opt directory in the function execution environment). You can deploy as many layers
as you like, but know that Lambda can only use up to five layers at a time. You can read
more about them at http://mng.bz/doJO.

http://mng.bz/doJO


152 CHAPTER 9 Code Developer University

The Run Unit Test Lambda by itself is not particularly complex. It needs to know how
to run a unit test and then parse the result to figure out if it passed successfully or not.
If the test failed, then the function sends back an HTTP response with the output
from the interpreter or the compiler. Thus, the user can see the error message, fix the
code issue, and resubmit. Otherwise, if it passes, the function sends back a celebratory
message to the user and places a message containing the user’s submission on the
Submissions SQS queue for further processing.

9.2.1 Submissions Queue

The Submissions Queue is an SQS queue that sits between the only two Lambda func-
tions in this service. When a message is placed in the queue, it leads to an invocation
of the Process Submission Lambda that retrieves the message and enriches it with
more data before pushing it to the EventBridge. There are a few reasons we do this,
including the following:

 One of the requirements is to prevent the user from receiving points for the
same challenge multiple times. The Process Submission Lambda needs to look
up the Student DynamoDB table to figure out whether the user has already
completed this challenge. If the user has already completed that challenge,
then that is noted, and no points are earned.

 Assuming that the student has solved the challenge for the first time and is sup-
posed to receive points, the Process Submission Lambda also looks up how
many points should be awarded from the Lesson database.

 All of this information, including the message that came from the queue, is
combined and pushed to Amazon EventBridge.

By now you might be thinking, “Why not do everything in the initial Run Unit Test
Lambda?” The reason is to separate responsibility. The Run Unit Test function is
intended to run code and figure out if it passes a test. The second Process Submission
Lambda function has to perform database lookups and evaluate whether the student
should be awarded points. As a rule of thumb, you should use multiple Lambda functions
when you are dealing with different concerns rather than having everything lumped into
one. Hence, this is the reason we created two functions and introduced a message queue
between them.

 Another question you may have is why we used SQS rather than have functions call
one another directly. Our recommendation is never to have functions call each other
directly unless you are using a feature called Lambda Destinations (which adds a hid-
den queue between two functions anyway). Lambda Destinations, however, only works
for asynchronous invocations, so it wouldn’t have been possible in our case. The Run
Unit Test Lambda was invoked synchronously via HTTP. The reason for having a queue
between two functions is to reduce coupling (e.g., the two functions have no direct
knowledge of one another) and to have an easier time handling errors and retries.



153Student Profile Service

 We also could have chosen to use Amazon EventBridge instead, but SQS was
acceptable in this scenario. And, if we ever wanted to enable First-In First-Out (FIFO)
queues at a later stage, we’d need to use SQS because EventBridge doesn’t support
this feature, so that further weighed our decision. 

 The last action performed by the Process Submission Lambda is to push the mes-
sage to Amazon EventBridge. As you may recall, this message contains the original
submission made by the user together with additional details that consists of informa-
tion on whether the experience points should be awarded to the user and the amount
of those points (this information was obtained by looking up a couple of tables in the
Process Submission Lambda function). 

9.2.2 Code Scoring Service summary

The Code Scoring Service is a relatively trivial service apart, perhaps, from running
the code provided by the user. Even then it’s not too difficult to unzip a file and run
an interpreter (or a compiler) within Lambda. One important thing to mention is
security. If you are running someone else’s code in a function, you must be prepared
that someone will try to subvert it, find a vulnerability to exploit, and do something
bad. Therefore, you must follow the principle of least privilege and disallow anything
that isn’t critical to the running of your function. This should be a rule for all Lambda
functions, but in this instance, you should be doubly careful and vigilant.

9.3 Student Profile Service
The Student Profile Service is small. Its purpose is to increment the number of experi-
ence points in the student record in the DynamoDB table. That way, the student can
immediately see the cumulative score added to their tally and feel good about their
achievement. This service consists of a single Lambda function that communicates
with DynamoDB. This function receives an event from EventBridge, reads it, and
updates the user profile if the user has received any points. Figure 9.3 shows what this
basic service looks like.

 You may remember that earlier (in section 9.1), we posed a question about keep-
ing different tables in sync. Given that the Student Profile Service and the Analytics

Amazon EventBridge
Amazon EventBridge is a serverless event bus that can connect different AWS (and
non-AWS) services. It has a few great features that services like SQS, SNS, and Kine-
sis do not possess. Chief among them is the ability to use more than 90 AWS ser-
vices as event sources and 17 services as targets, automated scaling, content-
based filtering, schema discovery, and input transformation. But like any other tech-
nology, it has certain deficiencies like no guarantee on ordering of events or buffering.
As always, what you end up choosing should depend on your requirements and the
capabilities of the product you are using.



154 CHAPTER 9 Code Developer University

Service store similar data (namely the user’s score), what happens if one of the ser-
vices goes down and falls out of sync with the other service? In other words, if there’s a
fault in a service that causes a data mismatch, what can we do about it? There are a
number of solutions you can think about implementing to address this problem:

 Serial invocation—One approach is to make the Analytics Service and the Stu-
dent Profile Service run in serial rather than parallel. That way your system
would update the Student Profile Service first and then run through the update
procedure in the Analytics Service (invoking it via another EventBridge). If the
Analytics Service fails, the system would roll back the change in the Student
Profile Service, and both services would continue operating in sync.

 One source of truth—Alternatively, you could make the Analytics Service your
source of truth and then simply copy the data over to the Student Profile Ser-
vice. That way you could even delete all data in the Student Profile Service and
regenerate it as many times as necessary from the Analytics Service.

 Share the database—Both services could read and write to the same database. That
would avoid some problems, but then, we no longer have a microservices archi-
tecture in which each service is responsible for its own view of the world. We
would end up with a distributed monolith. It must be mentioned that in many cir-
cumstances having a distributed monolith is a fine and acceptable solution.

This is a basic service with one Lambda
updating a DynamoDB table. The Lambda
function is invoked by the EventBridge.

Student Profile Service

Results EventBridge Student databaseUpdate Student Score Lambda

AWS Cloud

Figure 9.3 The Student Profile Service is the simplest one in this entire architecture. It’s a Lambda 
function that writes to a Dynamo table.



155Student Profile Service

 Orchestrator—Another approach is to have an orchestrator sit above the two services
and monitor what is happening. If there is an error, the orchestrator could run addi-
tional actions to compensate for the issue (for example, retry or roll back). 

Quite frankly, this is a common situation with a microservices-based approach. How do
you keep services in sync without having all microservices coupled to a central data-
base? There are different solutions to this problem but, as with anything in software
engineering, they all have different trade-offs. In the case of CDU, we decided to update
both services in parallel. If an issue were to occur, we would use the Analytics Service as
our source of truth and regenerate the data needed by the Student Profile Service.

9.3.1 Update Student Scores function

The Update Student Score function is shown in listing 9.1. It performs three primary
actions:

 It parses the event received from the EventBridge that has the scores/data.
 Updates the amount of XP gained for the topic like JavaScript or Python.
 Updates the total amount of XP earned by the user.

'use strict';

const AWS = require('aws-sdk');
const sns = new AWS.SNS();

const dynamoDB = require('aws-sdk/clients/dynamodb');
const doc = new dynamoDB.DocumentClient();

const updateTotalXP = (record, lessons) => {
    const date = new Date(Date.now()).toISOString();

    const xp = lessons.filter(m => m.xp)
    ➥ .map(m => m.xp)
    ➥ .reduce((a, b) => a+b); 

    const params = {    
        TableName: process.env.USER_DATABASE,
        Key: {
           userId: record.username
        },
        UpdateExpression: `set \
                           modified = :date, \
                           xp.#total = :xp`, 
        ExpressionAttributeNames: {
           '#total': 'total'
        },
        ExpressionAttributeValues: {
           ':date': date,
           ':xp': xp
        },

Listing 9.1 Updating the Student Score Lambda

Calculates the total XP for a user by summing 
up the XP for all of the lessons. This is woefully 
inefficient to do each time but OK for an example. 
Can you think of a better way?

This params object has all the necessary 
attributes needed to update the relevant 
DynamoDB table. Note the ‘total’ in the 
ExpressionAttributeNames. It’s a reserved 
keyword so it has to be specified using 
ExpressionAttributeNames.



156 CHAPTER 9 Code Developer University

        ReturnValues: 'ALL_NEW'
    };

    return doc.update(params).promise(); 
}

const updateTopicXP = (record) => {
    const date = new Date(Date.now()).toISOString();

    const lesson = {
        lesson: record.lesson,
        topic: record.topic,
        modified: date,
        xp: record.xp,
        isCompleted: record.isCompleted
    };

    const params = {
        TableName: process.env.USER_DATABASE,
        Key: {
            userId: record.username
        },
        UpdateExpression: `set \
                          modified = :date, \
                          lessons = list_append(if_not_exists(lessons,
    ➥ :empty_list), :lesson), \     
                          xp.${record.topic} = 
    ➥ if_not_exists(xp.${record.topic}, :zero) + :xp`,
        ExpressionAttributeValues: {
            ':lesson': [ lesson ],   
            ':empty_list': [],       
            ':zero': 0,
            ':date': date,
            ':xp': parseInt(record.xp, 10)
        },
        ReturnValues: 'ALL_NEW'
    };

    return doc.update(params).promise();
}

exports.handler = async (event, context) => {
    try {
        const record = event.detail; 

        if (record.isCompleted) {
           const user = await updateTopicXP(record);

           if (user.Attributes.lessons.length > 0) {
               await updateTotalXP(record, user.Attributes.lessons);
           }
        }
    } catch (error) {
         console.log(error);
    }
}

This update expression appends 
a lesson to a list of lessons in 
DynamoDB. Otherwise, if a list 
doesn’t exist, a new and empty 
one is created.

This function is invoked via the 
EventBridge. The parameter event.detail 
contains the information that was sent 
over from the Process Submission Lambda 
function in the previous section.



157Analytics Service

The Student Profile Service is a small microservice with a single Lambda function. Its
purpose is to update a DynamoDB table and that’s pretty much as basic as you can get.
The next service, however, is not as straightforward. Let’s take a look at it now.

9.4 Analytics Service
This is going to be a big one, so grab yourself a tea or a coffee before jumping in. If
you recall, the purpose of the Analytics Service is twofold:

 Enable the creation and display of QuickSight dashboards.
 Maintain leaderboards in DynamoDB that could be quickly accessed and read.

The data collected and processed by the Analytics Service must enable us to achieve
those two aims. Let’s take a look at the architecture in figure 9.4. The steps that the
Analytics Service takes are as follows:

1. The EventBridge service pushes a message from the Code Scoring Service on to
the Student Scores Kinesis Firehose.

2. The Firehose runs a Lambda that processes and transforms each incoming mes-
sage into a format that is palatable for Amazon Glue to work on later.

3. After the message is transformed by Lambda, Firehose stores it in an S3 bucket.
4. Every hour (or on demand) AWS Glue runs and crawls the messages stored in

the S3 bucket. It updates a table within the AWS Glue Data Catalog with the
metadata based on the crawl.

5. Once Glue is finished processing, the Query Leaderboard Summary function is
run. The Lambda function invokes Athena that runs a query to work out the
leaderboard.

6. Athena accesses Glue and S3 and extracts the relevant data for the query. Once
the query is complete, the Process Leaderboard Summary Lambda is invoked.

7. This Process Leaderboard Summary Lambda function receives the result of the
query from Athena, reads it, and updates the Leaderboard DynamoDB table.

8. Finally, the QuickSight Dashboard component uses Athena to execute queries
based on what the user is trying to see in a QuickSight report.

You may agree that this is quite a lot to take in one go, so let’s break down the most
interesting components. We’ll do that in the following sections.

 
 
 
 
 
 
 
 
 



158 CHAPTER 9 Code Developer University

9.4.1 Kinesis Firehose

Kinesis Firehose provides a way to capture and stream data into Elasticsearch, Red-
shift, and S3. AWS says that it’s the “. . . easiest way to reliably load streaming data into
data lakes, data stores, and analytics services” (https://aws.amazon.com/kinesis/data
-firehose/), which sounds perfect for our use case. Kinesis Firehose, unlike other
Kinesis services, is serverless, meaning that you don’t need to worry about scaling par-
titions or sharding as is the case with, say, Kinesis Data Stream. It is all done for you
automatically. Another nice feature of Firehose is that it can run Lambda for messages
as they are ingested. Lambda can be used to convert raw streaming data to other,
more useful, formats and this is exactly what we would do. In our use case, we can use
a Lambda function to convert the messages to a JSON format that would later be read
by the AWS Glue service before storing them in S3.

 Listing 9.2 shows a Kinesis Firehose processing function that takes a message, pro-
cesses it, creates a new record with a different set of fields, and pushes it back to Fire-
hose for storage in S3. In this listing, we are extracting only a few properties from the
original message because we don’t want to keep everything. For example, we may dis-
card the user’s submitted source code because we care only if they’ve passed the test
or not. There are a few things to keep in mind in this listing:

Kinesis stores data in S3.
Glue reads from the bucket
and creates a data catalog
that can be queried by
Athena.

Run Glue 
On-Demand Lambda

Results EventBridge Student scores 
Kinesis Firehose

Process Firehose 
Submission Lambda

Student scores
bucket

Process results and
update summary
tables with Glue

Query summaries 
in Athena

 

Query 
Leaderboard 

Summary Lambda

Process 
Leaderboard 

Summary Lambda

QuickSight
dashboard

Leaderboard
database

AWS Cloud

Schedule
(run every 

hour)

Figure 9.4 The Analytics Service architecture includes Glue, Athena, DynamoDB, Kinesis Firehose, 
QuickSight, and Lambda.

https://aws.amazon.com/kinesis/data-firehose/
https://aws.amazon.com/kinesis/data-firehose/
https://aws.amazon.com/kinesis/data-firehose/


159Analytics Service

 All transformed records must contain a recordId, result, and data. Other-
wise, Kinesis Firehose rejects the entire record and treats it as a “transformation
failure.”

 The property called recordId is passed from Firehose to Lambda. The trans-
formed record has to contain the same recordId as the original. A mismatch
results in transformation failure (so, don’t make your own or append anything
to it).

 The property result must either be Ok (record transformed) or Dropped (record
was dropped intentionally). The only other allowed value is ProcessingFailed
if you want to flag that the transformation couldn’t take place.

 The property data is your base-64 encoded transformed record. 

'use strict';

exports.handler = (event, context) => {
    let records = [];
    
    for (let i = 0; i < event.records.length; i++) {
        const payload = Buffer.from(
        ➥ event.records[i].data, 'base64')
        ➥ .toString('utf-8');                 
        const data = JSON.parse(payload);      

        const record = {   
          username: data.detail.username,
          name: data.detail.user.name,
          lesson: data.detail.lesson,
          topic: data.detail.topic,
          xp: data.detail.xp,
          hasPassedTests: (data.detail.hasPassedTests || false),
          runTests: (data.detail.runTests || false),
          isCompleted: (data.detail.isCompleted || false),
          time: data.time,
        };

        records.push({  
            recordId: event.records[i].recordId,
            result: 'Ok',
            data: Buffer.from(JSON.stringify(record)).toString('base64')
        });
    }

    console.log(`Return: ${ JSON.stringify({records}) }`);

    return Promise.resolve({
        records
    });
};

Listing 9.2 Kinesis Firehose processing function

The original message that was 
pushed to Firehose. You can 
now extract the relevant bits 
you might want to save in S3.

The record you create here 
and store in S3 will be JSON.

All transformed records must contain a property 
called recordId, result, and data. Transformation 
is the ultimate goal for this Lambda.



160 CHAPTER 9 Code Developer University

Finally, you must ensure that your response doesn’t exceed 6 MB. Otherwise, Firehose
will refuse to play along.

9.4.2 AWS Glue and Amazon Athena

AWS Glue is a serverless ETL (extract, transform, and load) service that can scour an
S3 bucket with a crawler and update a central metadata repository called the Glue
Data Catalog. You and other services can then use this metadata repository to quickly
search for relevant information among the records scattered in S3. Glue never actu-
ally moves or copies any data. The tables with metadata it creates in the Glue Data Cat-
alog point to the data in S3 (or other sources like Amazon Redshift or RDS). This
means that the Data Catalog can be recreated from the original data if necessary.

 Amazon Athena is a serverless query service that can analyze data in S3 using stan-
dard SQL. If you haven’t tried Athena, you have to give it a go. You simply point it to
S3, define the schema, and begin querying using SQL. What’s even nicer is that it inte-
grates closely with Glue and its Data Catalog (which takes care of the schema). Once
you have AWS Glue configured and the Data Catalog created, you can begin querying
Athena immediately.

 Listing 9.3 shows how to perform a query. An important thing to note is that the
query is asynchronous. You will not get a response once you’ve run it. You have to start
the query execution and then, using CloudWatch events, react to when you get the
result. Luckily everything can be accomplished with two Lambda functions. Listing 9.3
shows how to execute a query and listing 9.4 shows how to process it if you have
hooked up CloudWatch events to respond.

'use strict';

const AWS = require('aws-sdk');
const athena = new AWS.Athena();

const runQuery = (view) => {
    const params = {
        QueryString: `SELECT * FROM "${view}"`, 
        QueryExecutionContext: {
            Catalog: process.env.ATHENA_DATA_SOURCE,  
            Database: process.env.ATHENA_DATABASE    
        },
        WorkGroup: process.env.ATHENA_WORKGROUP       
    };

    return athena.startQueryExecution(params).promise();
}

exports.handler = async (event) => {
    let promises = [];

Listing 9.3 Query Leaderboard Summary Lambda

Views are supported by Athena 
and are as useful as regular SQL.

Parameters such as the Catalog, 
Database and WorkGroup are 
set up in Athena when you 
configure it.



161Analytics Service

    promises.push(runQuery(process.env
    ➥ .ATHENA_LEADERBOARD_VIEW_TOPICS));  
    promises.push(runQuery(process.env
    ➥ .ATHENA_LEADERBOARD_VIEW_OVERALL)); 

    const query = await Promise.all(promises);

    console.log('Athena Query Id', query);
}

Listing 9.4 shows a Process Leaderboard Lambda function that responds to a Cloud-
Watch event that contains information about the query performed in listing 9.3. Note
that the actual result (meaning the data itself) must be retrieved from Athena using
the GetQueryResults API call. When the Process Leaderboard Summary function is
invoked, only queryExecutionId is passed into it, but that’s enough to perform the
GetQueryResults API call to get the data. The code in the following listing is quite
lengthy because, apart from showing how to get a result out of Athena, it demon-
strates how to update a DynamoDB table.

'use strict';

const AWS = require('aws-sdk');
const athena = new AWS.Athena();
const dynamodb = new AWS.DynamoDB.DocumentClient();

const getQueryResults = (queryExecutionId) => {
    const params = {
        QueryExecutionId: queryExecutionId
    };

    return athena.getQueryResults(params).promise();
}

const updateDynamoLeaderboard = (rows, index) => {
    let transactItems = [];
    const date = new Date(Date.now()).toISOString();

    //
    // Skip the first row because it's the label
    // Data: [
    //   { VarCharValue: 'topic' },
    //   { VarCharValue: 'username' },
    //   { VarCharValue: 'name' },
    //   { VarCharValue: 'score' },
    //   { VarCharValue: 'rn' }
    // ]
    //

    for (let i = 0; i < rows.length; i++) {
        const row = rows[i].Data;

Listing 9.4 Process Leaderboard Summary Lambda

Views are supported by Athena 
and are as useful as regular SQL.

You need the 
QueryExecutionId to run 
GetQueryResults, then the 
result of the query is yours.



