
M A N N I N G

Phil Wilkins
Forewords by
Christian Posta
Anurag Gupta

With Fluentd, Kubernetes
and more

302

Fluentd–Extensible and Pluggable
Fluentd is built with a plugin framework, making it possible to
incorporate a vast range of log sources and destinations.
The Fluentd core carries the most commonly needed plugins,
and vendors and the open source community have provided
the 500+ other plugins.

• Plugins from cloud vendors like AWS, GCP, Oracle,
 Azure
• Plugins from log analytics apps and services like
 Elasticsearch, Logz.io, Splunk, Loggly
• Integrated with CNCF projects like Grafana,
 Prometheus
• Collaboration services like Slack, email, Jabber

Input Output

Buffer/
cache

• Custom in memory cache
• Redis

• S3 buckets
• Db
• Redis

Formatter
• XML
• JSON
• CSV/TSV, etc.
• Compressed formats

Parser
• Multiline text to single event
• Event info extraction (e.g., date & time)

Filters
• Value-based conditions
• REGEX expressions

Custom components
Using RubyGems, it is possible to build any
custom components using the framework
provided.

• TCP/UDP
• Unix sockets
• HTTP
• Many file formats
• SNMP traps
• OS (Linux/Unix)
• Log4J, SLF4J, and other
 related frameworks for
 .Net, JavaScript

Storage

Fluentd

• ALM solutions (e.g., Splunk,
 cloud-native solutions, Loggly,
 Logz.io)
• HTTP
• Prometheus
• Grafana
• Many file formats
• DB (SQL/NoSQL)
• Event streams (e.g., Kafka, SS,
 Kenesis, MQTT)
• Social notifications (e.g., Jabber,
 Slack, email, Twilio)
• Support management tools like
 PagerDuty

Logging in Action

ii

Logging in Action
WITH FLUENTD, KUBERNETES AND MORE

PHIL WILKINS
FOREWORDS BY CHRISTIAN POSTA

AND ANURAG GUPTA

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2022 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

The author and publisher have made every effort to ensure that the information in this book
was correct at press time. The author and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any usage
of the information herein.

Manning Publications Co. Development editor: Katie Sposato Johnson
20 Baldwin Road Technical development editors: Sam Zaydel
PO Box 761 Review editor: Aleksandar Dragosavljević
Shelter Island, NY 11964 Production editor: Andy Marinkovich

Copy editor: Carrie Andrews
Proofreader: Melody Dolab

Technical proofreaders: Kerry Koitzsch
Typesetter and cover designer: Marija Tudor

ISBN 9781617298356
Printed in the United States of America

www.manning.com

contents
foreword xiii
preface xvi
acknowledgments xviii
about this book xx
about the author xxv
about the cover illustration xxvi

PART 1 FROM ZERO TO “HELLO WORLD” 1

1 Introduction to Fluentd 3
1.1 Elevator pitch for Fluentd 4

What is a log event? 4 ■ Fluentd compared to middleware 5

1.2 Why do we produce logs? 6
1.3 Evolving ideas 9

Four golden signals 9 ■ Three pillars of observability 10

1.4 Log unification 12
Unifying logs vs. log analytics 14

1.5 Software stacks 14
ELK stack 15 ■ Comparing Fluentd and Logstash 16
The relationship between Fluentd and Fluent Bit 17
The relationship between Logstash and Beats 18

1.6 Log routing as a vehicle for security 18
v

CONTENTSvi
1.7 Log event life cycle 19
1.8 Evolution of Fluentd 20

Treasure Data 20 ■ CNCF 22 ■ Relationship to major cloud
vendors PaaS/IaaS 22

1.9 Where can Fluentd and Fluent Bit be used? 23
Platform constraints 23

1.10 Fluentd UI-based editing 24
1.11 Plugins 26
1.12 How Fluentd can be used to make operational tasks

easier 27
Actionable log events 27 ■ Making logs more meaningful 27
Polyglot environments 28 ■ Multiple targets 28
Controlling log data costs 28 ■ Logs to metrics 28
Rapid operational consolidation 29

2 Concepts, architecture, and deployment of Fluentd 30
2.1 Architecture and core concepts 30

The makeup of a log event 31 ■ Handling time 32
Architecture of Fluentd 33 ■ Fluent configuration execution
order 35 ■ Directives 36 ■ Putting timing requirements
into action 38

2.2 Deployment of Fluentd 38
Deploying Fluentd for the book’s examples 39 ■ Deployment
considerations for Fluentd 39 ■ Fluentd minimum footprint 40
Simple deployment of Ruby 40 ■ Simple deployment of
Fluentd 41 ■ Deploying a log generator 44 ■ Installing
Postman 46

2.3 Bringing Fluentd to life with “Hello World” 46
“Hello World” scenario 46 ■ “Hello World” configuration 47
Starting Fluentd 47

2.4 “Hello World” with Fluent Bit 50
Starting Fluent Bit 50 ■ Alternate Fluent Bit startup options 52
Fluent Bit configuration file comparison 53 ■ Fluent Bit
configuration file in detail 54 ■ Putting the dummy plugin
into action 55

2.5 Fluentd deployment with Kubernetes and containers 55
Fluentd DaemonSet 56 ■ Dockerized Fluentd 58

2.6 Using Fluentd UI 59
Installing Fluentd with UI 59

CONTENTS vii
PART 2 FLUENTD IN DEPTH .. 65

3 Using Fluentd to capture log events 67
3.1 Dry running to check a configuration 68

Putting validating Fluentd configuration into action 69

3.2 Reading log files 69
Putting the adaption of a Fluentd configuration to Fluent Bit into
action 70 ■ Rereading and resuming reading of log files 71
Configuration considerations for tracking position 71
Wildcards in the path attribute 72 ■ Expressing time 73
Controlling the impact of wildcards in filenames 73
Replacing wildcards with delimited lists in action 75
Handling log rotation 75

3.3 Self-monitoring 78
HTTP interface check 78

3.4 Imposing structure on log events 81
Standard parsers 81 ■ Third-party parsers 86 ■ Applying
a Regex parser to a complex log 86 ■ Putting parser
configuration into action 91

4 Using Fluentd to output log events 93
4.1 File output plugin 94

Basic file output 94 ■ Basics of buffering 95 ■ Chunks
and Controlling Buffering 98 ■ Retry and backoff 102
Putting configuring buffering size settings into action 103

4.2 Output formatting options 103
out_file 104 ■ json 104 ■ ltsv 104 ■ csv 104
msgpack 105 ■ Applying formatters 105 ■ Putting JSON
formatter configuration into action 106

4.3 Sending log events to MongoDB 106
Deploying MongoDB Fluentd plugin 107 ■ Configuring the
Mongo output plugin for Fluentd 108 ■ Putting MongoDB
connection configuration strings into action 111

4.4 Actionable log events 111
Actionable log events through service invocation 112 ■ Actionable
through user interaction tools 112

4.5 Slack to demonstrate the social output 113
Handling tokens and credentials more carefully 115
Externalizing Slack configuration attributes in action 116

CONTENTSviii
4.6 The right tool for the right job 117

5 Routing log events 119
5.1 Reaching multiple outputs by copying 120

Copy by reference or by value 122 ■ Handling errors when
copying 124

5.2 Configuration reuse and extension through
inclusion 126
Place holding with null output 129 ■ Putting inclusions
with a MongoDB output into action 129

5.3 Injecting context into log events 130
Extraction of values 131

5.4 Tag-based routing 132
Using exec output plugin 135 ■ Putting tag naming
conventions into action 135 ■ Putting dynamic tagging
with extract into action 136

5.5 Tag plugins 136
5.6 Labels: Taking tags to a new level 137

Using a stdout filter to see what is happening 137 ■ Illustrating
label and tag routing 137 ■ Connecting pipelines 139
Label sequencing 141 ■ Special labels 143 ■ Putting a
common pipeline into action 144

6 Filtering and extrapolation 145
6.1 Application of filters 146

All is well events do not need to be distributed 146 ■ Spotting
the needle in a haystack 147 ■ False urgency 147
Releveling 147 ■ Unimplemented housekeeping 148

6.2 Why change log events? 148
Easier to process meaning downstream 148 ■ Add context 148
Record when we have reacted to a log event 148
Data redaction/masking 149

6.3 Applying filters and parsers 150
Filter plugins 150 ■ Applying grep filters 150 ■ Changing log
events with the record_transformer plugin 153 ■ Filter parser vs.
record transformer 156

6.4 Demonstrating change impact with stdout in action 157
A solution demonstrating change impact with stdout in action 157

CONTENTS ix
6.5 Extract to set key values 157
6.6 Deriving new data values with the record_transformer 159

Putting the incorporation of calculations into a log event
transformation into action 160

6.7 Generating simple Fluentd metrics 160
Putting log event counting into action 163

PART 3 BEYOND THE BASICS 165

7 Performance and scaling 167
7.1 Threading and processes to scale with workers 168

Seeing workers in action 169 ■ Worker constraints 171
Controlling output plugin threads 172 ■ Memory
management optimization 172

7.2 Scaling and moving workloads 173
Fan-in/log aggregation and consolidation 173 ■ Fan-out
and workload distribution 179 ■ High availability 184
Putting a high-availability comparison into action 185

7.3 Fluentd scaling in containers vs. native and virtual
environments 185
Kubernetes worker node configuration 186 ■ Per-cluster
configuration 186 ■ Container as virtualization 187
Sidecar pattern 188 ■ Options comparison 189

7.4 Securing traffic between Fluentd nodes 190
TLS configuration 190 ■ TLS not just for encryption 191
Certificate and private key storage 191 ■ Security is more
than certificates 192

7.5 Credentials management 192
Simple credentials use case 193 ■ Putting certification into
action 195

8 Driving logs with Docker and Kubernetes 197
8.1 Fluentd out of the box from Docker Hub 198

Official Docker images 198 ■ Docker log drivers 199
Getting set up for Docker log drivers 199

8.2 Using Docker log drivers 200
Docker drivers via the command line 200 ■ A quick check of
network connections 201 ■ Running Docker command line 202
Switching to driver configuration through a configuration file 204

CONTENTSx
8.3 Kubernetes components logging and the use of
Fluentd 207
Kubernetes components and structured logging 208 ■ Kubernetes
default log retention and log rotation 208 ■ kubectl with
logging 209

8.4 Demonstrating logging with Kubernetes 209
Kubernetes setup 210 ■ Creating logs to capture 212
Understanding how Fluentd DaemonSets are put together 215

8.5 Getting a peek at host logs 219
8.6 Configuring a Kubernetes logging DaemonSet 222

Getting the Fluentd configuration ready to be used 222
Creating our Kubernetes deployment configuration 224
Putting the implementation of a Fluentd for Kubernetes into
action 226 ■ Deploying to minikube 227 ■ Tidying up 228

8.7 Kubernetes configuration in action 228
Answer 228

8.8 More Kubernetes monitoring and logging to watch for 228
Node monitoring 229 ■ Termination messages 229

9 Creating custom plugins 231
9.1 Plugin source code 232
9.2 What is Redis, and why build a plugin with the Redis list

capability? 232
Redis list over RedisTimeSeries 233

9.3 Illustrating our objective using Redis CLI 233
9.4 Preparing for development 234
9.5 Plugin frameworks 235

Creating the skeleton plugin 235 ■ Plugin life cycle 237

9.6 Implementing the plugin core 238
How configuration attributes work 238 ■ Starting up and
shutting down 240 ■ Getting the plugin to work with our Fluentd
installation 241 ■ Putting additional configuration validation
into action 242 ■ Implementing the Redis output logic 243
Putting the testing of synchronous output into action 244

9.7 Implementing the Redis input plugin 244
Testing input and output plugin execution 246

9.8 Extending output with buffering 247
Improving our scenario by putting maintainability into action 250

CONTENTS xi
9.9 Unit testing 250
9.10 Putting the development of unit tests into action 251

Answer 251

9.11 Package and deployment 252
Documentation 252 ■ Complete metadata aka manifest 253
Building the gem package 253 ■ Rerun without the plugin
paths 253

9.12 Extending to be an enterprise-class solution 254

PART 4 GOOD LOGGING PRACTICES AND FRAMEWORKS
TO MAXIMIZE LOG VALUE 257

10 Logging best practices 259
10.1 Audit events vs. log events 260
10.2 Log levels and severities 260

Trace 261 ■ Debug 261 ■ Info(rmation) 262
Warn(ing) 262 ■ Error 263 ■ Fatal 263 ■ Extending
or creating your own log levels 263

10.3 Clear language 264
10.4 Human and machine-readable 265
10.5 Context is key 265

Context: What 266 ■ Context: When 266 ■ Context:
where 266 ■ Context: Why 267 ■ Context: Who 268
a practical checklist for capturing context 268

10.6 Error codes 269
Using standard errors 271 ■ Codes can be for more than
errors 271

10.7 Too little logging or too much? 271
What qualifies as sensitive? 272 ■ GDPR is only the
start 274

10.8 Log structure and format 275
Putting making log entries ready for application
shipping into action 276

10.9 Use frameworks if you can 277
10.10 Development practices 277

Rethrowing exceptions 278 ■ Using standard exceptions and error
structures 278 ■ String construction as a reason not to log 279

CONTENTSxii
11 Logging frameworks 281
11.1 Value of logging frameworks 282
11.2 Typical structure of a logging framework 283

Logger context 283 ■ Appender 284 ■ Logger 284
Filter 285 ■ Formatter 285 ■ Configuration 285
Logger config 285

11.3 Appender structures 285
11.4 Logging framework landscape 286
11.5 Choosing a framework 287

Putting optimizing application logging into action 288

11.6 Fluentd’s own logging and appenders 288
11.7 Illustrations of an application logging directly to

Fluentd 290
Python with logging framework: Using the Fluentd library 290
Invoking Fluentd appender directly 293 ■ Illustration with only
Python’s logging 294 ■ Illustration without Python’s logging or
Fluentd library 295 ■ Porting the Fluentd calls to another
language into action 296 ■ Using generic appenders: The
takeaways 297

appendix A Installation of additional tools and services 299
appendix B Processing times and dates, regular expressions, and other

configuration values 315
appendix C Plugins summary 321
appendix D Real-world use case 327
appendix E Useful resources 337

index 353

foreword
Software is the lifeblood of most industries today and can be a differentiator for those
companies that can iterate quickly and find customer value before their competitors.
Some of the recent trends that allow large organizations to move fast include the
adoption of cloud platforms and microservice architectures. While some of the trends
have evolved, one thing has remained constant: when things go wrong, we need to
quickly understand where to look to fix the problem. Microservices and ephemeral
cloud infrastructure (containers, etc.) exacerbate this problem.

 I vividly remember working on a particularly nasty distributed problem for a client
a few years back wherein a set of services would communicate with each other to pro-
vide some business function, and after six days (almost on the dot!), the set of services
would all come crashing down. The resulting outage caused significant revenue loss
for this client. The client decided to restart all of the services one by one after four
days to avoid the problem.

 After observing the system for a few days, I noticed that the memory usage of all of
the services involved in the call graph was growing significantly, so I worked with the
client to safely capture memory and thread dumps to understand what was happen-
ing. I determined that a particular buffer was getting filled, but when looking through
the code it was very difficult to identify why this was happening. The system included
both blocking and nonblocking code on various threads, which made it difficult to
work with. I had to turn to a tried-and-true foundation of working with distributed sys-
tems to help diagnose the issue: logging events.

 After a few days spent diligently poring over many hundreds of thousands of log
lines across the various services, I was able to see that a certain combination of mes-
sages that flowed through the system triggered a memory leak in all of the services,
which would eventually cause an “OOM” or out-of-memory event in the services.
xiii

FOREWORDxiv
 Although logging helped significantly in this endeavor, it was not easy. The logging
was not consistent across the services, the timestamps were wrong, and the technology
used to pull the logs from the machines would sometimes fail, crash, or corrupt the
log files. We also lost valuable log data as the services were restarted after four days
because the client could not take an outage. If the client had a better logging and
observability architecture, a lot of this would have been simplified and would have
reduced the time to pinpoint the OOM issue.

 In this book, Phil Wilkins does an amazing job of conveying the principles of good
logging patterns and demonstrates this with concrete technology and examples using
a ubiquitous log collection and aggregation technology called Fluentd. Fluentd is
used to collect, unify, and stream logging data from a variety of systems to a central-
ized data store, which can then be used for proper analysis. Phil walks the reader
through building a logging system, taking into account such things as timestamps,
structured human-readable data, and more complex things such as routing and mas-
saging the logging data.

 If you’re building distributed systems such as microservices architectures, you will
want to seriously consider your logging and observability architecture to support your
day-to-day operations. This book will be a useful companion as you embark on your
journey.

—CHRISTIAN POSTA, VP, Global Field CTO at Solo.io

I started my Fluentd journey seven years ago by integrating the project as the core
piece of Microsoft Azure’s Log Analytic Linux agent. The initial learning curve was
challenging; however, the benefits we received from a growing community, plugin
ecosystem, and ease of extensibility made the project a favorite within Azure environ-
ments. I then jumped to Treasure Data, where I managed the project, and afterward
joined Elastic, where I learned of other logging toolsets. After admiring Fluentd from
afar, I finally left Elastic, started Calyptia, a company built around the Fluentd ecosys-
tem, and became a project maintainer.

 When starting as a maintainer, I immersed myself in the community, surveying
users about their pains and where we could do better. The community highlighted
their knowledge gaps on getting started and where to find in-depth explanations of
certain topics, and asked for more concrete examples.

 In a happy coincidence, I also met Phil Wilkins while chatting with the community
and had the opportunity to read his work Logging in Action. Phil has immense talent
for deciphering complex topics and providing easy-to-understand visuals and instruc-
tion. Logging in Action fills many of the community’s gaps with architecture details and
deep step-by-step explanations.

 Users who are brand-new to the observability space or already running Fluentd in
production will gain value from maximizing Fluentd’s performance with a deep dive
on Fluentd’s plugin architecture and on multiworker/multithread architecture. All of

FOREWORD xv
these examples accompany simple configuration and line-by-line explanations to cus-
tomize in your environment.

 Beyond the basics of getting started, Logging in Action goes into important real-
world use cases and business value. Some of my favorites include reducing log volume,
which can reduce costs for users who are using expensive backends, as well as how to
use Fluentd to route and send data to multiple destinations. Both use case examples
would have made my role much easier in previous years.

 With Fluentd in its tenth year of development and users deploying the ecosystem’s
projects over 2 million times a day with Docker, it is hard to find a modern-day Kuber-
netes service or cloud provider without reference to these essential tools. I highly rec-
ommend using Logging in Action as a getting-started guide or refresher, or as a way to
optimize your logging journey.

—ANURAG GUPTA,
FLUENT MAINTAINER AND CO-FOUNDER, CALYPTIA

preface
In some ways, this book has been in development for as long as I have worked in the
software industry. This may sound odd, given that my career in IT started in the early
’90s. I learned early on the importance of logging and translating error events into
diagnoses and problem resolution. Lessons came from being a young lead developer
on a critical product development running round-the-clock system testing. If some-
thing wasn’t shown on the displays, it was assumed to be a presentation system prob-
lem, so get Phil—he needs to fix things now, even if it is some antisocial time of day or
night. The reality was that the presentation subsystem was rarely at fault. The error
originating from one of many complex backend systems sent erroneous data or tried
to communicate using the wrong version of the interface. The better I made the log-
ging to help show what had or had not been sent to the display system, the fewer the
calls received.

 Over the years, I’ve seen the constant drive to deliver functionality and features
over giving the nonfunctional aspects the attention sometimes needed. Functional
goals will always override the nonfunctional considerations. As software developers,
we can be our own worst enemies when it comes to monitoring and logging. Writing
logging events isn’t that exciting when our code runs sweetly and passes all our unit
tests. The functionality is complete and within the agreed time as far as the decision-
makers are concerned, so why spend more time on the solution?

 The reality is that we often collect logs and stick them in a dark place until some-
thing starts to go wrong. Logging will never be a sexy subject, but it is essential, and
when done well, it can allow us to do some clever stuff. Good logging makes it possi-
ble for machine learning and artificial intelligence to be used for pattern recognition
or to directly notify the right person to address the issue. You could go as far as
detecting a log event and then trigger housekeeping processes to avoid a problem.
xvi

PREFACE xvii
IBM used to call the ideas of self-protecting and self-healing processes autonomics—
sound more fun now?

 My open source background started about the same time as I switched to using
Java (release 1.4 had just come out), starting with libraries such as Log4J. This pro-
gressed to larger open source solutions like JBoss v3 application server, and then
working with Fuse (Apache CXF, Camel, ServiceMix, and ActiveMQ) before RedHat
acquired the businesses, building and providing services for these frameworks. One of
the great things about truly open-source solutions are the vendor-agnostic characteris-
tics, which means it can have adaptors and plugins covering a diverse set of sources,
making it easy to integrate. An architecture that lends itself well to integrating things
will encourage such an ecosystem to thrive, and that’s what Fluentd has.

 The last thread of the story comes from my views on knowledge sharing. I’ve seen
people use the idea of “knowledge is power” as a reason to withhold as much as possi-
ble, forcing people to go to individuals who make themselves indispensable. I’ve always
interpreted this idea in an almost diametrically opposite way. I don’t want to be indis-
pensable, as it means you’re back to being called upon day and night. Better to share
your knowledge with all. Make your investment in developing knowledge worthwhile;
people are far more likely to appreciate it and come back to you in the future (on your
terms). It wasn’t until I got involved with Oracle middleware and its user community,
and later partner community, that I found a like-minded group of people who encour-
aged my writing and sharing. My journey as an author really got going.

 My initial “serious” encounters with Fluentd occurred when I looked at the CNCF
ecosystem to see what solutions were in the incubator. CNCF-incubated projects sug-
gest possible future technology evolution. In Fluentd, I found a tool that offered far
more than just letting Splunk hoover up log files. Fluentd creates opportunities to
move log management to exciting places and address many significant log manage-
ment challenges in a hybrid and multicloud space. However, I felt it was underrepre-
sented in terms of explaining and illustrating Fluentd’s capability and potential in a
cohesive way, and thus this book was born. This might suggest that the Fluentd docu-
mentation is terrible, but far from it. The online documentation is, however, a dictio-
nary, not a guide. It doesn’t address the questions of what to look for when applying
configuration and why.

acknowledgments
This book has been my first solo writing adventure and my first with Manning, and it
has reminded me that there is a lot more effort that goes into a good book than meets
the eye. But I hope you’ll agree that the prodding and encouragement from the Man-
ning editorial team means this is a book that will deliver for you.

 I’d like to thank everyone at Manning for their support, particularly Katie Sposato
Johnson and Andrew Waldron, who have been with me all the way through this adven-
ture, and Carrie Andrews for finally whipping the content into shape.

 In writing this book, we’ve had the support of volunteer reviewers and MEAP read-
ers. Their feedback has been of great help and insight. Along the way, Anurag Gupta
and Eduardo Silva Pereira, as technical and product leads for Fluentd and Fluent Bit,
have reached out and taken the time to discuss Fluentd and Fluent Bit with me and
contribute to the reviewing process. Thank you all for the time and feedback.

 My journey as an author wouldn’t have started without support and encourage-
ment over the years. Those involved in my journey to becoming an Oracle Ace Direc-
tor (think Java Rock Stars or Microsoft MVPs for, in my case, Oracle Integration and
Cloud) have been central to this journey. By extension, to friends and colleagues past
and present at Capgemini and Oracle—as always, many thanks, and I hope we’ll get a
chance to enjoy food and drink together again as it becomes safe to travel again.

 Lastly, and most importantly, this book would have never happened without the
support and understanding from my wife, Catherine, and our two sons, Christopher
and Aaron, when I’ve spent evenings and weekends at the computer rather than in
their company. All my love to you.

 To all the reviewers: Alex Saez, Andrea C. Granata, Andres Sacco, Clifford
Thurber, Conor Redmond, Elias Rangel, George Thomas, Joel Holmes, John Guthrie,
xviii

ACKNOWLEDGMENTS xix
Kanak Kshetri, Kent R. Spillner, Kerry E. Koitzsch, Mario-Leander Reimer, Michael
Bright, Michal Rutka, Raymond Cheung, Satej Kumar Sahu, Sau Fai Fong, Sidharth
Masaldaan, Simeon Leyzerzon, Stefan Hellweger, Suresh Koya, Trent Whiteley, Vamsi
Krishna, and Zoheb Ainapore, your suggestions made this a better book.

about this book
Logging in Action was written to help people get the most out of Fluentd and think
about how logging can make our lives easier. Yes, the book focuses on Fluentd, but it is
one of the most influential logging tools, as you will see.

 The time spent developing software is such a small fraction of the life of the code that
we produce and that needs to be kept operating. The weaker the logging, the harder
it will be to understand and care for these systems in 20 or 30 years. Consider this: in
2020, Reuters has been quoted as stating that there are about 220 billion lines of COBOL
code (www.bmc.com/blogs/cobol-trends); the Linux kernel was released in 1991, so
software hangs around. Well-written logs and maximizing the logging tools and frame-
works can make an enormous contribution to helping. You don’t need to be a superstar
hotshot developer or a sysadmin versed in the dark arts of kernel configuration to ben-
efit from this book; as the author, I don’t consider myself to be either of these.

 Fluentd and various other technologies, such as Prometheus, are strongly associ-
ated with cloud-native solutions. But don’t let this put you off; even if you’re working
with COBOL 77 on a mainframe, you still need to know what is going on. Tools like
Fluentd have simply approached the same problems of monitoring, measuring, and
alerting in a manner that can also address the demands that cloud-native can add
(integration into containers, hyper scaling, and very highly distributed solutions cross-
ing data centers and hosting vendors). Given this, much of the book focuses on the
problem of logging regardless of location. Fluentd addresses the challenges of con-
tainers, hyper scaling, and so on, so we engage with these problems in the most
advanced part of the book.

 Everyone comes with preconceived ideas about what logging and monitoring is
and how it should be used. Those preconceptions are influenced by our day jobs as a
developer, sysadmin, database admin, security specialist, and so on. I hope this book
xx

http://www.bmc.com/blogs/cobol-trends

ABOUT THIS BOOK xxi
helps you see other perspectives you’ve not considered. For example, when looking at
logs, we often think about a cure rather than prevention. I hope this book will get you
considering ideas that will help adopt preventative, or at least more responsive,
approaches when handling log events.

Who should read this book

Logging in Action is for anyone involved in the practical tasks of developing, configur-
ing, or running IT solutions, such as those on the support team battling to keep an
archaic piece of undocumented software that no one dares touch running through
the day. For the architect who is thinking about reducing the run costs for a system to
release future funding on the next cool enhancement. For the developer writing code
who doesn’t want to be called at 3:00 a.m. to sort out a problem because logs aren’t
clear about what is going wrong and causing code to fail. For anyone in the IT indus-
try who recognizes that it’s time to “pay it forward” and try to ease the pain of under-
standing or preventing IT problems. Ultimately, if you want to get more out of your
logging, this book should provide you with something.

How this book is organized

The book has four parts that cover eleven chapters and five appendices. The chapters
take you through how to do things, and the appendices provide lots of reference
material and additional supporting resources and tools.

PART 1
Part 1 lays out the big ideas, detailing the architecture of Fluentd and the use cases and
opportunities Fluentd can support, as well as the prerequisites for deploying Fluentd.
We conclude with the section with the classic hands-on “Hello World” example:

 Chapter 1 starts with the basics of the elevator pitch for logging unification, tour-
ing through the background and fundamental ideas behind logging and Flu-
entd. We explore the different use cases and the different perspectives on
logging, and examine ELF and EFK software stacks, as well as the differences
and commonalities among these things.

 Chapter 2 goes through the makeup of a log event, how time is important (par-
ticularly for distributed solutions), the architecture of Fluentd, and how this
influences decisions. Next, we cover the footprint needed to deploy and run a
basic Fluentd configuration. We conclude by following the tradition of creating
the Fluentd equivalent of a “Hello World” program.

PART 2
Part 2 gets down to the details of working with Fluentd, illustrating the mechanics
around capturing log events, routing, filtering, and outputting events. We provide the
practical steps that turn the handling of log events from shifting data to making the
logs more meaningful and, crucially, actionable and/or measurable:

ABOUT THIS BOOKxxii
 Chapter 3 is all about capturing log events. We look at the most common
sources, such as log files, and illustrate the nuances of processing such data.
How can we extract more meaning from log events using parsers? And, of
course, if we are monitoring everything else, how do we monitor the monitor?

 Chapter 4 explores this question: Having captured events, what are we going to
do with them? We examine buffers to help with I/O performance but ulti-
mately put the log events into storage, such as structured files or repositories
like a NoSQL database. We then look at approaches that support post-event
analysis (e.g., mining events within Elasticsearch), and also explore how to be
more proactive, spotting important events and being notified about them
through Slack the moment they occur.

 Chapter 5 covers who wants the log events, and how we get the events to the right
places? Security people want all the data in their specialist data mining toolkit.
Operations do not want the logs clogging up the environment, but they want
anything that helps them see production issues and get meaningful data to the
right people.

 Chapter 6 looks at getting more meaning from logs. Let’s turn logs from data to
information. Do we need to inject additional information into a log event to
give it valuable context? If so, how?

PART 3
Part 3 takes us into the most advanced aspects of Fluentd, looking at deployment, per-
formance, and scaling in both classic deployment scenarios and containerized envi-
ronments. We address the challenge of building our own plugins to handle the niche
situations where an existing plugin doesn’t meet our needs:

 Chapter 7 addresses how Fluentd can be applied to scale (either statically or
dynamically) and how it can operate in distributed multiserver and clustered
environments, including on-premises only, hybrid, and multicloud factors. We
also look at how to incorporate resilience into a deployment so log events con-
tinue to flow.

 Chapter 8 looks at configuring Fluentd within Kubernetes and Docker to cap-
ture events from the applications and listen to the log events generated by these
platform technologies themselves.

 Chapter 9 addresses those who wish to add to Fluentd’s community with their
own plugins or need to develop something to deal with their own niche prob-
lem that doesn’t have a plugin to help already. This is the one chapter where
having some development experience will be beneficial.

PART 4
Part 4 explores the issue that Fluentd, and what it can do with logs, is only as good as
the log events that are created. We examine what makes good log events. Producing
log events to file systems is not the optimal solution, so we explore different ways to
get log events to Fluentd more effectively:

ABOUT THIS BOOK xxiii
 Chapter 10 describes the effective use of log classification, the kinds of informa-
tion that can increase the value and use of log events, and how we make the
information available. This includes taking into account the implications of log-
ging sensitive data.

 Chapter 11 looks at logging frameworks and how they can simplify handling log
events in different languages. The chapter examines how log events can be sent
to Fluentd using techniques that are more direct than log files. Avoiding this
step gains efficiency and flexibility in our setup. We take a tour of how many
logging frameworks are organized and connect such frameworks directly to Flu-
entd rather than stepping via log files, including how this can be done without
the application getting locked into using Fluentd.

APPENDICES
The appendices contain the content that will be helpful for quick reference when
working with Fluentd, along with many resources to help you learn more about
related subjects and helpful tools. Outside of Fluentd and the LogSimulator, we cover
the installation of the products used to help demonstrate various aspects of Fluentd.
We cover this in the appendices to avoid any disruption to the book’s flow:

 Appendix A takes you through installing the different tools and the configura-
tion needed to run all the examples, scenarios, and exercises in the book if you
want to get down and dirty.

 Appendix B helps with manipulating times and dates and formulating regular
expressions that can differ because of programming language differences. This
appendix provides handy lookups to address these issues.

 Appendix C addresses the fact that Fluentd lives in a world of plugins, and this
should help you identify plugins that can help but haven’t been used in the
chapters. This isn’t an exhaustive list, but it calls out some plugins that are likely
to be handy sooner or later.

 Appendix D tells a story of how we’ve applied logging management to deliver sig-
nificant improvements to large organizations. To protect the innocent, I’ve
fudged some details. However, if you’re trying to help your organization adopt
better logging and monitoring practices, this should offer some ideas.

 Appendix E addresses the reality that logging and Fluentd touch on many
aspects of IT. Rather than trying to cover everything in detail, as that would
result in a book so big we’d never be able to pick it up, we’ve identified a variety
of external resources we think can help.

About the code

This book contains many examples of Fluentd configuration and source code, both in
numbered listings and in line with standard text. In both cases, the source code is for-
matted in a fixed-width font like this to separate it from ordinary text.

ABOUT THIS BOOKxxiv
 We’ve restricted the book to showing only the relevant sections of a configuration
file in most cases. All the listing titles provide a reference to the complete code or con-
figuration. The book doesn’t include configuration or code annotations, but we have
left them in the original source files to make the code compact and easy to read on the
page. In rare cases, even this was not enough, and listings include line-continuation
markers (➥).

 Source code for the examples in this book is available for download from the pub-
lisher’s website at www.manning.com/books/logging-in-action or via the GitHub
repository at https://github.com/mp3monster/LoggingInActionWithFluentd. I hope
that over time we’ll get to add additional examples into this repository.

liveBook discussion forum

Purchase of Logging in Action includes free access to liveBook, Manning’s online read-
ing platform. Using liveBook’s exclusive discussion features, you can attach comments
to the book globally or to specific sections or paragraphs. It’s a snap to make notes for
yourself, ask and answer technical questions, and receive help from the author and
other users. To access the forum, go to https://livebook.manning.com/#!/book/log-
ging-in-action/discussion. You can also learn more about Manning’s forums and the
rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

www.manning.com/books/logging-in-action
https://github.com/mp3monster/LoggingInActionWithFluentd
https://livebook.manning.com/#!/book/logging-in-action/discussion
https://livebook.manning.com/#!/book/logging-in-action/discussion
https://livebook.manning.com/#!/discussion

about the author
PHIL WILKINS has spent over 30 years in the software industry work-
ing for and with a diverse range of businesses and environments,
from multinationals to software startups, from radar to retail, and
commercial health care. He started out as a developer on real-time
solutions and has worked through technical leadership roles, pri-
marily in Java-based environments.
 Phil has joined Oracle as a Technology Evangelist having previ-
ously worked for Capgemini as a Consulting Architect and Tech-

nology Evangelist specializing in cloud integration, API design, and non-functional
considerations such as logging and monitoring. He was part of a multi-award-winning
PaaS team in the UK using vendor-specific and open-source technologies; his client-
facing role with well-known UK and international brands, where he provided internal
support to delivery teams. His work with delivery teams focused on technical exper-
tise, developing and defining best practices, and leading innovation initiatives. He is
TOGAF certified.

 Outside of his daily commitments, Phil actively works to support the developer
community in various ways, including as a co-organizer of the London Oracle Devel-
oper Meetup, author of journal articles and blogs, and presenter at conferences in the
UK and around the world. Phil’s contributions to the community for open source and
PaaS have been recognized since 2019 by Oracle with the accreditation as an Oracle
Ace Director.
xxv

about the cover illustration
The figure on the cover of Logging in Action is “Fille Bratzke à Udinskoi Ostrog,” or a
Bratzke girl in Udinskoi Ostrog, from a book by Jacques Grasset de Saint-Sauveur
published in 1797. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or sta-
tion in life was just by their dress. Manning celebrates the inventiveness and initiative
of today’s computer business with book covers based on the rich diversity of regional
culture centuries ago, brought back to life by pictures from collections such as this
one.

xxvi

Part 1

From zero to “Hello World”

Any good thriller starts by introducing its primary protagonists. Their
motivations, backgrounds, and strengths and weaknesses are presented. The
environment in which the key players operate is shown in the first 20 minutes.

 This is what the first part of the book is about. The first chapter introduces
our hero, Fluentd (and sibling Fluent Bit); we set the scene with the context, the
use cases, and so on. If you are still in the process of discovering what Fluentd is
about or thinking about the things that will help you make a case to your col-
leagues for adopting Fluentd, there is plenty of fuel for thought here.

 If chapter 1 is about our principal player, then chapter 2 looks at the environ-
ments in which Fluentd can operate. We will progress through the first practical
steps by installing Fluentd and keep with the time-honored tradition established
by Brian Kernighan, with the first solution being “Hello World.”

2 CHAPTER

Introduction to Fluentd
Before getting into the details of Fluentd, we should first focus on the motivations
for using a tool such as Fluentd. How can logging help us? What are log analytics,
and why is log unification necessary? These are among the questions we will work
to answer in this chapter. We’ll highlight the kinds of activities logging can help or
enable us to achieve.

 Let’s also take a step back and understand some contemporary thinking around
how systems are measured and monitored; understanding these ideas will mean we
can use our tools more effectively. After all, a tool is only as good as the user creat-
ing the configuration or generating log events to be used.

This chapter covers
 Examining use cases for logs and log events

 Identifying the value of log unification

 Differentiating between log analytics and unified
logging

 Understanding monitoring concepts

 Understanding Fluentd and Fluent Bit
3

4 CHAPTER 1 Introduction to Fluentd
 As we do this, it is worth exploring how Fluentd has evolved and understanding
why it holds its position within the industry. If you are considering Fluentd as a possi-
ble tool or looking to make a case for its adoption, then it is helpful to understand its
“origin story,” as this will inform how Fluentd may be perceived.

1.1 Elevator pitch for Fluentd
Given that you’re looking at this book, we presume you have at least heard of Fluentd
and probably have a vague sense of what it is. Let’s start with the “elevator pitch” as to
what Fluentd and Fluent Bit are.

 The primary purpose of Fluentd and its sibling Fluent Bit is to capture log events
from a diverse range of possible sources (infrastructure such as network switches, OS,
custom applications, and prebuilt applications, including Platform as a Service and
Software as a Service). It then gets those events to an appropriate tool where the log
events can be processed to extract meaning and insight, and possibly trigger actions.
Fluentd’s primary job is not to perform detailed log analytics itself, although it can
derive meaning, and deeper analysis could be incorporated into its configuration if
needed.

 By unifying the log events from all the sources of logs impacting the operation of
our solution, we have the opportunity to see the big picture. For example, was the
error in the database the cause of an error returned to a user by the application, or
was the database error a symptom of the operating system not being able to write to
storage?

1.1.1 What is a log event?

We’ve described Fluentd in terms of log events, so what qualifies as a log event? A log
event is best described as the following:

 Log events are humanly readable information that is primarily textual in nature.
The textual information can range from unstructured to highly structured.

 Each log event has a place in time, defined with a timestamp (usually absolute
01:00:00 1 Jan 1970, but could be relative +0.60), or time can be inferred by the
log event’s position in a series of events.

 Each event also has an explicit or implicit association to a location that can be
associated with a component running in a location that may be physical or
logical.

Let’s illustrate the point. Anyone with some coding experience will probably recog-
nize the screenshot shown in figure 1.1 as an extract of log output. In this case, the
output is generated by Fluentd. As you can see, there is a timestamp for the event; a
location, which comes from the host the events are occurring on; and some additional
semistructured content.

5Elevator pitch for Fluentd
1.1.2 Fluentd compared to middleware

Those who have worked with middleware (e.g., Apache Camel, MuleSoft, Oracle SOA
Suite) will appreciate the idea of describing Fluentd as an enterprise service bus spe-
cialized in logs. Figure 1.2 suggests this, with the concept of input and output and
capabilities to route and transform the log events. This will become ever more appar-
ent as the book progresses.

Figure 1.2 Illustration showing different types of Fluentd plugins and their relationship to the core

Figure 1.1 Log
output from Fluentd

Input Output

Buffer/
Cache

• Custom in-memory cache
• Redis

• S3 buckets
• Db
• Redis

Formatter
• XML
• JSON
• CSV/TSV, etc.
• Compressed formats

Parser

• Multiline text to single event
• Event info extraction
 (e.g., date and time)

Filters
• Value-based conditions
• REGEX expressions

Custom components: Using Ruby Gems,
it is possible to build any components
using the framework provided.

• TCP/UDP
• Unix Sockets
• HTTP
• Many file formats
• SNMP traps
• OS (Linux/UNIX)
• Log4J, SLF4J, and other
 related frameworks for
 .Net, JavaScript

Storage

Fluentd

• ALM solutions (e.g., Splunk,
 Cloud native solutions, Loggly,
 Logz.io, etc.)
• HTTP
• Prometheus
• Grafana
• Many file formats
• DB (SQL/NoSQL)
• Event Streams (e.g., Kafka, SS,
 Kenesis, MQTT)
• Social notifications (e.g., Jabber,
 Slack, email, Twilio, etc.)
• Support management tools like
 PagerDuty

6 CHAPTER 1 Introduction to Fluentd
NOTE If you’d like to explore this analogy further, you might consider
reading the liveBook version of Open-Source ESBs in Action by Tijs Rademakers
and Jos Dirksen (Manning, 2008) at http://mng.bz/Nx6n.

DEFINITION Middleware is a generic term covering software that provides ser-
vices to software applications beyond those available from the operating sys-
tem. Often this entails connecting different pieces of software. It can
sometimes be described as “software glue.”

DEFINITION An enterprise service bus is a specific category of middleware for
passing data in a near-real-time manner between pieces of software. This usu-
ally includes the sequencing of the execution of the different software com-
ponents as well.

1.2 Why do we produce logs?
We create log entries for a wide range of reasons. Some of the use cases for logs are
only needed a fraction of the time but are invaluable when needed. Nearly every use
case we can think of will fall into one of the following categories:

 Debugging—Knowing which parts of the code are being executed in a scenario
makes it easy to isolate a bug. Yes, we have debuggers, and so on, but often it’s
just as easy to drop a few log lines in to help. Some of these log messages will be
left in to provide assurance that things are running fine during production.
Other lines of log messages may be disabled while we’re not developing and
testing software. Note that we would never recommend trying to connect to a
production environment with a debugger. Allowing a production system to log
information intended for debugging should be done with an understanding of
the possible consequences (later in the book, we’ll explore why this is so).

 Unexpected data values or abnormal conditions occurring—When code encounters
data values that are out of bounds, sometimes it is better to flag and keep going,
as you would see when
– Using the default condition in a switch statement, when the code should

have a value you have allowed for in the switch. But as a result of a change or
bug elsewhere, your code needs to gracefully handle the situation and make
it known (e.g., the classic problem of a presentation layer [UI] differing
from the backend supported data values):

switch (caseSwitch)
 {
 case 1:
 // do something expected
 break;
 case 2:
 // do something expected
 break;
 default:
 System.Diagnostics.Debug.Write("Unexpected " + caseSwitch);
 // unexpected path – log this as it may be indicative

http://mng.bz/Nx6n

7Why do we produce logs?
 // of a bug
 break;
 }

– Applying defensive coding. For example, before using an object variable,
checking that it isn’t null—a standard action when first loading configura-
tion data to ensure everything is as expected.

– Reporting when the code handling connection issues experiences an error,
and you’re going to fall back and try again. This is so we can understand the
cause of a slow response that impacts user experience from the logs.

 Audit and security—We live in a world where internal and external actors try to
get hold of data for illegitimate use. To help us watch for misuse, we need to
know what is going on. Events need to be recorded, if not reported. Sometimes
this is to search for abnormal behavior patterns, and other times to show that
the system did everything as it should. We often see this kind of use case
referred to as forensic logging or application security monitoring and security informa-
tion and event management (SIEM). Bringing log events together that can create
an audit trail is important. A single out-of-norm event may be insignificant. But
when you can see the same kind of event reoccurring regularly in an unusual
manner, over time it may point to something more suspicious.

 Root cause analysis—Sometimes we see a problem, but the cause isn’t apparent.
Often this is because we are looking only at the logs from a small set of compo-
nents. For example, an application based on its logs appears to slow down over
time, but there is no evidence of a memory leak. Only when we bring logs
together from all the sources can we identify a cause and separate other prob-
lems as side effects. For example, our application could be fine. Still, we use
another service on the same server, which never releases CPU threads properly,
resulting in the server slowly running out of resources to run all applications.
But this can’t be seen until all the information is presented together.

 Determining the cause of performance issues—Tools such as Prometheus (https://
prometheus.io/) and Grafana (https://grafana.com/) are well known for

Logging, security, and log forensics
For further insight into forensic logging, this article provides some insights into the
realities of using logs: http://bit.ly/Fluentd-ForensicLogging. And this Gartner article
adds additional color to this landscape: http://bit.ly/AppSecurityMonitoring.

The National Institute of Standards and Technology (NIST) also provides an excellent
guide on logging for security purposes in “Guide to Computer Security Log Manage-
ment” (http://mng.bz/ExWd). While the title may suggest that the content is for a
security specialist, it does offer a good entry into this application of logging for any-
one in the IT industry.

http://mng.bz/ExWd
http://bit.ly/Fluentd-ForensicLogging
https://prometheus.io/
https://prometheus.io/
https://grafana.com/
http://bit.ly/AppSecurityMonitoring

8 CHAPTER 1 Introduction to Fluentd
gathering metric data to provide insight into the performance of software being
run. While the data may show you what is happening, it doesn’t necessarily tell
you why. It is textual logs that describe what is happening—whether that is data-
base query logs or application thread traces.

 Anomaly detection—While a system may appear to operate perfectly fine and
yields the expected results when a solution is tested, anomalies occur in the
results during the system’s regular operation. Logging can facilitate the detec-
tion of such issues by helping to find correlations in the log events when anom-
alies arise, providing an indicator of the cause.

An example of this was the occurrence of the Intel Pentium FDIV bug in the
1990s, where an error in the design of specific Pentium processors meant that
while the software ran perfectly, some calculations in specific conditions pro-
duced an incorrect result. If we log events such as the outcomes of important
calculations even when the software is running as expected, it becomes easier to
spot any possible anomalies and examine activities to identify the origin of the
anomaly (for more detail, see https://en.wikipedia.org/wiki/Pentium_FDIV
_bug).

Another example of an anomaly that can be seen is running our apps in pro-
duction environments where we share resources with other processes. Our test
environments show that everything is fine, but in production, we experience
out-of-memory errors. These scenarios can result from test conditions being
subtly different than production, where we may have been able to use more
memory than is available in production conditions. Seeing what else is running
and the details around the errors can help diagnose resource conflict issues.
Not as high profile as a chip flaw, but still an issue that can be challenging to
isolate.

 Operational effectiveness and troubleshooting—Mature, well-produced log events
can include the use of error codes. An error code can be linked to a particular
problem and guidance on how to resolve the issue.

 Determine when to trigger subsequent actions—Use log events to recognize specific
needs and initiate processes automatically instead of requiring manual
intervention.

This can be particularly helpful for legacy states where the software and
hardware environments are fragile and poorly understood but operationally
critical; people become risk-averse to change (or may not even be able to imple-
ment change for off-the-shelf solutions). Therefore, to implement tasks like
preventive measures for errors, we need to implement solutions outside the
application being monitored. This could be simply watching for completion
messages reporting success, at which point the next operation or error preven-
tion can be started.

https://en.wikipedia.org/wiki/Pentium_FDIV_bug
https://en.wikipedia.org/wiki/Pentium_FDIV_bug
https://en.wikipedia.org/wiki/Pentium_FDIV_bug

9Evolving ideas
1.3 Evolving ideas
Ideas around log management and the application of logging have been evolving a
fair bit over the last four or five years; this is partly driven by the rapid progression of
containerization. Docker and Kubernetes and the effective growth in individual
small services (microservices/macroservices/mini-services) to support dynamic and
hyper-scaling mean environments and deployed applications are far more transient
in nature. Other factors such as broader adoption to varying degrees of DevOps
have also evolved. The net result is that a couple of concepts have developed that are
worth noting.

1.3.1 Four golden signals

Observability was probably the first of the modern monitoring concepts to develop. Dis-
cussions around observability started to gain mainstream recognition around 2016
and showed up in what have become referential texts, such as Google’s site reliability
engineering (SRE) guide (available at https://landing.google.com/sre/sre-book/
toc/). The idea isn’t new; it’s just been well defined.

 Observability essentially states that we should track or observe and measure what
software is doing to manage and understand a system. Industry thinking has evolved
this premise to the tracking of four specific signals, often referred to as the four golden
signals of SRE: latency, errors, traffic, and saturation. These four signals are sometimes
referred to as metrics, measures, or indicators (the language is used interchangeably; per-
sonally, the term signal feels very binary, and life is rarely that). Here is what the sig-
nals mean:

 Latency—How long it’s taking to address a request. A growing latency indicates
potential performance issues from the increasing demand of need, or lack of
performance tuning, for software or configuration.

 Errors—Problems that can impact the service and the frequency, and whether
they are self-recovered (e.g., not getting a DB connection means fall back and
try again). Fluentd will come into its own handling errors, as we will see as we
progress through the book.

 Traffic—Increased traffic can indicate growing demand or malicious intent,
depending on the gain or loss of effectiveness if traffic drops.

 Saturation—Reflects how full or heavily used a system is (e.g., CPU and disk uti-
lization). Once a system passes a certain saturation threshold, performance
degradation will be experienced as the operating system has to dedicate more
effort to manage its limited resources.

While deriving all four signals from logs alone is not desirable (e.g., service degradation
would require us to hold multiple performance measures over time and compare
them), halfway-decent logging can yield the signals given the use of timestamping.
Latency could be derived by the time difference between the first and last log events
occurring; for example, throughput could be indicated through volumes of log entries.

https://landing.google.com/sre/sre-book/toc/
https://landing.google.com/sre/sre-book/toc/

10 CHAPTER 1 Introduction to Fluentd
1.3.2 Three pillars of observability

Another perspective of observability that has become popular in the industry relates
to the character of the things we monitor. The type of information gathered when
monitoring can be described by one of several definitions. As a result, observability is
made up of three pillars, or core ideas:

 Metrics—Typically numerical and quantify the state of things. We then regularly
sample the data points in the environment (e.g., CPU utilization).

 Logs—Primarily textual but event-based, therefore having characteristics of time
and description (e.g., Simple Network Management Protocol [SNMP] traps).

 Traces—Tracking execution flows and the time it takes for transactions and sub-
transactions to execute different steps. Trace logs are largely numerical, being
made up of timestamps as code executions enter and leave different parts of
the solution. To provide these times with context, identifiers, such as transac-
tion ID and the entry and exit points, are identified.

Everyone will be familiar with metrics, as we have all at some point needed to see how
hard a CPU is working or have experienced constraints because of a lack of memory
or how much storage is available on our hard disks.

 Tracing is probably most strongly associated with the OpenTracing initiative
(https://opentracing.io/) and the Cloud Native Computing Foundation (CNCF)
project Jaeger (https://jaegertracing.io/). OpenTracing has combined with a project
called OpenCensus (https://opencensus.io/) to form OpenTelemetry (https://open
telemetry.io/). Yet logging may contribute to this space, as specific log entries may act
as a measuring point within a trace—particularly within legacy solutions. There is the
risk that people will merge thinking about tracing with logging. It is often desirable to
correlate trace performance information back to logs, so logs can be used as a key
diagnostic tool in determining where the low performance occurs. However, the tool-
ing available to each pillar has distinct differences and strengths. We can see this by
considering Jaeger’s visualization of execution paths (traces) versus Fluentd’s ability
to parse log events and trigger actions. While these CNCF projects have brought trac-
ing to the fore, the idea isn’t new, and many service bus solutions (such as Oracle SOA
Suite and MuleSoft) have some sort of mechanism for tracing. The difference is that
OpenTracing and OpenTelemetry are trying to drive standardization.

 We are seeing signs that these standards are being adopted by open source imple-
mentation frameworks and commercial solutions. How does this relate to Fluentd?
Depending upon the log output, it can represent a means to trace execution (e.g.,
record a transaction, an identifier, an execution point in the codebase, and a time). In
other words, a trace is a specialized log. This relationship and the deployment models
being supported make Fluentd and Fluent Bit capable of being part of an Open-
Telemetry solution. As a result, the OpenTelemetry Protocol (OTLP) is being incor-
porated into Fluentd. All these measures play a part at different levels of a solution
(infrastructure to business logic), as figure 1.3 illustrates.

https://opentracing.io/
https://jaegertracing.io/
https://opencensus.io/
https://opentelemetry.io/
https://opentelemetry.io/
https://opentelemetry.io/

11Evolving ideas
Figure 1.3 Three pillars of observability as applied to a solution stack

 The definitions for the layers are as follows:

 Business application monitoring—This presents pure abstracted business applica-
tion monitoring or business activity monitoring (BAM) and relates to the mea-
surement of application/business tasks described by things like Business
Process Execution Language (BPEL).

 Application monitoring—This reflects traditional monitoring of applications and
middleware/workflow technologies such as Oracle’s SOA Suite or Microsoft’s
BizTalk underpinning BPEL implementations.

 Virtual machine/container monitoring—This measures whether the engine that
shares host computing services gives appropriate levels of resources to the guest
environment(s). It monitors to ensure that the virtualized hardware is running
smoothly.

 Host/infrastructure monitoring—This detects hardware problems, such as storage
capacity, overheating CPUs, fan failures, and so on.

NOTE More information about BAM can be found in the liveBook version of
Activiti in Action by Tijs Rademakers (Manning, 2012) at http://mng.bz/DxgR.

Of these two concepts, I believe the four signals are better considered as measures. By
measuring the data that each signal describes, the signal will indicate whether some-
thing is right or wrong. More importantly, do the changes in the signals being received
show a trend or pattern that at least means that the solution being monitored is not
degrading anymore? Ideally, we want a trend indicating continued improvement.
Regardless, this information will not give you information on the root problem. For
example, signals showing a highly saturated system won’t tell you why the system is sat-
urated, which can occur if code is stuck in an infinite loop. For this, you still need to
understand what the software is doing. This is not to say signals are wrong; they are,
without a doubt, the best way to provide a cue that there’s an issue. But it is through the
lens of the three pillars, I believe, that a deeper appreciation of what is or isn’t happen-
ing can be achieved with the sight of cause and effect in the way software is behaving.

Host /
infrastructure

monitoring

Virtualization /
container

monitoring

Application
monitoring

Business
application
monitoring

Security / SIEM

C
apacity

m
onitoring

Key

Metrics—Typically numerical
(sample-based data [e.g., CPU

use])
Logs textual (event-based

data [e.g., app logging, SNMP
traps])

Traces (execution flow &
timing—transaction based,

sampled)

http://mng.bz/DxgR

12 CHAPTER 1 Introduction to Fluentd
 You may have observed that, in the reasons for logging (for debugging, audit,
etc.), various activities will be handled by more than one or two individuals in an orga-
nization. Once an organization grows beyond a certain size, we have specialists work-
ing in different areas. The specialization of roles brings pressure for different tooling.
While many monitoring tools have plugin features, and so on, they may not support
every individual need. This can mean we end up with multiple tools in an Enterprise
IT landscape, and in some organizations, people and organization politics will further
complicate the IT tooling landscape. Yet, they all need a blend of data from the same
source systems.

1.4 Log unification
Fluentd, Logstash, and other related tools are sometimes referred to as log unification
tools. But what is meant by this, and what value(s) should a unification tool have? Let’s
look more closely at the value of unification and differentiate it from some other asso-
ciated ideas.

 The Cambridge English Dictionary describes unification as “the act or process of
bringing together or combining things or people” (http://mng.bz/lax2). This is what
we use Fluentd for—collecting log events from diverse sources and bringing them
together with a single tool so the log events can be processed and sent to the appropri-
ate endpoint solutions(s).

 This ability is essential, as it provides many significant benefits; we have touched on
some of these when looking at the application of logs. As we bring these value points
together, we can roughly group them into log sourcing and log-based insights.

 The log sourcing benefits include the following:

 It eases the task of locating and retrieving logs and log events. Through a single
platform, locating relevant log events becomes far easier. We can route the log
events to a convenient location/tool, rather than needing to access multiple
platforms with potentially many different locations and ways of accessing the
log events.

 With virtualization, containerization, and more recently functions as a service,
the hosting of logic becomes transient, so the means to easily gather log infor-
mation before it is lost is more critical than ever. Using Fluentd, we can config-
ure lightweight processes into these transient environments that push log
events to a durable location.

 A single technology brings logs events together regardless of the source or tar-
get. As a result, log event management becomes easier and more accessible. We
don’t have to master how all the different ways to log events can be captured
and stored (e.g., Syslog, SNMP, Log4J, and the many other log forms and proto-
cols), as Fluentd makes this easier.

 Operating systems are complex, made up of many discrete processes and appli-
cations. Often, discrete components come with their own logs. We need to
bring these together to trace an event through the different components. Some

http://mng.bz/lax2

13Log unification
of this has been solved with operating systems and network equipment adopt-
ing a small group of standards like Syslog and SNMP traps.

It would be easy to think that Syslog and SNMP can meet all our logging
needs. But software is more than a bunch of OS components that can use
SNMP or Syslog, so we need to bring these sources together at another level of
unification. For example, Syslog is predominantly a Linux solution; its use of
UDP means there is a risk of event loss, and UDP has size limits. The data struc-
tures and predefined values are infrastructure-centric, to name a few of the Sys-
log constraints.

 In the era of the network and the internet, our applications pass events through
many different managed devices, creating a real change in the number of
places where our communications could be disrupted. Unifying the log events
at this scale of distribution brings the problem to manageable proportions.

The log-based insights include the following:

 It is easier to create holistic view(s) of log events, allowing us to see the cause
and effect more easily.

 With logs unified into an analytics platform, the data can be capitalized on with
processes such as

– Searching across all the logs in one accessible location
– Identifying trends and patterns in the production environment
– Extracting analytical data enabling forecasting future likely behavior
– Looking at user behavior to determine if the systems are subject to misuse or

patterns of malicious actions

 A unification platform creates the opportunity for us to move from a reactive,
post-event analysis approach to identifying issues and then proactively acting on
them as they occur. This potentially can extend to a position where we identify
warning signs and proactively perform actions to avoid a problem. The ability
to become proactive comes from the unification tool’s ability to filter, route,
and apply meaning to log events.

 Infrastructure as a Service and Platform as a Service have brought whole new
levels of dynamic change and routing complexity. As a result, the unifying of
logs reduces the scale of the challenge of tracking what could be impacting our
solution.

While we have discussed the why and what of log unification, we should also differen-
tiate it from other concepts associated with processing log events, particularly log
analytics.

NOTE For more information about SNMP, see the liveBook version of Software
Telemetry by Jamie Riedesel (Manning, 2021) at https://livebook.manning
.com/book/software-telemetry/chapter-2/v-9/point-11605-169-174-1.

https://livebook.manning.com/book/software-telemetry/chapter-2/v-9/point-11605-169-174-1
https://livebook.manning.com/book/software-telemetry/chapter-2/v-9/point-11605-169-174-1
https://livebook.manning.com/book/software-telemetry/chapter-2/v-9/point-11605-169-174-1

14 CHAPTER 1 Introduction to Fluentd
1.4.1 Unifying logs vs. log analytics

Many tools in the logging space come into the category of log analytics, where the
focus is on applying data-analysis techniques such as pattern searching, using com-
plex rules across many data records. Such processing is often associated with big data
and search engine technologies. The best known of these is probably Splunk, as a
purely commercial product, and Elasticsearch, as an open source solution with com-
mercial options.

 The log events need to be ingested into an analytics engine to enable log analysis
to be performed. Such analytical processes may include event correlation (e.g., deter-
mining which systems or components generate the most errors or when the fault fre-
quency relates to a particular event during the day). Getting log events into the
engine can be done manually if necessary. Typically, analytics products like Splunk
have tools to harvest or aggregate the log events using one of the more common pro-
tocols in the analytics engine. These services are then deployed to multiple locations
to gather different log sources. This is a simple act of aggregation, as the harvesting is
not intelligent; there is no possibility of handling the log events effectively until they
are in the analytics engine. Harvesters typically don’t have the same levels of connec-
tivity and configuration seen with unification tools.

 The differentiator is that a log analytics engine’s strength is applying search and
computational science to many logs, not the gathering and routing of log events.
Whereas the strength of unification tools is sourcing and delivering the log events, it
typically has relatively simplistic analytical capabilities such as event counts over time.

 Both technologies have some standard capabilities, regarding the transformation/
application of meaning to the data (i.e., the process of data becoming usable informa-
tion). Without these abilities, neither solution can be very effective. Both technologies
have strong event-filtering capabilities, but are applied in different ways.

DEFINITION Log routing is when log events are taken and then directed
through a middleware tool, such as Fluentd, to the applications that need
those log events.

DEFINITION Log aggregation means log events are taken and sent to a central
location to be processed.

1.5 Software stacks
The industry has been talking about software stacks since 2000 (some have attributed
this term to David Axmark and Michael “Monty” Widenius, cofounders of MySQL),
when the best-known stack was named: the LAMP (Linux, Apache, MySQL, PHP)
stack. By software stack, we mean a standard combination of products (typically open
source) used together to deliver software solutions. Another well-known stack is MEAN
(MongoDB, Express, AngularJS, Node.js). A complete list of stacks can be found at
https://en.wikipedia.org/wiki/Solution_stack.

https://en.wikipedia.org/wiki/Solution_stack

15Software stacks
1.5.1 ELK stack

The best-known stack within the software landscape for log processing is ELK (Elastic-
search, Logstash, Kibana). This combination of products provides the ability to per-
form log analytics with Elasticsearch, visualization through Kibana, and log routing and
aggregation with Logstash. The ELK stack has fitted together so well because all three
components, while open source, have been developed by Elastic (www.elastic.co),
which has been successful, like Red Hat, with an open source–based business model.

 While a single vendor for these components leads to them being neatly integrated
and complementing each other’s features, it also means that development effort can
be heavily influenced by the vendor’s business model and objectives. For Elastic, this is
to sell more services and enterprise extensions to the different parts of the ELK stack.
This issue can be addressed by the open source product being governed by an exter-
nal and neutral organization such as Apache, CNCF, or the Linux Foundation. But
ELK is not subject to such governance.

 Unfortunately, Logstash, as part of this stack, has been impacted by the perception
that it is biased to Elasticsearch as a target solution for log events (which may or may
not be valid). Logstash does have plugins for products other than Elasticsearch. How-
ever, it could be argued that these plugins have had to come from vendors wanting to
compete with Elasticsearch in the ELK stack, or Elastic has had to implement them to
remain competitive. In comparison to Elastic, the founders of Fluentd didn’t have
their own analytics product as a preferred location for log events to be sent. We could
also consider the adoption of Fluentd by CNCF as an implicit recognition of being
free from these biases. It also helps that the community around Fluentd has produced
more plugins, making it more flexible than Logstash.

 This has led to a variant stack known as EFK that is gaining traction (Elasticsearch,
Fluentd, Kibana). As Fluentd has plugins for Elasticsearch and Kibana, this alternate
stack is viewed as equally capable but with greater flexibility for unification. Open-
Shift, for example, adopted EFK to manage log events (see http://mng.bz/YwDj).

 As shown in figure 1.4, both ELK and EFK have lightweight, smaller variants of the
unification capability. Beat’s relationship to Logstash is the same as Fluent Bit’s rela-
tionship to Fluentd (more on Beats and Fluent Bit later in this chapter).

Software stacks or solution stacks
It is worth noting that people often use the terms software stack and solution stack
interchangeably. In most cases, this is reasonable; the stack provides a complete
solution, such as log management; we just need to apply the configuration.

But it isn’t valid in cases where the stack provides all the elements on which a solu-
tion can be built; the MEAN stack contains all the components to build a lot of solu-
tions, but you have to add your own software to the MEAN stack to deliver a solution.

http://www.elastic.co
https://shortener.manning.com/YwDj

16 CHAPTER 1 Introduction to Fluentd
Figure 1.4 ELK vs. EFK software stacks, illustrating how the stacks differ
and which products are involved in each stack

1.5.2 Comparing Fluentd and Logstash

In table 1.1, we have tried to draw out the differentiators of the two products. Both
have a lot in common, which is why it is possible to replace Logstash with Fluentd in
the stack. However, there are differences worth highlighting.

Table 1.1 Fluentd and Logstash comparison

Aspect Fluentd Logstash

Primary contributor and
product governance

Treasure Data governed by CNCF Elastic

Commercially supported
versions

Yes
Yes (more robust option, as
support can cover the full stack)

Plugins available ~500 ~200

Configuration style Declarative—use of tags
Procedural—use of if-then-else
constructs.

Performance
Comparatively (to Logstash) lower
memory footprint

Comparatively (to Fluentd) higher
memory footprint

Caching
Highly configurable cache options with
file and memory caching out the box

In-memory queue with a fixed size

Language/run-time
machine

CRuby—no run time required for core
JRuby with dependency on Java
run time (JVM)

Log
aggregation/
unification

Analytics
and search

Visualization

Fluent Bit
(Lightweight

variant)
Fluentd

ELK EFK

Kibana Kibana

Elasticsearch Elasticsearch

FluentdFluent Bit
(Lightweight

variant)

Logstash Beats
(Lightweight

variant)

17Software stacks
1.5.3 The relationship between Fluentd and Fluent Bit

Fluentd has a small C-based kernel, but the bulk of the product is built using Ruby.
This brings a bit of a tradeoff. The core tradeoff with Ruby is that it runs on an inter-
preter (although several variants utilize the Java Virtual Machine, Truffle, and so on,
instead of the original interpreter, such as JRuby, used by Logstash). Ruby uses a pack-
aging tool known as Gems to provide additional libraries and even applications. To
enable Fluentd to be used in Internet of Things (IoT) situations, a smaller resource
footprint is needed for devices like a smart meter or Raspberry Pi. The objective of
creating a minimal footprint version of Fluentd led to the creation of Fluent Bit. Flu-
ent Bit provides a subset of the Fluentd features, focusing on taking log events and
routing them to a more centralized location. The log events can then be processed
(filtered, transformed, enriched, etc.) more effectively—as you would expect of Flu-
entd. Table 1.2 the differences between Fluentd and Fluent Bit.

Despite these differences, Fluent Bit and Fluentd are more than capable of working
together, as we’ll see later in the book. IoT isn’t the only use case that lends itself well
to the use of Fluent Bit. When considering microservices, small footprints and rapid

Table 1.2 Fluentd vs. Fluent Bit

Aspect Fluentd Fluent Bit

Development language Written using C & Ruby
Written using C to minimize the deployment
footprint

Dependencies
Dependency upon
RubyGems

No dependencies (unless customized)

Storage and memory
footprint

Memory requirements
~20 MB, depending upon
configuration and plugins

~150 Kb

Plugins available

Able to leverage
approximately 300
prebuilt and third-party
plugins

Restricted to the in-built plugins and 30 other
extensions.
Input Output
CPU stats FluentdTreasure
Kernel messages HTTP
Memory stats Library
Serial interfaces Elasticsearch
TCP InfluxDB
Log Files NATS
Docker Statistics
MQTT Treasure Data Service

OS support

Prebuilt installers for a
wide range of OSes
covering most flavors of
Windows, OS X, Linux

A number of small-footprint Linux variants based
on CentOS, Debian (and derivatives, such as
Raspbian), and Ubuntu for x86 and AArch
processors have been built.
Other OSes such as BSD-based Unixes may be
supported, but there are no guarantees for
plugins.

18 CHAPTER 1 Introduction to Fluentd
startup times are highly desirable for some containers. We’ll explore the deployment
possibilities later in the book for microservices and the use of Fluentd or Fluent Bit.

1.5.4 The relationship between Logstash and Beats

The relationship between Beats and Logstash does differ a bit from that between Flu-
entd and Fluent Bit. For a start, the Beats are actually a set of individual small foot-
print components collecting data for one thing. Each individual Beat solution is built
upon a Go library called libbeat, compared with Logstash’s use of Java. The Beats fam-
ily are made up of the following:

 Filebeat—Collects log files (with specific modules to handle Apache, server logs,
etc.)

 Packetbeat—Collects network packet data (DNS, HTTP, ICMP, etc.)
 Metricbeat—Collects server metrics
 Heartbeat—Provides an uptime monitor
 Auditbeat—Collects audit events to monitor activities through systemd (http://

mng.bz/6Z9o) and Auditd (http://mng.bz/oa5d) on Linux
 Winlogbeat—Integrates into Windows OS to run PowerShell scripts and Sysmon,

among others
 Functionbeat—Works with serverless solutions, currently just on AWS (Amazon

Web Services)

The libbeat library has been made available as open source. It has made it a lot easier
(and given the assurance of code independence) for third parties, including the open
source community, to build more Beat solutions using the framework. All the beats
use a shared data structure definition to communicate the data collected.

1.6 Log routing as a vehicle for security
With infrastructure becoming increasingly configuration-driven rather than being
physical boxes and cables, the points where data can have ingress and egress to an
environment can increase quickly, as it is simply a case of configuring new points
where data can come and go. It is preferable that the number of points at which data
passes between public and private networks be limited—this is just one of many rea-
sons for having backend (or reverse) proxies. With logging agents in the pure aggre-
gation model, each node wants to talk directly to the point of aggregation. This can be
mitigated if the solution can tolerate network proxies. But would it not be better to
use a proxy that better understands what is being routed, such as Fluentd?

DEFINITION Proxies are servers that retrieve resources on behalf of a client
from one or more servers. The retrieved resources are then returned to the
requestor, appearing as originating from the proxy server itself. Proxies are
described as a backend or reverse if deployed closer to the server performing
the computation rather than the (usually lightweight) client. Proxies are usu-
ally implemented to optimize network load by implementing traffic caching
and applying security by controlling where data enters and leaves a network.

http://mng.bz/6Z9o
http://mng.bz/6Z9o
http://mng.bz/oa5d

19Log event life cycle
The log routing capabilities of Fluentd, as we’ll see, allow us to use Fluentd nodes as
routers/consolidators of logs, meaning we can control network exposure, as well as
several other considerations.

 Security considerations within Fluentd go beyond configuring routing to control
network points for ingress and egress of logs in networks. Fluentd supports the use of
SSL/TLS certificates, so that the data being sent between Fluentd nodes or between
Fluentd and other networked services (e.g. MongoDB) is secure. This increases secu-
rity by making checks for authenticity and the ability to encrypt the data. Today, secu-
rity needs to be an aspect of everything we do, rather than a bolt-on; we’ll address
such issues directly where appropriate throughout the book.

1.7 Log event life cycle
Another perspective worth considering is the life cycle of a log event. When a software
component of some kind generates a log entry, to get value from it, it needs to be
passed through a life cycle, shown in figure 1.5.

Information source capture
• Infrastructure such as CPU, memory use
• JVM use
• App log files
• SNMP traps

Fluentd’s capabilities in this
part of the life cycle are
part of its differentiator.

Fluentd brings value in
this part of the life cycle by
making it easy to feed
information to tools
specializing in these areas.

Structure & route
• Get the raw data to the appropriate
 tooling in a format that can be
 processed

Aggregate & analyze
• Data from multiple sources
• Merge in time series

Visualize data
• Search for log events
• Present trends (e.g., memory
 consumption)
• Rate of storage consumption

Notify & alert
• Push events into JIRA Svc Desk,
 Slack, etc.
• Rules on severity dictate behaviors

Figure 1.5 The typical
life cycle for a log event

20 CHAPTER 1 Introduction to Fluentd
As figure 1.5 shows, we start with capturing the log event (information source capture),
and as the event flows down, it gains more meaning and value. Based on what we’ve
already discussed, any log unification tool, including Fluentd, is most effective with
the information source capture and the structure and route phases. The aggregate and
analyze phase will see features for analysis focusing on individual events but will lean
on aggregating and analyzing aggregated logs. Visualize data is the product’s weakest
area. Given these tools’ routing and connectivity capabilities, the notify and alert phase
is easily realized by connecting suitable services. Not only that, but there is also the
potential for this phase to be moved upward, as we don’t always need the analytics
products to decide whether it is necessary to notify and alert.

 As shown in the figure, tools like Fluentd support the upper half of the life cycle
very well (from capture to aggregate and some of the analyze stage). The lower half is
well supported by log analytics (aggregate and analyze, visualize data, notify and alert).

1.8 Evolution of Fluentd
In this section, we will look at the events that led to the creation of Fluentd and its
rapid growth in adoption. Figure 1.6 shows a timeline of key events in the evolution of
Fluentd.

1.8.1 Treasure Data

Fluentd’s origins go back to 2011 when big data, through the use of Hadoop, was
impacting mainstream IT. As a Silicon Valley startup, Treasure Data was established to
create value around Hadoop-based processing of semi-structured data. Treasure Data
found it needed a tool to help it capture data from multiple sources and ingest the
data into a Hadoop data store. As a result, it set about building Fluentd and made it
available as free and open source software (FOSS) using the Apache 2 License
(www.apache.org/licenses/LICENSE-2.0). This made it easy to build upon, extend,
and exploit the tool. As a result, developers (other than just those working for Trea-
sure Data) contributed to and extended Fluentd.

NOTE To learn more about Hadoop, check out the liveBook version of Mas-
tering Large Datasets with Python by John T. Wolohan (Manning, 2020) at
http://mng.bz/do2o.