162 CHAPTER 9 Code Developer University

        const params = {
            TableName: process.env.LEADERBOARD_DATABASE,
            Key: {
                uniqueId: row[1].VarCharValue, //username
                type: row[0].VarCharValue //topic
            },
            UpdateExpression: `set \
                                #name = :name, \
                                modified = :date, \
                                #rank = :rank,
                                score = :score`,
            ExpressionAttributeNames: {
                '#name': 'name',
                '#rank': 'rank'
            },
            ExpressionAttributeValues: {
                ':date': date,
                ':name': row[2].VarCharValue,
                ':score': parseInt(row[3].VarCharValue, 10),
                ':rank': parseInt(row[4].VarCharValue, 10)
            },
            ReturnValues: 'ALL_NEW'
        }

        transactItems.push({Update: params});
    }

    return dynamodb.transactWrite({TransactItems:transactItems}).promise();
}

exports.handler = async (event) => {

    try {
        if (event.detail
            ➥ .currentState === 'SUCCEEDED') { 
            const queryExecutionId = 
            ➥ event.detail.queryExecutionId;

            const result = 
            ➥ await getQueryResults(queryExecutionId);

            result.ResultSet.Rows.shift();  

            if (result.ResultSet.Rows.length > 0) {

                const maxItemsPerTransaction = 20;  

                for (let i = 0; i < 
    ➥ result.ResultSet.Rows.length/maxItemsPerTransaction; i++) {

                    const factor = 
    ➥ result.ResultSet.Rows.length/maxItemsPerTransaction;
                    const remainder = 
    ➥ result.ResultSet.Rows.length%maxItemsPerTransaction;

We only ever want to retrieve 
the results and save them if 
the query executes successfully. 
Luckily, this parameter checks 
if it’s all good.

The first row in the array 
contains labels for the 
columns (e.g., topic, score, 
etc.). Shifting that row 
removes it because we are 
only interested in the values.

Updates in chunks of 20 items. 
DynamoDB can handle 25 items 
in a transaction, but we only do 
20 here instead.



163Analytics Service

                    let data = 
    ➥ result.ResultSet.Rows.slice(i*maxItemsPerTransaction, 
    ➥ i*maxItemsPerTransaction + Math.max(maxItemsPerTransaction, 
    ➥ remainder));  

                    const update = await updateDynamoLeaderboard(data, 
    ➥ i*maxItemsPerTransaction);
                    
                }
            }

        } else {
            console.log('Query Unsuccessful');
        }

    } catch (error) {
        console.log(error);
    }
}

Serverless architectures are typically push-based and event-driven. You should try to
avoid polling whenever you can. We could have polled for the status of the query and
then called the Lambda function to process the result, but it would have been more
complex and error prone. Instead, we rely on CloudWatch events to get notified
about the query state transition. Interestingly, this feature wasn’t always available, and
people had to poll. There really was no other option, so it’s good to see AWS adding
the necessary support and enabling our serverless dream to continue.

9.4.3 QuickSight

Amazon QuickSight is AWS’s Business Intelligence (BI) service in the vein of Tableau.
You can use it to build dashboards of all kinds and embed them into your website.
QuickSight has some really interesting features, like its ability to formulate answers
using natural language (this is underpinned by machine learning). 

 Truth be told, however, at the time of writing, QuickSight is an underwhelming
AWS service. It’s slow, reasonably pricey, and weirdly different enough from other
AWS services to necessitate a steeper learning curve. Nevertheless, it is also serverless,
and it allows us to stay within the AWS environment, which is an advantage. We hope
that AWS substantially improves QuickSight over the coming months and years. If you
are looking for a BI solution, you should have a look at QuickSight but evaluate other
options too. 

 We used QuickSight to create dashboards that read data straight from S3 via Athena
for the CDU. Describing how to use QuickSight is out of scope for this chapter, but it
does have a fairly intuitive interface that you can click through. QuickSight isn’t
supported by CloudFormation (at least at the time of writing this in the second half of
2021), so creating consistent, repeatable dashboards is challenging and that’s a
bummer. However, if your data is in S3 and can be queried with Athena, you can always

We use a little bit of math to retrieve the
necessary records (slice) from the array.

This formula gets 20 or fewer rows to
store in DynamoDB at a time.



164 CHAPTER 9 Code Developer University

recreate your dashboards. The main thing is having the data in the right format and
place, which you will have with the tools described in this chapter.

 In summary, to build an Analytics Service, AWS services such as Kinesis Firehose,
Athena, and Glue can be what you need. These are serverless services, meaning that
you don’t have to think about scaling or managing them the same way that you’d need
to think about Amazon Redshift. Nevertheless, if you decide to embark on a serverless
journey with these services make sure to do your evaluation first. 

 Are they capable of meeting all of your requirements? 
 Is there a situation where, in your case, Amazon Redshift may be better? 

Athena’s charges are based on the amount of data scanned in each query; Redshift is
priced based on the size of the instance. There could be circumstances where Athena
is cheaper, but Redshift is faster, so you should spend a little bit of time with Excel pro-
jecting cost. Nevertheless, in many cases, especially for smaller data sets, the combina-
tion of Athena and Glue is more than enough for most needs.

Summary
 AWS has a variety of services and ways to capture, transform, analyze, and report

on data relevant to your application. 
 Capturing, processing, and reporting on data using services such as Event-

Bridge, DynamoDB, Amazon Glue, Amazon Athena, and Amazon QuickSight
to build a web application with three microservices leaves us with a few take-
aways, including the following: 
– Amazon QuickSight is slow (and it can be expensive). If you need to show

leaderboards, cache them in something like DynamoDB for quick retrieval.
– Glue and Athena are fantastic tools. Glue can index the data stored in S3,

and Athena can search across it using standard SQL. The result is less “lift-
ing” and coding for you.

– Kinesis Firehose has a fantastic feature that allows you to modify records
before they get to whatever destination they are going to. This is a fantastic
feature that’s worth the price of admission.

– Do not have Lambda functions call each directly unless you are using
Lambda Destinations. Always use a queue like SQS or EventBridge if Lambda
Destinations is not available.

– EventBridge is an excellent message bus for use within AWS. Apart from not
having FIFO functionality (this could change by the time you read this), it
has a ton of excellent features, and we highly recommended it.



Part 4

The future

The last two chapters of this book are really fun. The next chapter is on the
AWS Lambda internals and is fascinating for anyone wanting to know how
Lambda works. The last chapter of this book is about emerging practices. It cov-
ers the usage of multiple AWS accounts, temporary CloudFormation stacks,
management of sensitive data, and the use of EventBridge in event-driven archi-
tectures. These two chapters are some of our favorites. We hope you like reading
them as much as we loved working on them.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



167

Blackbelt Lambda

Performance (how fast your application responds) and availability (whether or not
your application provides a valid response) are critical aspects of your end user expe-
rience. When using serverless architectures, your performance also has a direct
impact on your costs; for example, AWS Lambda bills you for the duration your func-
tion runs, weighted by the memory you assign to it. Serverless architectures elimi-
nate many of the common surface areas for performance optimizations, like scaling
available servers or tweaking server configurations, which can make it challenging
for new users to understand how to go about making these optimizations. 

 This chapter introduces you to key tools and approaches available to you to
improve performance across the various services that make up your serverless appli-
cation. We’ll use relevant examples to demonstrate how these techniques work.

10.1 Where to optimize?
Before we delve into how we optimize serverless architectures, let’s quickly recap
how to think about them. Serverless architectures have multiple conceptual layers

This chapter covers
 Monitoring latency, request per second, and 

concurrency for serverless applications

 Techniques for optimizing latency



168 CHAPTER 10 Blackbelt Lambda

as figure 10.1 illustrates. Endpoints are responsible for secure interactions with your
end users and devices, and for the ingress of requests or events to your application
from the end user. Examples of endpoints you can use in your AWS Serverless archi-
tecture include API Gateway, AWS IoT, Amazon Alexa (if you were building an Alexa
skill), or even just the AWS SDK. 

 The compute layer of your workload manages requests from external systems
(received through the endpoints), while controlling access and ensuring requests are
appropriately authorized. It contains the run-time environment that deploys and runs
your business logic embodied as Lambda functions (we’ll delve into this shortly). 

 The data layer of your workload manages persistent storage from within a system. It
provides a secure mechanism to store states that your business logic will need. It also
provides a mechanism to trigger events in response to data changes, which in turn can
feed into other parts of your business logic. As you can imagine, this is a broad surface
area to discuss optimizations across, so we’ll focus on the following points, highlighted
in figure 10.1:

 Functions
 Invocations of these functions (either via requests from endpoints or events

from backend systems)
 Interactions the functions have with downstream resources

Now that you have a conceptual understanding of the various points of optimization,
let’s look at the tools available to do so. We’ll discuss those in the following sections.

Example:
Amazon API Gateway
AWS IoT Amazon Alexa

Example:
Any public API
Service running on EC2

Example:
Amazon SQS
AWS Step Functions
Amazon SNS

Example:
Amazon S3
Amazon DynamoDB
Mongo on EC2

Endpoint services

Business logic

Functions Functions

Other services and APIs

Messaging and workflow
components

Data services

Figure 10.1 Conceptual architecture of a serverless application



169Before we get started

10.2 Before we get started
To effectively optimize applications, there are certain tools and concepts we must be
familiar with. In this section, we will recap what happens when a Lambda function
executes and how it impacts latency, how to observe the latency and contributors to it,
and how to generate load to a function to get enough sample data.

10.2.1 How a Lambda function handles requests
To understand how to optimize functions, we need to have a shared understanding of
how Lambda goes about executing our functions. Let’s use an example to illustrate what
happens when a function is deployed. We’ll use the image-resizer-service application
from the Serverless Application Repository (http://mng.bz/WBy4) for reference. This
serverless application deploys a Lambda function (written in Node.js) and an API Gate-
way to your AWS account in the US East (N. Virginia)east-1 region that reads images
from a S3 bucket (whose name is defined at deployment) and serves them through the
API Gateway. The function uses the ImageMagick library to process the image. 

NOTE You need to specify a new bucket name for the application to use. Use
the name “image-resizer-service-demo” for this example. 

Once deployed, click the Test App button on the page, and it will take you to the
Applications list view on the Lambda console, where you’ll see the newly deployed
application. In figure 10.2 these are marked as (1) and (2), respectively.

To test the application, you need to navigate to the main function. Click the applica-
tion and on the detailed view (figure 10.3); click the image’s ResizeFunction (1) to
access the function. 

Figure 10.2 The Applications view shows all deployed services and applications.

http://mng.bz/WBy4


170 CHAPTER 10 Blackbelt Lambda

Once you select the function, you are taken to the Function Overview page (figure
10.4). Here you can test the function by selecting Test (1), but you need to configure
a sample event to supply to the function first (2).

Figure 10.3 Application detail view of the image resizer service

Figure 10.4 The Function Overview page lets you customize and execute the function.



171Before we get started

You can use the test event in listing 10.1 to test the function. However, first upload a
file from https://commons.wikimedia.org/wiki/File:Happy_smiley_face.png to the
image-resizer-service-demo bucket. If you chose to upload a different image, be sure
to change the object name in the key field in this listing. You need to do this so that
the function doesn’t error out looking for an object that doesn’t exist!

 {
"Records": [
  {
   "eventVersion": "2.0",
   "eventTime": "1970-01-01T00:00:00.000Z",
   "requestParameters": {
    "sourceIPAddress": "127.0.0.1"
   },
   "s3": {
    "configurationId": "testConfigRule",
    "object": {
     "eTag": "0123456789abcdef0123456789abcdef",
     "sequencer": "0A1B2C3D4E5F678901",
     "key": "Happy_smiley_face.png",
     "size": 1024
    },
    "bucket": {
     "arn": "arn:aws:s3::: image-resizer-service-demo ",
     "name": " image-resizer-service-demo ",
     "ownerIdentity": {
      "principalId": "EXAMPLE"
     }
    },
    "s3SchemaVersion": "1.0"
   },
   "responseElements": {
    "x-amz-id-2": "EXAMPLE123/5678abcdefghijklambdaisawesome/mnopqrstuv
    ➥ wxyzABCDEFGH",
    "x-amz-request-id": "EXAMPLE123456789"
   },
   "awsRegion": "us-east-1",
   "eventName": "ObjectCreated:Put",
   "userIdentity": {
    "principalId": "EXAMPLE"
   },
   "eventSource": "aws:s3"
  }
 ]
}

Invoke the function a few times to evaluate the behavior; we will use this function to
discuss the various optimizations that follow. When you invoke this function, there are
different layers in play—the Lambda compute substrate, the execution environment,
and the function code (figure 10.5). The substrate is invisible to you; the execution

Listing 10.1 Adding a sample event

https://commons.wikimedia.org/wiki/File:Happy_smiley_face.png


172 CHAPTER 10 Blackbelt Lambda

environment is instantiated on demand for scale events (like a burst of requests); the
function code is instantiated for every request.

 When the first request or event arrives for your function, the AWS Lambda service
performs a series of steps. Once the environment exists, Lambda runs the code inside
your function handler. Figure 10.6 shows the steps as follows:

1. Downloads your Lambda function Node.js code onto the part of the compute
substrate where your code will run.

2. Instantiates a new execution environment (size is based on your function allo-
cation) with a Node.js runtime.

3. Instantiates your nonfunction dependencies (in this case, ImageMagick).
4. Runs the parts of your function written outside the handler (we don’t have any

in this example).

Function code

Language 
runtime

Function 
execution 
environment

Compute
substrate Figure 10.5 Layers involved 

in executing a function

Instantiate
runtime and

dependencies
3

Download
function code 1

Instantiate new 
execution

environment
2

Instantiate 
nonhandler 

code
4

Cache execution
environment

Execute handler
code to

completion

Unassign
execution

environment

New
Invoke

Assign execution
environment to

request

Unassigned,
cached 

execution
environment?

No

Yes

Figure 10.6 The Lambda 
request lifecycle



173Before we get started

In our ResizeFunction example, when your function handler runs, it processes the
image and returns the image metadata. Lambda considers the function as done pro-
cessing the request when the handler logic (and any threads spawned from within the
function handler) finishes executing. When the request is complete, however, AWS
Lambda does not discard the execution environment (with the run time and code ini-
tialized). Instead, it caches the execution environment, where all processes inside the
execution environment are paused. AWS does not publish any official guidance on how
long the environment is retained in this state, but various published experiments
(https://www.usenix.org/conference/atc18/presentation/wang-liang) show this rang-
ing from 5 to 20 minutes. 

 When a subsequent request arrives during this time and a cached execution envi-
ronment is available, AWS Lambda will reuse that execution environment to service
the request. On the other hand, if a cached execution environment is not available,
AWS Lambda will repeat all the steps to serve the request. This has significant implica-
tions to both the performance of your function and how you write your function; we’ll
discuss this further later in this chapter. One important behavior to remember is that
AWS Lambda always runs only one request per execution environment. This means
that if all execution environments are processing requests and a new one comes in,
AWS Lambda will instantiate a new execution environment. 

10.2.2 Latency: Cold vs. warm
The latency incurred due to steps 1 through 4 in this example (figure 10.6) is referred
to commonly as the cold start penalty. We refer to the request latency for a request
incurring a cold start as cold latency, and we refer to the actual function execution
latency as the warm latency. As a reminder, you incur the cold start penalty only in two
situations. First, you’ll see cold starts if your function has never been invoked before
or is being invoked after an extended period (such that all cached execution environ-
ments are removed). Second, you’ll see cold starts if there is an increase in the incom-
ing request rate such that AWS Lambda needs to spawn new execution environments
because all available ones are servicing requests.

 For most production scenarios, cold starts impact less than 0.5% of requests, but
cold starts disproportionally impact functions that are invoked infrequently and func-
tions having a burst of traffic (specifically for the requests that first lead to the
increased traffic). Requests that experience cold starts may also experience timeouts
because the AWS Lambda timeout setting is applied to the total request latency.

10.2.3 Load generation on your function and application
As you go about optimizing your application, you want to do so at a load representative
of real-life usage. As you can see, your latency characteristics may vary based on load as
well. Serverless-artillery is a Nordstrom open source project. It builds on artillery.io and
serverless.com by using the horizontal scalability and pay-as-you-go nature of AWS
Lambda to instantly and inexpensively throw arbitrary load at your services and report
results to an InfluxDB time-series database (other reporting plugins are available). This

https://www.usenix.org/conference/atc18/presentation/wang-liang


174 CHAPTER 10 Blackbelt Lambda

capability gives you performance and load testing on every commit early in your CI/CD
pipeline, so performance bugs can be caught and fixed immediately. https://
github.com/Nordstrom/serverless-artillery-workshop presents a detailed walk through
on using and setting up the tool.

10.2.4 Tracking performance and availability

You can’t optimize what you can’t measure. Before you go about figuring out how to
reduce the latency and improve the availability of your serverless application, you
must have a consistent approach to monitor this information. AWS offers a variety of
both native and third-party tools for this task. To see what’s available, pick any of your
functions on the AWS Lambda console, click the function in the function list in the
AWS Lambda console, and navigate to the Monitor tab (figure 10.7). You’ll see three
tools available to you out of the box: CloudWatch metrics (1) on the selected page,
CloudWatch logs (2), and AWS X-Ray (3).

In this chapter, we’ll use CloudWatch metrics and X-Ray as the two primary tools to
observe the latency characteristics of the application.

CLOUDWATCH METRICS 
Each serverless service (like AWS Lambda and API Gateway) emits standard metrics
that help you understand the performance and availability characteristics. For
Lambda, AWS offers the following metrics among others:

 Invocations—Total number of requests received by the given function. This is
inclusive of all requests, independent of whether they were processed success-
fully, throttled, or resulted in an error. This also includes any requests that were
retried due to Lambda’s built-in retry policy (more on this later).

The Monitor tab has access to all the 
metrics and insights you will need. You’ll  
also be able to access relevant CloudWatch  
logs and X-Ray traces from here.

1

2 3

Figure 10.7 Monitoring tab for AWS Lambda functions showing three tools for monitoring

https://github.com/Nordstrom/serverless-artillery-workshop
https://github.com/Nordstrom/serverless-artillery-workshop
https://github.com/Nordstrom/serverless-artillery-workshop


175Before we get started

 Duration—Measures the elapsed wall clock time from when the function code
starts executing (because of an invocation) to when it stops executing. This is a
reasonable proxy for what your function will be billed, although not exact,
because AWS Lambda rounds your billed duration to the nearest 1 milliseconds.

 Errors—Measures the number of invocations that failed due to errors in the
function. Note that this does not measure errors due to problems in the AWS
Lambda service or due to throttling.

 Throttles—Measures the number of invocations that did not result in your func-
tion code executing because your function hit either its concurrency limit or
caused the account to hit its concurrency limit (1,000 concurrent executions is
the default limit but it can be raised by contacting AWS).

AWS X-RAY

AWS X-Ray is a service that allows you to detect, analyze, and optimize performance
issues with your AWS Lambda functions and trace requests across multiple services
within your serverless architecture. X-Ray generates traces for a sample of requests
that each function receives, where a trace consists of segments for each service that
the request traverses. A segment may further contain subsegments that detail what
particular aspect of the service added to the latency of the request. To turn on X-Ray,
you must enable Active tracing under the Monitoring and Operations tools on the
function’s Configuration tab. 

 As an example, figure 10.8 shows the trace for a simple sample application. You
can see the total time spent in Lambda (1), the time your function took to execute
(2), as well as the time spent in a cold start (3). X-Ray can be a useful tool to deter-
mine where the bottlenecks in your function execution are, including whether the
top contributor is a cold start.

1

2

3

AWS X-Ray is great for discovering performance 
issues and improving application performance. 
You get to see a lot of useful information to help 
you optimize your serverless applications.

Figure 10.8 X-Ray trace for a sample application



176 CHAPTER 10 Blackbelt Lambda

THIRD-PARTY TOOLS

There’s a growing ecosystem of non-AWS tools that can also be used for performance
and availability monitoring from well established companies like NewRelic (https://
newrelic.com/) and serverless-first companies like Epsagon (https://epsagon.com/).
We won’t dive deep into these tools in this chapter, but we encourage you to explore
all options and choose what works best for you from https://aws.amazon.com/
lambda/partners/ (the AWS Lambda partner page). 

10.3 Optimizing latency
You now have an understanding of what contributes to your application latency, how
to generate load to your application to observe the latency, and what tools to observe
the latency. In this section, we’ll discuss how to improve it. 

 Your best return on effort at optimizing latency is within individual functions. As
the core glue and logic component of your application, any changes made to the
function can have direct and immediate impacts to the latency that your customers
experience and to your overall application costs. For example, reducing function exe-
cution time by 10% reduces the cost of the function by 10%, which can be significant
at high scale. The decision on what percentile and number to optimize for is your
choice, depending on your customers. For example, if you are building a website, you
want your response time to be less than 2 seconds at the 99th percentile; if you are
running a backend API, you may be able to tolerate 10’s of seconds of response time
at the 99th percentile.

10.3.1 Minimize deployment artifact size

The size of your deployment package directly impacts your cold start penalty in two
ways. As a reminder, one of the steps that AWS Lambda undertakes on a “cold” invoke
is downloading your code (step 1 in figure 10.9). 

 The larger your function, the longer this step takes—it’s that simple! AWS Lambda
enforces a limit of 250 MB for your functions’ deployment package, so there’s a natural

A note on CloudWatch logs
As discussed in earlier chapters, CloudWatch logs capture any log activity specified
within a Lambda function. CloudWatch logs can also be used in two additional ways:

 As a data source for custom metrics—For example, you can emit data points for
the time spent within a specific method of your Lambda function and visualize
and alarm on that information as a custom metric in CloudWatch metrics.

 As a bridge to surface data to third-party tools—CloudWatch logs makes it
easy to send data to third-party tools like NewRelic, which in turn can provide
additional visualization and tracing. While Lambda does support the inclusion
of third-party agents directly via AWS Lambda Extensions, CloudWatch logs
remains an easy way to surface operational information to other services.

https://newrelic.com/
https://newrelic.com/
https://newrelic.com/
https://epsagon.com/
https://aws.amazon.com/lambda/partners/
https://aws.amazon.com/lambda/partners/
https://aws.amazon.com/lambda/partners/


177Optimizing latency

“worst case” impact for your deployment package. Second, for functions written in com-
piled languages like Java and C#, larger deployment packages with many dependencies
take longer to instantiate when there are many classes to load into the CLASSPATH. As
an example, a simple “hello world” on Java loads only 429 classes in the JVM in about
0.1 seconds, while doing the same “hello world” using Clojure loads 1,988 classes: three
times as much and taking about 1 second. 

 A best practice to follow is to audit any function dependencies. Are there any
heavyweight library dependencies that could be removed or lightweight versions that
can be used? Especially look for libraries that act as HTTP servers or agents; they have
no use inside Lambda functions because Lambda acts as the server for you. For exam-
ple, instead of using the default Java Spring library, you can use the streamlined
https://github.com/awslabs/aws-serverless-java-container library, which is approxi-
mately 30% faster in experiments. In our example, instead of packaging the entire
AWS SDK, you could include only the SDK required for accessing S3. You can audit
your dependencies for Node.js using tools like https://npm.anvaka.com/, for Python
using https://pypi.org/project/modulegraph/, or for Java using the Maven depen-
dency tree.

 Languages also offer specific tools to reduce deployment package sizes. For exam-
ple, you can use minify for Node.js (https://www.npmjs.com/package/node-minify)
to reduce the overall size of your Node.js function package. You can also use

Instantiate
runtime and

dependencies
3

Download
function code 1

Instantiate new 
execution

environment
2

Instantiate 
nonhandler

code
4

Cache execution
environment

Execute handler
code to

completion

Unassign
execution

environment

New
Invoke

Assign execution
environment to

request

Unassigned,
cached 

execution
environment?

No

Yes

Figure 10.9 Lambda execution request lifecycle

https://github.com/awslabs/aws-serverless-java-container
https://npm.anvaka.com/
https://pypi.org/project/modulegraph/
https://www.npmjs.com/package/node-minify


178 CHAPTER 10 Blackbelt Lambda

ProGuard (https://www.guardsquare.com/en/products/proguard) to reduce the
size of your Java deployment package (JAR files).

10.3.2 Allocate sufficient resources to your execution environment

Your code requires compute resources (CPU, memory) to run. AWS Lambda provides
a single dial to set the resources required by your function: the memory setting. You
can change this setting by opening a Lambda function in the AWS console, selecting
the Configuration tab, and then selecting Edit next to General Configuration. You
can then experiment with different memory allocations (1 in figure 10.10). You can
also set the same value via the API and CLI. 

AWS Lambda allocates CPU power proportional to the memory by using the same
ratio as a general-purpose Amazon EC2 instance type such as an M3 type. For exam-
ple, if you allocate 256 MB memory, your Lambda function will receive twice the CPU
share than if you allocate only 128 MB. You can update the configuration and request
additional memory in 64 MB increments from 128 MB to 10240 MB. This change is
not free: AWS Lambda pricing weights the billed duration for your function by its
memory setting: 1 second of function execution time at 1024 MB costs the same as 8
seconds of execution at 128 MB.

Around December of 2020, AWS Lambda began supporting 10,240 MB of 
memory (and 6 vCPUs) for new existing Lambda functions.

According to AWS, Lambda functions with 10 GB of memory and 6 vCPUs 
can be particularly useful for machine learning, modeling, genomics, as well 
as more traditional ETL and media-processing applications. 

1

Figure 10.10 In Edit Basic Settings, you can adjust the amount of memory allocated to the function.

https://www.guardsquare.com/en/products/proguard


179Optimizing latency

 Let’s experiment with the memory setting on the image-resizer-service function
you created so you can see the impact (if you haven’t, see section 10.2.1 earlier in this
chapter). Set the memory to 128 MB, 256 MB, 512 MB, and 1024 MB and run a few
test invokes using the console (we recommend at least 10). Now note the average exe-
cution time for those invocations from CloudWatch metrics. You should see results
similar to that in table 10.1. The estimated costs are based on AWS Lambda public
pricing for 1,000 requests to the function.

We see that increasing the memory in this case keeps the cost relatively flat, while
increasing the performance ~10x. You’ll typically see these kind of gains for CPU-
bound functions like image processing; more resources can help the function run
faster without changing the costs. For I/O-bound operations (such as those waiting
for a downstream service to respond), you’ll see no benefit in increasing the resource
allocation. For lightweight run times like Node.js and Go, you may be able to reduce
the setting to the lowest (128 MB); for run times like Java and C#, going lower than
256 MB can have detrimental effects to how the run time loads your function code.

 Finding the right resource allocation for your function requires some experimen-
tation. The easiest path is to start with a high setting and reduce it until you see a change
in performance characteristics. You can use the popular tuning tool at https://
github.com/alexcasalboni/aws-lambda-power-tuning to help estimate your function’s
resource usage.

10.3.3 Optimize function logic

AWS Lambda bills your usage based on the time your function starts executing to the
time it stops executing, not by CPU cycles spent or any other time-based metrics. This
implies that what your function does during that time is important. Consider the

Table 10.1 Estimated costs for 1,000 requests

Memory Duration Estimated cost for 1,000 requests

128 MB 11.722965s $0.024628

256 MB 6.678945s $0.028035

512 MB 3.194954s $0.026830 

1024 MB 1.465984s $0.024638

Resource allocation during cold starts
AWS Lambda respects the resource allocation while executing your function but will
attempt to “boost” the CPU available while loading and initializing your function
dependencies. This means that increasing the resource allocation will not really
make a difference to your cold starts.

https://github.com/alexcasalboni/aws-lambda-power-tuning
https://github.com/alexcasalboni/aws-lambda-power-tuning
https://github.com/alexcasalboni/aws-lambda-power-tuning


180 CHAPTER 10 Blackbelt Lambda

image-resizer-service function. When you are downloading the S3 object, your code is
simply waiting for S3 service to respond, and you are paying for that wait time. In this
function’s case, the time spent is negligible, but this wait time can get excessive for ser-
vices that have long response times (for example, waiting on an EC2 instance being
provisioned) or wait times (such as downloading a very large file). There are two
options to minimize this idle time:

 Minimize orchestration in code—Instead of waiting on an operation inside your
function, use AWS Step functions to separate the “before” and “after” logic as
two separate functions. For example, if you have logic that needs to run before
and after an API call is made, sequence them as two separate functions and use
an AWS Step function to orchestrate between them. 

 Use threads for I/O intensive operations—You can use multiple threads within a
Lambda function (if the programming language supports it), just like code run-
ning in any compute environment. However, unlike conventional programs,
the best use for multi-threading isn’t for parallelizing computations. This is
because Lambda does not allocate multiple cores to Lambda functions running
with memory less than 1.8 GB, so you need to allocate more resources to get the
parallelization benefit. Instead, you can use threads as a way to parallelize I/O
operations. For example, a Python version of the image_resizer function could
act on multiple functions by executing the S3 download on a separate thread to
thumbnailing.

By following these best practices, you can significantly reduce the latency (and cost!)
of your serverless application. Finally, let’s look at concurrency, and we’ll do that in
the following section.

10.4 Concurrency 
Another important concept to understand for AWS Lambda functions is concurrency.
Concurrency is the unit of scale for a Lambda function. Underneath the covers, it maps
to the number of execution environments assigned to requests. You can estimate the
concurrency of your function at any time with the following formula:

Concurrency = Requests per second (TPS) * Function duration

Using peak values will give you peak concurrency; using average values will give you
average concurrency. You can monitor the concurrency for any given function (and
for the overall account) using the ConcurrentExecutions CloudWatch metric. AWS
Lambda enforces two limits to the concurrency of a function: 

 There is an account-wide soft limit on the total concurrent executions of all functions within
the account. This is set by default to 1,000 at the time of writing, and it can be raised
to desired values through a support case. You can view the account-level setting
by using the GetAccountSettings API and viewing the AccountLimit object.



181Concurrency

 There is also an account-wide limit on the rate at which you can scale up your concurrent
executions. In larger AWS regions, you are allowed to scale instantly to 3,000 con-
current and then add 500 concurrent executions every subsequent minute; this
limit is lower in smaller regions. These limits may change, so be sure to refer to
the latest values listed in http://mng.bz/80PZ.

This makes it important to always estimate what your peak and average concurrency
needs will be, how quickly you’ll need to ramp up, and to file a request to raise limits
as needed. 

10.4.1 Correlation between requests, latency, and concurrency

For most functions, concurrency increases as a function of requests and function
duration, subject to the concurrency limits on the function and account. However, for
functions used to process stream data (Kinesis and DynamoDB streams), the concur-
rency is determined by the number of shards on the stream being processed. Given
that latency is determined by the function itself, this means for stream-processing
functions, you may see variable request rate or throughput. To put it another way, 

Effective processing rate = Effective concurrency / average duration (events 

➥ per second)

Consider a function that takes 1 second to process a stream with 5 shards and with a
batch size of 100. This means the maximum number of requests (each with 100
records) that the function can process would be 5, and the maximum number of
records processed at any given time would be 5 * 100 = 500. On the other hand, if the
same stream had 10 shards, the throughput would double as well.

10.4.2 Managing concurrency

AWS offers two settings for managing concurrency. The first one is the account level
concurrency limit that is enforced on the total concurrency across all functions within
your account. This limit is set to 1,000 by default and can be raised through a service
limit increase ticket: you cannot “self-service” this increase at the time of writing. The
second is a per function concurrency control, which you can use to control the con-
currency of an individual function. You only use the per function concurrency control
if you have a function that you want to “reserve” concurrency for or a function that
needs to be limited in its concurrency (because of a downstream resource). 

 For example, you may want to restrict how high a Lambda function scales because
it calls an API that can only handle a certain load. If this was left unchecked, then your
function could cause the downstream API to be overloaded, causing an availability for
your overall application. This makes monitoring concurrency and managing it an
important step to follow. You can learn more about the limits and the controls here:
http://mng.bz/v4mq.

http://mng.bz/80PZ
http://mng.bz/v4mq


182 CHAPTER 10 Blackbelt Lambda

Summary
 Serverless applications do not require conventional application performance

monitoring steps. Instead, optimizing the performance of your function code
gives you the most gain.

 Use the toolsets (like X-Ray) and configurations (like the memory setting) to
easily locate and optimize performance.

 Concurrency for Lambda functions can affect your function latency (and vice
versa), so ensure you monitor and manage it for your critical functions.



183

Emerging practices

The term serverless came about after AWS released the Lambda service back in 2014.
In that sense, the serverless paradigm (building applications using managed ser-
vices, including for all your compute needs) is something of a new kid on the
block.

 New paradigms give us new ways to look at problems and solve them differently,
perhaps more efficiently. This should be obvious by now as we have discussed sev-
eral serverless architectures in this book, and you must admit they look very differ-
ent than the equivalent serverful architectures; they are more event-driven, and
they often involve many different services working together.

 New paradigms also require us to think and work differently. For example,
instead of thinking about cost as a function of the size of a fleet of virtual machines
and how long you need them for, we need to think about cost in terms of request

This chapter covers
 Using multiple AWS accounts

 Using temporary stacks

 Avoiding keeping sensitive data in plain text in 
environment variables

 Using EventBridge in event-driven architectures



184 CHAPTER 11 Emerging practices

count and execution duration. The code we write and the way we deploy and monitor
our applications also need to change to take full advantage of this new paradigm and
mitigate some of its limitations.

 The following emerging practices are used by teams that have successfully adopted
serverless technologies in their organization. Many are useful outside of the context of
serverless, such as using multiple AWS accounts and using EventBridge in an event-
driven architecture. Although none of them are silver bullets (is anything?), they are
useful in the right contexts and are ideas worth considering.

11.1 Using multiple AWS accounts
Every AWS employee you speak to nowadays will tell you that you should have multiple
AWS accounts and manage them with AWS Organizations (https://aws.amazon
.com/organizations). At the minimum, you should have at least one AWS account per
environment. For larger organizations, you should go further and have at least one
AWS account per team per environment. There are many reasons why this is considered
a best practice—regardless of whether you’re working with serverless technologies—
including those discussed in the following sections.

11.1.1 Isolate security breaches

Imagine the nightmare scenario where an attacker has gained access into your AWS
environment and is then able to access and steal your users’ data. This nightmare sce-
nario can happen in many ways, and here are three that jump to mind right away:

 An EC2 instance is exposed publicly and the attacker is able to SSH into the instance
using brute force. Once inside, they can use the instance’s IAM role to access
other AWS resources.

 A misconfigured web application firewall (WAF) allows the attacker to execute a server-
side request forgery (SSRF) attack and trick the WAF to relay requests to the EC2 metadata
service. This allows the attacker to find out the temporary AWS credentials used
by the WAF server. From here, the attacker is able to access other AWS
resources in the account. This is what happened in the Capital One data breach
in 2019.

 An employee accidentally includes their AWS credentials in a Git commit in a public
GitHub repo. The attacker scans public GitHub repos for AWS credentials and
finds this commit. The attacker is then able to access all the AWS resources that
the employee had access to. AWS also scans public GitHub repos for active AWS
credentials and warns its customers when it finds them. But the damage is often
done already by the time the customer realizes it.

Using multiple accounts doesn’t stop these attack vectors, but it limits the blast radius
of a security breach to a single account (and hopefully not your production account!).

https://aws.amazon.com/organizations
https://aws.amazon.com/organizations
https://aws.amazon.com/organizations


185Using multiple AWS accounts

11.1.2 Eliminate contention for shared service limits

Throughout this book, we have talked about AWS service limits several times already.
As your organization and your system grow, more engineers need to work on the sys-
tem, and you will likely create more and more services that take care of specific
domains within the larger system (think microservices). As this happens, you will
likely run into those pesky service limits more frequently because there is more con-
tention for the shared-service limits. 

 It gets worse from here. Because service limits apply at the region level and affect
all the resources in a region, it means that one team or one service can exhaust all the
available throughput (for example, Lambda concurrent executions) in the region
and throttle everything else. 

 What’s more, if all the environments are run from the same AWS account, then
something happening in a non-production environment can also impact users in pro-
duction. For example, a load test in staging can consume too many Lambda concur-
rent executions so that users are not able to access your APIs in production because
those API functions are throttled.

 Having separate accounts for each team and each environment eliminates the con-
tention altogether. If a team makes mistakes or experiences a sudden traffic spike in
their services, the extra throughput they consume will not impact other services. Any
service limit-related throttling would be contained to that account and limit the blast
radius of these incidents. Equally, you can safely run load tests in non-production envi-
ronments knowing that they won’t affect your users in production.

 What if, within a team, the same contention exists between different services?
Maybe one of the team’s services handles much more traffic than the rest and occa-
sionally causes other services to be throttled. Well, then you want to move that service
into its own set of accounts of dev, test, staging, and production. This technique of
using AWS accounts as bulkheads to isolate and contain the blast radius can go as far
as you need. You don’t have to stop at one account per team per environment. Make
the techniques work for you, not the other way around.

11.1.3 Better cost monitoring

If everything runs from the same AWS account, then you will have a hard time attrib-
uting your AWS costs to different environments or teams or services. Having multiple
accounts lets you see the cost for those accounts easily.

11.1.4 Better autonomy for your teams

From a security and access control point of view, if each team has its own set of AWS
accounts, then you can afford to give them more autonomy and control of their own
AWS accounts. If everyone shares the same AWS account and that account is used for
both non-production as well as production environments, then the stakes are high.
Mistakes have a large blast radius and teams can accidentally delete or update other
teams’ resources, or even delete users’ data in production. That is why you need to be



186 CHAPTER 11 Emerging practices

careful in terms of managing access. It creates a lot of complexity and stress for whom-
ever must manage access (typically the security team or a cloud platform team).

 In my experience, the high stakes and complexity invite gatekeeping and create fric-
tion between the various disciplines. Feature teams often have to suffer delays as they
wait for an over-worked platform team to grant them the access they need. Resentment
builds and harmony erodes, and soon it becomes an “us versus them” situation.

 Giving every team their own AWS accounts limits the blast radius of any issues and
lowers the stakes. You can then afford to give your teams more autonomy within their
own accounts. The platform team/security team can instead focus on setting up
guardrails and governance infrastructure so they can identify problems quickly. And
they should work with the feature teams to ensure they follow organizational best
practices and meet your security requirements.

11.1.5 Infrastructure-as-code for AWS Organizations

Having multiple AWS accounts means you need to have some way to manage them,
especially as you scale your organization. The number of AWS accounts can grow, and
as more engineers join the organization, it becomes more important to have strong
governance and oversight of your AWS environment.

 One of the shortcomings of AWS Organizations is that you can’t update the config-
urations of your organization using infrastructure as code (IaC). For example, Cloud-
Formation is a regional service and is limited to provisioning resources within a single
account and region. At the time of writing, the only tool that allows you to apply IaC
to AWS Organizations is org-formation (https://github.com/org-formation/org
-formation-cli). It’s an open source tool that lets you capture the configuration of your
AWS accounts and the entire AWS organization using IaC. I have used it with several
projects and I can’t recommend it highly enough! 

 A topic related to using multiple AWS accounts is the use of temporary Cloud-
Formation stacks for temporary environments, such as those for feature branches or
to carry out end-to-end (e2e) tests. We discuss temporary stacks next.

11.2 Using temporary stacks
One of the benefits of serverless technologies is that you pay for them only when peo-
ple use your application. When your code is not running, you aren’t charged. Com-
bine this with the fact that it’s easy to deploy a serverless application using tools such
as the Serverless Framework. Because it’s so easy to create new environments and
there is no uptime cost for having these environments, many teams create temporary
environments for when they work on feature branches or to run their e2e tests.

11.2.1 Common AWS account structure

It’s common for teams to have multiple AWS accounts, one for each environment.
Though there doesn’t seem to be a consensus on how to use these environments, we
tend to follow these conventions:

https://github.com/org-formation/org-formation-cli
https://github.com/org-formation/org-formation-cli
https://github.com/org-formation/org-formation-cli


187Using temporary stacks

 The dev environment is shared by the team. This is where the latest development
changes are deployed to and tested end to end. This environment is unstable by
nature and shouldn’t be used by other teams.