In 2013, Fluentd got a big boost due to the recommendation by AWS for data collection
across and onto their platform. This was further helped by Google using Fluentd with
its BigQuery product and then incorporating Fluentd into its monitoring solution.

http://mng.bz/do2o

21Evolution of Fluentd

Log4J (Logging framework)
launched

v1

Linux foundation
started (parent to CNCF)

Apache Nutch started
(resulting in Hadoop’s creation)

Splunk launched

AWS launched

Google Cloud launched

Fluentd
Treasure Data
release v1

Fluentd
recommended by AWS

Logstash
v1 released

CNCF
founded

Fluent bit
started

EOL
Log4J v1

Wins
Bossie Award

Fluentd
enters CNCF incubator

Fluentd
CNCF graduation

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019 Figure 1.6 Timeline of events
that have influenced Fluentd

22 CHAPTER 1 Introduction to Fluentd
1.8.2 CNCF

The next major event for Fluentd was its adoption by the Cloud Native Computing
Foundation (CNCF). CNCF’s existence was strongly influenced by Google in conjunc-
tion with the Linux Foundation to give Kubernetes a vendor-neutral home. Kuberne-
tes is designed to run multiple containers across one or more servers, with containers
hosting one or more different applications. Not to mention that containers can be
started and torn down on the different servers as needed. From this, it is clear that
corralling and routing log data is a critical challenge that can be answered well by Flu-
entd’s capabilities.

1.8.3 Relationship to major cloud vendors PaaS/IaaS

Infrastructure as a Service (IaaS) and Platform as a Service (PaaS) solutions have
influenced and been influenced by CNCF projects. It is only natural that those tech-
nologies have the best chance of being incorporated or supported by cloud platform
offerings. When it comes to Fluentd, we have seen the major vendors (AWS, Azure,
Google, Oracle, DigitalOcean, Alibaba, etc.) do one of the following:

 Directly leverage Fluentd for their own needs (e.g., Google, Oracle)
 Package it up as part of a larger offering (Bitnami, Google Stackdriver)
 Expose their various services to being accessible as inputs or outputs to their

services (AWS—S3, RDS, CloudWatch, Beanstalk, etc.)

Treasure Data background
Treasure Data was founded in 2011 to deliver business value using big data technol-
ogies such as Hadoop. However, Sadayuki Furuhashi and the team at Treasure Data
found they needed a tool to help them capture and ingest data and set about building
Fluentd. It was made available as open source in October 2011. Since 2011, Trea-
sure Data has developed several specialist areas such as Customer Information Sys-
tems and the Internet of Things (IoT).

Treasure Data has since been acquired by the microprocessor company Arm (and, in
turn, Arm was acquired by NVIDIA) and spun out to be a business in the SoftBank
Group Corp. However, Fluentd is still important to Treasure Data, and the team con-
tinues to be very active committers to GitHub for several important open source proj-
ects, including Fluentd and Fluent Bit.

Fluentd’s history with the CNCF
Google donated Kubernetes to the CNCF and made it possible for competing enter-
prises to bring together and collaborate more effectively on Kubernetes and its eco-
system. Like CNCF’s parent, the Linux Foundation, all its projects are open source
and supported by many contributors. Fluentd was among the first projects after
Kubernetes to come under the CNCF’s governance and, as a result, was an early
graduate.

23Where can Fluentd and Fluent Bit be used?
For example, AWS has output plugins for its storage services. AWS’s CloudWatch solu-
tion can both receive and send log information to Fluentd. As we have seen, Google
embraced Fluentd early on.

 Beyond the IaaS cloud offerings, there is a range of specialist PaaS services for per-
forming log analytics, ranging from Loggly (www.loggly.com) to Datadog (www.data-
doghq.com). These vendors have provided plugins into Fluentd, so it becomes
effortless for customers to route log data to these services.

 All of this has contributed to driving plugin development for Fluentd (see figure
1.2) and organizations committing to support Fluentd. Plugin development particu-
larly has propelled the Fluentd differentiation, with a rich catalog covering more
sources and targets than just about any other competition (we will summarize the
plugins later in this chapter and provide references with the latest and greatest
plugins). With greater support and engagement, more organizations are attracted to
working with Fluentd. As the saying goes, “many eyes make all bugs shallow,” so more
adoption typically means more eyes, resulting in a robust and reliable solution. This is,
of course, one of the foundational arguments for open source software. If this kind of
cycle continues long enough, we see solutions becoming de facto answers to common
problems. While, at the time of this writing, Fluentd hasn’t reached that stage yet, it is
very much on its way.

1.9 Where can Fluentd and Fluent Bit be used?
Fluentd and Fluent Bit can be used or adapted to almost any situation, from running
in containers to being deployed on IoT devices to mainframe solutions. As we have
seen, Fluent Bit’s footprint is small enough to operate on a vast range of IoT devices,
which is reflected in part by Arm’s acquisition of Treasure Data. Fluentd and Fluent
Bit together cover at least 90% of the OS platforms in use today. As already discussed,
Fluentd works well with cloud offerings, but it is not bound to the cloud and can work
in more traditional virtualized or dedicated server deployments.

 The more relevant question should be, will deploying Fluentd or Fluent Bit make
your job easier? Should you use Fluent Bit or Fluentd?

 Using Fluentd and Fluent Bit, from a basic laptop or desktop machine, to servers,
physical and virtual, running Windows and Linux OSes, can be done without any
worries. This means that as we get hands-on in the rest of the book, putting Fluentd
into action should be possible. The possible exception is chapter 8, when we run
Kubernetes and Docker, which will need a bit more power, but we’re still talking about
a midrange desktop or laptop. But understanding the limits of Fluentd can help
beyond that.

1.9.1 Platform constraints

Beyond the OS and hardware, platform constraints are minimal. The most basic envi-
ronment just needs to be able to run the Ruby engine. Ruby is supported by a range of
standard package-based installations (yum, Homebrew, apt, RubyInstaller for Windows,
to name a few). Making the installation for all the standard OSes is straightforward, and

www.datadoghq.com
www.datadoghq.com

24 CHAPTER 1 Introduction to Fluentd
the package managers should help resolve any dependency issues. But for the less com-
mon environments, Ruby also provides a “from source” installation guide (www.ruby-
lang.org/). If there isn’t a prebuilt installation option for Fluentd itself—a rare situa-
tion given the prebuilt installers covered (RPM, Deb, MSI, and RubyGems)—then the
Fluentd website (https://fluentd.org) provides details of how to achieve an installation
from the source code.

 Depending upon the configurations that need to be established, Fluentd has addi-
tional plugins that may be required. Fluentd plugins are typically deployed using Ruby-
Gems (an open source package manager for Ruby components; https://rubygems.org/).
Gems can be installed from a local location if you need stringent network controls.

 Optionally, there are prebuilt solutions that can be deployed to Docker and Kuber-
netes if preferred. We will address the question of deployment of Fluentd as part of
Kubernetes later in the book.

 The last option—while we believe it is possible, we haven’t heard of it being tried—
is the creation of a platform-native binary of Fluentd through the use of GraalVM
(https://www.graalvm.org/docs/getting-started/). GraalVM is a next-generation lan-
guage virtual machine that incorporates Java (JVM) and several other language inter-
preter packs, including Ruby (https://github.com/oracle/truffleruby). But GraalVM
also can create platform native binaries for Java and the other supported languages as
well.

 With Fluentd deployed, it needs to read one or more configuration files that tells
Fluentd (typically installed as a daemon process in production) what it should do.

DEFINITION A daemon is a computer program that runs as a background pro-
cess and is usually started and stopped by the operating system when it starts
up and shuts down. This term is more commonly associated with Linux- and
Unix-based operating systems. Often, applications designed to operate this
way will have their name end with a d; for example, syslogd is a daemon that
implements system logging (Syslog) in Linux. In Windows operating systems,
these processes are referred to as Windows services.

So, any deployment location needs to be able to read the file and ideally allow updates
to the file for Fluentd. Fluent Bit can use a configuration file or even interpret the
configuration from a command-line parameter.

1.10 Fluentd UI-based editing
Fluentd does have a browser-delivered user interface. Figure 1.7 illustrates one of the
UI screens to give a sense of what it is like.

 When it comes to working with Fluentd’s UI, it can perform a range of tasks such as

 Editing the configuration file
 Managing a Fluentd instance in terms of stopping and starting
 Getting plugins patched or installed
 Inspecting Fluentd’s logs

https://www.graalvm.org/docs/getting-started/
https://fluentd.org
https://rubygems.org/
https://github.com/oracle/truffleruby

25Fluentd UI-based editing
We will focus directly on the configuration file for this book, as this will help explore
the more complex nuances and is more mature than the UI. We’ll take a brief tour of
the UI in chapter 2 once we have completed the installation of Fluentd.

Figure 1.7 Part of the Fluentd UI

In addition to the web-based UI, there is an additional plugin for Microsoft’s Visual
Studio Code that will help with syntax highlighting when editing configuration files.
The plugin can be used to help address typical issues like missing brackets. This
plugin can be downloaded from within Visual Studio Code or from http://mng.bz/
GOeA. Other editors, such as Sublime Text, also have open source packages/plugins
to support the syntax editing of the Fluentd configuration file.

UI for Fluent Bit?
Given the intention to make Fluent Bit’s footprint as small as possible, incorporating
a UI would go against that principle. Typical Fluent Bit uses are to source the log
events and forward them to the point of aggregation where more processing of events
can happen (e.g., Fluentd or a log analytics tool). This means the configurations
should be comparatively simple, and the need for a UI is limited. The case for an inte-
grated UI would go against the minimized footprint goal.

http://mng.bz/GOeA
http://mng.bz/GOeA

26 CHAPTER 1 Introduction to Fluentd
1.11 Plugins
As mentioned earlier, Fluentd’s plugins in the breadth and depth of coverage out-
weigh most if not all competition. We cannot cover every possible plugin in the follow-
ing chapters, so we’ll focus on those that help illustrate core ideas and represent cases
that most Fluentd deployments are likely to encounter.

 But given the scope of plugins, it is worth getting a sense of what is available and
what could be achieved. Fluentd plugins can be grouped into the following catego-
ries, and with each category, we have provided some examples:

 Inputs
– File storage—AWS S3, text files (HTTP log files, etc.)
– Data(base) source—MongoDB, MySQL, generic SQL (for all ANSI SQL DBs)
– Event sources—AWS Kinesis, Kafka, AWS CloudWatch, GCP Pub/Sub, Rab-

bitMQ
– OS—System, HTTP Endpoint, dstat, SNMP
– App servers—IIS (Internet Information Services), WebSphere, Tomcat

 Outputs
– File storage—AWS S3, Google Cloud Storage, File
– Database storage—BigQuery, MongoDB, InfluxDB, MySQL, SQL Server
– Event storage—Kafka, Google Stackdriver, AWS CloudWatch, Prometheus
– Log analytics tools—Splunk, Datadog, Elasticsearch
– Notifications—Slack, Mail, HipChat, Twitter, Twilio, PagerDuty

 Log/Event Manipulation (parsers, filters, and formatters)
– Map—Log format mapper
– Numeric Monitor—Generates stats relating to logs
– Text to JSON
– Key/Value Parsing
– GeoIP—Translating IP addresses to geographic location based on published

information (for more information on the use of GeoIP, see the liveBook ver-
sion of Securing DevOps by Julien Vehent (Manning, 2018) at http://mng.bz/
raJJ.

– JWT—Working with JSON Web Tokens (more background on this can be
found in the liveBook version of OpenID Connect in Action by Prabath Siriwar-
dena (Manning, 2022) at http://mng.bz/VlMy.

– Redaction—The masking of data so sensitive data values can’t be seen by
those not authorized to do so

– Formatters—The means to lay out the data into different structures and
potentially different notations (e.g., XML to JSON)

 Storage
– Caching—Redis, Memcached
– Persistent storage—Local file, SQL databases, S3 Block storage

http://mng.bz/raJJ
http://mng.bz/raJJ
http://mng.bz/VlMy

27How Fluentd can be used to make operational tasks easier
 Service Discovery—Configuration to find other nodes that understand Fluentd’s
comms mechanisms

NOTE A complete list of available Fluentd plugins is managed at www.fluentd
.org/plugins/all.

1.12 How Fluentd can be used to make operational tasks
easier
Throughout this chapter, we have examined a number of the scenarios and use cases
that Fluentd can help with. As we progress through the book, we will introduce sce-
narios and look at increasing complexity.

1.12.1 Actionable log events

Rather than waiting until log events are collected together before anything is done
with the content, it is possible to create configurations so that as they are received,
they can be processed. Such processing could include filtering to find the events that
require immediate attention. If a system logs an event that typically only occurs shortly
before the solution fails—for example, the OS goes into a panic state (for more on
kernel panic, see https://wiki.osdev.org/Kernel_Panic)—then as soon as that event is
detected, we could send a message to someone responsible for handling such events
via near real-time channels like PagerDuty or Slack (we will illustrate the Slack sce-
nario in chapter 4). But actionable log events can easily extend further, such as trig-
gering a script to perform automated remediation (e.g., purging or archiving older
log files so storage isn’t exhausted).

1.12.2 Making logs more meaningful

The actionable event can also be extended to provide a means by which log events can
be made more meaningful. In larger, long-lived organizations, there are legacy solu-
tions that are still business-critical (they are typically very large and embody lots of logic
to ensure compliance to requirements that very few people understand). As a result,
the replacement cost can be huge, and no one wants to take on the risk of making mod-
ifications, even to improve log messages to make support easier. But such problems can
be addressed; those innocent-looking log messages that are harbingers of doom if
someone doesn’t execute some remediation soon can be modified to have things like
error codes attached. Ops people can then easily find the operational protocol.

 The application of meaning can go further; some logs will have structures that don’t
align to standard formats, such as JSON and XML. But Fluentd can be used to impose
structure quickly and early, so downstream, the log events can be handled more effi-
ciently. If an application accidentally logs sensitive data, the sooner such information is
removed or masked, the better. Otherwise, all downstream log-processing solutions
have to implement a far more stringent security setup, because they will be receiving
sensitive data such as credit card data (PCI compliance), personal data (General Data
Protection Regulation), or data subject to similar legislation. If such issues become a

www.fluentd.org/plugins/all
www.fluentd.org/plugins/all
www.fluentd.org/plugins/all
https://wiki.osdev.org/Kernel_Panic

28 CHAPTER 1 Introduction to Fluentd
problem, and the source of their logs can’t be fixed, Fluentd can filter out or modify the
log event to mask such content.

1.12.3 Polyglot environments

Over the last 10 years, there has been an explosion of different programming lan-
guages. As a result, we often talk about polyglot environments where many different lan-
guages are used in an end-to-end solution; for example, R or Python may be used to
extract deep meaning from data, while web interfaces could be written in JavaScript.
Backend solutions could be Java, Scala, Clojure, dot Net (.NET), and PHP. Thick client
applications working with the same backend could be written with C#, VB.Net, or Swift.
In these types of environments, we need an agnostic solution of the implementation
language of applications. Fluentd provides this, but many languages have libraries that
allow log events to be passed in an optimized manner directly to Fluentd.

1.12.4 Multiple targets

The multiple targets issue embodies the fact that it is common to have teams dedi-
cated to specific tasks in larger organizations, such as information security. Different
teams want to use different tools to support their specialism—for example, algorithms
are particularly good at detecting patterns indicating malicious security activities.

1.12.5 Controlling log data costs

Log events, like any operational data, need storage and consume network capacity
when moved, which results in costs. That cost can be noticeable when large volumes
of uncompressed or unfiltered text exit a cloud provider’s network and are communi-
cated over a business’s internet connection. Yet, at the same time, we don’t want to be
overly parsimonious with logging; otherwise, we will never appreciate what is happen-
ing. Fluentd can help with this by filtering and storing some log events locally where
the log events have limited value. But the log information that can be of further help
can get sent onward to a central location. Not only that, but the transmission can also
be optimized through compression mechanisms (bulk log events can be highly
compressed).

1.12.6 Logs to metrics

Previously we introduced the three pillars of observability (logs, traces, metrics). In
some cases, we want to get metrics, such as how many occurrences of a log event
occur, or which process is alive or dead by looking at logs for signs of life (i.e., whether
events have been created). With the plugins, it is possible to generate such measures
and share such data with Prometheus and Grafana.

 This can be extended through the possibility of Fluentd monitoring its own
deployed nodes—when you get into complex distributed use cases, this can also be
highly desirable. After all, Fluentd is just another piece of software and is therefore as
vulnerable to bugs as any other code.

29Summary
1.12.7 Rapid operational consolidation

Company mergers and acquisitions can drive the need to consolidate operational
resources, such as operational teams. Such consolidation will happen quicker than
any process to consolidate major IT systems. We can easily direct log data to current
operational support team tools to monitor and reduce the time and effort to absorb
new systems into the operations organization through log unification.

Summary
 Key concepts influencing modern thinking around monitoring come from

ideas such as Google’s four golden signals and the three pillars of observability.
 Log analytics differs from log unification by focusing on a platform to mine the

log data. In contrast, log unification is about bringing logs together and direct-
ing the content to necessary tools.

 Fluentd and Fluent Bit started as open source initiatives from Treasure Data
before coming under the governance of the CNCF.

 Fluentd and Fluent Bit are not aligned to any analytics platform. Considering
the association with CNCF has helped the adoption of Fluentd by IaaS and PaaS
vendors as either a part of a monitoring product or service or as supporting
connectivity between Fluentd and their product.

 Fluentd has seen strong adoption in the microservices space, but it can fit
equally well with a legacy landscape.

 Fluentd has a broad range of plugins available and a framework that enables
custom plugins to be developed when needed.

 Fluent Bit trades off the highly pluggable nature for a tiny optimized footprint.
 Both Fluentd and Fluent Bit can support the majority of platforms with prebuilt

artifacts. Both are open source solutions; it is possible to build the kernel and
plugins on just about any conceivable platform.

 The application of logging is wide-ranging and offers value during the soft-
ware’s entire life cycle.

 Fluentd supports a wide range of use cases, from debugging distributed solu-
tions to operational monitoring.

 Understand how Fluentd fits into the EFK software stack, and what the differ-
ences are between the ELK and EFK software stacks.

Concepts, architecture,
and deployment of Fluentd
Chapter 1 looked at the theory, industry trends, and use cases that Fluentd can
help us with. This chapter discusses how Fluentd works, including deploying and
running the simplest of configurations to implement the traditional developer’s
“Hello World.”

2.1 Architecture and core concepts
When you’re driving a car, it is a lot easier when you have some basic appreciation
of how the vehicle is powered (e.g., gas, diesel, electric, liquefied petroleum gas).
The mental models that come with such understanding mean we can learn what to
expect—whether we can expect to hear the engine rev, whether it’s possible for the

This chapter covers
 Outlining Fluentd’s architecture and core concepts

 Reviewing prerequisites and deployment of
Fluentd, Fluent Bit, and Fluent UI

 Executing basic configurations of Fluentd and
Fluent Bit

 Introducing configuration file structure
30

31Architecture and core concepts
engine to stall, and how the gears work (if there are any). For the same reason, before
we start working with Fluentd and Fluent Bit, it is worth investing time in understand-
ing how these tools work. Based on this, we should run through some of the building
blocks of Fluentd that will help with the mental models.

2.1.1 The makeup of a log event

Chapter 1 introduced the concept of log events. Understanding how Fluentd defines
a log event is the most crucial thing in appreciating how Fluentd works, so let’s look at
its composition. Each log event is managed as a single JSON object comprised of three
mandatory, nonrepeating elements, as described here and shown in figure 2.1:

 Tag—Each log event has a tag associated with it. The tags are typically linked to
the source initially through the configuration but can be subsequently manipu-
lated within the configuration. Fluentd can apply conditional operations (rout-
ing, filtering, etc.) to the log events as necessary by using the tags. When using
the HTTP interface, the tag can be defined in the call, as we will see.

 Timestamp—This is derived from the log information or is applied by the input
plugin. This ensures that the events are kept in series, an essential consider-
ation when unifying multiple log sources and potentially trying to understand
the sequence of events across components. This data is held as nanoseconds
from epoch (1 January 1970 00:00:00 UTC).

 Record—The record is the core event information after separating out the time.
This means we can address the log content without worrying about locating the
timestamp for the event and the tag needed for basic controls, as we’ll see later
in the book. This provides an immediate benefit; whenever a log event is passed
in from a Fluentd-aware adaptor, we can avoid initial parsing for the time. It is

• e.g., myInput
• Logical name defined by source definitionTag

• e.g., 1362050500.000000000
• Defined by time into Fluentd unless mapped
 from received event

Timestamp

• e.g., {“doYou” : “believe”, “this” : “content” }
• Can be received as anything but treated as a
 JSON object

Record

Figure 2.1
Makeup of log event

32 CHAPTER 2 Concepts, architecture, and deployment of Fluentd
possible to translate the record into further detailed structures to make it easier
to process. We see how to apply more meaning to the data later in the book.

Once captured, other plugins can then work with the existing tags to modify, add, and
extend them as necessary. When working with the tags, they can have wildcards and
other logic applied to them. For example, if we have several separate logs associated with
one solution (call them subsystems 1, 2, and 3), we could tag each log file as App
.Subsystem1, App.Subsystem2, and App.Subsystem3. The processing of the logs could
then be addressed by using a wildcard (e.g., App.*). We can set the filter to be more spe-
cific for handling only a specific subsystem’s log events (e.g., App.Subsystem2).

2.1.2 Handling time

Given the importance of timestamps in the logs, all systems that need to work together
must report against a common clock/time. In addition, the time must not be subject
to movements for daylight savings. Without this, every time the clocks go back, logs
will get out of sync. When clocks are moved forward, the logs will see an irregular
period of no log events being recorded. This can trigger anomalies if any time-based
analysis (analysis for event throughput, measurement of meant time between errors,
watching for heartbeat events, etc.) is performed.

 This consideration is compounded by the fact that systems may be working
together across multiple time zones. Therefore, all systems need to run against a col-
lectively agreed upon time. The typical solution to this is to link systems to Coordi-
nated Universal Time (UTC). However, when we need to have millisecond precision
on the timestamps across multiple servers to ensure correct order, something is
required to keep them in sync.

 Time synchronization is handled by linking servers to a common time source and
then using a protocol to request a time to align. This protocol is known as Network
Time Protocol (NTP). When configuring a server, it is highly recommended to ensure
that NTP is configured. Many technologies and service providers offer a free standard
NTP service to synchronize with. There is a limit to this; the duration for the current
time to reach different servers can differ by a few milliseconds or nanoseconds
(depending on the location of the NTP service). This is known as clock or time skew.
Despite best efforts, log entries may very occasionally appear out of step when aggre-
gating across multiple servers.

NTP and clock skew
More specific detail on NTP and clock skew can be found at www.ietf.org/rfc/rfc1305
.txt.

Most operating systems provide an NTP client process (or daemon) that can be acti-
vated (if not defaulted to be active) and configured to sync with an NTP server. The
closer the NTP server, the lower the risk of skew.

https://www.ietf.org/rfc/rfc1305.txt
https://www.ietf.org/rfc/rfc1305.txt
https://www.ietf.org/rfc/rfc1305.txt

33Architecture and core concepts
2.1.3 Architecture of Fluentd

Fluentd’s operations are prescribed by a configuration file (which may include other
configuration files, but this will be addressed later in the book). The configuration file
describes how and, in some cases, when a plugin should be applied. A good number
of plugins are incorporated into the core of Fluentd, so they require no additional
installation—for example, the tail plugin that operates a bit like the Linux tail -f
command. For those less familiar with Linux/Unix utilities, the tail -f command
provides the means to see on the console what is being added to a file as it occurs.

 In chapter 1, we introduced the idea of plugins and illustrated them with some
examples. Before we build on this and examine the types of plugins in more detail, we
should clarify a point of terminology. If you read the Fluentd documentation, it refers
to directives; these can overlap with plugin types. But the relationship between types of
plugins and a directive is not one-to-one in nature, as plugins can have supporting or
helper relationships and therefore not a directive. Later in the chapter, as we look at
the “Hello World” example, we’ll see the directives and plugins, and how Fluentd
knows where to pick up a configuration file.

 The following list focuses on the core plugin types and where they map to direc-
tives we have identified. In addition to this, we have highlighted the more common
plugin interrelationships:

 Input—In terms of the configuration file, the input plugins will correlate to a
source directive. An input can leverage parser plugins that can take the raw log
text and assert structural meaning. For example, they can extract key values
from the message text, such as log event classifications needed for later process-
ing. Inputs range from files to data stores to direct API integrations.

 Output—As a type of plugin, these provide us with the means to store (e.g., file,
database) or connect to another system (including another Fluentd node) to
pass on the log events. The output plugin aligns with the match directive within
the configuration file—something that is not obvious at this stage but, as we
illustrate the use of Fluentd, will become more apparent. The output plugin
can leverage formatter, filter, buffer, and service discovery plugins. The more generic
input plugins have an equivalent output.

 Buffer—The buffer plugin type focuses on the batching up and temporary cach-
ing of log events so that the I/O workload can be optimized. This issue will be
addressed in more depth as we progress through the book.

 Filter—This plugin type applies rules through which we can control where log
events can go. This plugin is engaged with the output plugin.

 Parser—This plugin’s task is to take the log event, extract key values, and apply
additional needed structure to the captured content. This is key when taking
content from sources such as log files, which will start effectively as a single line
of text. This can range from regex and grok to domain-specific logic.

 Formatter—When content is output, it needs to be produced so that the data can
be handled by the consuming component. For example, structure the content

34 CHAPTER 2 Concepts, architecture, and deployment of Fluentd
so it can be consumed by Prometheus or Grafana, which expect specific struc-
tures or a humanly readable message for PagerDuty. As a result, the formatter
plugin gets used by the output plugins within the match directives.

 Storage—As we will see shortly, the performance and efficiency of Fluentd is a
tradeoff with the way we need to handle log events. Storing log events means we
can keep the events (often temporarily) until they need to be processed. Tem-
porary storage, such as caches, can give us performance gains, but at the risk of
losing the event in a failure. Some storage options are therefore more durable
to mitigate such a risk. We will use storage plugins in several different ways
throughout the book.

 Service discovery—When this plugin is used, it typically works in tandem with the
output plugin. Its purpose is to help connect to other Fluentd nodes, as we will
explore later in the book. This type of plugin addresses how the target servers
are identified/found within a network, from a list of server IPs in a reloadable
config to using specific parts of a DNS record.

In figure 2.2, we represent the core Fluentd building blocks, along with supporting
elements that exist to help the extension, adoption, and use of Fluentd. Note that the

rr

Fluentd U
I

Fluentd optional supporting resources & utilities

Logger
libraries

D
ocker
files

D
ocker H

ub
im

ages

K
ubernetes

configurations

H
elm

 charts

Plugin
dev utils

Engine

Plugin base
Log event

data structure

Input

Parser

Filter

Output

Forward
HTTP
Tail

Record transformer

Record transformer
Apache2

Grep
Stdout

Core Fluentd

Supervisor
(w

orkers)

B
uffer

chunk

Formatter
File

Buffer

Figure 2.2 View of the Fluentd
architecture illustrating the core
building blocks and optional
support resources available
depending on your context

35Architecture and core concepts
specific plugins implemented in the diagram are only a subset of those built in the
standard deployment and a fraction of those deployable and used by Fluentd. As we
progress through the book, all of these building blocks will be examined in depth,
from configurations to tune the engine to how the plugin base provides the founda-
tions for controlling all plugin behavior. But appreciating the different blocks and
their relationships will help from the outset.

2.1.4 Fluent configuration execution order

There are a couple of essential rules that need to be understood when working with
Fluentd and Fluent Bit configuration files. While we will explore these points in more
depth with illustrations in the book, mainly when we address routing in chapter 5,
these points are fundamental to the design and implementation of a Fluent configura-
tion, so it is worth calling them out now:

 Log events are consumed only once within a Fluentd or Fluent Bit instance unless
Fluentd is told to explicitly copy the log event (using a feature within the core
of Fluentd, which we will address later in the book). This sequencing is illus-
trated in figure 2.3.

Figure 2.3 Illustration of order impact in a Fluentd configuration

<source>
 @type http
 port 8080
</source>

<match
myapp.data1.*>
 @type stdout
</filter>

<match myapp.*>
 @type file
 path myapp.log
</match>

…

<match *>
 @type file
 path leftover.log
</match>

Match directive (nth occurrence)

Output plugin

Match directive (second occurrence)

Output plugin

Match directive (first occurrence)

Fluentd /
Fluent Bit

engine

Match
with implicit tag filter

Output plugin

Match
with implicit tag filter

Match
with implicit tag filter

Source directive

Input plugin

…

Unmatched log events returned

Unmatched log events returned

Matched log
events consumed

Matched log
events consumed

Matched log
events consumed

Wildcard match means nothing returned
As each match is
applied, the number
of remaining log
events for the
subsequent directives
is reduced.

36 CHAPTER 2 Concepts, architecture, and deployment of Fluentd
 The order in which operations are defined within a configuration file is significant. The
first directive that matches an event will become the consumer unless that event
is copied. Therefore, as a general practice

– When you want all log events to undergo common operations, define those
directives early in the configuration, but copy them for later targeted
directives.

– Catch-all directives should be late in the configuration.
– Targeted directives should precede the catch-all directives.

 Fluentd by default is single-threaded. This helps to ensure that time series is not
compromised. Fluentd can be configured to run in a concurrent manner (mul-
tiprocess rather than threaded) by changing the configuration, and we will look
at that later in chapter 7. It does mean that if you create a complex series of log
event operations, it’s possible that Fluentd cannot process events as fast as they
are created. This means a bottleneck has been made. There are strategies for
avoiding this, but this will further complicate the whole process.

2.1.5 Directives

Previously, we mentioned directives within Fluentd, and it is easy to mix up directives
and plugins. Directives provide a framework for grouping plugins to achieve a logical
task, such as outputting log events to a destination. You’ll see that directives are
declared in the same way as XML elements by being started and ended with angle
brackets. It is possible to supply attributes within the element, such as tag filtering, as
is the case with of the match example. Within the directive, we then identify the
plugin and supply its configuration as name-value pairs. As we get to more sophisti-
cated examples, you’ll see that we can nest things, including helper plugins.

 If a command or plugin must be called directly by the logic that makes Fluentd
process a stream of log events, then it is a directive. While this is very abstract at this
stage, the idea and subtlety will become more apparent as we progress through the
book and its examples. As figure 2.4 illustrates, we can visualize the directives, plugins,
and helper plugins that appear in configuration files.

Single vs. Multithreaded
The challenges of multithreading are varied, from coordination overhead when more
threads are running than processor cores to mutual thread-locks (two threads waiting
for each other). When it comes to time-series events, keeping things in sequence
or correcting order is important. If not carefully applied, multithreading can create
race conditions that may lead to events getting out of sequence. To better under-
stand race conditions, an excellent source is https://devopedia.org/race-condition
-software.

https://hub.docker.com/u/fluent
https://devopedia.org/race-condition-software
https://devopedia.org/race-condition-software
https://devopedia.org/race-condition-software

37Architecture and core concepts

The directives illustrated in figure 2.4 are summarized in table 2.1. We will examine
each of these directives in depth in part 2 of this book.

Table 2.1 Fluentd directives

Directive Description

source The source directive tells Fluentd to receive/source log events, as we’ve just seen.

match This is about matching log events to other operations, including the output of log events.

filter This controls which events should be handled by one or more processes—typically
referred to as a pipeline.

@include This tells Fluentd to bring in other configuration files to assemble a complete set of oper-
ations, just as import or include statements do in conventional code.

label The label provides a grouping mechanism for log events, which provides significantly
more capability than just using tags.

system This tells Fluentd how to configure and behave internally (e.g., the setting of log levels).

Fluentd core resolves execution this w
ay (directives)

Buffer

Formatter

@Include

Source

Match

Source

Filter

Parse

Dependencies resolved this way

Figure 2.4 Relationships between Fluentd directives in the context of Fluentd’s
execution order (central column—Source, Filter, Match) and native plugins (parser,
buffer, formatter)

38 CHAPTER 2 Concepts, architecture, and deployment of Fluentd
2.1.6 Putting timing requirements into action

If you want to see how much you have absorbed so far, try answering these questions.
The answers follow these questions.

1 What are the three key elements of a log event within Fluentd/Fluent Bit?
2 What is the recommended time zone to connect time servers with?

ANSWERS

1 We introduced these in section 2.1.1; the elements of a log event are
– Timestamp—Representation of the log event occurrence
– Record—The body of the log event
– Tag—Associated with each log entry and used to route the log event

2 As you may recall, in section 2.1.2, we recommend linking your NTP servers
using UTC.

2.2 Deployment of Fluentd
In this section, we will deploy Fluentd and tools such as the LogGenerator (sometimes
referred to as the LogSimulator) to enable us to run the “Hello World” scenario and

the subsequent examples and exercises. All
the configuration files for Fluentd and the
simulator can be found in the book’s GitHub
repository (http://mng.bz/Axyo). Within the
repository, each chapter has its own set of
folders. Note that the configuration files in
the repository will differ slightly from those
shown in the configuration examples in the
book, so they can include helpful additional
comments. We assume that the complete
code and configuration samples will be down-
loaded either from Manning or via our
GitHub repository for the book. Each chapter
folder contains subfolders for code, configu-
rations, and solutions. The LogGenerator
(more on this later) has been downloaded
from GitHub (https://github.com/mp3
monster/LogGenerator) and copied into the
root folder for the chapters (e.g., the root
shown in figure 2.5).

NOTE As Fluentd, Fluent Bit, and the
LogSimulator are used throughout the
book, we have incorporated the instruc-
tions within the chapter. In later chap-
ters, where we use other utilities and

Figure 2.5 Directory structure used in
the book for examples and solutions

http://mng.bz/Axyo
https://github.com/mp3monster/LogGenerator
https://github.com/mp3monster/LogGenerator
https://github.com/mp3monster/LogGenerator

39Deployment of Fluentd
products for one or possibly two chapters, we have provided the instructions
in appendix A.

2.2.1 Deploying Fluentd for the book’s examples

We already established in chapter 1 that Fluentd and Fluent Bit are both very capable
when it comes to the means to deploy onto diverse platforms. That creates an interest-
ing challenge for this book. Do we describe deploying Fluentd and Fluent Bit onto the
widest variety of platforms or focus on just one? Do we make you work with Docker
and bundle everything up in an image?

 The approach we took in this book was to support Windows first; this is predicated
on the fact that in trying, prototyping, and experimenting with Fluentd, you are likely
using a desktop or laptop computer rather than an enterprise server. Windows is the
most dominant OS on desktop and laptop machines, so it makes sense to focus on
that environment.

 However, to make it easier to take the guidance in this book to enterprise servers,
or if you’re fortunate enough to have a Mac or you’re a committed Linux fan and
have installed your favorite flavor of Linux OS, we have highlighted differences
between Linux and Windows. The majority of instructions will include the Linux
equivalent. Those working with Linux or macOS will most likely know that Linux is
just the kernel and that the layers above this, such as the UI layer, and installation
managers differ across the Linux flavors. This means you may need to tweak the com-
mands provided to work on your particular flavor of OS.

DOCKER IMAGE

It is possible to also download a prepared Docker image made available via Docker
Hub (https://hub.docker.com/r/fluent/fluentd/) or directly from the Fluentd
GitHub site (https://github.com/fluent/fluentd-docker-image). For production envi-
ronments, this approach is worth considering and is explored further in chapter 8. In
most of the book, utilizing Docker will simply add additional effort unless you’re
entirely conversant with using Docker.

2.2.2 Deployment considerations for Fluentd

When considering the deployment of Fluentd into production, we need to consider
volume metrics—that is, the amount of log data needing to be captured, filtered,
routed, and stored. In part 3 of the book, we will focus on the ability of Fluentd and
Fluent Bit to be scaled out and distributed. But to start with, let us assume that we are
working in an environment that does not demand such levels of scaling. Even in a sim-
ple deployment, we should be aware that the computing effort for log processing
should be less than the computing effort for the core application. Remember, each
time log events are stored or transmitted, the operation generates a lot of I/O activity,
which carries a computational overhead. If you are familiar with low-level computer
operations, you will appreciate that every process comes with an overhead:

 Every network message is topped and tailed with routing, verification, and
details such as the size of the message.

https://hub.docker.com/r/fluent/fluentd/
https://github.com/fluent/fluentd-docker-image

40 CHAPTER 2 Concepts, architecture, and deployment of Fluentd
 Every file write requires the use of the hardware to locate a chunk of physical
storage that can be used, record the details of the block of storage used, and
mechanically position the writing device for physical media.

The more we can group log events in a cache and transmit them as a block, the more
efficient the use of resources is. Like all things in life, there is a tradeoff. We cache
before writing to storage, which means the data is slower reaching the end of the log
event processing. The longer data is working through a process, the more likely that a
power loss or component failure will result in data loss. For this chapter, we only need
to make sure our environment has enough resources to run; considerations of perfor-
mance versus the risk of data loss aren’t necessary.