 The test environment is where other teams can integrate with your team’s work. This envi-
ronment should be stable so it doesn’t slow down other teams.

 The staging environment should closely resemble the production environment and may
often contain dumps of production data. This is where you can stress test your
release candidate in a production-like environment.

 And then there’s the production environment.

As discussed earlier in this chapter, it’s best practice to have multiple AWS accounts—
at least one account per team per environment. In the dev account, you can also have
more than one environment—one for each developer or each feature branch.

11.2.2 Use temporary stacks for feature branches

When we start work on a new feature, we still feel our way toward the best solution for
the problem. The codebase is unstable and many bugs haven’t been ironed out yet.
Deploying our half-baked changes to the dev environment can be quite disruptive:

 It risks destabilizing the team’s shared environment.
 It overwrites other features the team is working on.
 Team members may fight over who gets to deploy their feature branch to the

shared environment.

Instead, we can deploy the feature branch to a temporary environment. Using the
Serverless Framework is as easy as running the command sls deploy -s my-feature,
where my-feature is both the name of the environment and the name of the Cloud-
Formation stack. This deploys all the Lambda functions, API Gateway, and any other
related resources such as DynamoDB tables in their own CloudFormation stack. We
are able to test our work-in-progress feature in an AWS account without affecting
other team members’ work. 

 Having these temporary CloudFormation stacks for each feature branch has negli-
gible cost overhead. When the developer is done with the feature, the temporary stack
can be easily removed by running the command sls remove -s my-feature. However,
because these temporary stacks are an extension of your feature branch, they exhibit the
same problems when you have long-lived feature branches. Namely, they get out of sync
with other systems they need to integrate with. This applies to the incoming events that
trigger your Lambda functions (such as the payloads from SQS/SNS/Kinesis), as well
as data your function depends on (such as the data schema in DynamoDB tables). We
find teams that use serverless technologies tend to move faster, which makes the prob-
lems with long-lived feature branches more prominent and noticeable.

 As a rule of thumb, don’t leave feature branches hanging around for more than a
week. If the work is large and takes longer to implement, then break it up into smaller



188 CHAPTER 11 Emerging practices

features. When you’re working on a feature branch, you should also integrate from
the main development branch regularly—no less than once per day.

11.2.3 Use temporary stacks for e2e tests

Another common use of temporary CloudFormation stacks is for running e2e tests.
One of the common problems with these tests is that you need to insert test data into
a shared AWS environment. Over time, this adds a lot of junk data in those environ-
ments and can make it difficult for other team members. For example, testers often
have to do manual tests on the mobile or web app, and all the test data left by your
automated tests can create confusion and make their job more difficult than it needs
to be. As a rule of thumb, we always do the following:

 Insert the data a test case needs before the test.
 Delete the data after the test finishes.

Using the Jest (https://jestjs.io) JavaScript framework, you can capture the before
and after steps as part of your test suite. They help keep our tests robust and self-
contained because they don’t implicitly rely on data to exist. They also help reduce
the amount of junk data in the shared dev environment.

 But despite our best intentions, mistakes happen, and sometimes we deliberately
cut corners to gain agility in the short term. Over time, these shared environments still
end up with tons of test data. As a countermeasure, many teams employ cron jobs to
wipe these environments from time to time.

 An emerging practice to combat these challenges is to create a temporary Cloud-
Formation stack during the CI/CD pipeline. The temporary stack is used to run the e2e
tests and destroyed afterwards. This way, there is no need to clean up test data, either
as part of your test fixture or with cron jobs. The drawbacks include the following:

 The CI/CD pipeline takes longer to run.
 You still leave test data in external systems, so it’s not a complete solution.

You should weigh the benefits of this approach against the delay it adds to your
CI/CD pipeline. Personally, we think it’s a great approach, and we see more teams
starting to adopt it. To make CI/CD pipelines go faster, some teams keep a number of
these temporary stacks around and reuse them in a round-robin fashion. This way, you
still enjoy the benefit of being able to run e2e tests against a temporary environment
but shorten the time it takes to deploy the temporary environment (updating an exist-
ing CloudFormation stack is significantly faster than creating a new stack).

11.3 Avoid sensitive data in plain text in environment variables
One common mistake we have seen for both serverful and serverless applications is that
sensitive data (such as API keys and credentials) is left in plain text in environment vari-
ables. When it comes to security, serverless applications are more secure because AWS
takes care of the security of the operational environment of our application. This

https://jestjs.io


189Avoid sensitive data in plain text in environment variables

includes securing the virtual machines our code runs on as well as their network con-
figurations, and it includes the security of the operating system itself.

 Our Lambda functions run on bare-metal EC2 instances that AWS manages, and
the EC2 instances reside in AWS-managed VPCs. There’s no easy way for an attacker to
find out information about the virtual machine itself, and there’s no way for attackers
to SSH into these virtual machines.

 The operating systems are constantly updated and patched with the latest security
patches, sometimes before the patch is even available to the general public. Such was
the case during the Meltdown and Spectre debacle when all EC2 instances behind
Lambda and Fargate were quickly patched against the vulnerabilities long before the
rest of us were able to patch our container and EC2 images. Having AWS manage the
operational environment of our code removes a huge class of attack vectors from our
plate, but we are still responsible for the security of our application and its data.

11.3.1 Attackers can still get in

Even though the operational environment of our code is secured by AWS, it’s still pos-
sible for attackers to get inside the execution environment of our functions via other
means, including the following:

 Attacker successfully executes a code injection attack. For example, if your application
or any of its dependencies use JavaScript’s eval() function against a piece of
user input, then you’re vulnerable to these attacks.

 Attacker compromises one of your dependencies and publishes a malicious version of the
dependency that steals information from your application at run time. Remember that
time when a security researcher gained publish access to 14% of NPM packages
(http://mng.bz/N4PN)? Or that time an attacker compromised the NPM
account for one of EsLint’s maintainers and published a malicious version of
eslint-scope and eslint-config-eslint (http://mng.bz/DKPn)?

 Attacker publishes a malicious NPM package with similar names to popular NPM pack-
ages and steals information from your application on initialization. An example is the
time when an attacker published a malicious package called crossenv using the
popular NPM package cross-env as bait (http://mng.bz/l9d6).

Once inside, attackers often steal information from common, easily accessible places
such as environment variables. This is why it’s so important that we avoid putting sen-
sitive data in plain text in environment variables.

11.3.2 Handle sensitive data securely

Sensitive data should be encrypted both in transit and at rest. This means it should be
stored in an encrypted form; within AWS, you can use both the SSM Parameter Store
and the Secrets Manager to store it. Both services support encryption at rest, integrate
directly with AWS Key Management Service (KMS), and allow you to use Customer
Managed Keys (CMKs). The same encrypted at-rest principle should be applied to

http://mng.bz/N4PN
http://mng.bz/DKPn
http://mng.bz/l9d6


190 CHAPTER 11 Emerging practices

how sensitive data is stored in your application. There are multiple ways to achieve
this; for example:

 Store the sensitive data in encrypted form in environment variables and decrypt
it using KMS during cold start.

 Keep the sensitive data in SSM Parameter Store or Secrets Manager, and during
the Lambda function cold start, fetch it from SSM Parameter Store/Secrets
Manager.

Once decrypted, the data can be kept in an application variable or closure where it
can be easily accessed by your code. The important thing is that sensitive data should
never be placed back into the environment variables in unencrypted form. Our per-
sonal preference is to fetch sensitive data from the SSM Parameter Store/Secrets Man-
ager during cold start. We would use middy’s SSM middleware (https://github.com/
middyjs/middy/tree/main/packages/ssm) to inject the decrypted data into the
context variable and cache it for some time.

 This way, we can rotate these secrets at the source without having to redeploy the
application. Once the cache expires, the middleware fetches the new values on the
next Lambda invocation. It also makes it easier to manage shared secrets where multi-
ple services need to access the same secret. Finally, this approach allows more granu-
lar control of permissions because the Lambda function requires permissions to
access the secrets in SSM Parameter Store/Secrets Manager.

 There are other variants of these two approaches; for example, instead of storing
encrypted secrets in environment variables, you can store them in an encrypted file
that is deployed as part of the application. During Lambda cold start, this file is
decrypted with KMS, and the secrets it contains are then extracted and stored away
from the environment variables.

11.4 Use EventBridge in event-driven architectures
Amazon SNS and SQS have long been the go-to option for AWS developers when it
comes to service integration. However, since its rebranding, Amazon EventBridge
(formerly Amazon CloudWatch Events) has become a popular alternative, and I
would argue that it’s actually a much better option as the event bus in an event-driven
architecture.

11.4.1 Content-based filtering

SNS lets you filter messages via filtering policies. But you can’t filter messages by their
content, you can only filter by message attributes, and you can only have up to 10 attri-
butes per message. If you require content-based filtering, then it has to be done in
code. EventBridge, on the other hand, supports content-based filtering and lets you
pattern match against an event’s content. In addition, it supports advanced filtering
rules such as these:

https://github.com/middyjs/middy/tree/main/packages/ssm
https://github.com/middyjs/middy/tree/main/packages/ssm
https://github.com/middyjs/middy/tree/main/packages/ssm


191Use EventBridge in event-driven architectures

 Numeric comparison
 Prefix matching
 IP address matching
 Existence matching
 Anything-but matching

NOTE Check out the blog post at http://mng.bz/B1w0 on EventBridge’s
content-based filtering for more details on these advanced rules.

In an event-driven architecture, it’s often desirable to have a centralized event bus. It
makes it easy for subsystems to subscribe to events triggered by any other subsystem
and for you to create an archive that captures everything happening in the whole
application (for both audit and replay purposes).

 With content-based filtering, it’s possible to have a centralized event bus in Event-
Bridge. Subscribers can freely subscribe to the exact events they want without having
to negotiate with the event publishers on what attributes to include. This is usually not
feasible with SNS, and you have to use multiple SNS topics.

11.4.2 Schema discovery

A common challenge with event-driven architectures is identifying and versioning
event schemas. EventBridge deals with this challenge with its schema registry and pro-
vides a built-in mechanism for schema discovery.

 EventBridge captures a wide range of events from AWS services (such as when an
EC2 instance’s state has changed) in the default event bus. It provides the schema for
these AWS events in the default schema registry. You also can enable schema discovery
on any event bus, and EventBridge samples the ingested events and generates and ver-
sions schema definitions for these events.

 If you’re programmatically generating schema definitions for your application
events already, then you can also create a custom schema registry and publish your
schema definitions there as part of your CI/CD pipeline. That way, your developers
always have an up-to-date list of the events in circulation and what information they
can find on these events.

 Open-source tools such as the evb-cli (https://www.npmjs.com/package/
@mhlabs/evb-cli) even let you generate EventBridge patterns using the schema defi-
nitions in a schema registry. This is handy, especially if you’re new to EventBridge’s
pattern language!

11.4.3 Archive and replay events

Another common requirement for event-driven architectures is to be able to archive
the ingested events and replay them later. The archive requirement is often part of a
larger set of audit or compliance requirements and is therefore a must-have in many
systems. Luckily, EventBridge offers archive and replay capabilities out of the box.
When you create an archive, you can configure the retention period, which can be set

http://mng.bz/B1w0
https://www.npmjs.com/package/@mhlabs/evb-cli
https://www.npmjs.com/package/@mhlabs/evb-cli
https://www.npmjs.com/package/@mhlabs/evb-cli


192 CHAPTER 11 Emerging practices

to indefinite. You can optionally configure a filter so that only matching events are
included in the archive.

 When you need to replay events from the archive, you can choose a start and end
time so that only the events captured in the specified time range will be replayed. One
thing to keep in mind about event replays is that EventBridge does not preserve the
original order of the events as they were received. Instead, EventBridge looks to replay
these events as quickly as possible, which means you can expect a lot of concurrency
and that most events will be replayed out of sequence.

 If ordering is important to you when replaying events, then you should check out
the evb-cli project mentioned earlier. Its evb replay command supports paced
replays, which retains the ordering of events and lets you control how quickly events
are replayed. For example, using a replay speed of 100 replays events in real time
means replaying an hour’s worth of events would take an hour.

11.4.4 More targets
Whereas SNS supports a handful of targets (such as HTTP, Email, SQS, Lambda, and
SMS), EventBridge supports more than 15 AWS services (including SNS, SQS, Kinesis,
and Lambda), and you can forward events to another EventBridge bus in another
account.

 This extensive reach helps to remove a lot of unnecessary glue code. For example,
to start a Step Functions state machine, you would have needed a Lambda function
between SNS and Step Functions. With EventBridge, you can connect the rule to the
state machine directly.

11.4.5 Topology
There are different ways to arrange event buses in EventBridge. For example, you can
have a centralized event bus, every service can publish events to their own event bus,
or maybe you have a few domain-specific event buses that are shared by related ser-
vices. There is no clear consensus on which approach is the best because everyone’s
context is different, and each approach has its pros and cons. However, we personally
favor the centralized event bus approach because it has some great advantages includ-
ing the following:

 You can implement an archive and a schema registry in one place.
 You can manage access and permissions in one place.
 All the events you need are available in one event bus.
 There are fewer resources to manage.

But it also has some shortcomings that you need to consider:

 There is a single point of failure. Having said that, EventBridge is already highly
available, and the infrastructure that ingests, filters, and forwards events to con-
figured targets is distributed across multiple availability zones.

 Service teams have less autonomy as they all depend on the centralized event
bus.



193Summary

There is also the question of AWS account topology. That is, which account do you
deploy the event bus to if a given environment consists of multiple AWS accounts
(such as when you have one account per team)? Should you deploy the centralized
event bus in its own account or in the account that perhaps make the most sense?
That is a wider topic that is outside the scope of this chapter, but I recommend you
check this re:Invent 2020 session by Stephen Liedig: https://www.youtube.com/
watch?v=Wk0FoXTUEjo. It goes into detail about the different configurations and the
pros and cons of each.

Summary
And that’s it for a list of emerging practices that you should seriously consider adopt-
ing in your projects. We call these emerging practices because they are not adopted ubiq-
uitously but are gaining traction in the AWS community. As the AWS ecosystem and
serverless technologies develop and mature, more practices emerge and take root. It’s
worth remembering that no practice should be considered best in its own right, and
you must always consider the context and environment a practice is applied in.

 As technology and your organization change, your context changes too. Many of the
things that you might once consider as best practice can easily become anti-patterns.
For example, monorepos work great when you are a small team, but by the time you
grow to hundreds or perhaps thousands of engineers, monorepos present many chal-
lenges that require complex solutions to address. 

 The same goes for how we build, test, deploy, and operate software. What worked
great in private data centers and server farms might not translate well to the cloud.
And practices that serve us well when we have to manage both the infrastructure our
code runs on as well as the code itself might work against us as we build applications
with serverless technologies.

 Best practices and design patterns should be the start of the conversation, not the
end. After all, these so-called best practices and design patterns are collective docu-
mentations of things that others have done that worked for them to some degree at
some time. There’s no guarantee that they’ll work for you today. And it’s easy to see
parallels from other industries. For example, did you know that lobotomies were part
of mainstream mental healthcare from 1930s to 1950s before they were outlawed in
the 1970s and considered outright barbaric by today’s standards?

https://www.youtube.com/watch?v=Wk0FoXTUEjo
https://www.youtube.com/watch?v=Wk0FoXTUEjo
https://www.youtube.com/watch?v=Wk0FoXTUEjo




195

appendix A
Services for your

 serverless architecture

AWS is a giant playground of different services and products you can use to build
serverless applications. Lambda is a key service that we discussed in this book, but
other services and products can be just as useful, if not crucial, for solving certain
problems. There are many excellent non-AWS products too, so don’t feel obligated
to use only what Amazon has to offer. Have a look at the offerings from Microsoft
and Google too. The following sections provide a sample of services that we’ve
found useful. You can use this appendix as a guide to various services and products
we’ll discuss throughout the book.

A.1 API Gateway
The Amazon API Gateway is a service that you can use to create an API layer
between the frontend and backend services. The lifecycle management of the API
Gateway allows multiple versions of the API to be run at the same time, and it sup-
ports multiple release stages such as development, staging, and production. API
Gateway also comes with useful features like caching and throttling requests.

 The API is defined around resources and methods. A resource is a logical entity
such as a user or product. A method is a combination of an HTTP verb (such as GET,
POST, PUT, or DELETE) and the resource path. API Gateway integrates with
Lambda and other AWS services. It can be used as a proxy service and forward
requests to regular HTTP endpoints.

A.2 Simple Notification Service (SNS)
Amazon Simple Notification Service (SNS) is a scalable pub/sub service designed
to deliver messages. Producers or publishers create and send messages to a topic.
Subscribers or consumers subscribe to a topic and receive messages over one of the



196 APPENDIX A Services for your serverless architecture

supported protocols. SNS stores messages across multiple servers and data centers for
redundancy and guarantees at-least-once delivery. At-least-once delivery stipulates that
a message will be delivered at least once to a subscriber, but on rare occasions, due to
the distributed nature of SNS, it may be delivered multiple times.

 In cases where a message can’t be delivered by SNS to HTTP endpoints, it can be
configured to retry deliveries at a later time. SNS can also retry failed deliveries to
Lambda when throttling is applied. SNS supports message payloads of up to 256 KB.

A.3 Simple Storage Service (S3) 
Simple Storage Service (S3) is Amazon’s scalable storage solution. Data in S3 is stored
redundantly across multiple facilities and servers. The event notifications system
allows S3 to send events to SNS, SQS, or Lambda when objects are created or deleted.
S3 is secure, by default, with only owners having access to the resources they create,
but it’s possible to set more granular and flexible access permissions using access con-
trol lists and bucket policies.

 S3 uses the concept of buckets and objects. Buckets are high-level directories or
containers for objects. Objects are a combination of data, metadata, and a key. A key is a
unique identifier for an object in a bucket. 

 S3 also supports the concept of a folder as a means of grouping objects in the S3
console. Folders work by using key name prefixes. A forward slash character (/) in the
key name delineates a folder. For example, an object with the key name documents/
personal/myfile.txt is represented as a folder called documents, containing a folder
called personal, containing the file myfile.txt in the S3 console.

A.4 Simple Queue Service (SQS)
Simple Queue Service (SQS) is Amazon’s distributed and fault-tolerant queuing ser-
vice. It ensures at-least-once delivery of messages similar to SNS and supports message
payloads of up to 256 KB. SQS allows multiple publishers and consumers to interact
with the same queue, and it has a built-in message lifecycle that automatically expires
and deletes messages after a preset retention period. As with most AWS products,
there are access controls to help control access to the queue. SQS integrates with SNS
to automatically receive and queue messages.

A.5 Simple Email Service (SES)
Simple Email Service (SES) is a service designed to send and receive email. SES han-
dles email-receiving operations such as scanning for spam and viruses and rejection of
email from untrusted sources. Incoming email can be delivered to an S3 bucket or
used to invoke a Lambda notification, or create an SNS notification. These actions
can be configured as part of the receipt rule, which tells SES what to do with the email
once it arrives.

 Sending emails with SES is straightforward, but there are limits that are in place to
regulate the rate and the number of messages sent. SES automatically increases the
quota as long as high-quality email, and not spam, is sent.



197APPENDIX A Services for your serverless architecture

A.6 Relational Database Service (RDS)
Amazon Relational Database Service (RDS) is a web service that helps with the setup
and operation of a relational database in the AWS infrastructure. RDS supports the
Amazon Aurora, MySQL, MariaDB, Oracle, MS-SQL, and PostgreSQL database
engines. It takes care of routine tasks such as provisioning, backup, patching, recovery,
repair, and failure detection. Monitoring and metrics, database snapshots, and multiple
availability zone (AZ) support are provided out of the box. RDS uses SNS to deliver noti-
fications when an event occurs. This makes it easy to respond to database events such
as creation, deletion, failover, recovery, and restoration when they happen.

A.7 DynamoDB
DynamoDB is Amazon’s NoSQL database. Tables, items, and attributes are Dynamo’s
main concepts. A table stores a collection of items. An item is made up of a collection of
attributes. Each attribute is a simple piece of data such as a person’s name or phone
number. Every item is uniquely identifiable. Lambda integrates with DynamoDB
tables and can be triggered by a table update. Global tables is a notable feature of
Dynamo that seamlessly replicates tables across different AWS regions and resolves any
data conflicts (using “last writer wins” reconciliation to handle concurrent updates). It
makes DynamoDB a good database for scalable, global applications. Finally, an in-
memory cache (DAX) is available for DynamoDB. It shortens the response time but
comes at a price.

A.8 Algolia
Algolia is a (non-AWS) managed search engine API. It can search through semi-
structured data and has APIs to allow developers to integrate search directly into their
websites and mobile applications. One of Algolia’s outstanding capabilities is its speed.
Algolia can distribute and synchronize data across 15 regions around the world and
direct queries to the closest data center. 

 Algolia has a concept of indices (“. . . an entity where you import the data you want
to search . . . analogous to a table within a database . . .”), records (“. . . a JSON schema-
less object that you want to be searchable . . .”) and operations (which are essentially
atomic actions such as update or delete). These concepts are straightforward and
make Algolia one of the easier search platforms to use. Paid plans begin from about
$35 per month but can quickly grow in cost, depending on the number of records and
operations performed by your application and users.

A.9 Media Services
AWS Media Services is a new product designed for developers to build video work-
flows. Media Services consist of the following products:

 MediaConvert is designed to transcode between different video formats at scale.
 MediaLive is a live video-processing service. It takes a live video source and com-

presses it into smaller versions for distribution.



198 APPENDIX A Services for your serverless architecture

 MediaPackage enables developers to implement video features such as pause
and rewind. It can also be used to add Digital Right Management (DRM) to
content.

 MediaStore is a storage service optimized for media. Its aim is to provide a low-
latency storage system for live and on-demand video content.

 MediaTailor enables developers to insert individually targeted ads in to the
video stream.

Media Services provide an advanced suite of services that are superior to Elastic
Transcoder. Nevertheless, Elastic Transcoder has a few features (such as the ability to
create WebM files and animated GIFs) that Media Services is missing.

A.10 Kinesis Streams
Kinesis Streams is a service for real-time processing of streaming big data. It’s typically
used for quick log and data intake, metrics, analytics, and reporting. It’s different
from SQS in that Amazon recommends that Kinesis Streams be used primarily for
streaming big data, whereas SQS is used as a reliable hosted queue, especially if more
fine-grained control over messages such as visibility timeouts or individual delays is
required. 

 In Kinesis Streams, shards specify the throughput capacity of a stream. The number
of shards needs to be stipulated when the stream is created, but resharding is possible
if throughput needs to be increased or reduced. In comparison, SQS makes scaling
much more transparent. Lambda can integrate with Kinesis to read batches of records
from a stream as soon as they’re detected.

A.11 Athena
AWS bills Athena as a serverless interactive query service. Essentially, this service allows
you to query data placed into S3 using standard SQL. In a lot of cases, there’s no need
to run ETL (extract, transform, and load) jobs to transform your data before querying
can take place (although you can combine Athena with AWS Glue if you needed to
transform your data a certain way). As a user, you upload data to S3, prepare a
schema, and begin querying almost immediately. 

A.12 AppSync
AppSync is billed as allowing developers to create “ . . . data driven apps with real-time
and offline capabilities.” In reality, AppSync is a managed GraphQL endpoint pro-
vided by AWS. It integrates with DynamoDB, Lambda, and Amazon Elasticsearch. If
you are familiar with GraphQL and GraphQL schemas, you can get started with
AppSync straight away. If you are not familiar with GraphQL, we recommend doing a
bit of reading beforehand (http://graphql.org/learn/). GraphQL has certainly been
finding its share of acclaim over the past few years, particularly among adopters of
serverless technologies.

http://graphql.org/learn/


199APPENDIX A Services for your serverless architecture

A.13 Cognito
Amazon Cognito is an identity management service. It integrates with public identity
providers such as Google, Facebook, Twitter, and Amazon or with your own system.
Cognito supports user pools, which allow you to create your own user directory. This
lets you register and authenticate users without having to run a separate user database
and authentication service. Cognito supports synchronization of user application data
across different devices and has offline support that allows mobile devices to function
even when there’s no internet access.

A.14 Auth0
Auth0 (recently acquired by Okta) is a non-AWS identity management product that
has a few features that Cognito doesn’t. Auth0 integrates with more than 30 identity
providers including Google, Facebook, Twitter, Amazon, LinkedIn, and Windows
Live. It provides a way to register new users through the use of its own user database,
without having to integrate with an identity provider. In addition, it has a facility to
import users from other databases. As expected, Auth0 supports standard industry
protocols including SAML, OpenID Connect, OAuth 2.0, OAuth 1.0, and JSON Web
Token (JWT). It’s simple to integrate with AWS Identity, Access Management, and
Cognito.

A.15 Other services
The list of services provided in this section is a short sample of the different products
you can use to build your application. There are many more services, including those
provided by large cloud-focused companies such as Google and Microsoft and smaller,
independent companies like Auth0. There are also auxiliary services that you need to
be aware of. These can help you be more efficient and build software faster, improve
performance, or achieve other goals. When building software, consider the following
products and services: 

 Content Delivery Networks (CloudFront, CloudFlare)
 DNS management (Route 53) 
 Caching (ElastiCache)
 Source control (GitHub, GitLab) 
 Continuous integration and deployment (GitHub Actions)

For every service suggestion, you can find alternatives that may be just as good or even
better, depending on your circumstances. We urge you to do more research and
explore the various services that are currently available. 



200

appendix B
Setting up your cloud

Most of the architecture described in this book is built on top of AWS. This means
you need a clear understanding of AWS from the perspectives of security, alerting,
and costs. It doesn’t matter whether you use Lambda alone or have a large mix of
services. Being able to configure security, knowing how to set up alerts, and con-
trolling cost are important. This appendix is designed so that you can understand
these concerns and learn where to look for important information in AWS. 

 AWS security is a complex subject, but this appendix gives you an overview of
the difference between users and roles and shows you how to create policies. This
information is needed to configure a system in which services can communicate
effectively and securely. Some of the time, you will not need to create or configure
policies directly; tools like Serverless framework will do it for you. But it’s still
important to understand how the pieces fit together and where to look for help if
things go wrong. 

 Cost is an important consideration when using a platform such as AWS and
implementing serverless architecture. It’s essential to understand the cost calcula-
tion of the services you’re going to use. This is useful not only for avoiding bill
shock but also for predicting next month’s bill and beyond. We look at estimating
the cost of services and discuss strategies for tracking costs and keeping them
under control. This appendix is not an exhaustive guide to AWS. If you have fur-
ther questions after reading this appendix, take a look at AWS documentation
(https://aws.amazon.com/documentation).

B.1 Security model and identity management
In chapter 2, you created an Identity and Access Management (IAM) user and a
number of roles in order to use Lambda, S3, and MediaConvert. In this section,
you’ll take your new-found knowledge and develop it further by learning about
users, groups, roles, and policies in more detail. 

https://aws.amazon.com/documentation


201APPENDIX B Setting up your cloud

B.1.1 Creating and managing IAM users
As you’ll recall, an IAM user is an entity in AWS that identifies a human user, an appli-
cation, or a service. A user normally has a set of credentials and permissions that can
be used to access resources and services across AWS.

 An IAM user typically has a friendly name to help you identify the user and an
Amazon Resource Name (ARN) that uniquely identifies it across AWS. Figure B.1
shows a summary page and an ARN for a fictional user named Alfred. You can get to
this summary in the AWS console by clicking IAM, clicking Users in the navigation
pane, and then clicking the name of the user you want to view.

You can create IAM users to represent human users, applications, or services. IAM
users created to work on behalf of an application or a service sometimes are referred
to as service accounts. These types of IAM users can access AWS service APIs using an
access key. An access key for an IAM user can be generated when the user is initially
created, or you can create it later by clicking Users in the IAM console, clicking the
required user name, selecting Security Credentials, and then clicking the Create
Access Key button.

 The two components of an access key are the Access Key ID and the Secret Access
Key. The Access Key ID can be shared publicly, but the Secret Access Key must be kept
hidden. If the Secret Access Key is revealed, the whole key must be immediately invali-
dated and recreated. An IAM user can have, at most, two active access keys.

 If an IAM user is created for a real person, then that user should be assigned a
password. This password allows a human user to log into the AWS console and use ser-
vices and APIs directly. To create a password for an IAM user, follow these steps:

1. In the IAM console, click Users in the navigation pane.
2. Click the required username to open the user’s settings. 
3. Click the Security Credentials tab and then click Manage next to Console pass-

word (figure B.2).

The ARN of the user Alfred

Figure B.1 The IAM console shows metadata such as the ARN, groups, and creation time 
for every IAM user in your account.



202 APPENDIX B Setting up your cloud

4. In the popup, choose whether to enable or disable console access, type in a new
custom password, or let the system autogenerate one. You can also force the
user to create a new password at the next sign-in (figure B.3).

The Manage option is 
available for any IAM user. 
Users with passwords can 
log into the AWS Console. 

Figure B.2 IAM users have a number of options including being able to set a password, change 
access keys, and enable multifactor authentication.

Asking the user to set a new password is good practice, 
as long as a good password policy is established.

Figure B.3 Make sure to create a good password policy with a high degree of complexity if you allow 
users to log into the AWS console. Password policy can be set up in Account Settings of the IAM console.



203APPENDIX B Setting up your cloud

After a user is assigned a password, they can log into the AWS console by navigating to
https://<Account-ID>.signin.aws.amazon.com/console. To get the account ID, click
Support in the upper-right navigation bar, and then click Support Center. The
account ID (or account number) is shown at the top of the console. You may want to
set up an alias for the account ID also so that your users don’t have to remember it
(for more information about aliases, see http://amzn.to/1MgvWvf). 

B.1.2 Groups
Groups represent a collection of IAM users. They provide an easy way to specify per-
missions for multiple users at once. For example, you may want to create a group for
developers or testers in your organization or have a group called Lambda to allow all
members of that group to execute Lambda functions. Amazon recommends using
groups to assign permissions to IAM users rather than defining permissions individu-
ally. Any user who joins a group inherits permissions assigned to the group. Similarly,
if a user leaves a group, the group’s permissions are removed from the user. Further-
more, groups can contain only users, not other groups or entities such as roles.

B.1.3 Roles
A role is a set of permissions that a user, application, or a service can assume for a
period of time. A role is not uniquely coupled to a specific user, nor does it have asso-
ciated credentials such as passwords or access keys. It’s designed to grant permissions
to a user or a service that typically doesn’t have access to the required resource.

Multi-factor authentication
Multi-factor authentication (MFA) adds another layer of security by prompting users
to enter an authentication code from their MFA device when they try to sign into the
console (this is in addition to the usual username and password). It makes it more
difficult for an attacker to compromise an account. Any modern smartphone can act
as a virtual MFA appliance using an application such as Google Authenticator or AWS
Virtual MFA. It’s recommended that you enable MFA for any user who might use the
AWS console. You’ll find the option Assign MFA Device in the Security Credentials tab
when you click an IAM user in the console.

Temporary security credentials
At this time, there’s a limit of 5,000 users per AWS account, but you can raise the
limit if needed. An alternative to increasing the number of users is to use temporary
security credentials. Temporary security credentials can be set up to expire after a
short while and can be generated dynamically. See Amazon’s online documentation
at http://mng.bz/drnN for more information on temporary security credentials. You
can find more information about IAM users at http://mng.bz/r6zB.

http://amzn.to/1MgvWvf
http://mng.bz/drnN
http://mng.bz/r6zB


204 APPENDIX B Setting up your cloud

 Delegation is an important concept associated with roles. Put simply, delegation is
concerned with the granting of permissions to a third party to allow access to a partic-
ular resource. It involves establishing a trust relationship between a trusting account
that owns the resource and a trusted account that contains the users or applications
that need to access the resource. Figure B.4 shows a role with a trust relationship
established for a service called CloudCheckr.

Federation is another concept that’s discussed often in the context of roles. Federation
is the process of creating a trust relationship between an external identity provider
such as Facebook, Google, or an enterprise identity system that supports Security
Assertion Markup Language (SAML) 2.0 and AWS. It enables users to log in via one of
those external identity providers and assume an IAM role with temporary credentials.

B.1.4 Resources
Permissions in AWS are either identity-based or resource-based. Identity-based permissions
specify what an IAM user or a role can do. Resource-based permissions specify what an
AWS resource such as an S3 bucket or an SNS topic is allowed to do or who can have

Trusted entities define which entities 
are allowed to assume the role.

An external ID prevents the confused 
deputy problem, which is a form of 
privilege escalation. It is needed if you 
have configured access for a third party 
to gain entry to your AWS account.

Figure B.4 This role grants CloudCheckr access to the AWS account to perform analysis of costs 
and recommend improvements.



205APPENDIX B Setting up your cloud

access to it. A resource-based policy often specifies who has access to the given
resource. This allows trusted users to access the resource without having to assume a
role. The AWS user guide at http://mng.bz/VBJP states: 

Cross-account access with a resource-based policy has an advantage over a role. With a
resource that is accessed through a resource-based policy, the user still works in the trusted
account and does not have to give up his or her user permissions in place of the role
permissions. In other words, the user continues to have access to resources in the trusted
account at the same time as he or she has access to the resource in the trusting account.

Not all AWS services support resource-based policies (the user guide at http://
mng.bz/xX8W lists all the services that do).

B.1.5 Permissions and policies
When you initially create an IAM user, it’s not able to access or do anything in your
account. You need to grant the user permissions by creating a policy that describes
what the user is allowed to do. The same goes for a new group or role. A new group or
a role needs to be assigned a policy to have any effect. 

 The scope of any policy can vary. You can give your user or role administrator access
to the whole account or specify individual actions. It’s better to be granular and specify
only permissions that are needed to get the job done (least privilege access). Start with
a minimum set of permissions and add additional permissions only if necessary. 

 There are two types of policies: managed and inline. Managed policies apply to
users, groups, and roles but not to resources. Managed policies are standalone. Some
managed policies are created and maintained by AWS. You also can also create and
maintain customer-managed policies. Managed policies are great for reusability and
change management. If you use a customer-managed policy and decide to modify it,
all changes are automatically applied to all IAM users, roles, and groups that the pol-
icy is attached to. Managed policies allow for easier versioning and rollbacks. 

 Inline policies are created and attached directly to a specific user, group, or role.
When an entity is deleted, the inline policies embedded within it are deleted also.
Resource-based policies are always inline. To add an inline or a managed policy, click
the required user, group, or role and then click the Permissions tab. You can attach,
view, or detach a managed policy and similarly create, view, or remove an inline policy.

 A policy is specified using JSON notation. The following listing shows a managed
AWSLambdaExecute policy. 

{  
   "Version":"2012-10-17",   
   "Statement":[                 
      {  
         "Effect":"Allow",

Listing B.1 AWSLambdaExecute policy

Version specifies the policy language version; the current version is 2012-10-17. If you’re 
creating a custom policy, make sure to include the version and set it to 2012-10-17.

Contains one or more statements that specify 
the actual permissions that make up the policy

http://mng.bz/VBJP
http://mng.bz/xX8W
http://mng.bz/xX8W


206 APPENDIX B Setting up your cloud

         "Action": "logs:*",
         "Resource":"arn:aws:logs:*:*:*"
      },
      {  
         "Effect":"Allow",      
         "Action":[              
            "s3:GetObject",
            "s3:PutObject"
         ],
         "Resource":"arn:aws:s3:::*" 
      }
   ]
}

Many IAM policies contain additional elements such as Principal, Sid, and Condi-
tion. The Principal element specifies an IAM user, an account, or a service that’s
allowed or denied access to a resource. The Principal element isn’t used in policies
that are attached to IAM users or groups. Instead, it’s used in roles to specify who can
assume the role. It’s also common to resource-based policies. Statement ID (Sid) is
required in policies for certain AWS services, such as SNS. A condition allows you to
specify rules that dictate when a policy should apply. An example of a condition is pre-
sented in the next listing. 

"Condition": {
   "DateLessThan": {     
               "aws:CurrentTime": "2020-09-12T12:00:00Z"
        },
        "IpAddress": {
               "aws:SourceIp": "127.0.0.1"   
        }
   }

 

Listing B.2 Policy condition

The Effect element is required and specifies 
whether the statement allows or denies 
access to the resource. The only two 
available options are Allow and Deny.

Specifies the specific actions on the resource that should 
be allowed or denied. The use of a wildcard (*) character 
is allowed (for example, “Action”: “s3:*”).

The Resource element identifies the object or objects 
that the statement applies to. It can be specific or 
include a wildcard to refer to multiple entities.

You can use a number of conditional elements, which include DateEquals, DateLessThan, 
DateMoreThan, StringEquals, StringLike, StringNotEquals, and ArnEquals.

The condition keys represent values that 
come from the request issued by a user. 
Possible keys include SourceIp, 
CurrentTime, Referer, SourceArn, userid, 
and username. The value can be either a 
specific literal value such as “127.0.0.1” or 
a policy variable.

Multiple conditions
The AWS documentation at http://amzn.to/21UofNi states “If there are multiple con-
dition operators, or if there are multiple keys attached to a single condition operator,
the conditions are evaluated using a logical AND. If a single condition operator
includes multiple values for one key, that condition operator is evaluated using a log-
ical OR.” See http://amzn.to/21UofNi for great examples you can follow and a whole
heap of useful documentation.

http://amzn.to/21UofNi
http://amzn.to/21UofNi


207APPENDIX B Setting up your cloud

Amazon recommends using conditions to the extent that is practical for security. The
next listing, for example, shows an S3 bucket policy that forces content to be served
only over HTTPS/SSL. This policy refuses connections over unencrypted HTTP.

{
    "Version": "2012-10-17",
    "Id": "123",
    "Statement": [
        {
            "Effect": "Deny",                
            "Principal": "*",
            "Action": "s3:*",                    
            "Resource": "arn:aws:s3:::my-bucket/*",
            "Condition": {
                "Bool": {
                    "aws:SecureTransport": false  
                }
            }
        }
    ]
}

B.2 Cost
Receiving an unpleasant surprise in the form of a large bill at the end of the month is
disappointing and stressful. Amazon CloudWatch can create billing alarms that send
notifications if total charges for the month exceed a predefined threshold. This is use-
ful not only to avoid unexpectedly large bills but also to catch potential misconfigura-
tions of your system. 

 For example, it’s easy to misconfigure a Lambda function and inadvertently allo-
cate 3.0 GB of RAM to it. The function might not do anything useful except wait for
15 s to receive a response from a database. In a heavy-duty environment, the system
might perform 2 M invocations of the function a month, costing a little over $1,462.
The same function with 128 MB of RAM would cost around $56 per month. If you per-
form cost calculations up front and have a sensible billing alarm, you’ll quickly realize
that something is going on when billing alerts begin to come through. 

B.2.1 Creating billing alerts
Follow these steps to create a billing alert:

1. In the main AWS console, click your name (or the name of the IAM user that’s
representing you) and then click My Billing Dashboard. 

2. Click Billing Preferences in the navigation pane and then enable the check box
next to Receive Billing Alerts. 

3. Click Save preferences, then go back to the main AWS console and find the
CloudWatch service. 

Listing B.3 Policy to enforce HTTPS/SSL

Explicitly denies access to 
s3 if the condition is met

The condition is met when requests 
are not sent using SSL. This forces 
the policy to block access to the 
bucket if a user tries to access it 
over regular, unencrypted HTTP.