2.2.3 Fluentd minimum footprint

Fluentd resource requirements are minimal (see table 2.2) by modern machine specs,
but are worth noting when dealing with small footprint setups.

2.2.4 Simple deployment of Ruby

To get ready to run Fluentd, we need to first install Ruby. This is best done with the latest
stable version of Ruby using your operating system’s package framework. Links to the
different installation packages can be found via www.ruby-lang.org. For Windows, we do
this by going to the Downloads page that has links to the relevant artifact. For Windows,
we get taken to https://rubyinstaller.org to retrieve the RubyInstaller. When we get to
chapter 8, we will need to do a bit of development, so we should install the software
development kit (SDK) version of Ruby (shown as Ruby+DevKit on the website).

 Once downloaded, run the installer; it will then take you through the steps to
define the preferred location, and it will also ask if you want to install Mysys—say yes.
Mysys is needed for RubyGems with a low-level C dependency, such as plugins interact-
ing with the OS. Several development-related tools, such as MinGW, allow Ruby devel-
opment to use Windows C native libraries. This means we should have Mysys, and we
recommend taking the complete installation with MinGW to support any possible
development requirements later.

NOTE Additional information about DevKit is available in the liveBook ver-
sion of Rails4 in Action by Ryan Bigg, et al. (Manning, 2015) at http://
mng.bz/ZzAR.

Table 2.2 Fluentd minimum hardware footprint

RubyInstaller size 130 MB

Ruby installed storage needs (with DevKit) (80 MB for basic Ruby, plus 820 MB for the DevKit 1 GB)

Memory required ~20 MB

Fluentd additional storage 300 KB

Ruby minimum version Ruby 2.x (against Fluentd v1.x)

https://rubyinstaller.org
http://mng.bz/ZzAR
http://mng.bz/ZzAR

41Deployment of Fluentd
The installer should add Ruby to the Windows PATH environment variable. (Appendix
A provides details on the PATH environment variable.) When checking, you need to
confirm that the bin folder for Ruby is included. If the Ruby directory path is not in
the PATH environment variable, we need to follow the instructions in appendix A to
add the full Ruby path. Once set, it should be possible to execute the command ruby
–version, and Ruby will display the installed version once the path has been
amended.

NOTE It is worth noting an open source package manager for Windows called
Chocolatey (https://chocolatey.org/), which feels more like a Linux package
manager. Chocolatey can be used as an alternative means to install Ruby.

For Linux users, all the major Linux OSes have a relevant package manager with a
recent stable installation—from Homebrew for macOS to apt, yum, pkg, and others.
When there is an option, as with Windows, it is worth installing everything to support
the development activities undertaken in chapter 9. Like Windows, we need to con-
firm the path has been correctly set using the instructions in appendix A. We also can
verify Ruby using the same command, ruby –version. In addition, we need to verify
whether the package manager has included the RubyGems package manager. Check
this by running the command gems help. This will return the gems help information
or fail. If this fails, then the following steps are needed (replacing x.y.z in the next
steps with the latest stable version):

wget http://production.cf.rubygems.org/rubygems/rubygems-x.y.z.tgz
tar xvf rubygems*
ruby setup.rb

2.2.5 Simple deployment of Fluentd

Fluentd can be installed in a variety of different ways. Treasure Data (introduced in
chapter 1) provides a Windows installer for Fluentd, but it should be noted that the
installer introduces a prefix of td into file and folder names. The Treasure Data
installer also includes additional plugins not included in the standard installer.

 There is a wealth of ways to install Fluentd and its dependencies with different ben-
efits and nuances. We will install Fluentd using RubyGems for the following reasons:

 Gems package installer is platform-neutral, so the installation process is the
same for Linux, Windows, and many other environments.

 Gems are the easiest way to install plugins not included in the core of Fluentd.
 We have Gems installed (needed to help install Ruby dependencies), so we can

keep our approach consistent.

To install Fluentd this way, we simply need to run the following command:

gem install fluentd

As long as you have connectivity to https://rubygems.org/, then relevant Gems,
including dependencies, will safely download and install. These sites may need to be

https://chocolatey.org/
https://rubygems.org/

42 CHAPTER 2 Concepts, architecture, and deployment of Fluentd
accessed through a proxy server or a local gems server in enterprise environments.
The installation can be tested by running the following command:

fluentd –-help

This will display the help information for Fluentd. It should also be possible to see the
Fluentd and other gems installed in the deployment location lib\ruby\gems\
2.7.0\gems\ (and the equivalent path for other OSes).

 In addition to the core Fluentd, the installation also provides some secondary
tools, some of which we will use throughout the book. The major tools provided are
summarized in table 2.3

Table 2.3 Fluentd support tools provided with an installation

Fluentd tool Tool description

fluent-binlog-
reader

Fluentd can create binary log files (giving compression and performance
benefits)—for example, when file caching. This utility can be used to read
the file and generate readable content.

fluent-ca-generate This is a utility for creating basic (self-signed) certificates that can be used
to encrypt communications between Fluentd/Fluent Bit nodes.

fluent-cat The fluent-cat tool provides a means to inject a single log message into
Fluentd; it does require the forward plugin to be configured. For example:

echo '{"message":"hello"}' | fluent-cat debug.log --
host localhost --port 24224

This command would send a log event to the local Fluentd instance config-
ured to listen on port 24224 using the forward plugin. We can use this to
help test the routing, filtering, and output steps. But, crucially, it does not
allow us to check the input plugin configurations (hence the LogSimulator).

fluent-debug This is a utility to help with remote debugging, used in conjunction with the
Ruby tooling.

fluent-gem This is essentially an alias to the Ruby gem command, which will list all the
gems available.

fluent-plugin-
config-format

This provides the means to interrogate a plugin to obtain details of the con-
figuration parameters the plugin will support. The output could be character-
ized as a README document. As some plugin implementations may support
multiple types of plugin (e.g., input and output), it is necessary to specify
the plugin type. For example (on both Windows and Linux), the command

fluent-plugin-config-format -f txt input tail

will retrieve the text format of the tail output plugin’s configuration details.
This utility is ideal for being included within a continuous integration pipe-
line for custom-built plugins, as it can generate documentation in several
formats.

fluent-plugin-
generate

This generates a code skeleton for plugin development. The template
includes a Gem file, README, stubbed Ruby code for the plugin, and a skel-
eton test framework.

43Deployment of Fluentd
A COUPLE OF OS DIFFERENCES

Linux- and Unix-based operating systems support a framework of interrupt signals.
These signals can be sent to an application to control their behavior. Perhaps the most
commonly known of these is SIGHUP. Fluentd can use these signals to trigger opera-
tions such as reloading the configuration file without needing to restart. Table 2.4
summarizes the essential interrupts and their impact.

Sending Linux kill commands to a Fluentd process—for example, kill -s USR1
3699, where 3699 represents the process ID for Fluentd—will result in Fluentd inter-
preting the signal as a SIGUSR1 signal. At present, there is no Windows-equivalent
way to send these signals, although several change requests have been submitted to
the project for such features.

FILE HANDLES

Within a Linux file system, the number of file handles that can be used at any one time
can be controlled, unlike Windows, which has these limits driven entirely by the OS ver-
sion and architecture (e.g., 32 or 64 bit). Additionally, Linux uses file handles for real
files, but these handles also represent things like network connections. The default num-
ber of file handles can be restrictive for Fluentd. It is not unusual to adjust the number of file
handles held open in production environments. Manipulating the file-handle limits
can be done by editing configuration files or using the Linux ulimit command. More
detail can be found at https://linuxhint.com/linux_ulimit_command/. The number
of file handles shouldn’t be a problem for the examples and scenarios provided, but
when ramping up the volume in a production context, it is something to be aware of.
The correct number of file handles depends on the number and speed of files being
written, the number of network ports being supported, and so on.

Table 2.4 Linux signals and how Fluentd will react to them

Linux signal Effect on Fluentd

SIGINT or
SIGTERM

This tells Fluentd to gracefully shut down so that it clears everything in memory, and
any file buffering is left in a clean state. If another process is calling Fluentd, it is better
to stop that process first, as it can prevent the shutdown from completing.

SIGUSR1 This tells Fluentd to ensure that all of its cached values, including its log events, are
flushed to storage and then refresh the file handles to the file storage. This is then
repeated based on a system environment variable called flush_interval.

SIGUSR2 Secures and gracefully handles the reloading of the configuration. It can be considered
graceful as it ensures any cache is safely stored before reloading the configuration, so
no log events are lost.

SIGHUP This interrupt is most known for forcing a configuration to reload. It performs the same
operations as SIGUSR2 but also flushes its internal logs, so no internal log information
is lost.

SIGCONT This signal will get Fluentd to record its internal status—thread information, memory
allocation, and so on.

https://linuxhint.com/linux_ulimit_command/

44 CHAPTER 2 Concepts, architecture, and deployment of Fluentd
2.2.6 Deploying a log generator

Ideally, we want to prove our configuration for input plugins and confirm configura-
tion for things like log rotation. We want a configuration-driven utility that can contin-
uously send log events. We have one available at https://github.com/mp3monster/
LogGenerator and will be using this in the subsequent chapters. This tool provides
several helpful features for us:

 Take an existing log file, replay the log events from an existing log file, write
them with current timestamps, and write the logs with the same time intervals
as the logs had when originally written.

 Take a test log file that describes the time gap and log body, and play it back
with the correct intervals between events.

 Write log files based on a pattern, meaning different log formats can be generated.
 Send the logs via the Java logging framework to simulate an application using a

logging framework.

The LogGenerator GitHub repository includes extended documentation on how the
tool can be used. The utility is written using Groovy, which means at its heart is Java and
the use of standard Java classes and libraries. Groovy adds several conveniences over
Java. Specifically, it executes as a script to keep development quick and easy, meaning
tweaking it for your own needs is easy; it includes some convenience classes that make
working with REST and JSON very easy. Not everyone wants to install Groovy or modify
the script. As a result, we have taken advantage of Groovy’s relationship with Java to
compile and package it to a JAR file, making it possible to be executed without install-
ing Groovy if preferred. The JAR is available to download from GitHub as well.

JAVA INSTALLATION

To install Java, you can either use a package manager or retrieve and download from
www.java.com/en/download/. The tool’s implementation has been done so that Java
8 or later will work. Still, you need the Java Development Kit (JDK) rather than the
Java Runtime Environment (JRE). Once Java is downloaded and installed, you need to
ensure that the correct version is set up in your PATH environment variable and
JAVA_HOME. We assume that you do not have any other applications using Java and
are dependent on a different Java version. If this is the case, we recommend writing a
script to set these variables each time you start a new console to run the LogGenera-
tor; this approach is illustrated for the Groovy setup. You can check which version of
Java is in use with the command java –version.

GROOVY INSTALLATION

If you want to use the LogSimulator from the prepared JAR, you can skip this section,
but if you want to use the Groovy version, see how it works, or modify it, you’ll need
the following steps. With the prerequisite Java installed, we can now install Groovy
(download from https://groovy.apache.org/download.html or install it using a pack-
age manager). As with Java, you also want Groovy to be set on the PATH environment
variable and GROOVY_HOME setup. You can confirm whether Groovy is suitably installed

https://github.com/mp3monster/LogGenerator
https://github.com/mp3monster/LogGenerator
www.java.com/en/download/
https://groovy.apache.org/download.html

45Deployment of Fluentd
using the command groovy -–version. The following code fragments are example
scripts for ensuring environment variables are set up. This is the Windows setup:

set JAVA_HOME=C:\Program Files\Java\jdk1.8.0_221
set PATH=%JAVA_HOME%\bin;%PATH%
echo Set Shell to Java
java -version
set GROOVY_HOME=C:\Program Files\Groovy-3.0.2\
set PATH=%GROOVY_HOME%\bin;%PATH%
echo Set Shell to Groovy
groovy --version

The Linux version of this script would be

export JAVA_HOME=/usr/lib/jdk1.8.0_221
export PATH=$JAVA_HOME/bin:$PATH
echo Set Shell to Java
java -version
export GROOVY_HOME=/usr/lib/Groovy-3.0.2
export PATH=$GROOVY_HOME/bin;$PATH
echo Set Shell to Groovy
groovy --version

The simulator uses a properties file to control its behavior and uses a file that
describes a series of log entries to replay. We will use this in later chapters to see how
log rotation and other behaviors can work. Each book chapter has a folder containing
the relevant properties files and log sources to help with that chapter, as shown in fig-
ure 2.5. With the LogSimulator copied into the download root folder as previously
recommended, run this command:

groovy LogSimulator.groovy Chapter2\\SimulatorConfig\\tool.properties

We can see an example of the
console output when running
the LogSimulator as a Groovy
application in figure 2.6.

Figure 2.6 LogSimulator example
output when in verbose mode, using

the HelloWorld-Verbose.properties
file and Fluentd running with

the associated HelloWorld.conf file

46 CHAPTER 2 Concepts, architecture, and deployment of Fluentd
RUNNING LOGSIMULATOR AS A JAR
To use the JAR version of the LogSimulator, the JAR file needs to be downloaded into
the parent directory of all the chapter resource folders. Then the command can have
the Groovy LogSimulator.groovy element replaced with java -jar LogSimulator
.jar, so the command would appear as

java -jar LogSimulator.jar Chapter2\\SimulatorConfig\\tool.properties

We will assume you’ve installed Groovy and run the LogGenerator using the Groovy
command for the rest of the book. But as you can see, the only difference is the part of
the command that uses Java or Groovy and the JAR or Groovy file. The GitHub repos-
itory includes all the details on how the JAR file is generated if you wish to extend the
tool and re-create the jar file.

LOGSIMULATOR IN MORE DETAIL

If you would like to know what is going on in more depth, then edit the tool.proper-
ties file and change the verbose property from false to true. This will display to the
console log entries that are defined in the file small-source.txt. All the properties
for the simulator are explained in the documentation at https://github.com/mp3
monster/LogGenerator.

2.2.7 Installing Postman

An easy-to-use tool is needed to send single log events to exercise the Fluentd configu-
ration in our “Hello World” scenario. While utilities such as cURL can be used, we
have elected to use Postman with its friendly UI and ability to work across multiple
platforms. Postman is a well-known tool that supports most environments (Windows,
macOS, Linux, etc.). Postman is free for individual use, and the binary can be
retrieved from www.postman.com/downloads/.

 For Windows, this is an installer that will resolve the appropriate file locations. For
Linux, the download is a tarred gzip file that will need to be unpacked (e.g., tar -xvf
Postman-linux-x64-8.6.2.tar.gz). Once Postman is installed/untarred, ensure
that it can be started—for Windows, this can be done with the installed links.

2.3 Bringing Fluentd to life with “Hello World”
Now that we’ve looked at the architecture of Fluentd and deployed it into an environ-
ment, let’s bring this to life.

2.3.1 “Hello World” scenario

The “Hello World” scenario is very simple. We will use the fact that Fluentd can
receive log events through HTTP and simply see the console record the events. To
start with, we will push the HTTP events using Postman. The next step will be to
extend this slightly to send log events using the LogSimulator.

https://github.com/mp3monster/LogGenerator
https://github.com/mp3monster/LogGenerator
https://github.com/mp3monster/LogGenerator
www.postman.com/downloads/

47Bringing Fluentd to life with “Hello World”
2.3.2 “Hello World” configuration

Before running the example, let us quickly look at the configuration file (see listing
2.1). As you can see, we have provided some comments within the configuration file.
Within a configuration file, we can comment anywhere by leading with a hash (#)
character. The configuration between <system> and </system> are instructions to
Fluentd on how its internals should work; in this case, use Info-level logging. Then
we have used a source directive to define the origins of log events using the built-in
HTTP plugin capability that the @type identifies. The following name-value pairs are
then treated as attributes or properties for that plugin. For example, here we have
defined the use of port 18080 to receive log events.

 We then define an output using the match directive. The asterisk in the match direc-
tive is a wildcard, telling the match directive that any tag can be processed by the output
plugin, in this case, standard out, which will appear in the console. The configuration
file used in this example is stripped to the bare minimum, defining just the input and
output parameters for each plugin and a couple of illustrative comments.

Hello World configuration will take events received on port 18080 using
HTTP as a protocol

set Fluentd's configuration parameters
<system>
 Log_Level info
</system>

define the HTTP source which will provide log events
<source>
 @type http
 port 18080
</source>

accept all log events regardless of tag and write them to the console
<match *>
 @type stdout
</match>

2.3.3 Starting Fluentd

As the Fluentd service is in our PATH, we can launch the process with the command
fluentd anywhere. However, the tool will look in different places without a parame-
ter defining the config location, depending on the environment and installation pro-
cess. For Windows and Linux, Fluentd will try to resolve the location /etc/fluent/
fluent.conf. For Windows, this will fail unless the command is run within a Linux sub-
system. We are not using the default to start Fluentd. We need to navigate the shell to
wherever you have downloaded the configuration file or include the full path to the
configuration file as the parameter. Then run the following command:

fluentd -c HelloWorld.conf

Listing 2.1 Chapter2/Fluentd/HelloWorld.conf

Set the default log level for Fluentd—
because we have set the level to info, this is
not strictly necessary, as that is the default.

This is a source
directive.

@type indicates
the plugin type.Lines following a plugin define

configuration parameters for that plugin.

The match directive defines which log
events will be allowed into the plugin.

48 CHAPTER 2 Concepts, architecture, and deployment of Fluentd
To run the Fluentd command from the root of the downloaded resources, which will
be the norm for the rest of the book, the command would be

fluentd -c ./Chapter2/Fluentd/HelloWorld.conf

This command will start Fluentd, and we will see the information displayed on the con-
sole as things start up, including the configuration being loaded and checked. When
running Fluentd or Fluent Bit on Windows, depending upon the permissions for your
user account, you may get a prompt, as shown in figure 2.7. This prompt occurs because
Fluentd and Fluent Bit will, by default, expose access points to the network.

We should, of course, allow access. Without it, both Fluentd and Fluent Bit will fail.
Within a Linux environment, the equivalent security controls are established through
IPTables rules and possible SELinux configuration. As Linux environments can vary
more than Windows, it is worth having a good Linux reference to help set up and
troubleshoot any restrictions. Manning has several such titles, such as Linux in Motion
by David Clinton (www.manning.com/livevideo/linux-in-motion).

 The next step is to send a log event using Postman. Once Postman has started, we
need to configure it to send a simple JSON payload to Fluentd. Figure 2.8 shows the
settings in the header.

Figure 2.7 Windows
prompting to allow Fluentd
or Fluent Bit (depending on
what is being started)
access to use the network

Figure 2.8 Defined JSON
payload to send to Fluentd
using Postman

www.manning.com/livevideo/linux-in-motion

49Bringing Fluentd to life with “Hello World”
We also need to set the Body content, as we’re going to use a POST operation. By
selecting Body (and the Raw option) on the screen, we can then key into the body
field {"Hello" : "World"}. With this done, we’re ready now to send. We see this
configuration in figure 2.9.

Click the Send button in Postman. Figure 2.10 shows the result. You may have noticed
that in the API call, we have not defined a time for the log event; therefore, the Flu-
entd instance will apply the current system time.

While this configuration is as “useful as a chocolate teapot,” as the expression goes, it
does illustrate the basic idea of Fluentd—the ability to take log events and direct them
(explicitly or implicitly) to an output. Let’s finish this illustration by using the LogSim-
ulator to create a stream of log events.

Figure 2.9 Setting the
message body in Postman

Figure 2.10 Fluentd output after
sending the REST event—note the
last line showing the output of the
received event

50 CHAPTER 2 Concepts, architecture, and deployment of Fluentd
 A new shell window is required to run the LogSimulator. Within the shell, you will
need to navigate to where the configurations have been downloaded. Within each of
the chapter’s folders is a folder called SimulatorConfig. Depending upon the chapter,
you will find one or more property files. Inside the property file, you’ll find a series of
key-value pairs that will control the LogSimulator’s behavior. This includes referenc-
ing the log file to replay or test data. These references are relative, meaning we need
to be in the correct folder—the parent folder to the chapters—to start the simulator
successfully. We can then start the LogSimulator with the command

groovy LogSimulator.groovy Chapter2\SimulatorConfig\HelloWorld.properties

or, if you choose to use the JAR file

java -jar LogSimulator.jar Chapter2\SimulatorConfig\HelloWorld.properties

Remember to correct the slashes in the file path for Linux environments. The Log-
Simulator is provided with a configuration that will send log events using a log file
source using the same HTTP endpoint. This will result in each of the log events being
displayed on the console.

2.4 “Hello World” with Fluent Bit
Fluent Bit, as previously mentioned, is written in C/C++, making the footprint very
compact. The downside of this is that it requires more effort to build Fluent Bit for
your environment. You will need to be comfortable with the Gnu Compiler Collection
(GCC) (https://gcc.gnu.org/), which is typically available on Linux platforms, or the
cross-platform C compiler Clang (https://clang.llvm.org/), which can work in a GCC
mode. For this book, we aren’t going to delve any further into the world of C/C++
compilation. This means downloading one of the prebuilt binaries or using one of the
supported package managers, such as apt and yum. For Windows, Treasure Data has
provided Windows binaries (available at https://docs.fluentbit.io/manual/installation
/windows). Because the binaries are provided by Treasure Data, the created artifacts
make use of the prefix td. For simplicity and alignment to the basic version of Fluent
Bit, we recommend downloading the zip version. We have used the zip download
approach for our examples.

 Unpack the zip file to a suitable location (we will assume C:\td-agent) as the
location. To make life easier, it is worth adding the bin folder (e.g., C:\td-
agent\bin) into the PATH environmental variables, as we did with Fluentd.

 We can check that Fluent Bit has been deployed with the following simple command:

fluent-bit -–help

This will prompt Fluent Bit to display its help information on the console.

2.4.1 Starting Fluent Bit

The obvious assumption would be that as long as we limit our Fluentd configuration file
to the plugins available in a Fluent Bit deployment, we can use the same configuration
file. Unfortunately not—while the configuration files are similar, they aren’t the same.

https://gcc.gnu.org/
https://clang.llvm.org/
https://docs.fluentbit.io/manual/installation/windows
https://docs.fluentbit.io/manual/installation/windows
https://docs.fluentbit.io/manual/installation/windows

51“Hello World” with Fluent Bit
We’ll explore the difference in a while. But to get Fluent Bit running with our “Hello
World” example, let’s start things with a configuration file previously prepared, using
the command

fluent-bit -c ./Chapter2/FluentBit/HelloWorld.conf

As a result, Fluent Bit will start up with the configuration provided. Unlike Fluentd, Flu-
ent Bit’s support for HTTP is more recent and may not have all the features you want,
depending on when you read this. Therefore, it is possible to match Fluentd for HTTP
in our scenario of sending JSON. If you bump up against HTTP feature restrictions,
then you can at least drop down to using the TCP plugin (HTTP is a layer over the TCP
protocols). Both Fluent Bit and Fluentd support HTTP operations for capturing status
information and HTTP forwarding. The only downside of working at the TCP layer is
that we can’t use Postman to send the calls. You can create the same effect with other
tools that know how to send text content to TCP sockets. For Linux, utilities such as tc
can do this. In a Windows environment, there isn’t the same native tooling. It is possible
to create a Telnet session using tools such as PuTTY (www.putty.org), and LogSimulator
includes the ability to send text log events to a TCP port. For Fluent Bit, let’s use Post-
man for HTTP and use the LogSimulator for TCP. Starting with TCP, the following
command will start the LogSimulator, providing it with a properties file and a file of log
events to send. As we have already installed this tool, we can start it up. Using a separate
shell (with the correct Java and Groovy versions), we can run the command

groovy LogSimulator.groovy Chapter2\SimulatorConfig\fb-HelloWorld.properties
.\TestData\small-source.json

We can now expect to see the shell running the LogSimulator reporting the sent
events to the console. The log events will be sent at varying time intervals (the console
should look something like the screenshot in figure 2.11).

 At the same time, Fluent Bit in the other console will start reporting the receipt
and sending to its console the JSON payloads received. This is shown in figure 2.12.

Figure 2.11 Simulator console output at the end of the
log event transmission

Figure 2.12 Example Fluent Bit console output

52 CHAPTER 2 Concepts, architecture, and deployment of Fluentd
You may have noticed a lag between the simulator starting and seeing Fluent Bit dis-
playing events. This reflects that one of the configuration options is the time interval
when the cache of received log messages is flushed to the output. As we will discover
later in the book, this is one of the areas that we can tune to help performance.

NOW WITH HTTP
The difference between the TCP and HTTP configurations is small, so you can either
make the changes to the Chapter2/FluentBit/HelloWorld.conf or use the pro-
vided configuration file Chapter2/FluentBit/HelloWorld-HTTP.conf. The fol-
lowing shows the changes that need to be applied:

 In the Input section, change the Name tcp to Name http.
 As we have been using port 18080 for HTTP in Postman, let’s correct the port

in the configuration, replacing port 28080 with port 18080.

Save these changes once applied. To see how Fluent Bit will work now, stop the cur-
rent Fluent Bit process if it’s still running. Then restart as before, or using the pro-
vided changes, start with

fluent-bit -c ./Chapter2/FluentBit/HelloWorld-HTTP.conf

Once running, use the same Postman settings to send the events as we did for Fluentd.

2.4.2 Alternate Fluent Bit startup options

Fluent Bit can also be configured entirely through the command line. This makes an
effective way to configure Fluent Bit, as it simplifies the deployment (no mapping of
configuration files needed). However, this does come at the price of readability. For
example, we could repeat the same configuration of Fluent Bit with

fluent-bit -i tcp://0.0.0.0:28080 -o stdout

If you run this command with the simulator as previously set up, the outcomes will be
the same as before. Fluent Bit, like Fluentd, isn’t tied to working with a single source
of log events. We can illustrate this by adding additional input definitions into the
command line. While running in a Windows environment, let’s add the winlog
events to our inputs. For Linux users, you could replace the winlog source with cpu
and ask Fluent Bit to tell us a bit more about what it is doing by repeating the same
exercise, but with the command

fluent-bit -i tcp://0.0.0.0:28080 -i winlog -o stdout -vv

This time we will see several differences. First, when Fluent Bit starts up, it will give us
a lot more information, including clearly showing the inputs and outputs being hand-
led. This results from the -vv (more on this in the next section). As the log events occur,
in addition to our log simulator events, the winlog information will be interleaved.

FLUENTD AND FLUENT BIT INTERNAL LOGGING LEVELS

Both Fluentd and Fluent Bit support the same command-line parameters that can
control how much information they log about their activities (as opposed to any

53“Hello World” with Fluent Bit
log-level information associated with a log event received). In addition to being con-
trolled by the command line, this configuration can be set via the configuration file.
Both tools recognize five levels of logs, and when no parameter or configuration is
applied, the midlevel (info) is used as the default log level. Table 2.5 shows the log lev-
els, the command-line parameters, and the equivalent configuration setting. The easi-
est way to remember the command line is -v is for verbose and -q is for quiet; more
letters increase verbosity or quietness.

NOTE Trace level setting will occur only if Fluent Bit has been compiled with
the build flag set to enable trace. This can be checked using the Fluent Bit
help command (fluent-bit -h or fluent-bit -–help) to display a list of
the build flags and their settings. Trace-level logging should be needed only
while developing a plugin.

2.4.3 Fluent Bit configuration file comparison

Previously we mentioned that the Fluentd and Fluent Bit configurations differ. To
help illustrate the differences, table 2.6 offers the configuration side by side.

Table 2.5 Log levels recognized by Fluentd and Fluent Bit

Log level Command line Configuration setting

Trace -vv Log_Level trace

Debug -v Log_Level debug

Info Log_Level info

Warning -q Log_Level warn

Error -qq Log_Level error

Table 2.6 Fluentd and Fluent Bit configuration comparison (using the HTTP configuration of Fluent Bit)

Fluent Bit Fluentd

Hello World configuration will take
events received
on port 18080 using TCP as a protocol

[SERVICE]
 Flush 1
 Daemon Off
 Log_Level info

define the TCP source which will provide
log events
[INPUT]
 Name http
 Host 0.0.0.0
 Port 18080

accept all log events regardless of tag
and write
them to the console
[OUTPUT]
 Name stdout
 Match *

Hello World configuration will take
events received on port 18080 using
HTTP as a protocol

set Fluentd's configuration parameters
<system>
 Log_Level info
</system>

define the HTTP source which will
provide log events
<source>
 @type http
 port 18080
</source> # after a directive

accept all log events regardless of tag
and write them to the console
<match *>
 @type stdout
</match>

54 CHAPTER 2 Concepts, architecture, and deployment of Fluentd

Thi

wh

s
as
If you want to play spot the difference, then you should have observed the following:

 Rather than directives being defined by opening and closing angle brackets
(<>), the directive is in square brackets ([]), and the termination is implicit by
the following directive or end of the file.

 SERVICE replaces the system for defining the general configuration.
 @type is replaced by the Name attribute to define the plugin to be used.
 Match, rather than being the name of the directive with a parameter in the

directive, becomes Output. The match clause is then defined by another name-
value pair in the attributes.

 Older versions of Fluent Bit didn’t support HTTP, so events would need to be
sent using events using TCP, but the events received can still be in JSON format.

When looking at the configurations side by side, the details aren’t too radically differ-
ent, but they are significant enough to catch people out.

2.4.4 Fluent Bit configuration file in detail

Looking more closely at the configuration file and the rules that are applied, we’ve
just seen there are some similarities, and there are some differences. In the following
listing, we have highlighted a few key rules.

Hello World configuration will take events received
on port 18080 using TCP as a protocol

[SERVICE]

 Flush 1

 Daemon Off

 Log_Level info

define the TCP source which will provide log events
[INPUT]

 Name tcp
 Listen 0.0.0.0
 Port 18080

accept all log events regardless of tag and write
them to the console
[OUTPUT]
 Name stdout
 Match *

Listing 2.2 Chapter2/FluentBit/HelloWorld.conf

All the Fluent Bit general configuration
values are set in this section.

The Flush attribute controls how frequently Fluent Bit
flushes its log cache to the output channels (stdout
and stderr). In this case, we have set it to 1 second.s tells the

Fluent Bit
startup

ether the
process

hould run
a daemon

process.

Indentation is important in a
configuration file and must be
consistent. Recommended
indentation is four space
characters. Indentation, just
like in a YAML file, indicates
parent and child relationships.
In this case, all these values
are subservient to this input.

Rather than sources, Fluent Bit
configuration uses the
terminology of input and output.

In Fluent Bit, the controls on which log events
pass through the plugin are determined not in
the output declaration, as illustrated with
Fluentd, but by a separate match attribute.

55Fluentd deployment with Kubernetes and containers
As with Fluentd, ordering within the configuration file is important, particularly in
match statements—for example, if we added the following configuration fragment
immediately before the current OUTPUT declaration:

[OUTPUT]
 Name file
 Path ./test.out
 Match *

Suppose the configuration appeared as follows:

send all log events to a local file called test.out
[OUTPUT]
 Name file
 Path ./test.out
 Match *

accept all log events regardless of tag and write
them to the console
[OUTPUT]
 Name stdout
 Match *

Should we expect logs to appear in the log file, stdout (i.e., console), or both? The
answer is that events will appear only in the file. This is because we match all events in
both outputs; then it is the first output definition in the configuration that gets the
events (i.e., the log file, with a wildcard match attribute; no log events will make it to
stdout).

2.4.5 Putting the dummy plugin into action

To test out some of the details, see if you can implement the following configuration
change. Within both Fluentd and Fluent Bit is a built-in input plugin called dummy.
Modify the respective HelloWorld.conf files and incorporate the source, and then
start up Fluentd and Fluent Bit, in turn, to see what outcomes you get. The result of
the exercise is included at the end of the chapter.

ANSWER

Rather than filling the pages with configuration files, the answer configurations can
be found in the downloaded folders Chapter2/ExerciseResults/Fluentd/HelloWorld-
Answer.conf and Chapter2/ExerciseResults/FluentBit/HelloWorld-Answer.conf.

2.5 Fluentd deployment with Kubernetes and containers
So far, we have looked at the deployment of Fluentd and Fluent Bit as you might
approach the requirement with only minimal consideration to how the host is work-
ing (native deployments, virtualization, and containerization). We have referenced
some of the mechanisms that would allow us to further automate or containerize
these tools. As discussed in chapter 1, Fluentd has a strong association with container-
ization and the use of Kubernetes. We’ll briefly look at how Fluentd is configured in a

56 CHAPTER 2 Concepts, architecture, and deployment of Fluentd
Kubernetes context; when we get to part 3 of the book, we’ll look at details such as
scaling and containerization in depth.

 Establishing a deployment of a Kubernetes environment and containerization war-
rants its own book (we recommend Kubernetes in Action, 2nd edition by Marko Lukša;
www.manning.com/books/kubernetes-in-action-second-edition). It is, however, worth
looking at how things operate in principle; as we work through the configuration of Flu-
entd in the following chapters, you will be able to appreciate how the configuration
could relate to a Kubernetes deployment. It may also prompt ideas on how and what
you may wish to monitor with Fluentd when it comes to the microservices themselves.

2.5.1 Fluentd DaemonSet

Fluentd is one of the options for incorporating log management into a Kubernetes
environment. This is typically achieved by defining configuration files. The Kubernetes
configuration files tell Kubernetes how pods (collections of containers that work
together) and containers should be run across one or more worker nodes (servers pro-
viding compute power to a Kubernetes cluster). Within Kubernetes, we can describe
different ways for pods to be deployed, such as ReplicaSets, Jobs, and DaemonSets. For
example, it is possible to define things such that a Fluentd container will be executed
on each worker node to collect log events from all the local containers running on that
node. This type of configuration within Kubernetes is known as a DaemonSet and is a typ-
ical configuration for Kubernetes to have for Fluentd. As we’ll see later in the book, this
isn’t the only way to deploy Fluentd, nor are we limited to one deployment model. In
the next listing, we can see an example DaemonSet configuration for applying a con-
figuration file and parameters for routing log events to another Fluentd node.

apiVersion: apps/v1

kind: DaemonSet
metadata:
 name: fluentd
 namespace: kube-system
 labels:
 k8s-app: fluentd-logging
 version: v1
spec:
 selector:
 matchLabels:
 k8s-app: fluentd-logging
 version: v1
 template:
 metadata:
 labels:
 k8s-app: fluentd-logging
 version: v1
 spec:
 tolerations:
 - key: node-role.kubernetes.io/master

Listing 2.3 Chapter2/Out-of-the-box Fluentd DaemonSet designed for forwarding

Tells Kubernetes whether
the pod should run on the
master (controlling node)

www.manning.com/books/kubernetes-in-action-second-edition

57Fluentd deployment with Kubernetes and containers

Res
be d
Flue
star
pro
on a
But
oth
 effect: NoSchedule

 containers:

 - name: fluentd
 image: fluent/fluentd-kubernetes-daemonset
[CA]:v1-debian-forward

 env:

 - name: FLUENT_FOWARD_HOST
 value: "REMOTE_ENDPOINT"
 - name: FLUENT_FOWARD_PORT
 value: "18080"
 resources:

 limits:
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 volumeMounts:

 - name: varlog
 mountPath: /var/log
 - name: varlibdockercontainers
 mountPath: /var/lib/docker/containers
 readOnly: true
 terminationGracPeriodSeconds: 30
 volumes:

 - name: varlog
 hostPath:
 path: /var/log
 - name: varlibdockercontainers
 hostPath:
 path: /var/lib/docker/containers

NOTE The DaemonSet comes from http://mng.bz/nYea.

It should be noted that it is possible within an infrastructure hosting Kubernetes
nodes to run processes such as Fluentd directly on the underlying platform. While this
eliminates the abstraction layer of Kubernetes (and the associated overhead), it also
removes the opportunity to use Kubernetes to manage and monitor that Fluentd is
running. We recommend this only in very unusual circumstances.

NOTE DaemonSets are defined to provide basic operations on every worker
node. This could be sending log events directly to Elasticsearch (as part of an
EFK stack as discussed in chapter 1) or forwarding logs to various cloud vendor
log analytics solutions, such as AWS CloudWatch. These can be found in the
Fluentd GitHub (http://mng.bz/2jng).

Tells Kubernetes this is something that must run
continuously, rather than on a schedule

Identifies to Kubernetes the container
image to be used, which will run Fluentd

This is where we start defining the containers
within the pod. In addition to what is shown
here, each container can have things done,
such as defined startup commands—for
example, tailoring each Fluentd instance.

It is also possible to have environment variables
within the container instance set using these
name-value pairs. In this case, several variables are
being defined, which are then referenced within a
configuration file to direct the forwarding plugin.

ource quotas can
efined, so
ntd doesn’t
ve other
cesses running
 node of time.

 this can have
er consequences. Describes a mount point within

the container that can be used
to access externalized storage

Describes where the container’s external
storage would be on the underlying
Kubernetes infrastructure. In an enterprise
scenario, this could be a network storage
device such as a SAN, or in the cloud it would
be mapped to some form of block storage.
This means we could map the logs that
Fluentd generates to a shared location,
and we could direct Fluentd instances to
pick up a common configuration file.

http://mng.bz/nYea
http://mng.bz/2jng

58 CHAPTER 2 Concepts, architecture, and deployment of Fluentd
Figure 2.13 illustrates how the Kubernetes configuration can work using a Daemon-
Set. Typically, the DaemonSet configuration would be held in a shared configuration
repository or file system and then passed to Kubernetes through a tool like kubectl,
the standard Kubernetes CLI tool. We have assumed that the Fluentd configuration
resides on a shared file system and is therefore mounted by the Fluentd container to
allow access. Another approach would be to pass the configuration using the Daemon-
Set YAML file or simply wire directly into the Docker image. The log consumers that
the Fluentd configuration has within the DaemonSet could direct the log events to
Elasticsearch, or to a file system outside the cluster that the Kubernetes configuration
has made accessible. We will explore more about this when we get to scaling Fluentd.

Figure 2.13 A deployment model of Fluentd within Kubernetes as a DaemonSet. Each distinct server in
the Kubernetes cluster has its own pod with a container running Fluentd.

2.5.2 Dockerized Fluentd

Like just about any application, in addition to manually installing or automating a man-
ual install through tools like Ansible (www.ansible.com), it is possible to deploy Fluentd
or Fluent Bit using the Docker container engine. Predefined Fluentd Docker files (i.e.,
the files that tell Docker how to build an executable image) are provided in the GitHub
repository (https://github.com/fluent/fluentd-docker-image), which include address-
ing different host OS factors (e.g., Debian to Windows). Fluent Bit also has a smaller set
of predefined Docker files in GitHub (https://github.com/fluent/fluent-bit). The

Node

Pod

Kubelet Proxy

Node

Kubelet Proxy

Shared file system DaemonSet
Docker / Pod &

fluentd.confMaster node

Kubelet

API svr

…

DaemonSet describes
“service” pods. Read by
the controller.

Fluentd Docker + pod
configuration

Pods created

Log
consumer(s)

Container

Pod

Container

Controller
mgr

App pod

Container

App pod

Container

App pod

ContainerCConCont itaitainernerContainer
App pod

Container

App pod

Container

App pod

ContainerCConCont itaitainernerContainer

www.ansible.com
https://github.com/fluent/fluentd-docker-image
https://github.com/fluent/fluent-bit

59Using Fluentd UI
GitHub repositories contain the configuration files and scripts. The realized images are
held in Docker Hub and can be found at https://hub.docker.com/u/fluent for Fluentd
and https://hub.docker.com/r/fluent/fluent-bit for Fluent Bit.

2.6 Using Fluentd UI
We have managed to install and run Fluentd and Fluent Bit. But in both cases, the con-
trol has been through the command line. Fluentd can also run with a web UI. The web
UI is served from the same process that executes Fluentd’s core logic if it is installed.

2.6.1 Installing Fluentd with UI

The installation will trigger Fluentd to download and install a series of additional
gems. This is because it provides the means to incorporate several plugins beyond the
basic ones provided. This does mean the installation takes longer than just installing
Fluentd. The commands to install the UI are

gem install -V fluentd-ui
fluentd-ui setup

Once the installation is complete, we can start the UI up with the following command:

fluentd-ui start

This will start up a Fluentd node, which includes a web server. The web UI can be
accessed by opening port 9292 (i.e., pointing your browser to localhost:9292 will
present you with the login screen).

Securing Fluent-UI with HTTPS
The Fluentd UI is run using HTTP; no SSL/TLS certificate is used on a default instal-
lation. This is unlikely to be an issue in development/experiment environments. But
running without SSL/TLS and at least basic credentials is far from recommended
when it comes to production. This can be addressed in several ways:

 Implement a reverse proxy in front of Fluentd-ui using Nginx or the Apache
Server—a common approach to securing web content not protected by SSL/
TLS certificates (documentation on how to do this is available at http://
mng.bz/Ywne). It also means an additional process is running in your environ-
ment, with the need to have networking configured so that the reverse proxy
isn’t bypassed.

 For its web layers, Fluentd UI uses the Ruby on Rails framework (https://ruby
onrails.org/) and the Ruby application server Puma (https://puma.io). There-
fore, it is possible to configure Puma with an SSL/TLS certificate. Applying
the configuration needs Ruby code changes and startup parameters with a
knock-on for the Fluent code base. This is undesirable, as any update will
mean reapplying those changes.

 We wouldn’t recommend the use of Fluentd UI in production. This may seem like
avoiding a problem rather than addressing it. However, there is a lot of merit

https://hub.docker.com/u/fluent
https://hub.docker.com/r/fluent/fluent-bit
http://mng.bz/Ywne
http://mng.bz/Ywne
https://rubyonrails.org/
https://rubyonrails.org/
https://rubyonrails.org/
https://puma.io

60 CHAPTER 2 Concepts, architecture, and deployment of Fluentd
By default, the login username is admin, and the password is changeme. Once logged
in, the UI presented will look something like figure 2.14. Differences can occur as the
UI has reactive and responsive characteristics, resulting in the layout adjusting based
on the device used to view the UI.

We need to provide some configuration values for the Fluentd node to perform with.
Clicking Setup Fluentd will take us to a UI through which we can configure the behav-
ior. Figure 2.15 illustrates some of the relevant configuration needed.

(continued)

in this. For production environments, you want to have Fluentd configuration
files controlled through tools such as Git. This means not empowering users
with a UI in production that can make configuration changes. It is better to get
users to make controlled changes that can then be rolled out securely. If you’re
running Fluentd in a microservices or distributed environment, allowing
changes only from the controlled configuration file provides the means to drive
environment consistency and reduce the chance of “configuration drift.”

Again, we recommend using Fluentd UI only for experimentation purposes and not in
production. Given this, the following will provide enough insight to enable you to
appreciate what the UI supports.

Figure 2.14 UI when
Fluentd UI starts
without any
configuration

Figure 2.15 Fluentd
UI for setting the
configuration locations

61Using Fluentd UI
The configuration fields are set with default values. Switch the Config File option to
point to the existing HelloWorld.conf file used to run Fluentd. You may wish to also pro-
vide alternative locations for the process identifier (PID) and log files. As soon as we
click the Create button in the UI, the server process will start if the locations and files
can be written to and read from. The UI then switches to a different home page, as
shown in figure 2.16.

The navigation menu on the left is now a lot richer. The Fluentd submenu provides
options for working with the configuration file, accessing logs, and any error logs. The
logs shown are the same as the console output. The navigation menu lets us see the
details of Installed Plugins, Recommended Plugins, and Updated Plugins.

 The core of the screen is given over to the live log being produced by the server
with controls for starting and stopping operations and the current configuration. The
Config File options will show us the configuration file being used and the ability to
edit the configuration file directly. If the UI options for configuration become an
issue, you can resort to traditional editing. The Add Source and Output options
allow web pages that capture plugin configurations using the UI as a guided, form-
based presentation for modifying configuration values. As figure 2.17 illustrates, the
UI does provide a nice logical flow for setting up the plugins and their configuration
values.

Figure 2.16 Fluentd UI once the backend is running

62 CHAPTER 2 Concepts, architecture, and deployment of Fluentd

Figure 2.17 Fluentd UI defining inputs and outputs

Clicking on one of the Source, Filter, or Output elements will navigate you to a UI for
configuring that type of plugin. For example, selecting a File source presents you with
a file picker UI (as shown in figure 2.18).

Summary
 Log events are composed of a tag, a timestamp, and a record that holds the

core log event.
 Using NTP for machine time synchronization is crucial when bringing multiple

server logs together to ensure correct log ordering.
 Fluentd and Fluent Bit can be deployed in most environments, as infrastructure

requirements are very small and application dependencies are minimal. If nec-
essary, you can compile these tools to work in niche situations.

 There are a variety of ways for deploying Fluentd, including deploying Ruby
and RubyGems and then retrieving Fluentd as a gem.

Figure 2.18 Fluentd UI file picker as
part of the File plugin configuration

63Summary
 Deployment of the LogSimulator to quickly mimic sources of log events just
requires Java, but to customize the tool, you need Groovy as well.

 Fluentd can be used with Kubernetes and Docker logging, as well as with tradi-
tional environments. We can retrieve standard configurations for this for
Kubernetes deployment.

 When deployed on a Linux host, Fluentd can respond to signals such as
SIGINT to shut down gracefully and SIGUSR2 to reload the configuration file.

 Fluentd UI is one of the additional tools available with Fluentd. This provides a
web front to visualize the configuration of a Fluentd environment and observe
what Fluentd is doing. Other tools include the ability to generate certificates
and list available plugins.

 The order of how configurations are defined in a configuration file is important.
 Fluentd’s and Fluent Bit’s own logging can be configured to different log levels.
 Fluentd and Fluent Bit configurations are similar but not the same.

64 CHAPTER 2 Concepts, architecture, and deployment of Fluentd

Part 2

Fluentd in depth

In part 1, we introduced Fluentd and Fluent Bit, we explored what drives the
adoption of these tools, and we covered the problems both Fluentd and Fluent
Bit are best suited to address. We also took the time to understand the differ-
ences between Fluentd and Fluent Bit. From here on, we will focus primarily on
Fluentd.

 In the following part, we will dig into what Fluentd can do and how to config-
ure it. In doing so, we’ll tackle some scenarios that most users will likely encoun-
ter sooner or later—for example, how to capture log events from a log file as
they are added by another log application, including handling challenges such
as log rotation. Chapter 3 starts with capturing log events, focusing on sources
such as files, as this is one of the most common sources of log events. Chapter 4
takes us into storing log events in different destinations, such as databases and
social/collaboration tools. This includes dealing with the parsing and format-
ting of events. Chapters 5 and 6 show the different aspects of log event routing,
duplication, and log attribute injection.

 By the end of part 2, we will have covered enough ground for you to build
configurations for most use cases. This allows us to go into part 3, where we will
focus on the challenges of Docker, Kubernetes, scaling, performance, and use
cases requiring specialist plugins.

66 CHAPTER

Using Fluentd to
capture log events
With the conceptual and architectural foundations set up, and having run a simple
configuration, we’re ready to start looking at the capture of log events in more detail.
In this chapter, we’re going to focus on capturing log events. But before we do, let’s
look at how we can check that our Fluentd configuration is correct.

This chapter covers
 Configuring Fluentd for the input of log files

 Examining the impact of stopping and starting during
file reading by Fluentd

 Using parsers to extract more meaning from log events

 Self-monitoring and external monitoring of Fluentd
using APIs

Setting up to follow and try the configurations
A quick note about how we’re presenting code in the book. To avoid the book be-
coming bloated with code and Fluentd configuration files, we’ve included only the
configuration and code parts relevant to the subject being discussed. But the files
67

68 CHAPTER 3 Using Fluentd to capture log events
3.1 Dry running to check a configuration
When developing Fluentd configurations, we don’t want to set up a test to discover
that the configuration is incorrect. Just as we do when developing code, we use a
means to check code before we try running the solution. This becomes more import-
ant as the configuration or code becomes more complex.

 Dry running a configuration file gets Fluentd to load the configuration and con-
firm that it can execute it, based on syntactical correctness and whether the attributes
are recognized and the values provided are valid. The dry-run option is part of the
Fluentd command line. To use the dry-run capability, we just add –-dry-run to the
command-line parameters. Any configuration errors are reported in the console out-
put; for example:

2020-04-17 11:08:51 +0100 [error]: config error file="Chapter3/Fluentd/basic-
file-read2.conf" error_class=Fluent::ConfigError error="'path' parameter
is required"

This dry run shows that a plugin is missing a mandatory attribute; in this case, the
failed plugin configuration needs a path attribute.

Successful execution of the dry run will result in Fluentd stopping gracefully. If you are
running with the default logging level, then the following kind of message is displayed:

2020-04-17 10:53:24 +0100 [info]: finsihed dry run mode

(continued)
referenced in the downloads and GitHub repository are the complete configurations
(https://github.com/mp3monster/LoggingInActionWithFluentd).

The repository includes both complete configurations and partial configuration files so
you can implement configuration yourself. Along with this are scenarios and solutions
to the scenarios that will allow you to try out your understanding of ideas in the book.

If you have skipped the initial chapters, you need to ensure you have the Log-
Simulator installed and configured (details in Chapter 2) or have the basic setup as
documented at https://github.com/mp3monster/LogGenerator and including any
troubleshooting tips.

Solving structural errors
If the error is more “structural” in nature, such as omitting a start or end to a declar-
ative block—for example, </parse> being missed when there is a <parse> decla-
ration—then we’re most likely to see a backtrace (stack trace) error. Fluentd will
complete the backtrace error with what it thinks is missing. The suggestion may be
incorrect in these circumstances, and a missing syntactical element elsewhere is the
cause. The easiest way to sort out these kinds of issues is to ensure you have
applied good indentation and start matching up start and end blocks.

https://github.com/mp3monster/LoggingInActionWithFluentd
https://github.com/mp3monster/LogGenerator

69Reading log files
As this is classed as info, if you have configured Fluentd to be quieter, you will not see a
message, just Fluentd coming to a stop without any errors.

 Fluent Bit currently does not have a comparable feature, partly because the expec-
tation is for simpler configurations. The ability to provide the Fluent Bit configuration
entirely via the command line communicating an error will be more challenging. If
your goal is to supply Fluent Bit with the configuration using the command line, we
recommend that you start working with a file until the configuration is complete and
valid. Then strip the new line and redundant whitespace—something that can be
done with tools online (e.g., browserling.com) or just awk and sed on a Linux host.
This should allow you to reduce the configuration to a single line, ready for use.

3.1.1 Putting validating Fluentd configuration into action

As the nominated team Fluentd expert, you have been asked to check several configu-
rations. This is an opportunity to try the dry-run feature to evaluate whether the con-
figuration is valid and fix it if necessary (if you need to fix a configuration, it might be
worth making a copy of the original configuration). The configuration files to validate
are the following:

 Chapter3/Fluentd/basic-file-read.conf

 Chapter3/Fluentd/dry-run.conf

No one wants to become the person who fixes everyone’s Fluentd configurations, so you
might consider how to share the answers to the following questions with your colleagues:

1 How do you know that the configuration file is valid?
2 How do you know when a configuration is faulty?

ANSWERS

1 You should have found that Chapter3/Fluentd/basic-file-read.conf is
valid already. We know that this configuration file is fine, as when the dry-run
mode is used, the console output will not report any error messages and should
terminate cleanly. The process will terminate with the following message
(assuming the log levels haven’t been set higher than info):

2020-04-17 10:53:24 +0100 [info]: finsihed dry run mode

2 The console logging output will report an error reflecting the configuration
issue identified for Chapter3/Fluentd/dry-run.conf. We should see the
following message with the details:

2020-04-17 10:54:00 +0100 [error]: config error file="Chapter3/Fluentd/
basic-file-read2.conf" error_class=Fluent::ConfigError error="Missing
'@type' parameter on <source> directive"

3.2 Reading log files
Log files are the most common source of log events when it comes to applications.
While it is inefficient, file creation and consumption are the oldest ways for data to be
shared between processes, including events. As a result, the File plugin is part of the
set of core plugins.

70 CHAPTER 3 Using Fluentd to capture log events
 The first step is constructing a file source in a Fluentd configuration file. This can
be done by adding the following fragment into a copy of the Chapter3/Fluentd/no-
source-config.conf (or using Chapter3/Fluentd/basic-file-read.conf):

<source>
 @type tail

 path ./Chapter3/basic-file.*
 read_lines_limit 5

 tag simpleFile
 <parse>

 @type none
 </parse>
</source>

As the configuration extract shows, we have told Fluentd to use any file it finds in the
chapter 3 folder with a name starting with basic-file and read its contents without
any form of parsing. Before starting Fluentd, we run the simulator so we can see what
is produced. This can be done using the command

groovy LogSimulator.groovy ./Chapter3/SimulatorConfig/basic-log-
file.properties ./TestData/small-source.txt

What we should see is the creation of a file called basic-log.txt in the chapter 3
folder. The folder will contain only the message part of our source file (TestData/
small-source.txt).

 With the log file generated, we can now start Fluentd to see what happens. This is
done with the command (remembering that we are using relative paths as explained
in chapter 2)

fluentd -c ./Chapter3/Fluentd/basic-file-read.conf

When Fluentd starts up, we’ll see the console output showing the configuration file.
Soon after, it will detect the file and start sending it to the console as log events.

3.2.1 Putting the adaption of a Fluentd configuration to Fluent Bit into action

Your team has decided that the current configuration requirements are simple
enough to use Fluent Bit rather than Fluentd. As part of preparing to deploy your
solution in a container, you need to copy the Chapter3/FluentBit/no-source-
config.conf file. Then apply the appropriate configuration changes and run Fluent
Bit to test the configuration.

ANSWER

Fluent Bit is started using the command fluent-bit -c <configuration file>.
The configuration you will have produced should look like the configuration in
Chapter3/ExerciseResults/basic-file-read-FluentBit-Answer.conf.

Listing 3.1 Chapter3/Fluentd/basic-file-read.conf illustrating a file tail

The file source plugin is called tail,
as it behaves a bit like the Linux
command of the same name.

Defines the file(s)
to be captured

Maximum number of lines that should
be read before the events are read
before starting to process them

Every file processor needs to know how to convert the text line
input into a log event. There are several standard parsers provided
by Fluentd, from predefined formats to expression processors.

71Reading log files
 The simulator can be started with the command

groovy LogSimulator.groovy ./Chapter3/SimulatorConfig/basic-log-
file.properties ./TestData/source.txt

The log events should be displayed on the console as a result.

3.2.2 Rereading and resuming reading of log files

If Fluentd was to stop (or needed to be stopped), but the application continued to
write log events, then when Fluentd restarts, it will collect all log events it finds rather
than only those written after Fluentd stopped. This behavior may be acceptable in a
microservice where Fluentd is within the same container as the application logic, and
as a result of Fluentd stopping, the Kubernetes pod is shut down. A fresh instance of
the container is then started. But in many cases, this isn’t enough. Fortunately, this has
been considered, and Fluentd has the means to track its progress through the log
file(s). If the configuration does not track its position to resume where it left off, then
a warning is displayed like this:

2020-04-14 17:07:09 +0100 [warn]: #0 'pos_file PATH' parameter is not set to
a 'tail' source.

2020-04-14 17:07:09 +0100 [warn]: #0 this parameter is highly recommended to
save the position to resume tailing.

If you want to eliminate this warning, because you don’t need to continue where you
left off, then an additional attribute in the configuration needs to be added to the tail
statement:

read_from_head true

In many cases, particularly with more traditional deployments, we will definitely want
to resume where the last log event was read. We should introduce an attribute that
tells Fluentd to record its progress through log files with

pos_file ./Chapter3/basic-file.pos

The pos_file attributed is used by the tail plugin to specify a file where the plugin
can record its progress through the log file(s). When Fluentd restarts, the pos_file
is examined as part of the startup to determine where to pick up from. But the pos_
file alone will not ensure that existing log entries are picked up the first time Flu-
entd is started. To ensure that all log events are collected from the start, we need to
use the read_from_head attribute and set it to be true.

3.2.3 Configuration considerations for tracking position

Some design issues need to be considered when using position files, such as the one
used by the tail plugin when the pos_file is defined. These considerations include
the following:

 Avoid sharing the files across different tail configurations. Sharing a file like this runs
the risk of an I/O collision, as two different threads try to write their position
information at the same time, resulting in file corruption. This also applies to

http://ltsv.org/

72 CHAPTER 3 Using Fluentd to capture log events
setting up multiple worker threads (we’ll examine this in detail when looking at
Fluentd scaling).

 You want the pos_file entry to exist only for as long as the log files exist. If the log files
are deleted, then the tracker file needs to be deleted. Otherwise, on a restart, the
plugin can’t work out where to resume file processing correctly. This can be
tricky in a containerized environment, as the file system may be entirely local and
therefore as transient as the container. This can be overcome if the log files have
their part of the file system mapped to durable storage outside the container.

RECOMMENDATION If possible, when using position tracker files, hold them
in the same folder as the log file(s) that they are used to track. This raises the
chance that the tracker and log files will be handled consistently (i.e.,
retained or treated transiently). When the log files are purged, the chance of
the pos_file being purged at the same time is better.

NOTE There is some divergence between Fluentd and Fluent Bit when it
comes to the use of pos_file. Fluent Bit doesn’t have a pos_file attribute;
instead, it used DB as the attribute for this task.

Try to rerun the Fluentd configuration with the changes just described applied to the
current configuration file (or run Fluentd with Chapter3/Fluentd/basic-file
-read2.conf, which includes the position file in the configuration).

3.2.4 Wildcards in the path attribute

You may have noticed that the configuration has a wildcard (i.e., asterisk, “*”) instead
of a file extension in the path declaration. Fluentd will accept the use of wildcards in
the same way the operating system will. As a result, it is possible to read multiple files
through a single source directive (or configuration if you prefer).

 This can be simply illustrated if you have run the previous case configuration. By
running that configuration, you should have a file called basic-file.txt and basic
-file-read2.pos_file in the Chapter 3 folder. Delete the pos_file and then copy
basic-file.txt to basic-file.log. Rerun Fluentd with the same configuration
file as last time. In the log output, you will have two entries saying #0 following tail
of ./Chapter3/basic-file.txt and #0 following the tail of ./Chapter3/
basic-file.log. If you open the pos_file, you will see that each file has a line.

NOTE If you try to delete the pos file while Fluentd is still running, Fluentd
will still be holding a handle to the file, which prevents deletion. Therefore,
always shut down the Fluentd process first.

This means that wildcards must be used with care; it can be advantageous if an appli-
cation creates multiple logs in the same place that need to be captured. The other use
case where this can be of enormous help is if you elastically scale solutions such as web
servers with all the servers configured to log to a high-performance network storage
device. We can set the Fluentd configuration to target a single folder location rather
than having a Fluentd configuration for each server’s log files.

73Reading log files
 In this latter case, if each web server has its log file and new web servers are started
after Fluentd, we need to detect the new log files. By default, Fluentd checks every 60
seconds for files matching the path attribute. This can be tuned using the attribute
called refresh_interval using a time expression; for example, refresh_
interval 5s means checking every 5 seconds. As a result, those new web server log
files will be picked up on the subsequent scan. This provides a simple way to accom-
modate autoscaling.

3.2.5 Expressing time

When defining time as an interval, such as when you need to specify a task frequency,
Fluentd has a time data type with an associated notation for setting these attribute’s val-
ues. For time data type attributes, we can represent the time values as shown in table 3.1.

The number provided will be treated as an integer. If the value is not an integer, it will
be processed as a float representing a fraction of the time period. This notation
applies to nearly all standard Fluentd and Fluent Bit plugin properties used for
expressing time intervals.

3.2.6 Controlling the impact of wildcards in filenames

As we have just discussed, the use of wildcards can be powerful, but it also comes with
risks, such as picking up unwanted files. There are several strategies that we can apply
to control the risks of wildcards.

EXPLICIT LISTING

If all the filenames are known in advance, the path attribute can be populated as a
comma-separated list of files. The files will be processed in the same way as the wild-
card path matching multiple files—each file will be read and a pos entry recorded if
we are recording read progress. The path attribute could look something like this:

path Chapter3/structured-rolling-log.0.log, ChapterN/another-rolling-log.0.log

As with many other plugins, it is possible to change the delimiter of each entry in the
path. This is done by setting the attribute path_delimiter (e.g., path_delimiter
= ';'), allowing us to get around any strange file-naming issues.

Table 3.1 Notations for expressing values of time type in Fluentd configurations

Interval Character Examples

Seconds s 10s  10 seconds
0.1s  100ms

Minutes m 1m  1 minute
0.25m  15 seconds

Hours h 24h  24 hours
0.25h  15 minutes

Days d 1d  1 day
0.5d  12 hours

https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/fluent/fluent-plugin-grok-parser
https://github.com/fluent/fluent-plugin-grok-parser
https://github.com/fluent/fluent-plugin-grok-parser

74 CHAPTER 3 Using Fluentd to capture log events
LOG SEQUENCING BY DATED FOLDERS

Some solutions allow you to configure logging so that folders contain all the logs for a
particular period (all logs for a day, month, etc.). This makes it easier to manage mul-
tiple logs covering long periods. Fluentd is, therefore, able to process the structure of
such file paths using date elements (e.g., Chapter3/2020/08/30/app.log). To
achieve this effect, we need to modify the configuration to look like

path Chapter3/%Y/%m/%d/*.log

In the section “Expressing dates and times” in appendix B, there is a table that
describes the different escape sequences, such as %Y, %m, and %d, shown in the pre-
ceding example.

USING FILE EXCLUSIONS

Another approach is to exclude files by providing a list of files that should never be
considered using the exclude_path attribute. This attribute works just like the path
attribute, so it can use wildcards or comma-separated lists. For example:

exclude_path: ./Chapter3/*.zip, ./Chapter3/threadDump*.txt

This declaration would prevent any files with .zip or thread dump files from being col-
lected from the folder. This is a good way to mitigate the risk of accidentally picking
up files that shouldn’t be captured—for example, if an application’s logging may also
generate stack dump files or documents intended to be sent to a vendor for analysis in
the same file location as normal logs.

ONLY CONSIDER RECENTLY CHANGED FILES

We can tell the plugin to only consider files that have changed within a certain time
frame. So, we could assume that any files generated/changed soon after installation
or a restart contain log events worth collecting; this is done by setting the attribute
limit_recently_modified to a time-interval value. For example:

limit_recently_modified: 2m

The limit_recently_modified attribute is another instance of a time data type, so
it can be configured in the way we just described.

 Controlling which log files are examined by using the change duration can help in
several ways:

Configuration errors
Fluentd is good at indicating errors in its configuration. Typically they are published
as warnings in the Fluentd output with an explanation. For example, adding %B into
the filename would yield ./Chapter3/structured-rolling-logMay.0.log
not found. Continuing without tailing it. This makes sense; the file does
not exist. Another example of error handling is using escape sequences for incorrect
date attributes, resulting in Fluentd treating the values as normal text and reporting
errors.

75Reading log files
 If a lot of log files are retained in the same location (as would be the case for log
rotation—more on this shortly), then we can control how far back we go in pro-
cessing files.

 In real-time use cases, such as log events from the equipment on a manufactur-
ing line, if the log event is not captured within a specific time frame, then the
log event becomes redundant, as nothing can be done. So why waste time pro-
cessing log events that are effectively out of date?

 If the available compute capacity is small, and there is a large backlog of logs to
be caught up on, you can create a condition where you never catch up to the
currently generated events. Limiting how far backlog file processing can go
reduces the risk of this scenario.

The use of this configuration needs to be carefully considered, along with the fre-
quency of checking for new files. If the refresh interval is longer than the limit_
recently_modified attribute, then by the time new files are identified, they may
well have fallen out of the time frame of the limit.

3.2.7 Replacing wildcards with delimited lists in action

Back up the configuration file Chapter3/Fluentd/basic-file-read2.conf.
Copy basic-file.txt to a file called basic-file.log, and then copy the file
again so that this copy is called basic-file.out. Modify the path in the Fluentd
configuration so that the wildcard is not in the path, and, using the comma notation,
add the .txt and .out files.

 Run Fluentd and the simulator as we did earlier using the commands

 groovy LogSimulator.groovy ./Chapter3/SimulatorConfig/basic-

log-file.properties ./TestData/source.txt

 fluentd -c Chapter3/Fluentd/basic-file-read2.conf

REPLACING WILDCARDS WITH DELIMITED LISTS SOLUTION

The change to the configuration file should result in the attribute looking like Chap-
ter3/Fluentd/basic-file-read2-Answer.conf. As with the wildcard run, the
output will contain two log files (you can see this from the pos_file and by reviewing
the console output). But the additional third file was not processed.

3.2.8 Handling log rotation

Log rotation is a common solution to allowing a substantial level of logging to be col-
lected without logs files becoming so large that they are too difficult to work with or
endlessly consume space. Log rotation also simplifies the process of purging older
content rather than trimming a file; you simply delete the oldest log.

 The tail input plugin can handle log rotation. The out-of-the-box approach is to
define the configuration so that the path explicitly identifies the lead file in the rota-
tion (e.g., path ./Chapter3/structured-rolling-log.0.log). By excluding
wildcards from the folder that contains the log, rotation means that as files are
rotated, they will not get picked up by the folder rescan. With this, we add the

76 CHAPTER 3 Using Fluentd to capture log events

s
an.
attribute rotate_wait. This attribute stipulates a period during which the current
file, which will have been rotated to ./Chapter3/structured-rolling-log.1
.log, continues to be read. This is necessary, as the log writer may not have finished
flushing content to the first file before creating the new file, possibly resulting in the
final content of the older file being missed. So, awareness of how long it may take the
writer to complete is important; if this isn’t known, you need to allow enough time so
that logs aren’t being generated so fast that you can never catch up. We have created a
setup to illustrate the behavior. Listing 3.2 shows the input configuration.

<source>
 @type tail
 path ./Chapter3/structured-rolling-log.0.log

 rotate_wait = 15s

 read_lines_limit 5
 tag simpleFile
 pos_file ./Chapter3/rotating-file-read.pos_file
 read_from_head true

 <parse>
 @type none
 </parse>
</source>

We can run this configuration with the console command from the folder where all
the book’s chapter folders have been downloaded to

fluentd -c ./Chapter3/Fluentd/rotating-file-read.conf

In a second console, run the following command:

groovy LogSimulator.groovy ./Chapter3/SimulatorConfig/jul-log-file.properties
./TestData/medium-source.txt

The LogSimulator runs with a configuration that leverages the standard Java utility log-
ging framework (part of the core of Java) to provide the log rotation behavior. Java’s
logging works like a wide range of logging frameworks (logging frameworks are

Rotate_wait: Suggested configuration
Every case is different and is dependent upon how the log writer mechanism works.
For backend servers, we have typically looked at 30 seconds as a reasonable
tradeoff. This is based on not wanting to get too far behind with the logs, as catchup
can create spikes in workload (as we catch up with the log events on an active
server), and if we experience a node issue, there is a fair chance we’ll have caught
the events leading up to the catastrophic event.

Listing 3.2 Chapter3/Fluentd/rotating-file-read.conf

Note the absence of a wildcard,
although we could also use ./*/
structured-rolling-log.0.log as long a
the other chapter folders are still cle

Our rotation control with a decent amount of
time expressed as an elapsed time using the
notation described in section 3.2.5

Ensures we read from the beginning of
the file. However, this will only be the
beginning of the current rotation.

77Reading log files
explored further in part 4). The simulator has been configured to loop over a data set
several times. To make it easy to observe this behavior, the simulator adds a line
counter for each line in the file. The iteration counter is added to the front of each
message. So, if you track the output, you will see that all the lines are in the correct
sequence as they come out of Fluentd. If you are quick enough, you will also observe
log messages like this on the console:

2020-04-24 16:29:42.966831500 +0100 simpleFile: {"message":"2020-04-24--
16:29:42 INFO com.demo (36-1) Heres a picture of me with REM. Thats
me in the corner"}

2020-04-24 16:29:42 +0100 [info]: #0 detected rotation of ./Chapter3/
structured-rolling-log.0.log; waiting 15 seconds

2020-04-24 16:29:42 +0100 [info]: #0 following tail of ./Chapter3/structured-
rolling-log.0.log

Note the value (36-1) in the first of these lines; this is reflecting the line number and
iteration number, respectively, from the LogSimulator configuration, with the line
number being the line from the source log and the iteration being the count of how
many times we’ve fed the log entries through for Fluentd to pick up. The rest of the
first line reflects the log message. The following two lines tell us Fluentd is aware of
the rotation file changes, but before ensuring that it is reading from the new lead file,
it will continue to monitor the current file for any final content to be flushed.

WARNING If Fluentd must restart but the application continues to run, and
the logs rotate before Fluentd recovers, then the use of read_from_head
true will take only log events from the start of the current rotation. A result
of any logs between Fluentd stopping and the latest rotation will not get cap-
tured. This impact can be mitigated by ensuring that Fluentd will automati-
cally restart if it fails and making the time to typically fill a log more than the
time for Fluentd to fail and recover.

There is an alternative approach if it is necessary to use wildcards within a single
folder using several attributes:

 refresh_interval—Controls the frequency at which the list of files that
should be detected by the wildcard can be renewed.

 limit_recently_modified—This prevents older log files that may be picked
up because of the wildcard from being used as long as they haven’t changed in
the period defined.

 pos_file_compaction_interval—This is an interval between each visit to
the position tracker file to have its entries tidied up. Depending upon the con-
figuration, the pos file can accumulate entries that then become redundant. As
the position file is regularly read and updated, the fewer the entries in the file,
the more efficient handling the position file will be. Given this, it is best to peri-
odically do some housekeeping.

This approach depends on the log file being regularly written to; otherwise, the log-
ging will “stutter.” As a rule, a log file is out of scope for capture if the last update was

78 CHAPTER 3 Using Fluentd to capture log events

The
i

older than the limit_recently_modified value. As before, we have a config file
containing the input as shown in the next listing.

<source>
 @type tail
 path ./Chapter3/structured-rolling-*.*.log
 read_lines_limit 5
 refresh_interval 30s

 limit_recently_modified 5s

 pos_file_compaction_interval 15s
 tag simpleFile
 pos_file ./Chapter3/rotating-file-read.pos_file
 read_from_head true
 <parse>
 @type none
 </parse>
</source>

As with the previous illustration, the Fluentd instance can be fired up with

fluentd -c ./Chapter3/Fluentd/rotating-file-read-alternate.conf

For the log events to track, you can use the same configuration as the last time:

groovy LogSimulator.groovy ./Chapter3/SimulatorConfig/jul-log-file.properties
./TestData/medium-source.txt

WARNING As with the main way to handle log rotation, it is possible to lose
logs. In addition, if the limit_recently_modified attribute is set to be too
short, the new log file is picked up as the current file has a final flush or file-
handle closed, which may include any final log entries to be written to stor-
age. These final file operations can impact the file change stamp, triggering
Fluentd’s file scan to detect the older log file as being in scope. This will
potentially result in overlapping log entries as older log events are collected
after more recent ones.

3.3 Self-monitoring
In the previous section, there are scenarios in rotating logs where there may be an
outside chance of losing log events. But Fluentd, like any good application, logs events
about its activity. This means it is possible to use Fluentd to monitor its well-being by
tracking its log events. In addition to Fluentd’s logs, there are other ways to obtain
health information, as we will see.

3.3.1 HTTP interface check

Fluentd provides an HTTP endpoint that will provide information about how the
instance is set up, as the following listing shows.

Listing 3.3 Chapter3/Fluentd/rotating-file-read-alternate.conf

The path has wild
cards now.

The time interval to check to sweep for
new log files if logs need to be set, as
explained in section 3.2.5

To avoid accidentally reading the older logs, we
identify a period in which the file must change. cleanup

nterface

79Self-monitoring

<source>
 @type monitor_agent
 bind 0.0.0.0
 port 24220
</source>

With the Fluentd running with the provided configuration (fluentd -c Chapter3/
Fluentd/ rotating-file-self-check.conf), start up Postman as we did in
chapter 2. Then configure the address to be 0.0.0.0:24220/api/plugins.json.
As you can see in the bind attribute, as with other plugins, this relates to the DNS or
IP of the host, and the port attribute matches the port part of the URL. The interface
could be described as {bind}:{port}/api/plugins.json. Unlike in chapter 2,
where the operation was a POST, we need the operation set to be GET. Once done,
click the send button, and we will see an HTTP representation of the running config-
uration returned, as highlighted in figure 3.1.

 As you can see in figure 3.1, the URL and the result are highlighted. If you prefer
the results to be represented using label tab-separated values (ltsv), just omit the

Listing 3.4 Chapter3/Fluentd/rotating-file-self-check.conf

The address to bind to
(i.e., the local server)

The port to be used
for this service

Figure 3.1 Postman illustrating the outcome of invoking the Fluentd API made available
by including the monitor_agent plugin

80 CHAPTER 3 Using Fluentd to capture log events
.json from the URL. The URL can also handle several additional parameters when
the output is set to be JSON. For example, adding to the URL ?debug=1 will yield a
range of additional state information (note the value for debug does not matter; it is
the presence of a parameter that is significant). The full set of parameters available to
use as part of the monitoring agent URL is described in table 3.2.