208 APPENDIX B Setting up your cloud

4. Open the CloudWatch service, click Alarms, and select All Alarms in the naviga-
tion pane. Click the Create alarm button and then click the Select metric button.

5. Under the Metrics heading, select Billing and click Total Estimated Charges. (If
you don’t see Billing it means you may not have enabled the Receive Billing
Alerts option in step 2). 

6. Tick the checkbox for EstimatedCharges and click Select metric to continue.
7. Make sure that the Threshold type is set to Static and that Whenever Estimated-

Charges is set to Greater. 
8. In the Define the threshold value, enter the amount that you’d like to trigger

the alarm (for example, 200 as seen in figure B.5). 
9. Click Next to continue to the next page.

Here you can set or create a new SNS topic to notify you when the alarm is
triggered. This is important! You need an SNS topic to receive emails to alert
you what is happening. 

10. Click the Add notification button.
11. Choose Create new topic, enter a name for it, and then type in your email

address. Click Create topic button to save your SNS topic settings. When you
are ready to proceed click Next. 

12. Type in a name for your Alarm and click Next again.
13. Finally, at the bottom, click the Create alarm button to finish. 

Figure B.5 It’s good practice to create multiple billing alarms to keep you informed of ongoing costs.

This key is to set the amount 
that will let you know when 
you go over your budget. 
You want to stay in budget 
all of the time and not let 
the costs blow out.



209APPENDIX B Setting up your cloud

B.2.2 Monitoring and optimizing costs
Services such as CloudCheckr (http://cloudcheckr.com) can help to track costs, send
alerts, and even suggest savings by analyzing services and resources in use. CloudCheckr
comprises several different AWS services including S3, CloudSearch, SES, SNS, and
DynamoDB. It’s richer in features and easier to use than some of the standard AWS fea-
tures. It’s worth considering for its recommendations and daily notifications.

 AWS also has a service called Trusted Advisor that suggests improvements to per-
formance, fault tolerance, security, and cost optimization. Unfortunately, the free ver-
sion of Trusted Advisor is limited, so if you want to explore all of the features and
recommendations it has to offer, you must upgrade to a paid monthly plan or access it
through an AWS enterprise account.

 Cost Explorer (figure B.6) is a useful, albeit high-level reporting and analytics tool
built into AWS. You must activate it first by clicking your name (or the IAM username)
in the top-right corner of the AWS console, selecting My Billing Dashboard, then
clicking Cost Explorer from the navigation pane and enabling it. Cost Explorer ana-
lyzes your costs for the current month and the past four months. It then creates a fore-
cast for the next three months. Initially, you may not see any information because it
takes 24 hours for AWS to process data for the current month. Processing data for pre-
vious months make take even longer. More information about Cost Explorer is avail-
able at http://amzn.to/1KvN0g2.

Figure B.6 Cost Explorer allows you to review historical costs and estimate what future costs may be.

You have access to plenty of filters 
and you can create custom reports. 
However, becoming an expert at 
Cost Explorer can take some time. 

http://cloudcheckr.com
http://amzn.to/1KvN0g2


210 APPENDIX B Setting up your cloud

B.2.3 Using the Simple Monthly Calculator
The AWS Pricing Calculator (https://calculator.aws) is a web application developed
by Amazon to help model costs for many of its services. This tool allows you to select a
service, enter information related to the consumption of that particular resource, and
get an indicative cost. 

B.2.4 Calculating Lambda and API Gateway costs
The cost of running serverless architecture often can be a lot less than running tradi-
tional infrastructure. Naturally, the cost of each service you might use will be different,
but you can look at what it takes to run a serverless system with Lambda and the API
Gateway. 

 Amazon’s pricing for Lambda (https://aws.amazon.com/lambda/pricing/) is
based on the number of requests, duration of execution, and the amount of memory
allocated to the function. The first million requests are free with each subsequent mil-
lion charged at $0.20. Duration is based on how long the function takes to execute
measured to the millisecond (ms). Amazon charges in 1 ms increments, while also fac-
toring in the amount of memory reserved for the function. A function created with 1
GB of memory will cost $0.000001667 per 100 ms of execution time, whereas a func-
tion created with 128 MB of memory will cost $0.000000208 per 100 ms. 

NOTE Amazon prices may differ depending on the region and that they’re
subject to change at any time.

Amazon provides a perpetual free tier with 1M free requests and 400,000 GB-seconds
of compute time per month. This means that a user can perform a million requests
and spend an equivalent of 400,000 seconds running a function created with 1 GB of
memory before they have to pay. As an example, consider a scenario where you have
to run a 256 MB function, 5 million times a month. The function executes for 2 sec-
onds each time. The cost calculation follows:

 Monthly request charge: 
– The free tier provides 1 million requests, which means that there are only 4

million billable requests (5M requests – 1M free requests = 4M requests). 
– Each million is priced at $0.20, which makes the request charge $0.80 (4M

requests × $0.2/M = $0.80).
 Monthly compute charge:

– The compute price for a function per GB-second is $0.00001667. The free
tier provides 400,000 GB-seconds free. 

– In the compute price scenario, the function runs for 10 ms (5M × 2s). 
– 10M seconds at 256 MB of memory equates to 2,500,000 GB-seconds

(10,000,000 × 256 MB / 1024 = 2,500,000). 
– The total billable amount of GB-seconds for the month is 2,100,000

(2,500,000 GB-seconds – 400,000 free tier GB-seconds = 2,100,000). The

https://calculator.aws
https://aws.amazon.com/lambda/pricing/


211APPENDIX B Setting up your cloud

compute charge is therefore $35.007 (2,100,000 GB-seconds × $0.00001667 =
$35.007). 

– The total cost of running Lambda in this example is $35.807. 

The API Gateway pricing is based on the number of API calls received and the
amount of data transferred out of AWS. In the eastern United States, Amazon charges
$3.50 for each million API calls received and $0.09/GB for the first 10 TB transferred
out. Given the previous example and assuming that monthly outbound data transfer is
100 GB a month, the API Gateway pricing is as follows:

 Monthly API charge:
– The free tier includes 1M API calls per month but is valid for only 12

months. Given that it’s not a perpetual free tier, it won’t be included in this
calculation. 

– The total API cost is $17.50 (5M requests × $3.50/M = $17.50).
 The monthly data charge is $9.00 (100 GB × $0.09/GB = $9).
 The API Gateway cost in this example is $26.50. 
 The total cost of Lambda and the API Gateway is $62.307 per month. 

It’s worthwhile to attempt to model how many requests and operations you may have
to handle on an ongoing basis. If you expect 2M invocations of a Lambda function
that uses only 128 MB of memory and runs for 1 second, you’ll pay approximately
$0.20 month. If you expect 2M invocations of a function with 512 MB of RAM that
runs for 5 seconds, you’ll pay a little more than $75.00. With Lambda, you have an
opportunity to assess costs, plan ahead, and pay for only what you actually use. Finally,
don’t forget to factor in other services such as S3 or SNS, no matter how insignificant
their cost may seem to be.



212

appendix C
Deployment frameworks

Automation and continuous delivery are important if you’re building anything on
a cloud platform such as AWS. If you take a serverless approach, it becomes even
more critical because you end up having more services, more functions, and more
things to configure. You need to be able to script your entire application, run tests,
and deploy it automatically. The only time you should deploy Lambda functions
manually or self-configure API Gateway is while you learn. Once you begin working
on real serverless applications, you need to have a repeatable, automated, and
robust way of provisioning your system. Apart from Terraform, the other frame-
works discussed in this appendix do not provision resources on their own. Instead,
they rely on AWS CloudFormation (https://aws.amazon.com/cloudformation/) to
provision resources and are therefore bound by CloudFormation’s limitations.
These include the following:

 A CloudFormation template can have no more than 500 resources. To go
beyond this limit, you can use nested CloudFormation stacks.

 A CloudFormation template can have no more than 200 parameters or
outputs.

 It’s cumbersome to add existing resources to a CloudFormation stack.

Although Terraform alleviates these limitations, it has shortcomings of its own. The
most notable of which is the lack of support for rollback. If there was a problem
during a deployment, then your application can end up in a broken state if some
resources are updated but others are not.

 Some of the frameworks discussed in this appendix also provide additional utili-
ties, such as the ability to invoke Lambda functions locally or even simulate API
Gateway locally. With that said, let’s go through some of the most popular deploy-
ment frameworks for serverless applications.

https://aws.amazon.com/cloudformation/


213APPENDIX C Deployment frameworks

C.1 Serverless Framework
The Serverless Framework (https://serverless.com) is an open source framework and
is easily one of the most popular and mature deployment frameworks out there. At its
essence, it allows users to define an entire serverless application (including Lambda
functions, API Gateway APIs, SNS topics, and any other CloudFormation resources)
and then deploy it using a command-line interface (CLI). It helps you organize and
structure serverless applications, which is of great benefit as you begin to build larger
systems, and it’s fully extensible via its plugin system.

C.1.1 Getting started
The Serverless Framework supports both JSON and YAML. It also lets you describe
your application in a manifest file like that shown in the following listing.

service: user-service  

provider:                            
  name: aws
  runtime: nodejs12.x
  region: us-east-1
  stage: dev

functions:                       
 usersCreate:
   events:                   
     - http: 
         path: users/create
         method: post

 usersDelete:
   events:
     - http: 
         path: users/delete
         method: delete

resource:                          
  Resources:
    UserTable:
      Type: AWS::DynamoDB::Table
      Properties:
        BillingMode: PAY_PER_REQUEST
        KeySchema:
          ...

Listing C.1 Describing a service in serverless.yml

The name of the service. This would appear as part of the name for the 
generated CloudFormation stack as well as any provisioned API Gateway 
APIs and Lambda functions.

Top level configuration for the project: 
the language runtime for the Lambda 
functions, the region, and the name of 
the deployment stage.

Your functions

The events that trigger 
these functions

The resource your functions use. Raw 
AWS CloudFormation syntax goes here.

https://serverless.com


214 APPENDIX C Deployment frameworks

To deploy the application, you only have to run a single command:

serverless deploy

The Serverless Framework packages your code, uploads it to S3, and provisions the
resources specified in the serverless.yml through CloudFormation. You can also over-
ride the default region and stage name with CLI options as the following shows
(http://mng.bz/AOJz):

serverless deploy -s prod -r eu-west-1

C.1.2 Language support
The Serverless Framework supports a number of language runtimes: Node.js, Python,
Java, Golang, C#, and Scala to name a few. You have a lot of control over how the
Serverless Framework packages your functions. By default, it uses the same packaged
artifact for all the functions you have configured in the serverless.yml. But you can
optionally package each function separately and include or exclude specific folders or
files.

 Through the serverless-webpack plugin (https://bit.ly/sls-webpack), you can
also incorporate webpack into the packaging process to tree shake and bundle Java-
Script functions. Doing so can produce much smaller artifacts, which helps with both
deployment time as well as cold-start performance.

 For Python functions, it can be challenging to include third-party libraries into the
deployment artifact. The serverless-python-requirements plugin (http://bit.ly/
sls-python-reqs) handles this for you transparently and lets you use your existing
requirements.txt file.

C.1.3 Invoking functions locally
Besides packaging and deploying serverless applications, the Serverless Framework
also has a number of useful utilities. The most notable is the ability to invoke func-
tions locally using the invoke local command:

serverless invoke local -f functionName -d “{}”

The invoke local command is useful for quickly testing a function locally. It gives
you fast feedback without having to deploy the function to AWS first. You can also
attach a debugger and step through the code line by line (for more information, see
this post http://bit.ly/sls-debug-vscode for how to do it with VS Code).

 But what if you want to emulate API Gateway locally? The serverless-offline
plugin (http://bit.ly/sls-offline) lets you do exactly that and emulates API Gateway on
a localhost post. We find this useful when doing server-side rendering with Lambda.
Although we can use invoke local to test a function locally and inspect its output, we
can’t render HTML in our heads! Having a local endpoint lets us point a browser to it
and inspect the server-side rendered HTML in all its CSS glory.

https://bit.ly/sls-webpack
http://bit.ly/sls-python-reqs
http://bit.ly/sls-python-reqs
http://bit.ly/sls-debug-vscode
http://bit.ly/sls-offline
http://mng.bz/AOJz


215APPENDIX C Deployment frameworks

C.1.4 Plugins
The Serverless Framework has a rich ecosystem of plugins that extend its capability far
and beyond what the framework is capable of out-of-the-box. Some plugins modify the
CloudFormation template the Serverless Framework generates. For example, whereas
the Serverless Framework generates a shared identity and access management (IAM)
role for all the functions in a project, the popular serverless-iam-roles-per-function
plugin lets you configure IAM roles for each function.

 Some plugins add support for services that the Serverless Framework does not sup-
port natively. For example, the Serverless Framework does not support AppSync out
of the box. You can still configure an AppSync API in the serverless.yml using raw
CloudFormation syntax (in the resources section of the serverless.yml), but this is
tedious and laborious. The serverless-appsync-plugin plugin extends the Server-
less Framework to support AppSync and lets you configure AppSync APIs with a much
more succinct syntax. Similarly, the serverless-step-functions plugin adds support
for Step Functions.

 Some plugins can add additional commands to the Serverless Framework’s CLI.
For example, the serverless-offline plugin adds an offline command that starts a
local instance of API Gateway. Similarly, the serverless-export-env plugin adds an
export-env command that captures the environment variables referenced by the
Lambda functions and exports them to a .env file. 

 The Serverless Framework has a flexible plugin architecture and lets you custom-
ize just about everything the framework does. This flexibility allows you to disagree
with framework defaults and tailor its behavior to suit your needs. Its rich ecosystem of
available plugins is also what sets it apart from AWS SAM.

C.2 Serverless Application Model (SAM)
The Serverless Application Model (https://aws.amazon.com/serverless/sam) (SAM),
is AWS’s answer to the Serverless Framework and shares many similarities with the
Serverless Framework. Like the Serverless Framework, SAM uses CloudFormation to
provision resources and lets you use a simpler (compared with CloudFormation) syn-
tax to define serverless applications in terms of Lambda functions, API Gateway, and
so on. It also has a number of CLI commands that let you invoke Lambda functions
locally or start a local instance of API Gateway too. The biggest difference between
SAM and the Serverless Framework is that SAM’s syntax is much closer to the raw
CloudFormation syntax, and it doesn’t have a plugin system.

 The former is often held as a reason why one should favor SAM over the Serverless
Framework, but it’s a question of personal preference. Ultimately, the CloudForma-
tion syntax is verbose, and that's one reason why we prefer to use these frameworks
that offer a simpler syntax and more productive abstraction level to work with. So why
should one favor a framework because its syntax is closer to the thing that you try to
get away from? It doesn’t make sense.

https://aws.amazon.com/serverless/sam


216 APPENDIX C Deployment frameworks

 The lack of a plugin system, on the other hand, is often a deal breaker. It means
you’re limited by what the framework supports and have no easy way to override the
framework defaults (unless the framework makes it a configurable option, of course).
For example, although SAM added support for Step Functions in May 2020 (which is
more than three years after the serverless-step-functions plugin did the same for
the Serverless Framework), it still has no support for AppSync at the time of writing
(April 2021).

 And while the Serverless Framework’s plugin system offers an escape hatch for
when you need to disagree with the framework's defaults, the lack of a plugin system
restricts you to what the framework allows you to configure with SAM. In order to dis-
agree with the choices that SAM makes for you, you’d have to work around it with
CloudFormation macros and use those macros to modify the SAM-generated Cloud-
Formation template at deployment time. If this sounds like a tedious solution, it’s
because it is as we learned the hard way two years ago (http://mng.bz/ZxJP).

 Having said that, SAM does certain things very well. For example, it lets you define
IAM roles for individual functions out of the box. And the way it provisions API Gate-
way resources is also more efficient (compared with the Serverless Framework) in
terms of the number of CloudFormation resources. Whereas the Serverless Frame-
work would provision the API resources and methods as individual resources, SAM
encodes all of them in the Body attribute of the AWS::ApiGateway::RestApi resource.
This approach minimizes the number of resources in the CloudFormation stack and
helps mitigate the risk of hitting the 500 resource limit in a CloudFormation stack.
This comes in handy in large API projects. With the Serverless Framework, these large
projects often have to rely on plugins such as the serverless-plugin-split-stacks
plugin to work around the 500 resources limit.

C.3 Terraform
Terraform (https://www.terraform.io) is a popular infrastructure-as-code (IaC) tool
by HashiCorp. It is by far the least opinionated framework in this appendix. True to its
motto of “Write, Plan, and Create Infrastructure as Code,” Terraform has long been
favored by infrastructure engineers and is not designed with Lambda as its focus.
Instead, it treats Lambda functions as AWS resources: nothing more, nothing less. As
such, you have the utmost control and can configure Lambda, API Gateway, and any
other resources however you like. But this exposes you to all the underlying complexi-
ties of those resources; complexities that the other tools try hard to manage for you. 

 For example, you need to understand how API Gateway resources are organized,
which we find is one of the most laborious aspects of using Terraform for Lambda. A
single line of human-readable URL in the Serverless Framework or SAM can easily
translate to 50 lines of Terraform code (figure C.1).

 Because Terraform is designed to give you a way to describe and create your infra-
structure, it doesn’t offer any value-add services for serverless applications. There’s no

http://mng.bz/ZxJP
https://www.terraform.io


217APPENDIX C Deployment frameworks

lookup:
   handler: functions/lookup.handler
   description: handles the lookup/country/zipcode endpiont
   events:
      - http:
           path: lookup/{country}/{zipcode}
           method: get

Serverless framework

resource "aws_api_gateway_rest_api" "rest_api" {
   name = "${var.stage}-${var.feature_name}"
   description = "REST API for zipcode lookup"
}

resource "aws_api_gateway_resource" "lookup" {
   rest_api_id = "${aws_api_gateway_rest_api.rest_api.id}"
   parent_id = "${aws_api_gateway_rest_api. rest_api.root_resource_id}"
   path_part = "Lookup"
}

resource "aws_api_gateway_resource" "country" {
   rest_api_id = "${aws_api_gateway_rest_api.rest_api.id}"
   parent_id = "${aws_api_gateway_resource.lookup.id}"
   path_part = "{country}"
}

resource "aws_api_gateway_resource" "zipcode" {
   rest_api_id = "${aws_api_gateway_rest_api.rest_api.id}"
   parent_id = "${aws_api_gateway_resource.country.id}"
   path_part = "{zipcode}"
}

resource "aws_api_gateway_method" "get_zipcode" {
   rest_api_id = "${aws_api_gateway_rest_api.rest_api.id}"
   resource_id = "${aws_api_gateway_resource.zipcode.id}"
   http_method = "GET"
   authorization = "NONE"
}

resource "aws_api_gateway_integration" "zipcode_lookup" {
   rest_api_id = "${aws_api_gateway_rest_api.rest_api.id}"
   resource_id = "${aws_api_gateway_resource.zipcode.id}"
   type = “AWS_PROXY"

   http_method = "${aws_api_gateway_method.get_zipcode.http_method}"

   integration_http_method = “POST"
   uri = “${aws_lambda_function.lookup.invoke_arn}"
}

resource "aws_api_gateway_deployment" "zipcode_api" {
   depends_on = [
      "aws_api_gateway_integration.zipcode_lookup"
   ]

   rest_api_id = "${aws_api_gateway_rest_api.rest_api.id}"
   stage_name = "${var.stage}"
}

Terraform
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
17
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Figure C.1 Configuring an API Gateway function with the Serverless Framework vs. Terraform



218 APPENDIX C Deployment frameworks

built-in support for packaging your deployment artifact, nor is there any built-in sup-
port for running functions locally.

 Whereas all the other tools in this list are built on top of CloudFormation, Terra-
form does its own thing and relies on AWS APIs to create resources. This means Terra-
form is not bound by CloudFormation limitations such as the aforementioned 500
resources per stack, but it also lacks the capabilities that CloudFormation offers.