We can also get the basic state of the plugins periodically reported within Fluentd by
adding the tag and emit_interval attributes to the source directive. We can see the
impact if we run the configuration with these values set using fluentd -c Chap-
ter3/Fluentd/ rotating-file-self-check2.conf (or you can try editing and
adding the attributes to the previous configuration yourself). With Fluentd up and
running, we will start to see some status information every 10 seconds, like the follow-
ing fragment published:

2020-05-01 17:10:04.041641100 +0100 self:
{"plugin_id":"in_monitor_agent","plugin_category":"input","type":"monito
r_agent","output_plugin":false,"retry_count":null}

As the information is tagged, we can direct this traffic to a central monitoring point,
all of which saves on needing to script the HTTP polling. By incorporating the source
in the following listing into the configuration file (before the match), the information
gets fed to the same output.

Table 3.2 URI parameters available for calling the monitor_agent API

URI
Parameter

Description Example

debug Will get additional plugin state information to be included
in the response. The value set for the parameter does
not matter.

?debug=0

with_ivars The use of this parameter is sufficient for the
instance_variables attribute to be included in the
response. We will discuss the instance variables when
we develop our plugin later in the book.

?with_ivars=false

with_config Overrides the default or explicit setting
include_config. The value provided must be true in
lowercase; all other values are treated as false.

?with_config=true

with_retry Overrides the default or explicit setting
include_config. The value provided must be true or
false in lowercase; all other values are treated as false.

?with_retry=true

tag This filters the returned configuration to return only the
directives linked to the tag name provided.

?tag=simpleFile

@id This filters the response down to a specific directive. If
the configuration doesn’t have an explicit ID, then the
value will be arbitrary.

?id= in_monitor_agent

@type Allows the results to be filtered by plugin type. ?id=tail

81Imposing structure on log events

<source>
 @type monitor_agent
 bind 0.0.0.0
 port 24220
 @id in_monitor_agent
 include_config true

 emit_interval 10s

</source>

3.4 Imposing structure on log events
So far, we have only looked at the most simplistic log files; however, very few log files
are like this. The more structured they are, the better we can apply more meaning to
log events, and it becomes easier to make the events actionable within Fluentd or
downstream solutions. This means changing the type of parser from none to using
one of the provided plugins. It is worth noting that we can group parsers into two gen-
eral categories:

 Product-specific parsers—Some products are so heavily used that parsers have
been produced specifically for them, rather than using a generic parser with
detailed configuration. Apache and Nginx are examples of this. The benefit of
these is a typically more straightforward configuration, and performance is
higher as code is optimized to process just that specific log structure.

 Generic parsers—These can be grouped by either
– Supporting a specific type of file notation (e.g., CSV, LTSV, discussed shortly)
– Using highly configurable parser technology (e.g., Grok, Regex)

These parsers are highly configurable, but at the same time, they are a lot more
complex to configure. The more configurable and flexible the parser is, the less
efficient the parsing of each event.

Out of the box, there is a range of parsers coving these categories. In addition to the
pass-through parser (referred to as none), other parsers include CSV and JSON, along
with specific parsers for web server monitor files. These are complemented with the
other community (open source) provided parsers. Section 3.4.1 describes the core
parsers, how they work, and when they can help. Section 3.4.2 continues with a couple
of community-provided parsers also worth knowing about; these do not reflect the sum
totality of all the possible parsers but are the ones we believe are worth knowing about.

 Having reviewed the different options, we will apply one of the most commonly
used parsers—Regex—to log events.

3.4.1 Standard parsers
APACHE2
Apache and Nginx are the two most dominant web servers in production today, with
Apache having been available since the mid-1990s. In the process of applying moni-
toring within an enterprise, there is a good chance you’ll encounter an Apache server,

Listing 3.5 Chapter3/Fluentd/rotating-file-self-check2.conf

Tells the monitor_agent to include configuration
information in the output of the agent

How frequently the monitoring_agent
should run its self-checking and output

82 CHAPTER 3 Using Fluentd to capture log events
even if it is wrapped up as part of a larger product. This parser and the Nginx parser
are designed to take standard web server logs that record the requests and responses
that are processed. Recording details the following:

 Host
 User
 Method (HTTP POST, GET, etc.)
 URI
 HTTP request and response codes
 Payload size
 Referrer
 Agent

APACHE_ERROR

In addition to the core Apache log files, we also need to capture separate errors and
associated diagnostic and debug information for CGI scripts, and so on. The informa-
tion captured covers

 Level (e.g., warning, error)
 PID: process identifier
 Client associated with the error (e.g., browser, application)
 Error message

NGINX

This parser handles standard Nginx access logs that capture the HTTP calls received.
At the heart of the plugin, it applies a regular expression to capture the message ele-
ments. This means that modifying the Nginx configuration would necessitate changes
to this parser for a Regex and adapt the standard Regex accordingly. The attributes
captured are

 Remote—Remote address
 User—Remote user
 Method—HTTP verb post, get, etc.
 Path—URL being used that Nginx is handling
 Code—HTTP code
 Size—Buffer size
 Referrer—Provided identity of the referrer when a call is referred
 Agent—Usually the browser type
 Http_x_forwarded_for—If forwarding has occurred, the HTTP header informa-

tion recording the forwarding steps is held by this element.

NOTE More information about the Nginx logging can be obtained from
http://mng.bz/1joX

CSV
The CSV parser is a rapid parser using, by default, a comma to delimit each field. The
parser by default works by using Ruby’s own CSV processor (see http://mng.bz/J12o).

http://mng.bz/J12o
http://mng.bz/1joX

83Imposing structure on log events
Alternatively, an optimized quick parser (which is restricted to recognizing the use of
quotes to allow the delimiter to be used as usual and multiple quotes as an escape pat-
tern [e.g., """]) can be used by setting the attribute parser_type to fast.

 An optimized string parser to apply meaning to a CSV string will always be better than
trying to apply meaning by performing our string processing or using a Regex parser.

 The keys attribute then takes a list of field names. The time_key attribute identi-
fies which of the keys to use as the timestamp for the log event. The delimiter can be
changed from a comma to something else using the delimiter attribute.

 The following illustrates a CSV parser using the optimized option, rather than the
default:

<parse>
 @type csv
 keys message, trans_id, time, host
 time_key time
 parser_type fast
</parse>

When applied to a log entry, "my quoted message, to you", 124, 2020/04/15
16:59:04, 192.168.0.1 would produce an internal representation of

time: 1586966344
record:
{
 “message” : “my quoted message, to you”,
 “trans_id” : “124”,
 “host” : “192.168.0.1”
}

JSON
This treats the received log event as a JSON payload. There is a trend of treating log
events as JSON structures to aid in meaning without creating considerable overheads
in the log file size. This trend is even reflected in Fluentd; as you may remember, Flu-
entd treats log events as JSON objects.

 It will look for a root element called time to apply as a log event timestamp. The
tag associated with the log event can be found in the root element as the tag. Nested
JSON structures are not, by default, processed. The parser could easily process the fol-
lowing structure, although additional attention would be needed to enable nested1
to be processed as JSON in the following JSON fragment:

{
 “time” : “”,
 “tag” : “myAppTag.Source1”
 “field1” : “blah”,
 “field2” : “more blah”,
 “fieldNested” :
 {
 "nested1": "nested blah"
 }
 "fieldn": "enough of the blah"
}

84 CHAPTER 3 Using Fluentd to capture log events
If desired, it is possible to change the JSON parser implementation for an alternate
Ruby implementation. However, the default parser has shown up across multiple
benchmarks as being the most performant.

TSV
This is very similar to the CSV parser. The key difference is there is no support for
escaping and quoting values. It assumes a default delimiter as a tab character (or the
escape sequence \t). As with the CSV parser, the TSV parser can have the delimiter
changed (delimiter attribute). It also expects attributes of keys and time_key to
define the JSON mapping and timestamp. It does offer one additional optional attri-
bute called null_value_pattern, which, if set, will result in any value found to
contain that value to replace the value in the JSON with an empty string. For example,
null_value_pattern '-' would mean that a line like afield\t123\t-\tother-
Field would result in

{
 “field1” : ”afield”,
 “field2” : “123”,
 “field3” : “”,
 “field4” :”otherField”
}

LTSV
Label tab separated value (LTSV) is a variation on the tab-separated value. The key
difference is that each tab-separated value is prefixed by a label and a label-delimiting
character in the form of a colon. This means the values have semantic meaning, and
value order is not important. As a result, there is no need for masses of comma separa-
tors for empty values, as you can see in CSV files. It can be argued that this is more effi-
cient and tolerant than JSON in terms of logging data (e.g., no additional quotes,
characters, braces), and only three characters are reserved—tab, label delimiter, and
new line. Additional characters are not legal in JSON. For example, host-
name:localhost/tip:127.0.0.1 (note tab is represented by /t in the middle of
the example) has two labels—hostname and ip. LTSV is documented in detail at
http://ltsv.org/ and includes links to helpful tools.

 As with the TSV parser, we can modify the delimiter so characters other than the
tab can be used. In addition, the attribute label_delimiter can be used to change
the default (colon) label delimiter.

MSGPACK
MessagePack is an open source standard and library that describes inline the payload
allowing content to be removed or shortened. The format is supported in several parts
of Fluentd (which is unsurprising, considering it was developed by the same team
responsible for Fluentd).

 It works by providing a short field and value descriptors. As a result, compression
can be achieved by stripping out redundant characters such as quotes, whitespace,
and so on.

 This format can be used for communication between Fluentd and Fluent Bit
nodes and is worth using when crossing networks, particularly with additional

http://ltsv.org/

85Imposing structure on log events
dynamic HTTP-based compression (more at https://msgpack.org/ and www.website-
optimization.com/speed/tweak/compress/). For example, the JSON fragment
{"Fluentd": 1, "msgPackSupport":true} would be reduced to the hex

82 a7 46 6c 75 65 6e 74 64 01 ae 6d 73 67 50 61 63 6b 53 75 70 70 6f 72 74 c3

which is 26 bytes and a compression of 68%.
 Given this efficiency, it is worth considering using msgpack when you’re sharing log

events that cross wide area networks, cloud providers, and so on, as those networks will
cost more based on data volume and can be subject to bandwidth and latency issues.

MULTILINE

Unfortunately, not all logs are elegant such that a single line represents a single event,
as is the case when handling stack traces and stack dumps. The multiline plugin
addresses this by defining multiple regular expressions (Regex). The regex expres-
sions allow the log line to be parsed and tease out the log elements wanted. For this to
work, the plugin requires a Regex to identify the first line of a multiline log event
(and, by implication, the end of this log entry). This Regex is specified with an
attribute-name of format_firstline. After this attribute, up to 20 additional regex
formats can be defined in numerical sequence.

 See the following for how the Regex works, but the configuration follows the pattern

 @type multiline
 format_firstline <regex expression>
 format1 <regex expression>
 format2 <regex expression>
 …
 formatN <regex expression>
</parse>

The multiline plugin as a parser is currently only available with the tail input plugin
because of the unique interactions between the two plugins.

 If the application’s logging framework can be configured to not produce multiline
output (e.g., Log4J 2 can support this in its pattern configuration), then it is worth at
least considering. This is because the multiline parser isn’t as efficient as most single-
line parsers. Another strategy to avoid the multiline parser is for log events like stack
traces to be written to separate files. Separate files mean that we can use the multiline
parser on just a subset of all log events.

NONE

This can be used where a parser must be defined (e.g., in the tail plugin). But no pars-
ing is applied, and the entire log line forms the Fluentd record. The time of reading is
set to be the time value for the log event.

REGEX

Regex parser is probably the most powerful parser option available, but as a result, it is
also the most complex. In section 3.4.3, we will drill into the use of Regex in more
depth.

https://msgpack.org/
www.websiteoptimization.com/speed/tweak/compress/
www.websiteoptimization.com/speed/tweak/compress/

86 CHAPTER 3 Using Fluentd to capture log events
SYSLOG

Syslogs are most commonly generated by OS and infrastructure processes, but nothing
prevents applications from using the format. The original unofficial structure of a sys-
log entry was formalized by the IETF as RFC 3164 (https://tools.ietf.org/html/
rfc3164). This was then superseded by RFC 5424 (https://tools.ietf.org/html/rfc5424)
in 2009. As some hardware can take many years before being replaced, Fluentd can
handle both standards. By default, Fluentd will assume the original standard, but you
can tell Fluentd to use the later standard, or use the payload to work it by setting the
message_format attribute with one (rfc3164, rfc5424, auto). If you know which format
will be handled, it is better to explicitly define it in the configuration. Doing so removes
the overhead of having to evaluate each event before parsing. If a single endpoint is
consuming both event types, you may have to accept the overhead.

 The plugin has two different algorithms for processing the events—string process-
ing logic and a regular expression (regexp). Currently, the default is regex, but in the
future, this will be changed to default to the string option, which is faster than the
regexp algorithm. If you wish to force the algorithm, the attribute parser_type
needs to be set with either regexp or string.

3.4.2 Third-party parsers

In addition to the core parsers, there are some third-party parsers. The following ones
are only a subset of the possible options. However, these are either certified or have
been heavily downloaded, so they are likely to have benefited from extensive use and,
given that the code is open source, benefited from Linus’s Law. Given enough eye-
balls, all bugs are shallow—Eric Raymond).

MULTIFORMAT PARSER PLUGIN FOR FLUENTD

This attempts to use different format patterns in the defined order to get a match.
This is available from http://mng.bz/wnoO.

Grok parser for Fluentd
This uses a Grok-based approach to pull details from a log entry. It includes multiline
support. This is available from https://github.com/fluent/fluent-plugin-grok-parser.
The benefit of using the Grok parser is that Grok is used by Logstash as a filtering and
parsing mechanism; therefore, it is a relatively small step to leverage Grok predefined
patterns and switch between using Logstash and Fluentd.

3.4.3 Applying a Regex parser to a complex log

As previously noted, the Regex or regular expression parser is probably the most pow-
erful and the hardest to use. In most applications of Regex, the outcome is normally a
single result, a substring, or a count of occurrences of a string. However, when it
comes to Fluentd, we need the regex to produce multiple values back, such as setting
the log event time, breaking down the payload to the first level of elements in the
JSON event body. Let’s take a Regex expression and break it down to highlight the

https://tools.ietf.org/html/rfc3164
https://tools.ietf.org/html/rfc3164
https://tools.ietf.org/html/rfc5424
http://mng.bz/wnoO
https://github.com/fluent/fluent-plugin-grok-parser

87Imposing structure on log events
basics. But before we can do that, we need to work with a realistic log entry. Let’s run
up the log simulator configuration for this, using the command

groovy LogSimulator.groovy Chapter3/SimulatorConfig/jul-log-file2.properties
./TestData/medium-source.txt

Note that this is a slightly different configuration from the last example, so we can see
a couple of possibilities within Fluentd. Looking at the output file generated (still
structuredrolling-log.0.log), the payload that is being sent now appears as

2020-04-30--20:10:52 INFO com.demo (6-1) {"log":"A clean house is the sign
of a broken computer"}

In this output line, we can see the applied timestamp, with to-the-second accuracy,
then a space followed by the log level, more space, and then a package name, followed
by the numbering scheme, as previously explained. Finally, the core log entry is
wrapped as a JSON structure. When we parse the message, we need to strip away that
JSON notation, as it should not be in the JSON structure we want.

 The goal is to end up with a structure as follows in Fluentd, so we can then use the
values for future manipulation:

{
 "level":"INFO",
 "class":"com.demo",
 "line":33,
 "iteration":1,
 "msg":"What is an astronauts favorite place on a computer? The Space bar!"
 }

Here is the regular expression, with character positions added below it, to make it easy
to precisely reference each piece:

(?<time>\S+)\s(?<level>[A-Z]*)\s*(?<class>\S+)[^\d]*(?<line>[\d]*)
1234567890123456789012345678901234567890123456789012345678901234567
0 1 2 3 4 5 6

\-(?<iteration>[\d]*)\)[\s]+\{"log":"(?<msg>.*(?="\}))
89012345678901234567890123456789012345678901234567890123
 7 8 9 10 11 12

As part of the expression, we need to use Regex’s ability to define groups of text. The
scope of a group is defined by open and closing brackets (e.g., characters 1 and 12).
To assign some source text to a JSON element, we need to use ?<name>, where the
name is the element name to appear in the JSON. It should be the values level,
class, line, iteration, and msg in our case. In addition to this, we also need to
capture the log event time with the default time value. This can be seen between
characters 2 and 8, for example, and between 16 and 23. Immediately after this, we
can use the Regex notation to describe the text to be captured. For this, we use \S
(characters 9 and 10), which means a non-whitespace character; by adding a + (char-
acter 11), we are declaring that this should happen one or more times. We will need

88 CHAPTER 3 Using Fluentd to capture log events
to provide the parser with additional configuration, as we will need to declare how to
break this part of the message into a specific time.

 The first character not to match the pattern is the space between the time and the
log level—so we use the Regex representation for a single space (characters 13 and
14) and then start the group for the log level.

 The expression defines the log level, which we know will be formed by one or
more alphabetic uppercase characters. The use of the square brackets denotes a
choice of values (characters 24 and 28). We could list all the possible characters within
the brackets, but for readability, we’ve opted to indicate between capital A and capital
Z; the hyphen between A and Z (character 27) denotes that this is a range. As the log
level word will be multiple characters, we use the asterisk to note multiple. That com-
pletes the log level. So, outside the group, we need to denote the multiple whitespace
characters—that is, \s* (starting at 31).

 We can follow the same basic pattern used for the date and time for a path or class
string. This can be seen between characters 34 and 46. To pass along the line to the
following meaningful characters, we have defined a range with the Regex expression
\d (characters 49 and 50), which means a numeric digit. However, by adding the cir-
cumflex (^), we negate the following value—in this case, any non-numeric character.
This means that we will skip over the whitespace and the opening bracket.

 The groups for the line and iteration are the same—multiple digits required with a
hyphen between the two groups. The hyphen is escaped (character 68) because it has
meaning to Regex. We can see the same character escape for the curly bracket at char-
acter 95.

 After the curly bracket starts the log detail, we know what the text is, so we can put
it into the expression (starting at character 97). This underlines the importance of
being exact in the expression, as non-escaped code characters will get treated as liter-
als and therefore will be expected to be found where they occur in the Regex. If the
literal character is not found as expected by the Regex, then the string being pro-
cessed will be rejected.

 The next new Regex trick is the use of the dot (character 112). This denotes any
character; when combined with a following asterisk, then the expression becomes
multiple occurrences of any character. This makes for an interesting challenge—how
do we stop the closing quotes and bracket from being consumed into the msg group?
This is by using a subgroup definition containing ?= (characters 115 and 116). This
describes a look ahead for the following sequence when you find that sequence and
then stop allocating text to the current group. As a result, the match expression is "},
but as a curly bracket has Regex meaning, we have to escape it with another slash. This
does mean that any characters after this will be ignored.

 In appendix B, we have included details of the Regex expressions, so you have a
quick reference for building your expressions. Please note that if you research Regex
elsewhere, while there is a high level of commonality in implementations, you will find
subtle differences. Keep in mind that the Regex here is implemented using the Ruby
language.

89Imposing structure on log events

g
 To complete the parser configuration, we need to tell the parser which named
grouping represents the date and time (often shortened to date-time or date-time-group
[DTG]) and how that date-time is represented. In our case, the date and time can be
expressed using the pattern of %Y-%m-%d--%T. As the time element is standard, we
can use one of the short circuit formats (%T) described in appendix B. Finally, let’s
piece all this information together and define the parser attributes (listing 3.6).

NOTE When the parser expression fails during processing, Fluentd will gen-
erate a warning log entry.

 <parse>
 @type regexp

 Expression /(?<time>\S+)\s(?<level>[A-Z]*)
\s*(?<class>\S+)[^\d]*(?<line>[\d]*)\-(?<iteration>[\d]*)\)

[\s]+\{"log":"(?<msg>.*(?="\}))/

 time_format %Y-%m-%d--%T
 time_key time

 </parse>

This configuration can be run by restarting the simulator, as we did to get an example
value, and then starting Fluentd with the configuration

fluentd -c Chapter3/Fluentd/rotating-file-read-regex.conf

As Fluentd outputs the processed stream of events to console, you will see entries like
this:

2020-04-30 23:29:47.000000000 +0100 simpleFile:
{"level":"","class":"INFO","line":"50","iteration":"1","msg":"The truth
is out there. Anybody got the URL"}

Each line printed by Fluentd to the console will take the date and time of the log
event, the time zone offset, the event tag, and the payload as a correctly structured
JSON, with the time omitted. Notice how the nanoseconds are all 0. This is because we
have given Fluentd a log time that does not have nanosecond precision; therefore,
that part of the timestamp is left at 0.

Regular expression processing is a rich and complex capability
There are entire books devoted to the subject and many more with dedicated chap-
ters. Here we have only scratched the surface, giving just enough to help you under-
stand how it works within the Fluentd context. It might be worthwhile investing in a
book to help. This link may also help: www.rubyguides.com/2015/06/ruby-regex/.

Listing 3.6 Chapter3/Fluentd/rotating-file-read-regex.conf—parse extract

We have changed the parser type
here to regexp for regular expressions.

The expression needs to
be provided between
forward slashes. It is
possible to add extra
controls after the trailin
slash, as we will see.

time_format allows us to
define the date-time
format more concisely.

time_key is used to tell Fluentd which
extracted value to use for the timestamp.
By default, it will use a value called time,
so technically this is redundant.

90 CHAPTER 3 Using Fluentd to capture log events
 More importantly, you will note that all the JSON values are quoted, so they will be
treated as strings. This may not be an issue. But having come this far, it would be a
shame not to define the data types correctly. It may well enable downstream activities,
such as extrapolating additional meaning, to be more effective. The defining of non-
string data types is straightforward. We need to add the attribute types within the
parser construct, which takes a comma-separated list with each defined value
described in the format name:type. In our use case, we would want to add types
line:integer,iteration:integer. The complete list of types supported are

 string—Can be defined explicitly, but is the default type
 bool—Boolean
 integer—Representation for any whole number (i.e., no decimal places)
 float—Represents any decimal number
 time—Converts the value into the way that Fluentd represents time internally.

We can extend this to describe how the time should translate. For example:

– date:time:%d/%b/%Y:%H:%M—Defining the formatting of the representation
– date:time:unixtime—Timer from 1 Jan 1970 in integer format
– date:time:float—The same epoch point, but the number is as float

 array—A sequence of values of the same type (e.g., all strings, all integers)

The handling of the array requires the values to have a delimiter to separate each
value. The delimiter by default is a comma, but it can be changed by adding a colon
and the delimiter character. For example, a comma-delimited array could be defined
as myList:array. But if I wanted to replace the delimiter with a hash, then the
expression would be myList:array:#.

 The last manipulation of the JSON involves whether we would like the date time-
stamp to be included in the JSON; after all, it was in the body of the log event. This
can easily be done by adding keep_time_key true to the parser attributes.

 We can add the changes described (although the provided configuration has these
values ready but commented out, so you could just uncomment them and rerun the
simulator and Fluentd as before). As a result of these changes, the log entries will
appear like this:

2020-05-01 00:14:25.000000000 +0100 simpleFile: {"time":"2020-05-01--
00:14:25","level":"","class":"INFO","line":75,"iteration":1,"msg":"I
started a band called 999 megabytes we still havent gotten a gig"}

If you look at the JSON body now, our numeric elements are no longer in quotes, and
the timestamp appears in the JSON payload.

Evaluating/checking Regex expressions
Regex expressions can be challenging; the last thing we want to have to do is run
logs throughout the Fluentd environment to determine whether the expression is com-
plete or not. To this end, Fluentd UI configuration for tail supports Regex validation.

91Imposing structure on log events
3.4.4 Putting parser configuration into action

This exercise is designed to allow you to work with the parser. The simulator confi-
guration Chapter3/SimulatorConfig/jul-log-file2-exercise.properties

has some differences to the previous worked example. Copy the Fluentd configura-
tion file used to illustrate the parser (Chapter3/Fluentd/rotating-file-read-
regex.conf). Then, modify the parser expression so that all the input values are
properly represented as JSON elements of the log event, rather than just the payload
as defaulted by Fluentd. A variation of the log simulator configuration can be run
using the command

groovy LogSimulator.groovy Chapter3/SimulatorConfig/jul-log-file2-
exercise.properties ./TestData/medium-source.txt

Run the revised Fluentd configuration and determine whether your changes have
been effective.

ANSWER
The parser configuration should appear like the code shown in the following listing.

In addition, there is a free web tool called Fluentular (https://fluentular.herokuapp
.com/) that will allow you to develop and test expressions.

Some IDEs, such as Microsoft’s Visual Studio Code, have Regex tools to help visu-
alize the Regex being built—for example, Regexp Explain (http://mng.bz/q2YA). The
completed Regex can be seen in the following figure.

If you look carefully, you will note that the ?<element name> is missing; however,
it is easy to see where these pieces need to be added, as the core parts have been
grouped. If the grouping is used, it becomes easy to port the expression into Fluentd
and add the elements.

Visualization of a regular expression (Regex) using Regexp Explain in visual code to help you
understand how a parser should process a log event. This can also be done with https://
regexper.com/.

https://fluentular.herokuapp.com/
https://fluentular.herokuapp.com/
https://fluentular.herokuapp.com/
http://mng.bz/q2YA

92 CHAPTER 3 Using Fluentd to capture log events

 <parse>
 @type regexp
 Expression /(?<time>\S+)\s(?<level>
[A-Z]*)\s*(?<class>\S+)[^\d]*(?<iteration>[\d]*)\-(?<line>[\d]*)\][\s]+
\{"event":"(?<msg>.*(?="\,))/
 time_format %Y-%m-%d--%T
 time_key time
 </parse>

A complete configuration file is provided at Chapter3/ExerciseResults/

rotating-file-read-regex-Answer.conf.

Summary
 Fluentd’s configuration can be validated using the dry_run option without

needing to start a proper deployment.
 Log events held in log files can be wide-ranging in format, from unstructured to

fully structured. Fluentd’s ability to consume log events from files allows it to
accommodate this level of diversity.

 Fluentd can handle log file complexity—the processes applied to log files can
be complex, such as handling log rotation and tracking where to resume if Flu-
entd is stopped and started.

 A wide range of logging event sources can be handled as a result of Fluentd’s
plugin model and broad community and vendor support.

 Input plugins can use a range of out-of-the-box parsers (e.g., CSV, Regex, LTSV,
web server standard files) to apply structure and meaning to the log event.

 Developing configurations for regular expressions (regex) can be challenging,
but tools exist to ease this challenge (e.g., Fluentular, designed specifically for
Fluentd; Regexp Explain; and others).

 In addition to monitoring other systems using plugins, Fluentd can be config-
ured to provide the means to be monitored via methods such as enabling and
using an HTTP endpoint to check Fluentd.

Listing 3.7 Chapter3/ExerciseResults/rotating-file-read-regex-Answer.conf

Using Fluentd
to output log events
Chapter 3 demonstrated how log events can be captured and how helper plugins
such as parsers come into play. But capturing data is only of value if we can do
something meaningful with it, such as delivery to an endpoint formatted so the log
events can be used—for example, storing the events in a log analytics engine or
sending a message to an operations (Ops) team to investigate. This chapter is
about showing how Fluentd enables us to do that. We look at how Fluentd output
plugins can be used from files, as well as how Fluentd works with MongoDB and
collaboration/social tools for rapid notifications with Slack.

This chapter covers
 Using output plugins for files, MongoDB, and

Slack

 Applying different buffering options with Fluentd

 Reviewing the benefits of buffering

 Handling buffer overloads and other risks of
buffering

 Adding formatters to structure log events
93

94 CHAPTER 4 Using Fluentd to output log events
 This chapter will continue to use the LogSimulator, and we will also use a couple of
other tools, such as MongoDB and Slack. As before, complete configurations are avail-
able in the download pack from Manning or via the GitHub repository, allowing us to
focus on the configuration of the relevant plugin(s). Installation steps for MongoDB
and Slack are covered in appendix A.

4.1 File output plugin
Compared to the tail (file input) plugin, we are less likely to use the file output plugin,
as typically we will want to output to a tool that allows us to query, analyze, and visual-
ize the events. There will, of course, be genuine cases where file output is needed for
production. However, it is one of the best options as a stepping-stone to something
more advanced, as it is easy to see outcomes and the impact of various plugins, such as
parsers and filters. Logging important events to file also lends itself to easily archiving
the log events for future reference if necessary (e.g., audit log events to support legal
requirements). To that end, we will look at the file output before moving on to more
sophisticated outputs.

 With the file output (and, by extension, any output that involves directly or indi-
rectly writing physical storage), we need to consider several factors:

 Where can we write to in the file system, as dictated by storage capacity and per-
missions?

 Does that location have enough capacity (both allocated and physical capacity)?
 How much I/O throughput can the physical hardware deliver?
 Is there latency on data access (NAS and SAN devices are accessed through net-

works)?

While infrastructure performance isn’t likely to impact development work, it is
extremely important in preproduction (e.g., performance testing environments) and
production environments. It is worth noting that device performance is essential for
the file plugin. Other output plugins are likely to be using services that will include
logic to optimize I/O (e.g., database caching, optimization of allocated file space).
With output plugins, we have likely consolidated multiple sources of log events.
Therefore, we could end up with a configuration that has Fluentd writing all the
inputs to one file or location. The physical performance considerations can be miti-
gated using buffers (as we will soon see) and caching.

4.1.1 Basic file output

Let’s start with a relatively basic configuration for Fluentd. In all the previous chap-
ters’ examples, we have just seen the content written to the console. Now, rather than
a console, we should simply push everything to a file. To do this, we need a new match
directive in the configuration, but we’ll carry on using the file source for log events.

 To illustrate that an output plugin can handle multiple inputs within the configu-
ration, we have included the self-monitoring source configuration illustrated in the
previous chapter, in addition to a log file source. To control the frequency of log

95File output plugin
events generated by the Fluentd’s self_monitor, we can define another attribute
called emit_interval, which takes a duration value—for example, 10s (10 seconds).
The value provided by emit_interval is the time between log events being gener-
ated by Fluentd. Self-monitoring can include details like how many events have been
processed, how many worker processes are managed, and so on.

 At a minimum, the file output plugin simply requires the type attribute to be
defined and a path pointing to a location for the output using the path attribute. In
the following listing, we can see the relevant parts of our Chapter4/Fluentd/
rotating-file-read-file-out.conf file. The outcome of this configuration
may surprise you, but let’s see what happens.

<source>
 @type monitor_agent
 bind 0.0.0.0
 port 24220
 @id in_monitor_agent
 include_config true
 tag self
 emit_interval 10s
</source>

<match *>
 @type file
 path ./Chapter4/fluentd-file-output
</match>

The outcome of using this new match directive can be seen if the LogSimulator and
Fluentd are run with the following commands:

 fluentd -c ./Chapter4/Fluentd/rotating-file-read-file-out.conf

 groovy LogSimulator.groovy ./Chapter4/SimulatorConfig/jul-log
-output2.properties ./TestData/medium-source.txt

The easy presumption would be that all the content gets written to a file called flu-
entd-file-output. However, what has happened is that a folder is created using the
last part of the path as its name (i.e., fluentd-file-output), and you will see two
files in that folder. The file will appear with a semi-random name (to differentiate the
different buffer files) and a metadata file with the same base name. What Fluentd has
done is to implicitly make use of a buffering mechanism. The adoption of a buffer
with a default option is not unusual in output plugins; some do forgo the use of buff-
ering—for example, the stdout plugin.

4.1.2 Basics of buffering

Buffering, as you may recall from chapter 1, is a Fluentd helper plugin. Output plugins
need to be aware of the impact they can have on I/O performance. As a result, most
output plugins use a buffer plugin that can behave synchronously or asynchronously.

Listing 4.1 Chapter4/Fluentd/rotating-file-read-file-out.conf—match extract

Changes the plugin
type to file The location of the

file to be written

96 CHAPTER 4 Using Fluentd to output log events
 The synchronous approach means that as log events are collected into chunks, as
soon as a chunk is full, it is written to storage. The asynchronous approach utilizes an
additional queue stage. The queue stage interacting with the output channel is exe-
cuted in a separate thread, so the filling of chunks shouldn’t be impacted by any I/O
performance factors.

 The previous example had not explicitly defined a buffer; we saw the output
plugin applying a default to using a file buffer. This makes more sense when you real-
ize that the file output plugin supports the ability to compress the output file using
gzip, increasing effectiveness the more content you compress at once.

 In figure 4.1, we have numbered the steps. As the arrows’ varying paths indicate,
steps in the life cycle can be bypassed. All log events start in step 1, but if no buffering
is in use, the process immediately moves to step 5, where the physical I/O operation
occurs, and then we progress to step 6. If there is an error, step 6 can send the logic
back to the preceding step to try again. This is very much dependent upon the plugin
implementation but is common to plugins such as database plugins. If the retries fail
or the plugin doesn’t support the concept, some plugins support the idea of a second-
ary plugin to be specified.

Figure 4.1 Log event passing through the output life cycle (e.g., the italic steps are only used when things
go wrong)

Log events are filtered and
accepted by the match rules.

Depending on output plugin,
I/O errors can trigger backoff

and retry or use of a
secondary output.

Secondary output used

Log events put into a chunk
(which can be tailored to

event keys)

Chunk is written to the
relevant I/O device.

Chunk state is determined
(number of log events,

capacity in chunk used) to see
if it needs writing.

Asynchronous buffered
operation results in Transport
logic taking staged chunks,

adding to a queue.

Asynchronous
buffer

Syn
ch

ronous

buffe
r

Unbuffered

1 2 3

4 5 6

7

97File output plugin
A secondary plugin is another output plugin that can be called (step 7). Typically, a
secondary plugin would be as simple as possible to minimize the chance of a problem
so that the log events could be recovered later. For example, suppose the output
plugin called a remote service from the Fluentd node (e.g., on a different network, in
a separate server cluster, or even a data center). In that case, the secondary plugin
could be a simple file output to a local storage device.

NOTE We would always recommend that a secondary output be implemented
with the fewest dependencies on software and infrastructure. Needing to fall
to a secondary plugin strongly suggests broader potential problems. So the
more straightforward, less dependent it is on other factors, the more likely
that the output won’t be disrupted. Files support this approach very well.

If buffering has been configured, then steps 1 through 3 would be performed. But then
the following action would depend upon whether the buffering was asynchronous. If it
was synchronous, then the process would jump to step 5, and we would follow the same
steps described. For asynchronous buffering, the chunk of logs goes into a separate pro-
cess managing a queue of chunks to be written. Step 4 represents the buffer operating
asynchronously. As the chunks fill, they are put into a queue structure, waiting for the
output mechanism to take each chunk to output the content. This means that the fol-
lowing log event to be processed is not held up by the I/O activity of steps 5 onward.

Out of the box, Fluentd provides the following buffer types:

 Memory
 File

As you may have realized, the path is used as the folder location to hold its buffered con-
tent and contains both the content and a metadata file. Using file I/O for the buffer
doesn’t give much of a performance boost in terms of the storage device unless you
establish a RAM disk (aka, RAM drive). A file-based buffer still provides some benefits;
the way the file is used is optimized (keeping files open, etc.). It also acts as a staging
area to accumulate content before applying compression (as noted earlier, the more
data involved in a zip compression, the greater the compression possible). In addition,
the logged content won’t be lost as a result of some form of process or hardware failure,
and the buffer can be picked back up when the server and/or Fluentd restart.

Understanding gzip compression
Gzip is the GNU implementation of a ZLIB compression format, defined by IETF RFC’s
1950, 1951, and 6713. Zip files use an algorithm known as Lempel-Ziv coding
(LZ77) to compress the contents. In simple terms, the algorithm works by looking for
reoccurring patterns of characters; when a reoccurrence is found, that string is
replaced with a reference to the previous occurrence. So the larger the string occur-
rences identified as reoccurring, the more effective reference becomes, giving more
compression—the bigger the file, the more likely to find reoccurrences.

98 CHAPTER 4 Using Fluentd to output log events
NOTE RAM drives work by allocating a chunk of memory for storage and
then telling the OS’s file system that it is an additional storage device. Appli-
cations that use this storage believe they are writing to a physical device like a
disk, but the content is actually written to memory. More information can be
found at www.techopedia.com/definition/2801/ram-disk.

With buffers in many plugins being involved by default, or explicitly, we should look at
how to start configuring buffer behaviors. We know when the events move from the
buffer to the output destination, how frequently such actions occur, and how these
configurations impact performance. The life cycle illustrated in figure 4.1 provides
clues as to the configuration possibilities.

4.1.3 Chunks and Controlling Buffering

As figure 4.1 shows, the buffer’s core construct is the idea of a chunk. The way we con-
figure chunks, aside from synchronous and asynchronous, will influence the perfor-
mance. Chunks can be controlled through the allocation of storage space (allowing
for a reserved piece of contiguous memory or disk to be used) or through a period.
For example, all events during a period go into a single chunk, or a chunk will con-
tinue to fill with events until a specific number of log events or the chunk reaches a
certain size. Separation of the I/O from the chunk filling is beneficial if there is a
need to provide connection retries for the I/O, as might be the case with shared ser-
vices or network remote services, such as databases.

 In both approaches, it is possible through the configuration to set attributes so
that log events don’t end up lingering in the buffer because a threshold is never fully
met. Which approach to adopt will be influenced by the behavior of your log event
source and the tradeoff of performance against resources available (e.g., memory), as
well as the amount of acceptable latency in the log events moving downstream.

 Personally, I tend to use size constraints, which provides a predictable system
behavior; this may reflect my Java background and preference not to start unduly
tuning the virtual machine.

 Table 4.1 shows the majority of the possible controls on a buffer. Where the con-
trol can have some subtlety in how it can behave, we’ve included more elaboration.

Table 4.1 Buffer configuration controls

Attribute Description

timekey This is the number of seconds each chunk will be responsible for holding (by
default, 1 day). The time attribute of a log_event then determines which
chunk to add the event to. For example, if our timekey was set to 300 (sec-
onds) and the chunk started on the hour, then when an event timestamped
10:00:01 arrived and further events arrived every 30 seconds, an additional
9 more events would be held in the first chunk. The next chunk would hold
events that started arriving after 10:05:00, so the next event would be
10:05:01.

http://www.techopedia.com/definition/2801/ram-disk

99File output plugin
Table 4.2 Buffer configuration controls (continued)

Attribute Description

timekey If we had additional out-of-order events arriving before 10:05 (e.g., with time-
stamps 10:03:15 and 10:03:55), but they didn’t arrive until 10:04:31, then
they would still be added to the first chunk.

This behavior can be further modified by the timekey_wait attribute.

timekey_wait This is the number of seconds after the end of a chunk’s storage period
before the chunk is written. This defaults to 60 seconds.

Extending our timekey example, if this value was set to 60s (60 seconds),
then that chunk would be held in memory until 10:06 before being flushed. If
another event was received at 10:05:21 with a timestamp of 10:04:49, this
would go in our first chunk, not the chunk covering the received time.

chunk_limit_size This defines the maximum size of a chunk, which defaults to 8 MB for mem-
ory and 256 MB for a file buffer. The chances of increasing this threshold are
small, but you may consider reducing it to limit the maximum footprint of a
container or constraints of an IoT device. Remember that you can operate
multiple chunks.

chunk_limit_
records

This defines the maximum number of log events in a single chunk. If the size
of log events can fluctuate wildly in size, this will need to be considered. A
number of large logs could create a very large chunk, creating risks around
memory exhaustion and varying durations for writing chunks.

total_limit_size This is the limit of storage allowed for all chunks before the new events
received will be dropped with error events lost accordingly.

This defaults to 512 MB for memory and 64 GB for file.

chunk_full_
threshold

Once the percentage of the buffer’s capacity exceeds this value, the chunk is
treated as full and moved to the I/O stage. This defaults to 0.95. If log
events are very large relative to the allocated memory, you may consider low-
ering this threshold to ensure more predictable performance, particularly if
you limit the queue size.

queued_chunks_
limit_size

This defines the number of chunks in the queue waiting to be persisted as
required. Ideally, this should never be larger than the flush_thread_count.

The default value is 1.

compress This accepts only the values of either text (default) or gzip. When gzip is
set, then compression will be applied. If other compression mechanisms are
introduced, the options available will expand.

flush_at_shutdown This tells the buffer whether it should write everything to the output before
allowing Fluentd to shut down gracefully. For the memory buffer, this defaults
to true but is false for a file, as the contents can be recovered on startup.
We recommend setting it to true in most cases, given that you may not know
when Fluentd will restart and process the cached events (if it can).

flush_interval This is a duration defining how frequently the buffered content should be
written to the output storage mechanism. This means we can configure
behavior centered on either volumes or time intervals. This defaults to 60
seconds (60s).

100 CHAPTER 4 Using Fluentd to output log events
We can amend the configuration with the understanding of buffer behavior (or use the
prepared one). As we recommend flushing on shutdown, we should set this to true
(flush_at_shutdown true). As we want to quickly see the impact of the changes, let’s
set the maximum number of records to 10 (chunk_limit_records 10) and the max-
imum time before flushing a chunk to 30 seconds (flush_interval 30). Otherwise,
if we have between 1 and 9 log events in the buffer, they’ll never get flushed if the
sources stop creating log events. Finally, we have added an extra layer of protection in
our configuration by imposing a time-out of the buffer write process. We can see this in
the following listing.

flush_mode Accepted values are

 default—Uses lazy if chunk keys are defined, otherwise interval
 lazy—Flush/write chunks once per timekey.
 interval—Flush/write chunks per specified time via flush_interval.
 immediate—Flush/write chunks immediately after events are appended

into chunks.

flush_thread_count The number of threads to be used to write chunks. A number above 1 will
create parallel threads—this may not be desirable depending on the output
type. For example, if a connection pool to a database can handle multiple
connections, more than 1 is worth considering. But more than 1 on a file
could create contention or write collisions. This defaults to 1.

flush_thread_
interval

The length of time the flush thread should sleep before looking to see if a
flush is required. Expressed as a number of seconds in floating-point format
and defaults to 1.

delayed_commit_
timeout

When using the asynchronous I/O, we need to set a maximum time to allow
the thread to run before we assume it must be experiencing an error. If this
time is exceeded (default 60s), then the thread is stopped. This needs to be
tuned to take into account how responsive the target system is. For example,
writing large chunks to a remote database will take longer than writing small
chunks to a local file system.

overflow_action If the input into the buffer is faster than we can write content out of the buf-
fer, we will experience an overflow condition. This configuration allows us to
define how to address that problem. Options are

 throw_exception—Throw an exception that will appear in the Fluentd
log as a BufferOverflowError; this is the default.

 block—Block input processing to allow events to be written.
 interval—Flush/write chunks per specified time via
flush_interval.

 drop_oldest_chunk—Drop the oldest chunk of data to free a chunk up
for use.

 Throwing exceptions may be okay when an overflow scenario is never
expected, and the potential loss of log events is a risk worth taking. But in
more critical areas, we would suggest consciously choosing an alternative,
such as interval.

Table 4.2 Buffer configuration controls (continued)

Attribute Description

101File output plugin

<match *>
 @type file
 path ./Chapter4/fluentd-file-output
 <buffer>
 flush_at_shutdown true

 delayed_commit_timeout 10
 chunk_limit_records 10

 flush_interval 30

 </buffer>
</match>

To run this scenario, let’s reset (delete the structured-rolling-log.* and
rotating-file-read.pos_file files and the fluentd-file-output folder) and
run again, using each of these commands in a separate shell:

 fluentd -c Chapter4/Fluentd/rotating-file-read-file-out2.conf

 groovy LogSimulator.groovy Chapter4/SimulatorConfig/jul-log-
file2.properties ./TestData/medium-source.txt

Do not shut down Fluentd once the log simulator has completed. We will see that the
folder fluentd-file-output is still created with both buffer files as before. But at
the same time, we will see files with the naming of fluentd-file-output.<date>
_<incrementing number>.log (e.g., fluentd-file-output.20200505_12.log).
Open any one of these files, and you will see 10 lines of log data. You will notice that
the log data is formatted as a date timestamp, tag name, and then the payload body,
reflecting the standard composition of a log event. If you scan through the files, you
will find incidents where the tag is not simpleFile but self. This reflects that we
have kept the source reporting on the self-monitoring and matches with our simple-
File, which is tracking the rotating log files.

 Finally, close down Fluentd gracefully. In Windows, the easiest way to do this is in
the shell: press CTRL-c once (and only once), and respond yes to the shutdown
prompt (in Linux, the interrupt events can be used). Once we can see that Fluentd
has shut down in the console, look for the last log file and examine it. There is an ele-
ment of timing involved, but if you inspect the last file, chances are it will have less
than 10 records in it, as the buffer will have flushed to the output file whatever log
events it had at shutdown.

Listing 4.2 Chapter4/Fluentd/rotating-file-read-file-out2.conf—match extract

By default, the file buffer doesn’t flush on
shutdown, as events won’t be lost by stopping
the Fluentd instance. However, it is desirable to
see all events completed at shutdown. There is
the risk that a configuration change will mean
the file buffer isn’t picked up on restart,
resulting in log events effectively being in limbo.

As we understand our log content and want to see
things happen very quickly, we will use several logs
rather than the capacity to control the chunk size,
which indirectly influences how soon events are
moved from the buffer to the output destination.

As the buildup of self-monitoring events
will be a lot slower than our file source,
forcing a flush on time as well will ensure
we can see these events come through to
the output at a reasonable frequency.

102 CHAPTER 4 Using Fluentd to output log events
4.1.4 Retry and backoff

The use of buffers also allows Fluentd to provide a retry mechanism. In the event of
issues like transient network drops, we can tell the buffer when it recognizes an issue
to perform a retry rather than just losing the log events. For retries to work without
creating new problems, we need to define controls that tell the buffer how long or
how many times to retry before abandoning data. In addition to this, we can define
how long to wait before retrying. We can stipulate retrying forever (attribute retry_
forever is set to true), but we recommend using such an option with great care.

 There are two ways for retry to work using the retry_type attribute—through
either a fixed interval (periodic) or through an exponential backoff (exponential_
backoff). The exponential backoff is the default model, and each retry attempt that
fails results in the retry delay doubling. For example, if the retry interval was 1 second,
the second retry would be 2 seconds, the third retry 4 seconds, and so on. We can con-
trol the initial or repeated wait period between retries by defining retry_wait with a
numeric value representing seconds (e.g., 1 for 1 second and 60 for 1 minute).

 Unless we want to retry forever, we need to provide a means to determine whether
or not to keep retrying. For the periodic retry model, we can control this by number or
time. This is done by either setting a maximum period to retry writing each chunk
(retry_timeout) or a maximum number of retry attempts (retry_max_attempts).

 For the backoff approach, we can stipulate a number of backoffs (retry_
exponential_backoff_base) or the maximum duration that a backoff can go
before stopping (retry_max_interval).

 Suppose we wanted to configure the buffer retry to be an exponential backoff
starting at 3 seconds. With a maximum of 10 attempts, we could end up with a peak
retry interval of nearly 26 minutes. The configuration attributes we would need to
configure are

retry_exponential_backoff_base 3
retry_max_times 10

The important thing with the exponential backoff is to ensure you’re aware of the pos-
sible total time. Once that exponential curve gets going, the time extends very quickly.
In this example, the first 5 retries would happen inside a minute, but intervals really
start to stretch out after that.

Buffer sizing error
If you set a buffer to be smaller than a single log event, then handling that log event
will fail, with an error like

emit transaction failed: error_class=Fluent::Plugin::Buffer
::BufferChunkOverflowError error="a 250bytes record is larger than
buffer chunk limit size" location="C:/Ruby26-x64/lib/ruby/gems/2.6.0/
gems/fluentd-1.9.3-x64-mingw32/lib/fluent/plugin/buffer.rb:711:in ̀ block
in write_step_by_step'"

103Output formatting options
4.1.5 Putting configuring buffering size settings into action

You’ve been asked to help the team better understand buffering. There is an agree-
ment that an existing configuration should be altered to help this. Copy the configu-
ration file /Chapter4/Fluentd/rotating-file-read-file-out2.conf and
modify it so that the configuration of the buffer chunks is based on the size of 500
bytes (see appendix B for how to express storage sizes).

 Run the modified configuration to show the impact on the output files.
 As part of the discussion, one of the questions that came up is if the output plugin

is subject to intermittent network problems, what options do we have to prevent the
loss of any log information?

ANSWER

The following listing shows the buffer configuration that would be included in the
result.

<match *>
 @type file
 @id bufferedFileOut
 path ./Chapter4/fluentd-file-output
 <buffer>

 delayed_commit_timeout 10
 flush_at_shutdown true
 chunk_limit_size 500
 flush_interval 30
 </buffer>
</match>

A complete configuration file is provided at Chapter4/ExerciseResults/rotating
-file-read-file-out2-Answer.conf. The rate of change to the log files is likely to
appear different, but the same content will be there. To address the question of miti-
gating the risk of log loss, several options could be applied:

 Configure the retry and backoff parameters on the buffer to retry storing the
events rather than losing the information.

 Use the capability of defining a secondary log mechanism, such as a local file, so
the events are not lost. Provide a means for the logs to be injected into the
Kafka stream at a later date. This could even be an additional source.

4.2 Output formatting options
How we structure the output of the log events is as important as how we apply struc-
ture to the input. Not surprisingly, a formatter plugin can be included in the output
plugin. With a formatter plugin, it’s reasonable to expect several prebuilt formatters.
Let’s look at the out-of-the-box formatters typically encountered; the complete set of
formatters are detailed in appendix C.

Listing 4.3 Chapter4/ExerciseResults/rotating-file-read-file-out2-Answer.conf

Note that we’ve retained the delay
and flush time, so if the buffer stops
filling, it will get forced out anyway.

Size-based constraint
rather than time-based

104 CHAPTER 4 Using Fluentd to output log events
4.2.1 out_file

This is probably the simplest formatter available and has already been implicitly used.
The formatter works using a delimiter between the values time, tag, and record. By
default, the delimiter is a tab character. This can only be changed to a comma or space
character using the values comma or space for the attribute delimiter; for example,
delimiter comma. Which fields are output can also be controlled with Boolean-
based attributes:

 output_tag—This takes a true or false value to determine whether the tag(s)
are included in the line (by default, the second value in the line).

 output_time—This takes true or false to define whether the time is included
(by default, the first value in the line). You may wish to omit the time if you have
it incorporated into the core event record.

 time_format—This can be used to define the way the date and time are used
in the path. If undefined and the timekey is set, then the timekey will inform
the structure of the format. Specifically:

– 0...60 seconds then '%Y%m%d%H%M%S'
– 60...3600 seconds then '%Y%m%d%H%M'
– 3600...86400 seconds then '%Y%m%d%H'

NOTE If the formatter does not recognize the attribute value set, it will
ignore the value provided and use the default value.

4.2.2 json

This formatter treats the log event record as a JSON payload on a single line. The
timestamp and tags associated with the event are discarded.

4.2.3 ltsv

As with the out_file formatter and the parser, the limiters can be changed using delim-
iter (each labeled value) and label_delimiter for separating the value and label. For
example, if delimiter was set to delimiter ; and label_delimiter = was set, then
if the record was expressed as {"my1stValue":" blah", "secondValue": "more
blah", "thirdValue": "you guessed – blah"}, the output would become my1st
Value=blah; secondValue= more blah; thirdValue=you guessed – blah.

 As the values are label values, the need for separating records by lines is reduced,
and therefore it is possible to switch off the use of new lines to separate each record
with add_newline false (by default, the value is set to true).

4.2.4 csv

Just like ltsv and out_file the delimiter can be defined by setting the attribute
delimiter. The attribute has a default, which is a comma. Additionally, the csv out-
put allows us to define which values can be included in the output using the fields
attribute. If I use the record again to illustrate if my event is {"my1stValue":"
blah", "secondValue":" more blah", "thirdValue":"you guessed – blah},

105Output formatting options
and I set the fields attribute to be the secondValue, thirdValue fields, then the
output would be "more blah", "you guessed – blah". If desired, the quoting of
each value can be disabled with a Boolean value for force_quotes.

4.2.5 msgpack

As with the msgpack parser, the formatter works with the MessagePack framework,
which takes the core log event record and uses the MessagePack library to compress
the content. Typically, we would only expect to see this used with HTTP forward out-
put plugins where the recipient expects MessagePack content. To get similar compres-
sion performance gains, we can use gzip for file and block storage.

NOTE You may have noticed that most formatters (out_file being an
exception) omit adding the time and keys from the log event. As a result, if
you want those to be carried through, it will be necessary to ensure that they
are incorporated into the log event record or that the output plugin utilizes
the values explicitly. Adding additional data into the log event payload can be
done using the inject plugin, which can be used within a match or filter direc-
tive. We will pick up the inject feature when we address filtering in chapter 6.

4.2.6 Applying formatters

We can extend our existing configuration to move from the current implicit configu-
ration to being explicit. Let’s start with the simplest output using the default out_
file formatter, using a comma as a delimiter (delimiter comma) and excluding the
log event tag (output_tag false). We will continue to use the same sources as
before to demonstrate the effect of formatters. This out_file formatter configura-
tion is illustrated in the following listing.

<match *>
 @type file
 @id bufferedFileOut
 path ./Chapter4/fluentd-file-output
 <buffer>
 delayed_commit_timeout 10
 flush_at_shutdown true
 chunk_limit_records 50

 flush_interval 30
 flush_mode interval
 </buffer>
 <format>
 @type out_file

 delimiter comma
 output_tag false
 </format>
</match>

Listing 4.4 Chapter4/Fluentd/rotating-file-read-file-out3.conf—formatter configuration

To reduce the number of files being
generated, we have made the number
of records a lot larger per file.

We explicitly define the output formatter
to be out_file, as we want to override the
default formatter behavior.

Replace the tab delimiter
with a comma.Exclude the tag

information from
the output.

106 CHAPTER 4 Using Fluentd to output log events
Assuming the existing log files and outputs have been removed, we can start the exam-
ple using the following commands:

 fluentd -c Chapter4/Fluentd/rotating-file-read-file-out3.conf

 groovy LogSimulator.groovy Chapter4/SimulatorConfig/jul-log-
file2.properties ./TestData/medium-source.txt

Open up one of the fluent-file-output.* files, and the changes will be immedi-
ately obvious with the loss of tab-based separation, as it has been replaced by a comma.
The tag information will also be missing.

4.2.7 Putting JSON formatter configuration into action

Your organization has decided that as standard practice, all output should be done
using JSON structures. This approach ensures that any existing or applied structural
meaning to the log events is not lost. To support this goal, the configuration file /Chap-
ter4/Fluentd/rotating-file-read-file-out3.conf will need modifying.

ANSWER

The format declaration in the configuration file should be reduced to look like the
fragment in the following listing.

<format>
@type json
</format>

A complete example configuration to this answer can be found in /Chapter4/
ExerciseResults/rotating-file-read-file-out3-Answer.conf.

4.3 Sending log events to MongoDB
While outputting to some form of file-based storage is a simple and easy way of storing
log events, it doesn’t lend itself well to performing any analytics or data processing. To
make log analysis a practical possibility, Fluentd needs to converse with systems capa-
ble of performing analysis, such as SQL or NoSQL database engines, search tools such
as Elasticsearch, and even SaaS services such as Splunk and Datadog.

 Chapter 1 highlighted that Fluentd has no allegiance to any particular log analytics
engine or vendor, differentiating Fluentd from many other tools. As a result, many ven-
dors have found Fluentd to be an attractive solution to feed log events to their product
or service. To make adoption very easy, vendors have developed their adaptors.

 We have opted to use MongoDB to help illustrate the approach for getting events
into a tool capable of analytical processing logs. While MongoDB is not dedicated to
textual search like Elasticsearch, its capabilities are well suited to log events with a
good JSON structure. MongoDB is very flexible and undemanding in getting started,
so don’t worry if you’ve not used MongoDB. The guidance for installing MongoDB
can be found in appendix A.

Listing 4.5 Chapter4/ExerciseResults/rotating-file-file-out3-Answer.conf

107Sending log events to MongoDB
4.3.1 Deploying MongoDB Fluentd plugin

The MongoDB input plugin is provided in the Treasure Data Agent build of Fluentd
but not in the vanilla deployment. If we want Fluentd to work with MongoDB, we need
to install the RubyGem if it isn’t already in place.

 To determine whether the installation is needed and perform installations of
gems, we can use a wrapper utility that leverages the RubyGems tool called fluent-gem.
To see if the gem is already installed, run the command fluent-gem list from the
command line. The command will show the locally installed gems, which contain Flu-
entd and its plugins. At this stage, there should be no indication of a fluent-plugin-
mongo gem. We can, therefore, perform the installation using the command fluent
-gem install fluent-plugin-mongo. This will retrieve and install the latest stable
instance of the gem, including the documentation and dependencies, such as the
MongoDB driver.

Summary of MongoDB
We do not want to get too sidetracked by the mechanics of MongoDB, but it’s worth
summarizing some basic ideas. Most readers will be familiar with relational data-
bases and their concepts. The role of the database structure in both MongoDB and
a relational DB is analogous. Within a database schema is a set of tables. In
MongoDB, the nearest to this is a collection. Unlike a relational database, a collec-
tion can contain pretty much anything, which is why it is sometimes described as
using a document model. You could say that each entry in a collection is roughly com-
parable to a record in a table containing a DB-assigned ID and a BLOB (binary large
object) or text data type. Commonly the row or document of MongoDB is a structured
text object, usually JSON. MongoDB can then search and index parts of these struc-
tures, making for a flexible solution. For Fluentd, it means we can store log events
that may have different record structures.

More recent versions of the MongoDB engine provide the means to validate the con-
tent structure going into a collection. This provides some predictability in the content.
If this is used, then we can exploit Fluentd to structure the necessary payload.

In addition to controlling how strictly the contents must adhere to a structure for each
document, Mongo also incorporates the idea of capped size. This feature allows us
to set limits on the amount of storage used by the collection, and the collection oper-
ates as a FIFO (first in, first out) list.

When you want to empty a table in a relational database, it is often easier to simply
drop and re-create the table. The MongoDB equivalent is to delete the collection; how-
ever, if this is the only collection within the database, the database will be removed
by MongoDB. There are two options: only delete the collection’s contents and keep
the collection, or create a second empty collection so the database is not empty.

You can discover a lot more with the book MongoDB in Action by Kyle Banker, et al.
(www.manning.com/books/mongodb-in-action-second-edition).

www.manning.com/books/mongodb-in-action-second-edition

108 CHAPTER 4 Using Fluentd to output log events
4.3.2 Configuring the Mongo output plugin for Fluentd

Within a match, we need to reference the mongo plugin and set the relevant attri-
butes. Like connecting to any database, we will need to provide an address (which
could be achieved via a host [name] and port [number on the network]) and user and
password, or via a connection string (e.g., mongodb://127.0.0.1:27017/Fluentd).
In our example configuration, we have adopted the former approach and avoided the
issue of credentials. The database (schema) and collection (table comparable to a
relational table) are needed to know where to put the log events.

 Within a MongoDB output, there is no use of a formatter, as the MongoDB plugin
assumes all content is already structured. As we have seen, without configuration, a
default buffer will be adopted. As before, we’ll keep the buffer settings to support only
low volumes so we can see things changing quickly. We can see the outcome in the
following listing.

<match *>
 @type mongo
 @id mongo-output
 host localhost

 port 27017

 database Fluentd

 collection Fluentd

 <buffer>

 delayed_commit_timeout 10
 flush_at_shutdown true
 chunk_limit_records 50
 flush_interval 30
 flush_mode interval
 </buffer>
</match>

Listing 4.6 Chapter4/Fluentd/rotating-file-read-mongo-out.conf—match configuration

Mongo vs Mongo replica set plugins
If you’ve looked at the Fluentd online documentation, you may have observed two out-
put plugins, out_mongo and out_mongo_replset. The key difference is that the replset
(replica set) can support MongoDB’s approach to enable scaling, where additional
instances of Mongo can be defined as replicas of a master. When this happens, the
ideal model is to directly write activity to the master, but read from the replicas. In
terms of configuration differences, a comma-separated list of nodes is needed rather
than naming a single host. Each node represents a node in the replica group (e.g.,

Mongo is the
plugin name. Identifies the MongoDB host server. In our dev setup,

that’s simply the local machine; this could alternatively
be defined by using a connection attribute.

The port on the target server to communicate
with. We can also express the URI by combining
hostp, port, and database into a single string.

As a MongoDB installation can support multiple
databases, we need to name the database.

The collection within the database we want to add log
events to—a rough analogy to an SQL-based table

Buffer configuration to ensure the log events
are quickly incorporated into the MongoDB

109Sending log events to MongoDB
Ensure that the MongoDB instance is running (this can be done with the command
mongod --version in a shell window or by attempting to connect to the server using
the Compass UI). If the MongoDB server isn’t running, then it will need to be started.
The simplest way to do that is to run the command mongod.

 With Mongo running, we can then run our simulated logs and Fluentd configura-
tion with the commands in each shell:

 groovy LogSimulator.groovy Chapter4/SimulatorConfig/jul-log-

file2-exercise.properties ./TestData/medium-source.txt

 fluentd -c Chapter4/fluentd/rotating-file-read-mongo-out.conf

With the log events being created and consumed by Fluentd, using Compass, navigate
into the Fluentd database, and click the Fluentd collection. This will provide a view of
the collection, as illustrated in figure 4.2.

VIEWING LOG EVENTS IN MONGODB
To see how effective MongoDB can be for querying the JSON log events, if you add
the expression {"msg" : {$regex : ".*software.*"}} into the FILTER field and
click FIND, we’ll get some results. These results will show the log events where the msg
contains the word software. The query expression tells MongoDB to look in the docu-
ments, and if they have a top-level element called msg, then evaluate this value using
the regular expression.

 If you examine the content in MongoDB, you will see that the content stored is
only the core log event record, not the associated time or tags.

nodes 192.168.0.10:27017, 192.168.0.20:27017, 192.168.0.30:27017).
The replica set name is also needed (e.g., replica_set myFluentReps). More
information on the Mongo replica set mechanism is documented at https://
docs.mongodb.com/manual/replication/.

Mongo plugin startup warning
When Fluentd is started up with the MongoDB plugin, it will log the following warning:
[mongo-output]. Since v0.8, invalid record detection will be removed because
mongo driver v2.x and API spec don't provide it. You may lose invalid records, so you
should not send such records to the Mongo plugin.

This essentially means that the MongoDB driver being used does not impose any
structural checks on the payload (which the collection may be configured to require).
As a result, if strong checking is being applied by the MongoDB engine, it may drop
an update, but the information will not get passed back through the driver, so Fluentd
will be none the wiser, resulting in data loss. For the more common application of
Fluentd, it is better not to impose strict checks onto the payload. If this isn’t an
option, then a filter directive could identify log events that will fail MongoDB’s checks.

https://docs.mongodb.com/manual/replication/
https://docs.mongodb.com/manual/replication/
https://github.com/sowawa/fluent-plugin-slack
https://github.com/sowawa/fluent-plugin-slack
https://github.com/sowawa/fluent-plugin-slack

110 CHAPTER 4 Using Fluentd to output log events

Figure 4.2 MongoDB is viewed through the Compass UI tool, with logged content.

To empty the collection for further executions of the scenario in a command shell,
run the following command:

mongo Fluentd –-eval "db.Fluentd.remove({})".

The mongo plugin has a couple of other tricks up its sleeve. When the attribute
tag_mapped is included in the configuration, the tag name is used as the collection
name, and MongoDB will create the collection if it does not exist. This makes it
extremely easy to separate the log events into different collections. If the tag names
have been used hierarchically, then the tag prefix can be removed to simplify the tag_
mapped feature. This can be defined by the remove_tag_prefix attribute, which
takes the name of the prefix to remove.

 As collections can be established dynamically, it is possible to define characteristics
within the configuration; for example, whether the collection should be capped in size.

 In this configuration, we have not formally defined any username or password.
This is because in the configuration of MongoDB, we have not imposed the creden-
tials restrictions. And incorporating credentials in the Fluentd configuration file is not
the best practice. Techniques for safely handling credentials within Fluentd configura-
tion, not just for MongoDB but also for other systems needing authentication, are
addressed in chapter 7.

111Actionable log events
4.3.3 Putting MongoDB connection configuration strings into action

Revise the configuration to define the connection by a connection attribute, not the
host, port, and database used. This is best started by copying the configuration file
Chapter4/fluentd/rotating-file-read-mongo-out.conf. Adjust the run com-
mands to use the new configuration. The commands should look something like this:

 groovy LogSimulator.groovy Chapter4/SimulatorConfig/jul-log-

file2-exercise.properties ./TestData/medium-source.txt

 fluentd -c Chapter4/fluentd/my-rotating-file-read-mongo-out.conf

ANSWER

The configuration of the MongoDB connection should look like the configuration
shown in the following listing.

<match *>
 @type mongo
 @id mongo-output
 connection_string mongodb://localhost:27017/Fluentd

 collection Fluentd
 <buffer>
 delayed_commit_timeout 10
 flush_at_shutdown true
 chunk_limit_records 50
 flush_interval 30
 flush_mode interval
 </buffer>
</match>

The example configuration can be seen at Chapter4/ExerciseResults/rotat-
ing-file-read-mongo-out-Answer.conf

 Before we move on from MongoDB, we have focused on the output use of
MongoDB so it can be used to query log events. But MongoDB can also act as an input
into Fluentd, allowing new records added to MongoDB to be retrieved as log events.

4.4 Actionable log events
In chapter 1, we introduced the idea of making log events actionable. So far, we have
seen ways to unify the log events. To make log events actionable, we need a couple of
elements:

 The ability to send events to an external system that can trigger an action, such
as a collaboration/notification platform that Ops people can see and react to
log events or even invoke a script or tool to perform an action

 Separating the log events that need to be made actionable from those that pro-
vide information but require no specific action

Listing 4.7 Chapter4/ExerciseResults/rotating-file-read-mongo-out-Answer.conf

Note the absence of the host, port, and
database properties in favor of this. You

could have used your host’s specific IP
or 127.0.0.1 instead of localhost.

112 CHAPTER 4 Using Fluentd to output log events
The process of separating or filtering out events that need to be made actionable is
addressed later in the book. But here, we can look at how to make events actionable
without waiting until all the logs have arrived in an analytics platform and running its
analytics processes.

4.4.1 Actionable log events through service invocation

One way to make a log event actionable is to invoke a separate application that can
perform the necessary remediation as a result of receiving an API call. This could be
as clever as invoking an Ansible Tower REST API (http://mng.bz/Nxm1) to initiate a
template job that performs some housekeeping (e.g., moving logs to archive storage
or tell Kubernetes about the internal state of a pod). We would need to control how
frequently an action is performed; plugins such as flow_counter and notifier can help.
To invoke generic web services, we can use the HTTP output plugin, which is part of
the core of Fluentd. To give a sense of the art of the possible, here is a summary of the
general capabilities supported by this plugin:

 Supports HTTP post and put operations
 Allows proxy in the routing
 Configures content type, setting the formatter automatically (a formatter can

also be defined explicitly)
 Defines headers so extra header values required can be defined (e.g., API keys)
 Configures the connection to use SSL and TLS certificates, including defining

the location of the certificates to be used, versions, ciphers to be used, etc.
 Creates log errors when nonsuccessful HTTP code responses are received
 Supports basic authentication (no support for OAuth at the time of writing)
 Sets time-outs
 Uses buffer plugins

4.4.2 Actionable through user interaction tools

While automating problem resolution in the manner described takes us toward self-
healing systems, not many organizations are prepared for or necessarily want to be
this advanced. They would rather trust a quick human intervention to determine
cause and effect than rely on an automated diagnosis where a high degree of certainty
can be difficult. People with sufficient knowledge and the appropriate information
can quickly determine and resolve such issues. As a result, Fluentd has a rich set of
plugins for social collaboration mechanisms. Here are just a few examples:

 IRC (Internet Relay Chat) (https://tools.ietf.org/html/rfc2813)
 Twilio (supporting many different comms channels) (www.twilio.com)
 Jabber (https://xmpp.org)
 Redmine (www.redmine.org)
 Typetalk (www.typetalk.com)

http://mng.bz/Nxm1
https://tools.ietf.org/html/rfc2813
www.twilio.com
www.redmine.org
www.typetalk.com
https://xmpp.org

113Slack to demonstrate the social output
 PagerDuty (www.pagerduty.com)
 Yammer (www.microsoft.com/en-gb/microsoft-365/yammer)
 Slack (https://slack.com/)

Obviously, we do need to include the relevant information in the social channel com-
munications. A range of things can be done to help that, from good log events that
are clear and can be linked to guidance for resolution, to Fluentd being configured to
extract relevant information from log events to share.

4.5 Slack to demonstrate the social output
Slack has become a leading team messaging collaboration tool with a strong API layer
and a free version that is simply limited by the size of conversation archives. As a cloud
service, it is a great tool to illustrate the intersection of Fluentd and actionable log
events through social platforms. While the following steps are specific to Slack, the
principles involved here are the same for Microsoft Teams, Jabber, and many other
collaboration services.

 If you are already using Slack, it is tempting to use an existing group to run the
example. To avoid irritating the other users of your Slack workspace as a result of
them receiving notifications and messages as you fill channels up with test log events,
we suggest setting up your own test workspace. If you aren’t using Slack, that’s not a
problem; in appendix A, we explain how to get a Slack account and configure it to be
ready for use. Ensure you keep a note of the API token during the Slack configura-
tion, recognizable by the prefix xoxb.

 Slack provides a rich set of configuration options for the interaction. Unlike
MongoDB and many IaaS- and PaaS-level plugins, as Slack is a SaaS service, the resolu-
tion of the Slack instance is both simplified and hidden from us by using a single
token (no need for server addresses, etc.). The username isn’t about credentials, but
how to represent the bot that the Fluentd plugin behaves as; therefore, using a mean-
ingful name is worthwhile. The channel relates to the Slack channel in which the
messages sent will be displayed. The general channel exists by default, but you may
wish to create a custom channel in Slack and restrict access to that channel if you want
to control who sees the messages. After all, do you want everyone within an enterprise
Slack setup to see every operational message?

 The message and message_keys attributes work together with the message using
%s to indicate where the values of the identified payload elements are inserted. The
references in the message relate to the JSON payload elements listed in the
message_keys in order sequence.

 The title and title_keys work in a similar way to message and
message_keys, but for the title displayed in the Slack UI with that message. In our
case, we’re just going to use the tag. The final part is the flush attribute; this tells
the plugin how quickly to push the Slack messages to the user. Multiple messages can
be grouped up if the period is too long. To keep things moving quickly, let’s flush
every second.

https://slack.com/
www.microsoft.com/en-gb/microsoft-365/yammer
www.pagerduty.com

114 CHAPTER 4 Using Fluentd to output log events

User
will

in
con

s
o,

De
the
 Edit the existing configuration provided (Chapter4/Fluentd/rotating-file
-read-slack-out.conf) to incorporate the details captured, in the Slack setup.
This is illustrated in the following listing.

<match *>
 @type slack
 token xoxb-9999999999999-999999999999-XXXXXXXXXXXXXXXXXXXXXXXX

 username UnifiedFluent
 icon_emoji :ghost:
 channel general

 message Tell me if you've heard this before - %s

 message_keys msg

 title %s

 title_keys tag
 flush_interval 1s

</match>

Before running the solution, we also need to install the Slack plugin with the com-
mand fluent-gem install fluent-plugin-slack. Once that is installed, we can
start up the log simulator and Fluentd with the following commands:

 fluentd -c Chapter4/Fluentd/rotating-file-read-slack-out.conf
 groovy LogSimulator.groovy Chapter4/SimulatorConfig/social-

logs.properties ./TestData/small-source.txt

Once this is started, if you open the #general channel in the web client or app, you will
see messages from Fluentd flowing through.

 All the details for the Slack plugin can be obtained from https://github.com/
sowawa/fluent-plugin-slack. Our illustration of Slack use is relatively straightforward
(figure 4.3). By using several plugins, we can quickly go from the source tag to routing
the Slack messages to the most relevant individual or group directly. Alternatively, we
have different channels for each application and can direct the messages to those
channels.

Listing 4.8 Chapter4/Fluentd/rotating-file-read-slack-out.conf—match configuration

This is where the token obtained from
Slack is put to correctly identify the

workspace and legitimize the connection.

name that
 be shown
 the Slack
versation

Defines an individual emoji
(icon) to associate the bot

Which channel to place the message
into, based on the name. In our dem
we’re just using the default channel.

Message to be displayed,
referencing values in the

order provided in the
configuration. The

message attribute works
in tandem with the

message_keys attribute.

Names the log event’s JSON
elements to be included in
the log event. The named
element is then taken by the
message tag and inserted
into the message text.