 For example, Terraform does not automatically rollback changes when a deploy-
ment fails halfway. Many HashiCorp fans would tell you that this is a feature, not a
bug, but don’t let them fool you. You don’t want your application to be stuck in a half-
way, broken state when a deployment fails.

 There are also other problems to consider when using Terraform in serverless
applications. For instance, because Terraform uses the AWS APIs to create resources,
it often runs into throttling limits that CloudFormation does not. A common example
is the ResourceConflictException due to the number of concurrent updates to a
Lambda function. This can happen when you make certain changes to a Lambda
function that requires multiple API calls to achieve. This has been a long-standing
problem (see this issue from 2018 at http://mng.bz/RqJK), and the only viable work-
around is to daily-chain changes with depends_on clauses.

 Terraform keeps track of resource states and can persist them to data stores such as
S3. However, it does not encrypt these state files, which means any sensitive informa-
tion such as credentials and API keys are stored in plain text. It’s up to you to ensure
that the S3 bucket enables server-side encryption (SSE). To be even more secure, use
customer-managed keys to ensure that only you can decrypt the data.

 Overall, the severe lack of productivity alone makes Terraform a bad choice when
it comes to building serverless applications. We strongly recommend against it. How-
ever, it’s taken a strong hold in the DevOps culture and many infrastructure teams
mandate the use of Terraform within their organizations. If you’re struggling to con-
vince your manager to let you use something other than Terraform in your serverless
project, then consider doing the following:

 Show them the difference in lines of code that you need to write for something as simple as
a single API endpoint. Translate this into development time and cost. For exam-
ple, “It’ll take a week to do with Terraform versus a couple of hours with Server-
less Framework or SAM” is a convincing argument.

 Explain to the infrastructure team (they might be incorrectly labeled the DevOps team in
your organization) that there is an integration path between Terraform and the Serverless
Framework or SAM. They can still use Terraform to provision shared infrastruc-
ture resources such as VPCs; they just need to share the ARNs or names of these
resources as SSM parameters. Both the Serverless Framework and SAM can ref-
erence these parameters. This way, both the infrastructure and feature teams
can use the right tool for the job and everyone’s happy.

http://mng.bz/RqJK


219APPENDIX C Deployment frameworks

C.4 Cloud Development Kit 
The AWS Cloud Development Kit (CDK), available at https://aws.amazon.com/cdk,
is a relatively new kid on the block but has received a lot of interest from the commu-
nity. CDK differs from the aforementioned frameworks in that it does not use a
markup language. Instead, CDK lets you describe the resources you want to provision
using a general-purpose programming language such as TypeScript or Python.

 It’s easy to see the appeal of using a general-purpose programming language in an
IaC tool. Developers can use their favorite programming language to write their appli-
cation as well as how it should be deployed. There’s no need to learn another lan-
guage such as YAML or HCL (the JSON-based configuration language that Terraform
uses). This doesn’t necessarily mean that CDK is a better IaC tool because it gives
developers what they want. After all, no matter how much we like eating cakes and
candies, it doesn’t change the fact that these sugary delights are bad for our health.

 For anyone who proclaims that YAML or HCL is not code, just remember that not
long ago, Java and .Net developers said the same thing about JavaScript and Python.
This kind of gatekeeping and putting others down to raise one’s standing happens in
lots of places and have no place in our community. Configuration files are code. A Cloud-
Formation template is a set of instructions to tell CloudFormation what resources to
provision and that is the dictionary definitions of code. Now that we got the common
misconceptions out of the way, let’s talk about where CDK really shines and the chal-
lenges it faces.

C.4.1 Where CDK shines
General-purpose programming languages give you much more expressive power com-
pared with configuration files like YAML. This makes CDK a fantastic choice when it
comes to templating some complex AWS environments. CloudFormation offers a
range of templating options with its intrinsic functions and conditionals, but these are
limited and often require complex YAML code to achieve basic branching logic or
mapping input values against a dictionary. CDK makes these child’s play and can easily
express them in a few lines of code in TypeScript or Python.

 Being able to use general-purpose programming languages like TypeScript and
Python also means having access to the package managers for those languages. This
means you can take common architectural patterns and create reusable constructs
and share them as packages. The CDK Patterns (https://cdkpatterns.com) project is a
great example of this. Instead of everyone taking the same recipe and implementing
these common patterns from scratch, you can download the relevant package from
NPM and simply customize it. This is a great way to perpetuate and spread best prac-
tices within a large organization. It makes it easy for teams to discover and share con-
structs that have those best practices and organizational norms baked in.

https://aws.amazon.com/cdk
https://cdkpatterns.com


220 APPENDIX C Deployment frameworks

C.4.2 CDK challenges
Single-page application (SPA) frameworks such as React and Vue.js have made a suc-
cessful attempt at unifying HTML, CSS, and your application code into a cohesive and
productive JavaScript framework. CDK is doing something similar for infrastructure
code.

 However, whereas JavaScript is ubiquitous in the frontend world, the choice and
preference for programming languages for backend applications are fractured and
contextualized around use case. One of the benefits of microservices is to allow teams
to choose the best language for the job. For example, Node.js might be great for build-
ing REST APIs, but Python is better suited for machine learning (ML) workloads
because most of the libraries are written in Python. The fact that different teams in the
organization would prefer to use a different language can present a problem for CDK.

 If everyone agrees on using one programming language, then CDK makes it easy
to share reusable constructs. But if teams want to use different languages, then you
have to maintain different versions of these constructs. You can even see this problem
manifest in the patterns on https://cdkpatterns.com, where some patterns support
TypeScript, Python, Java, and C#, but most don’t support all four languages.

 Our other concern about CDK is that, whereas everyone must write the same
YAML if they want to provision resources with the same configurations, that’s not the
case with a general-purpose programming language. Personal preferences and idioms
can come into play and suddenly it requires more cognitive energy to understand the
infrastructure code. It’s no longer configuration—the infrastructure code now con-
tains business logic.

 This is especially problematic for those infrastructure teams that need to oversee
an organization’s AWS environment and provide guidance and oversight for feature
teams. Suddenly, they must work with infrastructure code that's written in multiple
languages that they might not be familiar with. And because this infrastructure code
can contain ample business logic, it makes it doubly hard for infrastructure teams to
do their job. This is why we still prefer the declarative approach of YAML and think
the fact that it’s difficult to add complex logic into infrastructure code is actually a
blessing.

C.5 Amplify
AWS Amplify (https://aws.amazon.com/amplify) is a set of tools and services that can
be used together to build frontend web and mobile applications quickly. It consists of
the following:

 Amplify CLI—A CLI tool that lets you configure AWS resources.
 Amplify libraries—A set of open source libraries that helps you consume AWS

resources such as Cognito and AppSync.
 Amplify UI components—A collection of drop-in UI components that works with

AWS resources to provide authentication, storage, and interactions.

https://cdkpatterns.com
https://aws.amazon.com/amplify


221APPENDIX C Deployment frameworks

 Amplify console—An AWS service that builds and hosts your single-page applica-
tion (think AWS’s version of Netlify: https://www.netlify.com).

 Amplify Admin UI—A visual UI that lets you provision and configure AWS
resources as well as manage the data in your application.

You can use each of these Amplify tools independently. For example, many teams
would use the Amplify libraries and UI components without using the Amplify CLI or
Admin UI to manage AWS resources. For this comparison, we’ll consider only the
Amplify CLI.

 Whereas the other frameworks we have discussed so far take a resource centric
view of serverless applications, the Amplify CLI takes a utility-centric approach.
Instead of configuring a Cognito User Pool as a resource, you would run the com-
mand amplify add auth. The Amplify CLI would then prompt you with a few ques-
tions about what you want to do. This would bootstrap a CloudFormation template
and configure a Cognito User Pool and maybe a Cognito Identity Pool too, depend-
ing on how you answer the questions from the CLI. 

 Similarly, you can use a single command to bootstrap a brand-new AppSync API:
amplify add api. You can then focus on defining the model of your API, and the
Amplify CLI can generate a lot of the underlying AWS resources for you, including the
relevant AppSync resolvers and even the DynamoDB tables.

 As you can see, the Amplify CLI can make a lot of decisions for you and get things
wired up quickly. As such, it’s targeted at a slightly different demographic of develop-
ers. The other deployment frameworks in this list are typically used by backend teams
who work with AWS daily. Amplify on the other hand, targets frontend–focused teams
who are not as well versed with AWS and just want something that works.

 It’s a powerful tool and gives a lot of power to these frontend–focused teams to
build something quickly, without having to spend many hours learning about each of
the AWS services they need to use and configure. But there also lies the pitfall, that
teams are not aware of and do not understand the decisions that Amplify CLI makes for
them and are not able to debug problems when they arise. For example, the Amplify
CLI defaults to using DynamoDB scans for list operations in a GraphQL schema.
Although this works, it’s not an optimal solution and can become problematic as the
system scales because DynamoDB scans are expensive and should be used sparingly.

 Amplify CLI automates a lot of things, and that’s what makes it a productive tool.
But it also limits your ability to customize how those AWS resources are configured.
When you reach the limit of what you can achieve with Amplify CLI, there’s currently
no escape hatch to move away from it. Many teams have had to rewrite their entire
application from scratch when they reached this point, which can be a struggle because
many teams don’t understand what Amplify CLI has done for them and have a hard
time replicating the setup because they know only how to do things with Amplify.

 In our opinion, the ideal users for tools like Amplify CLI are developers who under-
stand AWS well and have experience working with and configuring those underlying

https://www.netlify.com


222 APPENDIX C Deployment frameworks

resources. You shouldn’t automate things that you don’t understand, which puts you in
a dangerous position of being over reliant on the tool and lets the tail wag the dog.

 The Amplify team is working hard to address the problems that we have brought
up here and are looking into building escape hatches so teams can transition away
from it when they need to. And we are excited to see where it goes, but for the time
being, we think Amplify CLI should be confined to building proof of concepts or very
simple applications. For production applications that need to be maintained and iter-
ated over time, the risk of running into blockers and not being able to easily transition
away from it is too great. However, it shouldn’t stop you from using other Amplify
components such as the Amplify libraries in your frontend project or the Amplify con-
sole to build and host your SPA.

 In this appendix, we looked at five of the most popular ways people are provision-
ing and deploying their serverless applications. We looked at the Serverless Frame-
work and SAM, which provide a layer of abstraction over CloudFormation to make it
easier to build serverless applications. Both support a set of value-add CLI commands,
such as being able to invoke functions locally or run a local instance of API Gateway,
that aid you in your development workflow.

 The main difference between the two is that the Serverless Framework has a flexi-
ble plugin system and a rich ecosystem of existing plugins that can extend the frame-
work’s capabilities. Whereas with SAM, you’re limited by what it supports, and there is
also no easy way to change the framework’s default behavior beyond the available con-
figurations.

 We also looked at Terraform, which is a popular IaC tool and used by many infra-
structure teams. We explained the problems with using Terraform in serverless appli-
cations and why we strongly recommend against it. It’s an unproductive tool when it
comes to building serverless applications.

 Both CDK and Amplify CLI are relative newcomers in this space, and both have
gained a lot of momentum and are attracting many admirers. Whereas the Serverless
Framework, SAM, and Terraform all use a markup language to describe the resources
for your serverless application, CDK and Amplify CLI take different approaches.

 CDK lets you use general-purpose programming languages to describe the
resources you want to provision. It’s a double-edged sword, which offers the full flexi-
bility that a general-purpose programming language offers as well as the package
management system that comes with that language. It lets developers use their favor-
ite programming language for both their application code as well as their infrastruc-
ture code and can easily share reusable patterns as packages. However, it can also be
problematic in organizations where teams use different programming languages in
their application code. This limits the ability to share CDK constructs because the cre-
ators of these constructs have to support multiple languages. Letting developers add
business logic to their infrastructure code opens the door for extensive customization
for complex AWS environments, but it also makes infrastructure code harder to com-
prehend and govern by infrastructure teams.



223APPENDIX C Deployment frameworks

 Finally, with Amplify CLI, you’re not configuring AWS resources so much as saying
what capabilities you need in your application. Amplify CLI makes the magic happen
and configures the necessary AWS resources with sensible defaults based on your
input. It’s a super-productive tool and can help you build a fully working application
in no time. But it’s also a black box and has no escape hatch that lets you transition
away from it when you reach the limit of what it can do. This puts you in a precarious
position, where you face the real possibility of having to rebuild the application from
the ground up if you ever hit a snag with Amplify CLI.

 Each of these tools has its strengths, but none is perfect. A good principle that will
stand you in good stead, regardless of what tool you decide to use, is to understand how
the AWS services you need to work with operate and how the deployment mechanism
works before you try to automate it. Blindly automating what you don’t understand is
dangerous. But once you understand the underlying machineries, then you should
look for tools that allow you to move up the abstraction levels and be more productive.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



225

index

Numerics

24-Hour Video project
Amazon Web Services

costs 19–20
Elemental MediaConvert service 28
testing in 36
using 20–21

event-driven pipeline 19
logs 37–38
Serverless Framework 29–36

bringing to project 31–33
creating Lambda functions 33–36
setting up 29–30

system preparation 21–29
AWS Elemental MediaConvert service 28–29
creating buckets 25
Identity and Access Management 22–27
setting up 22

2FA (2 Factor Authentication) 22

A

A Cloud Guru 41, 70–83
original architecture 71–82

GraphQL 77–80
microservices 75–77
security in BFF environment 82
service discovery 80–81

remnants of legacy 82–83
ALB (Application Load Balancer) 68
Alexa skills 44
Algolia 197
Amazon API Gateway service 195, 210–211

Amazon Athena 160–163
Amazon Cognito 199
Amazon DynamoDB. See DynamoDB
Amazon Echo 44
Amazon Kinesis Data Analytics 89–90
Amazon Kinesis Data Firehose 88–89, 158–160
Amazon Kinesis Data Streams 86–87, 198
Amazon QuickSight 163–164
Amazon RDS (Relational Database Service) 197
Amazon S3 (Simple Storage Service) 196
Amazon SES (Simple Email Service) 196
Amazon SNS (Simple Notification Service)

195–196
Amplify 220–223
Analytics Service 157–164

AWS Glue and Amazon Athena 160–163
Kinesis Firehose 158–160
QuickSight 163–164

AngularJS 73
API Gateway 9, 29, 43–44, 75, 80

calculating costs 210–211
overview 195

Application Load Balancer (ALB) 68
AppSync 198
ARN (Amazon Resource Name) 201
Athena service 198
attributes 197
Auth0 73, 199
AWS (Amazon Web Services) 200–211

AppSync 198
Athena service 198
costs 19–20, 207–211

calculating Lambda and API Gateway 
costs 210–211

creating billing alerts 207–208



INDEX226

AWS (Amazon Web Services) (continued)
monitoring and optimizing 209
Pricing Calculator 210

Elemental MediaConvert service
creating roles 29
endpoint 32
outputs 35–36
overview 28
specifying ARN for role 33

Glue ETL 160–163
Identity and Access Management 200–207

creating and managing users 22–25, 
201–203

creating roles 26–27
groups 203
Lambda role ARN 32
permissions and policies 205–207
resources 204–205
roles 203–204

Media Services 197–198
multiple accounts 184–186

better autonomy for teams 185–186
better cost monitoring 185
eliminating contention for shared 

service limits 185
infrastructure-as-code for AWS 

Organizations 186
isolating security breaches 184

testing in 36
using 20–21
X-Ray 175

AWS AppSync 79
AWS Elemental MediaConvert 19, 25–26, 134
AWS Glue 150, 157, 198
AWS Pricing Calculator 210
AWS Step Functions 9
AWS WAF 76
AZs (availability zones) 85, 197

B

backends 41
BFF (Backends for Frontends) environment, 

security 82
BI (Business Intelligence) service 163
blueprints, Lambda 44
bots 44
buckets

creating 25
defined 196
transcoded video bucket 32
uploading 32

C

canary deployment 68
canary pattern 68
CDK (Cloud Development Kit) 219–220

advantages of 219
challenges of 220

CDU (Code Developer University) project 164
Analytics Service 157–164

AWS Glue and Amazon Athena 160–163
Kinesis Firehose 158–160
QuickSight 163–164

Code Scoring Service 150–153
Submissions Queue 152–153
summary of 153

requirements 147–148
general requirements 148
leaderboards 148
reports 148
users and experience points 148

solution architecture 148–150
Student Profile Service 153–157

Update Student Scores function 155–157
CloudAMQP 59
CloudCheckr 209
CloudFormation 32, 36, 74, 76, 212, 215–216
CloudFront 73, 75
CloudSearch 63
CloudWatch 37–38, 93, 174–175
CMKs (Customer Managed Keys) 189
Code Scoring Service 150–153

Submissions Queue 152–153
summary of 153

Cognito 199
cold latency 173
cold start penalty 173
command pattern

overview 46–47
uses for 47

compute layer 168
compute-as-glue architecture 51
concurrency 180–181

correlation between requests, latency, and 
concurrency 181

managing 181
concurrent executions 85
containers 8
contextual bandits model 89
cron jobs 102–109

cost 107
precision 105
scalability (hotspots) 105–107
scalability (number of open tasks) 105

custom code, minimizing 14
Customer Managed Keys (CMKs) 189



INDEX 227

D

data layer 168
data processing and manipulation 42
DAX in-memory cache 197
delegation 204
deployment frameworks 212–223

Amplify 220–223
CDK 219–220

advantages of 219
challenges of 220

SAM 215–216
Serverless Framework 213–215

invoking functions locally 214
language support 214
overview 213–214
plugins 215

Terraform 216–218
DLQ (Dead Letter Queue) feature 86, 144
DRM (Digital Right Management) 198
DSL (domain-specific language) 7
duration 175
DynamoDB 9, 74, 76, 79, 81, 83, 109–113, 

137–139, 143, 150, 157, 197
combining with SQS 122–125

precision 124
scalability (hotspots) 124
scalability (number of open tasks) 124

cost 113
precision 111
scalability (hotspots) 111–112
scalability (number of open tasks) 111

E

e2e (end-to-end) tests, temporary stacks for 188
EFS (Elastic File System) 137
ElasticSearch 63
Elemental MediaConvert service

creating roles 29
endpoint 32
outputs 35–36
overview 28
specifying ARN for role 33

emerging practices 193
avoiding sensitive data in plain text in 

environment variables 188–190
handling sensitive data securely 189–190
vulnerabilities 189

EventBridge 190–193
archiving and replaying events 191–192
content-based filtering 190–191
more targets 192
schema discovery 191
topology 192–193

multiple AWS accounts 184–186
better autonomy for teams 185–186
better cost monitoring 185
eliminating contention for shared service 

limits 185
infrastructure-as-code for AWS 

Organizations 186
isolating security breaches 184

temporary stacks 186–188
common AWS account structure 186–187
for e2e tests 188
for feature branches 187–188

endpoints 168
environment variables, avoiding sensitive data 

in plain text in 188–190
handling sensitive data securely 189–190
vulnerabilities 189

event-driven pipeline 19
EventBridge 149–150, 153, 157, 190–193

archiving and replaying events 191–192
content-based filtering 190–191
cron jobs with 102–109

cost 107
precision 105
scalability (hotspots) 105–107
scalability (number of open tasks) 105

more targets 192
schema discovery 191
topology 192–193

Extract Audio Lambda function 142–143

F

FaaS (Functions as a Service) 9
fan-out pattern

overview 50–51
uses for 51

Fargate 85–86
cost considerations 85
performance considerations 85–86

federation 204
FFmpeg library 136
Firebase 73–74, 83
folders, in S3 196
Functions as a Service (FaaS) 9

G

Glue ETL 160–163
GraphQL

moving to 79–80
overview 45–46, 77–79
uses for 46



INDEX228

H

hard limits 91–92, 115
Hello World! 30
hybrid approach 44–45

I

IaaS (Infrastructure as a Service) 8
IAM (Identity and Access Management)

91, 200–207, 215
creating and managing users 22–25, 201–203
creating roles 26–27
groups 203
Lambda role ARN 32
permissions and policies 205–207
resources 204–205
roles 203–204

iConsent 127–128
identity-based permissions, in AWS 204
indices, in Algolia 197
Infrastructure as a Service (IaaS) 8
inline policies 205
invocations 174
IoT (Internet of Things) 41
items, in DynamoDB 197

J

Jest JavaScript framework 188

K

keys, in S3 (Simple Storage Service) 196
Kinesis Data Analytics 89–90
Kinesis Data Firehose 88–89, 158–160
Kinesis Data Streams 42–43, 86–87, 90, 198
Kinesis Firehose 42–43, 91, 149, 157
KMS (Key Management Service), AWS 189

L

Lambda service 182
calculating costs 210–211
concurrency 180–181

correlation between requests, latency, and 
concurrency 181

managing 181
Lambda functions

creating 33–36
deployment 36
Extract Audio Lambda function 142–143
MediaConvert outputs 35–36
Merge Video Lambda function 143
request handling 169–173
Router 88

Split and Convert Video Lambda function 143
Transcode Video Lambda function 140–141

Lambda role ARN 32
latency 176–180

allocating sufficient resource to your 
execution environment 178–179

cold vs. warm 173
minimizing deployment artifact size 176–178
optimizing function logic 179–180

load generation 173–174
optimization 167–168
performance and availability tracking 174–176

AWS X-Ray 175
CloudWatch metrics 174–175
third-party tools 176

latency 176–180
allocating sufficient resource to your execution 

environment 178–179
cold vs. warm 173
minimizing deployment artifact size 176–178
optimizing function logic 179–180

legacy API proxy 43–44
load generation 173–174
load testing 92
logs 37–38

M

machine learning (ML) workloads 220
managed policies 205
MapReduce model 133–137

architecture overview 135–137
transcoding video 134–135

Media Services 197–198
MediaConvert 197
MediaLive 197
MediaPackage 198
MediaStore 198
MediaTailor 198
Merge Video and Audio function 141
Merge Video function 141
Merge Video Lambda function 143
messaging pattern

overview 47–48
uses for 49

methods 195
microservices

Cloud Guru 75–77
migrating to new 64–68

ML (machine learning) workloads 220

N

n^2 segments 138, 140
Netlify 73
npm (Node Package Manager) 20–21



INDEX 229

O

objects, in S3 (Simple Storage Service) 196
operations 197
orchestrators 155

P

PaaS (Platform as a Service) 8
parallel computing 145

alternative architecture for 144
maintaining state 138–141

Transcode Video Lambda function 140–141
MapReduce model 133–137

architecture overview 135–137
transcoding video 134–135

Step Functions 141–144
Extract Audio Lambda function 142–143
Merge Video Lambda function 143
Split and Convert Video Lambda function 143

patterns 45–53
command pattern

overview 46–47
uses for 47

compute-as-glue architecture 51
fan-out pattern

overview 50–51
uses for 51

GraphQL
overview 45–46
uses for 46

messaging pattern
overview 47–48
uses for 49

pipes and filters pattern
overview 52–53
uses for 53

priority queue pattern
overview 49–50
uses for 50

performance and availability tracking 174–176
AWS X-Ray 175
CloudWatch metrics 174–175
third-party tools 176

pipes and filters pattern
overview 52–53
uses for 53

Platform as a Service (PaaS) 8
Pricing Calculator 210
priority queue pattern

overview 49–50
uses for 50

public cloud-based architectures 15
Python 148, 214, 219

Q

QuickSight 163–164

R

RabbitMQ 59
RDS (Relational Database Service) 197
real-time analytics 42–43
records, Algolia 197
Redshift, Amazon 76, 160
RemindMe 127
resource-based permissions 204
resources, in Amazon API Gateway 195
retry storm 94
Reward Router Lambda function 89
Router Lambda function 88

S

S3 (Simple Storage Service) 20, 41, 136, 196
SAM (Serverless Application Model) 215–216
scheduled services 44
scheduling services for ad hoc tasks 131

applications 125–130
iConsent 127–128
RemindMe 127
TournamentsRUs 127

cron jobs with EventBridge 102–109
cost 107
precision 105
scalability (hotspots) 105–107
scalability (number of open tasks) 105

defining nonfunctional requirements 101–102
DynamoDB TTL 109–113

combining with SQS 122–125
cost 113
precision 111
scalability (hotspots) 111–112
scalability (number of open tasks) 111

SQS 119–122
combining with DynamoDB TTL 122–125
precision 121
scalability (hotspots) 121–122
scalability (number of open tasks) 121

Step Functions 113–119
cost 116
extend scheduled time beyond 1 year 117
precision 115
scalability (hotspots) 116
scalability (number of open tasks) 116
scaling for hotspots 117–118

Secrets Manager 189
serial invocation 154
server-side request forgery (SSRF) 184



INDEX230

Serverless Application Model (SAM) 215–216
serverless architectures 17, 40, 53

AWS
costs 19–20
Elemental MediaConvert service 28
testing in 36
using 20–21

conventional implementation 7–9
deciding to use 11–14
event-driven pipeline 19
logs 37–38
overview 5–6
patterns 45–53

command pattern 46–47
compute-as-glue architecture 51
fan-out pattern 50–51
GraphQL 45–46
messaging pattern 47–49
pipes and filters pattern 52–53
priority queue pattern 49–50

pros and cons of 14–16
Serverless Framework 29–36

bringing to project 31–33
creating Lambda functions 33–36
setting up 29–30

serverless implementation 9–10
serverless, defined 4–5
service-oriented architecture and 

microservices 7
system preparation 21–29

AWS Elemental MediaConvert service 28–29
creating buckets 25
Identity and Access Management 22–27
setting up 22

use cases 40–45
Alexa skills 44
backends 41
bots 44
data processing and manipulation 42
hybrids 44–45
Internet of Things 41
legacy API proxy 43–44
real-time analytics 42–43
scheduled services 44

Serverless Framework 29–36, 213–215
bringing to project 31–33

Lambda role ARN 32
MediaConvert endpoint 32
MediaConvert role 33
transcoded video bucket 32
uploading bucket 32

creating Lambda functions 33–36
deployment 36
MediaConvert outputs 35–36

invoking functions locally 214

language support 214
overview 213–214
plugins 215
setting up 29–30

credentials 29
Hello World! 30

service accounts 201
service-oriented architecture (SOA), 

microservices and 7
services 195–199

Algolia 197
API Gateway 195
AppSync 198
Athena 198
Auth0 199
Cognito 199
DynamoDB 197
Kinesis Streams 198
Media Services 197–198
Relational Database Service 197
Simple Email Service 196
Simple Notification Service 195–196
Simple Queue Service 196
Simple Storage Service 196

SES (Simple Email Service) 196
shards, in Kinesis Streams 198
Simple Storage Service (S3) 20, 41, 136, 196
skills, in Alexa 44
Slack 44
SNS (Simple Notification Service) 195–196
SOA (service-oriented architecture), 

microservices and 7
SOAP (Simple Object Access Protocol) 44
soft limits 91–92, 115
SPA (single-page application) frameworks 220
Split and Convert Video Lambda function 143
Sputnik 80–81
SQS (Simple Queue Service) 119–122, 196

combining with DynamoDB TTL 122–125
precision 124
scalability (hotspots) 124
scalability (number of open tasks) 124

precision 121
scalability (hotspots) 121–122
scalability (number of open tasks) 121

SQS DLQ (dead-letter queue) 87
SSM Parameter Store 189
SSRF (server-side request forgery) 184
state

maintaining in parallel computing 138–141
Transcode Video Lambda function 140–141

stateful microservices 75
stateless microservices 75
Step Functions 113–119, 141–144

cost 116



INDEX 231

Step Functions (continued)
extending scheduled time 117
Extract Audio Lambda function 142–143
Merge Video Lambda function 143
precision 115
scalability (hotspots) 116
scalability (number of open tasks) 116
scaling for hotspots 117–118
Split and Convert Video Lambda function 143

strangler pattern 62
Student Profile Service 153–157
Submissions Queue 152–153
system preparation 21–29

AWS Elemental MediaConvert service
creating roles 29
overview 28

creating buckets 25
Identity and Access Management

creating roles 26–27
creating users 22–25

setting up 22

T

tables, in DynamoDB 197
temporary stacks 186–188

common AWS account structure 186–187
for e2e tests 188
for feature branches 187–188

Terraform 216–218
throttles 175
thundering herd 94
TournamentsRUs 127
Transcode Video Lambda function 140–141
transcoding video 134–135
TTL (time-to-live) feature 109, 137
TypeScript 219

U

Update Student Scores function 155–157
use cases 40–45

Alexa skills 44
backends 41
bots 44
data processing and manipulation 42
hybrid approach 44–45
Internet of Things 41
legacy API proxy 43–44
real-time analytics 42–43
scheduled services 44

user pools 199

V

visibility timeout, in SQS 119
Vogel, Werner 93
VPCs (virtual private cloud) 76

W

warm latency 173

X

X-Ray 175

Y

Yle 84–95
batching is good for cost and efficiency 94–95
building with failure in mind 93–94

everything fails, all the time 93–94
paying attention to retry configurations 94

cost estimation is tricky 95
ingesting events at scale with Fargate 85–86

cost considerations 85
performance considerations 85–86

knowing service limits 91–93
always load testing 92
CloudWatch metric granularity 93
projecting throughput at every point along 

pipeline 92
soft vs. hard limits 91–92
some limits have bigger blast radiuses than 

others 92–93
processing events in real-time 86–90

Kinesis Data Analytics 89–90
Kinesis Data Firehose 88–89
Kinesis Data Streams 86–87
Router Lambda function 88
SQS dead-letter queue 87

Yubl 57–69
migrating to new microservices 64–68
new serverless architecture 61–63

rearchitecting and rewriting 62
search API 62–63

original architecture 58–60
long feature delivery cycles 59–60
performance problems 59
reasons for serverless 60
scalability problems 59



Sbarski ●  Cui ●  Nair

ISBN: 978-1-61729-542-3

M
aintaining server hardware and software can cost a lot of 
time and money. Unlike traditional data center infra-
structure, serverless architectures offl  oad core tasks like 

data storage and hardware management to pre-built cloud 
services. Better yet, you can combine your own custom AWS 
Lambda functions with other serverless services to create 
features that automatically start and scale on demand, reduce 
hosting cost, and simplify maintenance.

In Serverless Architectures with AWS, Second Edition you’ll learn 
how to design serverless systems using Lambda and other ser-
vices on the AWS platform. You’ll explore event-driven com-
puting and discover how others have used serverless designs 
successfully. Th is new edition off ers real-world use cases and 
practical insights from several large-scale serverless systems. 
Chapters on innovative serverless design patterns and architec-
tures will help you become a complete cloud professional. 

What’s Inside
●  First steps with serverless computing
●  Th e principles of serverless design
●  Important patterns and architectures
●  Real-world architectures and their tradeoff s

For server-side and full-stack software developers.

Peter Sbarski is VP of Education and Research at A Cloud 
Guru. Yan Cui is an independent AWS consultant and 
educator. Ajay Nair is one of the founding members of the 
AWS Lambda team.

Register this print book to get free access to all ebook formats. 
Visit https://www.manning.com/freebook

$49.99 / Can $65.99  [INCLUDING eBOOK]

Serverless Architectures on AWS 
Second Edition

AWS/CLOUD COMPUTING

M A N N I N G

“A comprehensive and 
practical review of the AWS 

s erverless landscape.” 
—Eugene Serdiouk

Primex Family of Companies

“Filled with indispensable 
advice you can use to take 

your AWS serverless architec-
tures to the next level.” 

—Sal DiStefano
Travelers Insurance

“An excellent book 
providing an overview and 
explanations of common 
serverless architectures. 
A must-read for every 

cloud developer.” 
—Mikołaj Graf

Cloudsail Digital Solutions

“A clear path to exploring 
the many services 

  off ered by AWS.”—Giampiero Granatell
ManyDesigns

See first page


	Serverless Architectures on AWS, Second Edition
	brief contents
	contents
	preface
	acknowledgments
	about this book
	About the code
	liveBook discussion forum

	about the authors
	about the cover illustration
	Part 1: First steps
	Chapter 1: Going serverless
	1.1 What’s in a name?
	1.2 Understanding serverless architectures
	1.2.1 Service-oriented architecture and microservices
	1.2.2 Implementing architecture the conventional way
	1.2.3 Implementing architecture the serverless way

	1.3 Making the call to go serverless
	1.4 Serverless pros and cons
	1.5 What’s new in this second edition?

	Chapter 2: First steps to ser verless
	2.1 Building a video-encoding pipeline
	2.1.1 A quick note on AWS costs
	2.1.2 Using Amazon Web Services (AWS)

	2.2 Preparing your system
	2.2.1 Setting up your system
	2.2.2 Working with Identity and Access Management (IAM)
	2.2.3 Let’s make a bucket
	2.2.4 Creating an IAM role
	2.2.5 Using AWS Elemental MediaConvert
	2.2.6 Using MediaConvert Role

	2.3 Starting with the Serverless Framework
	2.3.1 Setting up the Serverless Framework
	2.3.2 Bringing Serverless Framework to The 24-Hour Video
	2.3.3 Creating your first Lambda function

	2.4 Testing in AWS
	2.5 Looking at logs

	Chapter 3: Architectures and patterns
	3.1 Use cases
	3.1.1 Backend compute
	3.1.2 Internet of Things (IoT)
	3.1.3 Data processing and manipulation
	3.1.4 Real-time analytics
	3.1.5 Legacy API proxy
	3.1.6 Scheduled services
	3.1.7 Bots and skills
	3.1.8 Hybrids

	3.2 Patterns
	3.2.1 GraphQL
	3.2.2 Command pattern
	3.2.3 Messaging pattern
	3.2.4 Priority queue pattern
	3.2.5 Fan-out pattern
	3.2.6 Compute as glue
	3.2.7 Pipes and filters pattern



	Part 2: Use cases
	Chapter 4: Yubl: Architecture highlights, lessons learned
	4.1 The original Yubl architecture
	4.1.1 Scalability problems
	4.1.2 Performance problems
	4.1.3 Long feature delivery cycles
	4.1.4 Why serverless?

	4.2 The new serverless Yubl architecture
	4.2.1 Rearchitecting and rewriting
	4.2.2 The new search API

	4.3 Migrating to new microservices gracefully

	Chapter 5: A Cloud Guru: Architecture highlights, lessons learned
	5.1 The original architecture
	5.1.1 The journey to 43 microservices
	5.1.2 What is GraphQL
	5.1.3 Moving to GraphQL
	5.1.4 Service discovery
	5.1.5 Security in the BFF world

	5.2 Remnants of the legacy

	Chapter 6: Yle: Architecture highlights, lessons learned
	6.1 Ingesting events at scale with Fargate
	6.1.1 Cost considerations
	6.1.2 Performance considerations

	6.2 Processing events in real-time
	6.2.1 Kinesis Data Streams
	6.2.2 SQS dead-letter queue (DLQ)
	6.2.3 The Router Lambda function
	6.2.4 Kinesis Data Firehose
	6.2.5 Kinesis Data Analytics
	6.2.6 Putting it altogether

	6.3 Lessons learned
	6.3.1 Know your service limits
	6.3.2 Build with failure in mind
	6.3.3 Batching is good for cost and efficiency
	6.3.4 Cost estimation is tricky



	Part 3: Practicum
	Chapter 7: Building a scheduling ser vice for ad hoc tasks
	7.1 Defining nonfunctional requirements
	7.2 Cron job with EventBridge
	7.2.1 Your scores
	7.2.2 Our scores
	7.2.3 Tweaking the solution
	7.2.4 Final thoughts

	7.3 DynamoDB TTL
	7.3.1 Your scores
	7.3.2 Our scores
	7.3.3 Final thoughts

	7.4 Step Functions
	7.4.1 Your scores
	7.4.2 Our scores
	7.4.3 Tweaking the solution
	7.4.4 Final thoughts

	7.5 SQS
	7.5.1 Your scores
	7.5.2 Our scores
	7.5.3 Final thoughts

	7.6 Combining DynamoDB TTL with SQS
	7.6.1 Your scores
	7.6.2 Our scores
	7.6.3 Final thoughts

	7.7 Choosing the right solution for your application
	7.8 The applications
	7.8.1 Your weights
	7.8.2 Our weights
	7.8.3 Scoring the solutions for each application


	Chapter 8: Architecting ser verless parallel computing
	8.1 Introduction to MapReduce
	8.1.1 How to transcode a video
	8.1.2 Architecture overview

	8.2 Architecture deep dive
	8.2.1 Maintaining state
	8.2.2 Step Functions

	8.3 An alternative architecture

	Chapter 9: Code Developer University
	9.1 Solution overview
	9.1.1 Requirements listed
	9.1.2 Solution architecture

	9.2 The Code Scoring Service
	9.2.1 Submissions Queue
	9.2.2 Code Scoring Service summary

	9.3 Student Profile Service
	9.3.1 Update Student Scores function

	9.4 Analytics Service
	9.4.1 Kinesis Firehose
	9.4.2 AWS Glue and Amazon Athena
	9.4.3 QuickSight



	Part 4: The future
	Chapter 10: Blackbelt Lambda
	10.1 Where to optimize?
	10.2 Before we get started
	10.2.1 How a Lambda function handles requests
	10.2.2 Latency: Cold vs. warm
	10.2.3 Load generation on your function and application
	10.2.4 Tracking performance and availability

	10.3 Optimizing latency
	10.3.1 Minimize deployment artifact size
	10.3.2 Allocate sufficient resources to your execution environment
	10.3.3 Optimize function logic

	10.4 Concurrency
	10.4.1 Correlation between requests, latency, and concurrency
	10.4.2 Managing concurrency


	Chapter 11: Emerging practices
	11.1 Using multiple AWS accounts
	11.1.1 Isolate security breaches
	11.1.2 Eliminate contention for shared service limits
	11.1.3 Better cost monitoring
	11.1.4 Better autonomy for your teams
	11.1.5 Infrastructure-as-code for AWS Organizations

	11.2 Using temporary stacks
	11.2.1 Common AWS account structure
	11.2.2 Use temporary stacks for feature branches
	11.2.3 Use temporary stacks for e2e tests

	11.3 Avoid sensitive data in plain text in environment variables
	11.3.1 Attackers can still get in
	11.3.2 Handle sensitive data securely

	11.4 Use EventBridge in event-driven architectures
	11.4.1 Content-based filtering
	11.4.2 Schema discovery
	11.4.3 Archive and replay events
	11.4.4 More targets
	11.4.5 Topology



	appendix A: Ser vices for your ser verless architecture
	A.1 API Gateway
	A.2 Simple Notification Service (SNS)
	A.3 Simple Storage Service (S3)
	A.4 Simple Queue Service (SQS)
	A.5 Simple Email Service (SES)
	A.6 Relational Database Service (RDS)
	A.7 DynamoDB
	A.8 Algolia
	A.9 Media Services
	A.10 Kinesis Streams
	A.11 Athena
	A.12 AppSync
	A.13 Cognito
	A.14 Auth0
	A.15 Other services

	appendix B: Setting up your cloud
	B.1 Security model and identity management
	B.1.1 Creating and managing IAM users
	B.1.2 Groups
	B.1.3 Roles
	B.1.4 Resources
	B.1.5 Permissions and policies

	B.2 Cost
	B.2.1 Creating billing alerts
	B.2.2 Monitoring and optimizing costs
	B.2.3 Using the Simple Monthly Calculator
	B.2.4 Calculating Lambda and API Gateway costs


	appendix C: Deployment frameworks
	C.1 Serverless Framework
	C.1.1 Getting started
	C.1.2 Language support
	C.1.3 Invoking functions locally
	C.1.4 Plugins

	C.2 Serverless Application Model (SAM)
	C.3 Terraform
	C.4 Cloud Development Kit
	C.4.1 Where CDK shines
	C.4.2 CDK challenges

	C.5 Amplify

	index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