Title for the message takes the
values from title_keys. Using order
to map between the config values.

finition of
message’s

title

Defines the frequency at
which Fluentd will get Slack

to publish the log events

https://github.com/sowawa/fluent-plugin-slack
https://github.com/sowawa/fluent-plugin-slack

115Slack to demonstrate the social output
Figure 4.3 Our Fluentd log events displayed in Slack

4.5.1 Handling tokens and credentials more carefully

For a long time, good security practice has told us we should not hardwire code and
configuration files with credentials, as anyone can look at the file and get sensitive cre-
dentials. In fact, if you commit to GitHub, it will flag with the service provider any con-
figuration file or code that contains a string that looks like a security token for a
service GitHub knows about. When Slack is told and decides it is a valid token, then be
assured that it will revoke the token.

 So how do we address such a problem? There are a range of strategies, depending
upon your circumstances; a couple of options include the following:

 Set the sensitive credentials up in environment variables with a limited session
scope. The environment variable can be configured in several ways, such as with
tools like Chef and Puppet setting up the values from a keystore.

 Embed a means to access a keystore or a secrets management solution, such as
HashiCorp’s Vault, into the application or configuration.

The configuration files may not look like it is possible to secure credentials based on
what we have seen so far in the book. We can achieve both of these approaches for
securely managing credentials within a Fluentd configuration file, as Fluentd allows us
to embed Ruby fragments into the configuration. This doesn’t mean we need to
immediately learn Ruby. For the first of these approaches, we just need to understand
a couple of basic patterns. The approach of embedding calls to Vault is more challeng-
ing but can be done.

116 CHAPTER 4 Using Fluentd to output log events
 The notation to embed the Ruby code is to prefix the Ruby code with "#{ and close
it with }". Ruby’s core language provides us with a set of classes and static operations,
providing a lot of flexibility to access information such as environment variables.
Environment variables can be accessed using the ENV class (https://ruby-doc.org/
core-2.5.0/ENV.html). So if we created an environment variable called slack-token,
then rather than including the token directly in the configuration, we could replace the
setting of the attribute with

 token “#{ENV[’slack-token']}”

4.5.2 Externalizing Slack configuration attributes in action

The challenge is to set up your environment so that you have an environment variable
called SlackToken, which is set to hold the token you have previously obtained. Then
customize Chapter4/Fluentd/rotating-file-read-slack-out.conf to use
the environment variable, and rerun the example setup with the commands

 fluentd -c Chapter4/Fluentd/rotating-file-read-slack-out.conf
 groovy LogSimulator.groovy Chapter4/SimulatorConfig/social-

logs.properties ./TestData/small-source.txt

Confirm that log events are arriving in Slack.

ANSWER

By setting up the environment variable, you’ll have created a command that looks like
either

set slack-token= xoxb-9999999999999-999999999999-XXXXXXXXXXXXXXXXXXXXXXXX

or for Windows or Linux

Export slack-token= xoxb-9999999999999-999999999999-XXXXXXXXXXXXXXXXXXXXXXXX

The configuration will now have changed to look like the example in the following
listing.

<match *>
 @type slack
 token "{ENV["slack-token"]}"
 username UnifiedFluent
 icon_emoji :ghost:
 channel general
 message Tell me if you've heard this before - %s
 message_keys msg
 title %s
 title_keys tag
 flush_interval 1s
</match>

Listing 4.9 Chapter4/rotating-file-read-slack-out-Answer.conf—match configuration

https://ruby-doc.org/core-2.5.0/ENV.html
https://ruby-doc.org/core-2.5.0/ENV.html
https://ruby-doc.org/core-2.5.0/ENV.html

117Summary
4.6 The right tool for the right job
In chapter 1, we highlighted the issue of different people wanting different tools for a
range of reasons, such as the following:

 To perform log analytics as different tools and to have different strengths and
weaknesses

 To multicloud, so specialist teams (and cost considerations of network traffic)
mean using different cloud vendor tools

 To make decisions that influence individual preferences and politics (previous
experience, etc.)

As we have illustrated, Fluentd can support many social platforms and protocols. Of
course, this wouldn’t be the only place for log events to be placed. One of the core
types of destination is a log analytics tool or platform. Fluentd has a large number of
plugins to feed log analytics platforms; in addition to the two we previously men-
tioned, other major solutions that can be easily plugged in include

 Azure Monitor
 Graphite
 Elasticsearch
 CloudWatch
 Google Stackdriver
 Sumo Logic
 Logz.io
 Oracle Log Analytics

Then, of course, we can send logs to a variety of data storage solutions to hold for later
use or perform data analytics with; for example:

 Postgres, InfluxDB, MySQL, Couchbase, DynamoDB, Aerospike, SQL Server,
Cassandra

 Kafka, AWS Kinesis (time series store/event streaming)
 Storage areas such as AWS S3, Google Cloud Storage, Google BigQuery,

WebHDFS

So, the question becomes, what are my needs and which tool(s) fit best? If our
requirements change over time, then we add or remove our targets as needed. Chang-
ing the technology will probably raise more challenging questions about what to do
with our current log events, not how to get the data into the solution.

Summary
 Fluentd has an extensive range of output plugins covering files, other Fluentd

nodes, relational and document databases such as MongoDB, Elasticsearch,
and so on.

118 CHAPTER 4 Using Fluentd to output log events
 Plugin support extends beyond analytics and storage solutions to collaboration
and notification tools, such as Slack. This allows Fluentd to drive more rapid
reactions to significant log events.

 Fluentd provides some powerful helper plugins, including formatters and buf-
fers, making log event output configuration very efficient and easy to use.

 Log events can be made easy to consume by tools such as analytics and visualiza-
tion tools. Fluentd provides the means to format log events using formatter
plugins, such as out_file and json.

 Buffer helper plugins can support varying life cycles depending on the need,
from the simple synchronous cache to the fully asynchronous. With this, the
buffer storage can be organized by size or number of log events.

 Buffers can be configured to flush their contents not just on shutdown, but also
on other conditions, such as new events being buffered for a while.

Routing log events
So far in this book, we have seen how to capture and store log events. But in all the
examples, routing was simply all events going to the same output. However, this can
be far from ideal. As described in chapter 1, we may want log events to go to different
tools, depending on the type of log event. It may be desirable to send a log event to
multiple locations or none. In this chapter, we will, therefore, examine the different
ways we can route events. In addition, we will look at some smaller features that can
contribute to solving the challenges of routing, such as adding information into the
log event to ensure the origin of the log event is not lost along the way.

 Routing often aligns with how work is split among individuals or teams. As we
will see, the use of inclusions supports how multiple teams can each work on their
part of a Fluentd configuration without interrupting others and injecting specific

This chapter covers
 Copying log events to send to multiple outputs

 Routing log events using tags and labels

 Observing filters and handling errors in Fluentd

 Applying inclusions to enable reuse of configurations

 Injecting extra context information into log events
119

120 CHAPTER 5 Routing log events
configuration values. For example, we have seen the security team needing to apply
routing and filtering of log events to their tool (and exclude events they’re not inter-
ested in). In contrast, the Ops team needs the log events in a different tool. With the
routing and inclusion features, we can quickly achieve this.

 The one aspect of routing we will not address in this chapter is the idea of forward-
ing log events to other Fluentd nodes, as that is best addressed when we look at scaling
later in the book.

5.1 Reaching multiple outputs by copying
One way to get log events to all the correct output(s) is to ensure that all outputs
receive the event, and each output includes one or more filters to stop unwanted con-
tent from being output. We’ll focus on copying in this section and will address filter-
ing later, as before we filter things, we need to get the log events to the right place.

 As described in chapter 2, log events are, by default, consumed by the first appro-
priate match directive, containing the output plugin. To allow a log event to reach more
than one output plugin within a match directive, we need to use the copy plugin (@copy).

 Each destination is held within a store declaration defined with XML style tags
<store> and </store> within the match directive. While store may not always seem
intuitive as a plugin name (many outputs are for solutions we wouldn’t associate with
storage, like Grafana), it is worth remembering that more of the Fluentd plugins
address the retrieval and storage of log events than anything else. The diagram in fig-
ure 5.1 illustrates how the directive and plugins relate to each other both logically and
in the way the configuration file is written.

Figure 5.1 Visualization of the hierarchy of elements for a match directive using @copy and Store.
Reading from left to right, we see the blocks of configuration with increasing detail and focus (i.e., Buffer
or Formatter for a specific plugin type). The store configuration block can occur one or more times within
the copy plugin.

Match
directive Type @copy

Store

Store

Type file

<match *>

</match>

<store>

</store>

</store>

<store>

Type MySQL

Formatter

<format>

</format>

Buffer

<buffer>

</buffer>

121Reaching multiple outputs by copying
Within each store configuration block, we can configure the use of a plugin. Typically,
this is going to be an output plugin but could easily be a filter plugin. The store plugin’s
attributes can be configured just as they would if used directly within a match directive,
as we have done previously. This includes using helper plugins, such as buffers.

 To illustrate this, we’re going to take a file
input, and rather than send the log events
from one file to another file, as we did in
chapter 3, we will extend the configuration
to send the output to both a file and a stdout
(console). We can see a representation of
this in figure 5.2.

 To implement this, we need to edit the
match directive. The easiest way to do this is
to first wrap the existing output plugin attri-
butes within the store tags and then add the
next store start and end tags. With the
store start and end tags in place, each of the
output plugins can be configured. Finally,
introduce the @copy at the start of the match
directive. The modified configuration is
shown in the following listing, which contains the two store blocks, each holding an
output plugin (file and stdout). You’ll also see a third store block with the output
plugin type of null, followed by an @include directive. We will explain these shortly.

<match *>
 @type copy
 <store>
 @type null
 </store>
 <store>

 @type stdout
 </store>
 <store>
 @type file
 @id bufferedFileOut
 tag bufferedFileOut
 path ./Chapter5/fluentd-file-output
 <buffer>
 delayed_commit_timeout 10
 flush_at_shutdown true
 chunk_limit_records 500
 flush_interval 30
 flush_mode interval
 </buffer>
 <format>
 @type out_file

Listing 5.1 Chapter5/Fluentd/file-source-multi-out.conf—copy to multiple outputs

basic-file.txt

fluentd-file-output.*

stdout

Figure 5.2 Visualization of a configuration
file using store and copy to send log events
to multiple destinations

Declaring the plugin
to be used

Start of the store block—each store reflects the action to take. This is
often done to store a log event using a plugin or forward to another
Fluentd node. In this case, we’re simply writing to the console.

Third store
routes to a file

122 CHAPTER 5 Routing log events
 delimiter comma
 output_tag true
 </format>
 </store>
 @include additionalStore.conf
</match>

Let’s see the result of the configuration. As this uses a file source, we need to run the
LogSimulator as well. So, to run the example, the following commands are needed:

 fluentd -c ./Chapter5/Fluentd/file-source-multi-out.conf

 groovy LogSimulator.groovy ./Chapter5/SimulatorConfig/
log-source-1.properties

After running these commands, log events will appear very quickly on the console.
Once the buffer reaches the point of writing, files will appear with the name flu-
entd-file-output.<date>_<number>.log. It is worth comparing the content in
the file to the console, as we have included additional attributes into the payload.

5.1.1 Copy by reference or by value

In most, perhaps even all programming languages, there is the idea of shallow and
deep copying, sometimes called copy by reference (illustrated in figure 5.3) and copy value
(illustrated by figure 5.4). Whichever terminology you are used to, copy by reference
means that the copy of the log event is achieved by each copy referring to the same
piece of memory holding the log event. If the log event is modified, then that change
impacts all subsequent uses for all copies. Copying by value means grabbing a new piece
of memory and making a wholesale copy of the content. This means if one copy is
modified, the other will not be because it is an outright clone. While we have not yet
seen a reason to do anything other than use the default behavior, in the next chapter,
we’ll see that it is possible to manipulate the contents of a log event.

Object A Object B
Shallow copy /

copy by reference

Object 1

Refers to the same memory
location holding the data

Object 10 Object 11

References References

References

Figure 5.3 How objects reside in
memory when copied by reference

123Reaching multiple outputs by copying
As shown in figure 5.3, when Object B is created as a shallow copy of Object A, then
they both refer to the same memory holding the inner object (Object 1). So if we
change Object 1 when updating through Object B, we will impact Object A as well.

Figure 5.4 How objects reside in memory when copied by value

Within the copy configuration, we can control this behavior with the copy_mode attri-
bute. Copy mode has several settings that range in behavior from a copy by reference
to a copy by value:

 no_copy—The default state, and effectively copy by reference.
 Shallow—This deep-copies the first layer of values. If those objects, in turn, ref-

erence objects, they are still referencing the same memory as the original. Under
the hood, this uses Ruby’s dup method. While faster than a deep copy, the use of
dup needs to be used with care; it is comparable to no_copy of nested objects.

 Deep—This is a proper copy by value, leveraging Ruby’s msgpack gem. If in
doubt, this is the approach we recommend.

 Marshal—When Ruby’s msgpack cannot be used, then native language object
marshaling can be used. The object is marshaled (serialized) into a byte stream
representation. Then the byte stream is unmarshaled (deserialized), and an
object representing the byte stream is produced.

How copy operations work
The following will help you better understand how copy behaviors work:

 Ruby dup (shallow copy): http://mng.bz/mxOP
 msgpack-ruby (deep copy): https://rubydoc.info/gems/msgpack
 msgpack serialization (marshal): https://ruby-doc.org/core-2.6.3/Marshal.html

Object A Object BDeep copy /
pass by value

Object 1

References
A complete
copy of the
object storage
is created.

Object 10 Object 11

References References

Object 1
(replica)

Object 10
(replica)

Object 11
(replica)

References References

https://ruby-doc.org/core-2.6.3/Marshal.html
http://mng.bz/mxOP
https://rubydoc.info/gems/msgpack

124 CHAPTER 5 Routing log events
Ideally, we shouldn’t need to worry about copying by value, as log events are received
in a well-structured manner with all the necessary state information, so content
manipulation becomes unnecessary. Sadly, the world is not ideal; when using the copy
feature, consider whether the default option is appropriate; for example, do we need
to manipulate the log event for one destination and not another? The use of labels to
create “pipelines” of log event processing will increase the possibility of needing to
consider how we copy as well, as we will see later in this chapter.

 Another consideration to be aware of is that when copying log events for different
stores, if a log event can carry sensitive data, we may wish to redact or mask values for
most cases, but not for the log events sent to the security department. If security does
not wish to be impacted by any data masking or redaction, they will need a deep copy.

5.1.2 Handling errors when copying

In the example configuration we provided, both outputs are to the same local hard-
ware, and it would need a set of unique circumstances that impacts one file and not
the other. However, suppose the output is being sent to a remote service, such as a
database or Elasticsearch. In that case, the chance of an issue impacting one output
and not another is significantly higher. For example, if one of the destination services
has been shut down or network issues prevent communication, what happens to our
outputs? Does Fluentd send the log events to just the available stores, or to none of
them unless they are all available?

 Fluentd does not try to apply XA transactions (also known as two-phase commit),
allowing an all-or-nothing behavior because the coordination of such transactions is
resource-intensive, and coordination takes time. However, by default, it does apply the
next best thing; in the event of one output failing, subsequent outputs will be aban-
doned. For example, if we copy to three stores called Store A, Store B, and Store C,
which are defined in the configuration in that order, and we fail to send a log event to
Store A, then none of the stores will get the event (see the first part of figure 5.5). If
the problem occurred with Store B, then Store A would keep the log event, but Store
C would be abandoned (see the second part of figure 5.5.).

 But if you have a buffer as part of the output configuration, this may mask an issue,
as the buffer may operate asynchronously and include options such as fallback and
retry. As a result, an error, such as giving up retrying, may not impact the copy process,
as described. Given this approach, there is the option to sequence the copy blocks to
reflect the priority of the output.

 The downside is that if you use asynchronous buffering with retries, the buffer will
allow the execution to continue to the next store. But if it subsequently hits the maxi-
mum retries, it will fail that store, but subsequent store actions may have been successful.

 How priority/order is applied should be a function of the value of the log event and
the output capability. For example, the use of the output plugin allows a secondary helper
plugin such as secondary_file. If the log events are so critical that they cannot be lost, it
is best to prioritize the local I/O options first. If the log event priority is to get it to a
remote central service quickly (e.g., Kafka or Splunk) and is failing, then that means the

125Reaching multiple outputs by copying
event is of little further help elsewhere (e.g., Prometheus for contributing to metrics cal-
culations); therefore, it’s best to lead off with the highest priority destination.

 Fluentd does offer another option to tailor this behavior. Within the <store> dec-
laration, it is possible to add the argument ignore_error (e.g., <store ignore_
error>). Then, if output in that store block does cause an error, it is prevented from

Error

Store A

AbandonedFailed

Store B

Store C

Error

Store A

AbandonedCompleted

Store B

Store C

Failed

Error

Store A

FailedCompleted

Store B

Store C

Figure 5.5 How a store error
impacts a containing copy. The bar
across the bottom of each diagram
indicates which store would get the
data value, which store failed, and
which store was not actioned. For
example, in the middle example, if
Store B failed, then Store A will have
got the log event, Store B wouldn’t
have the event, and Store C would
not be communicated with.

126 CHAPTER 5 Routing log events
cascading the error that would trigger subsequent store blocks from being aban-
doned. Using our example three stores again, setting ignore_error on Store A
would mean that regardless of sending the event to Store A, we would continue to try
with Store B. But if Store B failed, then Store C would not receive the event.

5.2 Configuration reuse and extension through inclusion
As Fluentd configurations develop, mature, and potentially introduce multiple pro-
cessing routes for log events, our Fluentd configuration files grow in size and com-
plexity. Along with this growth, we’re also likely to discover that some configurations
could be reused (e.g., different match definitions want to reuse the same filter or for-
matter), particularly when trying to achieve the ideal of DRY (Don’t Repeat Yourself).
So in this section, let’s explore how to address the challenges of larger configuration
files and maximize reuse.

 We could try to solve this by ensuring that the Fluentd configuration actions
appear in the correct order. The use of tags to filter events may work. This can get
rather messy as an approach, and small changes could disrupt the flow of log events in
unexpected ways.

 The alternative is trying to massage configuration files to allow bits to be reused in
different contexts. The first step is to isolate the Fluentd configuration that needs to
be reused into its own file and then use the @include directive with a file name and
path for wherever that configuration was needed. With the include statement, the
referenced file is merged into the parent configuration file. This means we can reuse
configurations and incorporate inclusions so that the Fluentd configuration doesn’t
need to be manipulated, so the sequencing of directives is not a problem.

 During Fluentd’s startup, the configuration file is parsed and has the inclusion
directive replaced with a copy of the included file’s contents. This way, we can include
the same configuration file wherever it is needed. For example, if we have an
enterprise-wide setup for Elasticsearch, then all the different Fluentd configurations
can reference a single file for using the enterprise Elasticsearch, and changes, for
instance, optimizing connection settings, can then be applied to one file. Everyone
inherits the change when the configuration file is deployed.

 An inclusion does not have to contain a complete configuration; it can easily con-
tain a single attribute. An excellent example of this is where you want to reuse some
common Ruby (e.g., retrieving some security credentials) logic into the Fluentd con-
figuration, as we’ll discuss later. Equally, an inclusion file may be used to inject a block
of configuration, such as a store block or even an entire additional configuration file
that could also be used independently. In listing 5.2, we have added several inclusions
by introducing @include additionalStore.conf after the last store tag defines
additional store configurations from a separate file. This means we could define a
common destination for all our log events and repeat the configuration across this
and other configuration files to log all events in a common place, and then allow the
configuration to focus on the destinations.

127Configuration reuse and extension through inclusion

<match *>
 @type copy
 <store>
 @type null
 </store>
 <store>
 @type stdout
 </store>
 <store>
 @type file
 @id bufferedFileOut
 tag bufferedFileOut
 path ./Chapter5/fluentd-file-output
 <buffer>
 delayed_commit_timeout 10
 flush_at_shutdown true
 chunk_limit_records 500
 flush_interval 30
 flush_mode interval
 </buffer>
 <format>
 @type out_file
 delimiter comma
 output_tag true
 </format>
 </store>
 @include additionalStore.conf

</match>

@include record-origin.conf

We have also added an inclusion directive referencing the file record-origin
.conf. This illustrates the possibility that when multiple teams contribute functional-
ity into a single run-time environment (e.g., a J2EE server), rather than all the teams
trying to maintain a single configuration file and handling change collisions, each
team has its own configuration file. But come execution time, a single configuration
file uses inclusions to bring everything together. As a result, the Fluentd node needs to
merge all the configurations together during startup. Within the record-origin
.conf (if you review the content of record-origin.conf), we have introduced
some new plugins, which we will cover later in the chapter.

 Let’s see the result of the configuration. As this uses a file source, we need to run
the LogSimulator as well. So, to run the example, the following commands are
needed:

 fluentd -c ./Chapter5/Fluentd/file-source-multi-out2.conf

 groovy LogSimulator.groovy ./Chapter5/SimulatorConfig/log-

source-1.properties

Listing 5.2 Chapter5/Fluentd/file-source-multi-out2.conf—illustration of inclusion

Incorporates the external file
into the configuration providing
an additional store declaration

Brings a complete configuration
set that could be separately run
if desired or could be reused

128 CHAPTER 5 Routing log events
NOTE It is important to remember that the content of an inclusion can have
an impact on the configuration, which has the include declaration. So the
placement and use of inclusions must be done with care, as the finalized
order of directives and their associated plugins is still applicable, as high-
lighted in chapter 2.

If the path to the included file is relative in the include statement, then the point of
reference is the file’s location with the include directive. The include directive can
use a comma-separated list, in which case the list order relates to the insertion
sequence—for example, @include file.conf, file2.conf means file.conf is
included before file2.conf. If the include directive uses wildcards (e.g.,
@include *.conf), then the order of insertion is alphabetical.

 Figure 5.6 shows the dry-run output and highlights where include declarations
have been replaced with the included configuration or configuration fragment
contents.

Figure 5.6 Configuration
file with the include resolved
(highlighted in the box) as
Fluentd starts up

129Configuration reuse and extension through inclusion
NOTE As the process is a purely textual substitution, it does mean that the
inclusion can easily be an empty placeholder file or a configuration fragment.
If the inclusion is injected in the wrong place within a file, it can invalidate
the entire configuration.

5.2.1 Place holding with null output

In listing 5.2, the additional inclusion fragment (@include additionalStore
.conf) provided the configuration fragment shown in listing 5.3. This store defini-
tion uses the null output plugin; it simply discards the log events it receives.

 Placing null plugins when working in an environment where different teams may
wish to output log events to different tools allows developers to build a service to put the
placeholder in the Fluentd configuration ready for the other team(s) to replace. In
many respects, the use of null is the nearest thing to adding a TODO code comment.

NOTE TODO is a common tag used in code to flag when something still needs
to be done.

<store>
 @type null
 @id inclusion
</store>

5.2.2 Putting inclusions with a MongoDB output into action

Let’s apply some of the insights to this scenario. Knowing where best to apply effort is
best driven by analytical insights. Directing error events into a database makes it easy
to get statistics over time showing what errors occur and how frequently. When com-
bined with an appreciation of the impact of an error, the effort can be targeted with
maximum value.

 We need to apply this to Chapter5/Fluentd/file-source-multi-out.conf.
To help with this, the work from chapter 4, where we used Fluentd with a MongoDB
plugin, can be leveraged. We can capitalize on it to see the impact of copy errors and
the use of the ignore_error option. To do this, create a copy of the Chapter5/
Fluentd/file-source-multi-out.conf that can be safely modified. For simplic-
ity, let’s call this copy Chapter5/Fluentd/file-source-multi-out-exercise
.conf. We need to replace the @type null with the configuration for MongoDB
output. The commands you will need to run the scenario are

 fluentd -c ./Chapter5/Fluentd/file-source-multi-out-exercise.conf
 groovy LogSimulator.groovy ./Chapter5/SimulatorConfig/log-

source-1.properties

With the changes applied, we should be able to complete the following steps:

1 Check the configuration using the dry-run capability. This should yield a valid
result.

Listing 5.3 Chapter5/Fluentd/additionalStore.conf—include configuration fragment

130 CHAPTER 5 Routing log events
2 Confirm that the modified configuration produces the desired result by starting
MongoDB and rerunning the LogSimulator and Fluentd.

3 Verify the behavior is as expected if we cannot connect to MongoDB, and
repeat the same actions for running the LogSimulator and Fluentd.

4 The previous step should have highlighted the absence of the ignore_error
option. Modify the Fluentd configuration adding the ignore_error option to
the console output configuration. Rerun the configuration and LogSimulator.
Confirm that the desired behavior is now correct.

ANSWERS

1 The modified Fluentd configuration file should now look like Chapter5/
ExerciseResults/file-source-multi-out-Answer1.conf and yield a
successful dry run.

2 With MongoDB running, the database should continue to fill with events that
reflect the content sent to the file, and the console will still display content.

3 With MongoDB stopped, the output plugin will start realizing errors, as there is
no configuration to ensure the issue does not cascade to impact other plugins.
None of the output streams will produce log events. This is because of the
default position that subsequent output plugins should not be executed once
an error occurs.

4 With the ignore_error added to the configuration, the configuration should
now resemble Chapter5/ExerciseResults/file-source-multi-out-

Answer2.conf. With the MongoDB still stopped, the MongoDB output will fail,
but the failure will not stop output to the console but will inhibit output to the file.

5.3 Injecting context into log events
Providing more information and context can help us work with log events. To do this,
we may need to manipulate the predefined log event attributes and capture addi-
tional Fluentd values. This section looks at this in more detail.

 By injecting this information into the log event as identifiable log event attributes,
we can then reference the values explicitly when trying to exclude directives with a fil-
ter, which will prevent log events from being processed any further in a sequence of
events. For example, suppose log events associated with a specific host are deemed
unnecessary to be forwarded by comparing the attribute set with the hostname. In
that case, we can apply a filter with an exclude directive to stop the information from
going anywhere.

 The inject operation can only be used with match and filter directives, which is
unfortunate, as we might want to apply it at the source. That said, it is not a significant
challenge to overcome if desired, as we will see shortly. Using our example configura-
tion Chapter5/Fluentd/record-origin.conf, we can see the injection at work
in listing 5.4.

 When configuring the injection of time data, it is possible to configure different
representations of the time. This is covered by the time_type attribute, which
accepts values for

131Injecting context into log events

n

P
na

inc
 String—Allows a textual representation to be used and defers to the time_
format attribute for the representation. The time_format uses the standard
notation, as described in appendix A.

 Float—Seconds and nanoseconds from the epoch (e.g., 1510544836

.154709804).
 Unixtime—This is the traditional seconds from epoch representation.

In listing 5.4, we have gone for the most readable format of the string. In addition to
describing the time data format, it is possible to specify the time as localtime or as UTC
time by including the attributes localtime and utc, which take Boolean values. Try-
ing to set both attributes could be the source of a lot of problems.

<match **>
 <inject>
 hostname_key hostName

 worker_id_key workerId

 tag_key tag
 time_key fluentdTime
 time_type string

 localtime true
 </inject>
 @type stdout
</match>

The properties for the inject configuration relate to the mapping of known values
like hostname, tag, and so on, to attributes in the log event record.

 To see this configuration in action, we have used the monitor_agent and stdout,
so all we need to do is run Fluentd with the command fluentd -c ./Chapter5/flu-
entd/record-origin.conf. The outcome will appear in the console, something like

2020-05-18 17:42:41.021702900 +0100 self: {"plugin_id":"object:34e82cc",
"plugin_category":"output","type":"stdout","output_plugin":true,"retry_coun
t":0,"emit_records":4,"emit_count":3,"write_count":0,"rollback_count":0,"sl
ow_flush_count":0,"flush_time_count":0,"hostName":"Cohen","workerId":0,"tag
":"self","fluentdTime":"2020-05-18T17:42:41+01:00"}

Within this output, you will see that the injected values appear at the end of the JSON
structure using the names defined by the attributes; for example, "hostName":
"Cohen", where Cohen is the PC used to write this book.

5.3.1 Extraction of values

If we can inject certain values into the log event’s record, then it seems obvious that
there should be a counter capability for extracting values from the record to set the
tag and timestamp of the log event. This ability can be exploited by plugins that work

Listing 5.4 Chapter5/Fluentd/record-origin.conf—Inject declaration

The inject declaration
within the generic match

Adds the name of the host of
Fluentd and calls the value the
name provided (e.g., hostName)

Adds the worker_id and calls it by
the name provided. This helps whe
Fluentd has support processes to
share the work across.

Puts the tag into
the record output
and uses the
name provided

rovides the
me for the
time to be
luded with

Defines how the date-time should be represented.
Here we are saying to provide a textual representation,
but as we’ve omitted a value for time_format to
define the format, use the standard format.

132 CHAPTER 5 Routing log events
with source, filter, and match directives. This gives us a helpful means to set tags
dynamically based on the log event record content. Dynamically setting tags makes
tag-based routing very flexible. For example, if the log event had an attribute called
source, and we wanted to use that as a means to perform routing, we could use the
extract operation. For example:

<inject>
 tag_key nameOfLogRecordAttribute
</inject>

Unfortunately, only a subset of the plugins available takes advantage of the extract
helper. One of the core plugins that does incorporate this exec, which we have not cov-
ered yet. So as we explore tag-based routing in the next section, we’ll use exec, and
we will explore the interesting opportunities it offers.

5.4 Tag-based routing
In all the chapters so far, we have always had wildcards in the match declarations (e.g.,
<match *>), but we have had the opportunity to define and change the tag values at
different stages. We have seen the tag being manipulated in contexts ranging from
taking the tag value from the URI to setting the tag within the configuration and even
extracting the tag from the log event record, as just discussed. We can use the tags to
control which directives are actioned, which is the subject of this section.

 We can control which directives will process and consume log events by defining
the match values more explicitly. For example, a configuration for two inputs called
AppA and AppB includes the tag attribute setting the respective tags to be AppA and
AppB. Now, rather than match *, we set the directives to be <match AppA> and
<match AppB>. With this change, the match directives will only process log events
from the associated source.

 In our example, to keep the sources simple, we have configured two occurrences
of the dummy source plugin to generate log events. We have added additional attri-
butes to control the behavior to repeat at different frequencies (with the rate attri-
bute representing the number of seconds between each log event generated) and
different messages (dummy attribute).

 In the following listing, we show the key elements of the configuration (we have
removed some configuration elements for clarity; this can be seen with the use of an
ellipsis [. . .]).

<source>

 @type dummy
 dummy {"hello from":"App A"}
 auto_increment_key AppACounter
 tag AppA
 rate 5

Listing 5.5 Chapter5/Fluentd/monitor-file-out-tag-match.conf—tag matching

The first of two source definitions in this
configuration file, but note that the port numbers
are different, along with several other configuration
attributes, so the sources are easy to distinguish.

133Tag-based routing
</source>

<source>

 @type dummy
 dummy {"Goodbye from":"App B"}
 auto_increment_key AppBIncrement
 tag AppB
 rate 3
</source>

<match AppB>

 @type file

 path ./Chapter5/AppB-file-output
 @id AppBOut
 <buffer> . . . </buffer>
 <format> . . . </format>
</match>

<match AppA>
 @type file
 path ./Chapter5/AppA-file-output
 @id AppAOut
 <buffer> . . . </buffer>
 <format> . . . </format>
</match>

This setup can be run with the command

fluentd -c ./Chapter5/Fluentd/ monitor-file-out-tag-match.conf

The output files should reflect the different dummy messages, as the routing will have
directed from the relevant source.

 Despite the naming, it is still possible to use selective wildcarding with the tags. If
we extend this example by adding an additional source and tagging it AppAPart2, we
could catch AppA and AppAPart2. This is done by modifying the <match AppA> to
become <match AppA*>. The log events captured from the new source would be
incorporated into the AppA output.

 This is illustrated in listing 5.6. If we do not want to reintroduce wildcard use, we
can also utilize a comma-separated tag list in the match declaration; for example,
<match AppA, AppAPart2>. To illustrate the wildcard behavior, this time we have
introduced another source plugin called exec. The exec plugin allows us to call OS
scripts and capture the result. We are simply using the more command (as it behaves
the same way for Linux and Windows) within the exec statement.

<source>
 @type dummy
 dummy {"hello from":"App A"}

Listing 5.6 Chapter5/Fluentd/monitor-file-out-tag-match2.conf—tag matching

The second self_monitor source configuration. Most
crucially, note the tag name differences between the sources.

The first of two match declarations. Note
how we can use wildcard characters so
partial name matching can be defined.

File output configuration mapping to
different output files for each match
(compare the path attributes)

The second match, this time
without any wildcarding

Original source, which
remains unaltered

134 CHAPTER 5 Routing log events
 auto_increment_key AppACounter
 tag AppA
 rate 5
</source>

<source>
 @type exec
 command more .\TestData\valuePair.txt
 run_interval 7s
 tag AppAPart2
</source>

<source>
 @type dummy
 dummy {"Goodbye from":"App B"}
 auto_increment_key AppBIncrement
 tag AppB
 rate 3
</source>
<match AppB> . . . </match>

<match AppA*>

 @type file
 path ./Chapter5/AppA-file-output
 @id AppAOut
 <buffer> . . . </buffer>
 <format> . . . </format>
</match>

This setup can be run with the command

fluentd -c ./Chapter5/Fluentd/ monitor-file-out-tag-match2.conf

The output files should reflect the different dummy messages, but the AppA output
should now include the outcome of executing the OS command on a predefined test
data file.

Tag naming convention
Despite using wildcard characters to help select tags for different directives regard-
less of the position, there is a convention normally applied. Tag naming typically fol-
lows a namespace-like hierarchy using the dot to break the hierarchy tiers (e.g.,
AppA.ComponentB.SubComponentC). Now the wildcard can filter the different
namespaces (e.g., AppA.* or AppA.ComponentB.*). For example, if we had a web
server hosting a domain with several different services, with each service potentially
having one or more log outputs, we might see a convention of webserver.service
.outputName in the tag convention.

The additional source, using
the exec source plugin

The original AppB source,
which remains unchanged

The match for AppB
remains unmodified.

The original match for AppA has now been
modified to include the wildcard, which
means both AppA and AppAPart2 will be
matched. This could described also be
expressed as <match AppA, AppAPart2>.

135Tag-based routing
5.4.1 Using exec output plugin

The exec plugin illustrated in listing 5.6 creates some interesting opportunities. When
plugins cannot help us get the information required, we have several options:

 Build a custom plugin (which will be explored later in the book).
 Create an independent utility that can feed data to Fluentd directly via HTTP,

UDP, forward plugins.
 Produce a small script that can be invoked by the exec plugin.

Using the exec plugin makes it easy to retrieve environment-specific information or
perform things like grabbing web page output using utilities like Wget and cURL—a
modern version of screen scraping. The latter is particularly interesting, as it is possi-
ble to extract information from web interfaces or web endpoints—for example, if a
third party provided a microservice (which therefore has to be treated as a black
box)—and could still be effectively monitored. If the third party has followed the best
practice of providing a /health endpoint (see http://mng.bz/5KQz for more infor-
mation), we could run a script to extract the necessary values from the response to a
Wget or cURL call to /health.

 The exec plugin does need to be used with some care. Each exec process is exe-
cuted in its own thread so that it does not adversely impact the consumption of other
logging events whenever triggered. However, if the process is too slow, then we could
experience the following:

 The exec plugin will likely be triggered again before the last one has com-
pleted, which risks creating out-of-sequence events (due to how resources get
shared across threads).

 Thread death could occur because there are too many threads demanding too
many resources (this kind of issue could come about if the buffer ends up with
too many threads).

 Events start being backed up, as logic will wait for threads to complete to allo-
cate to another exec.

The takeaway is to think about what exec is doing; if it is slow or computationally
demanding, then it’s probably unwise to run it within Fluentd. We could consider
independently running the exec process that writes the results to a file, and log man-
agement should be relatively lightweight compared to the core business process.

5.4.2 Putting tag naming conventions into action

A decision has been made by the team that the logging configuration should reflect a
naming convention of the domain.service.source. The current configuration
does not reflect the domain being called Demo, and the services are called AppA and
AppB, with AppA having two components of Part1 and Part2. You have been asked
to update the configuration file monitor-file-out-tag-match2.conf to align

http://mng.bz/5KQz

136 CHAPTER 5 Routing log events
with this convention. Change the match directive for AppA so that only Part1 is
captured in the AppA file. Note the additional input, as the exec source is not yet
needed in the output.

ANSWER

The outcome should result in a modified configuration that should look something
like Chapter5/ExerciseResults/monitor-file-out-tag-match-Answer.conf.
Note how the match condition has changed.

5.4.3 Putting dynamic tagging with extract into action

In section 5.3.1, we saw an explanation of how tags can be set dynamically. We should
improve and rerun monitor-file-out-tag-match2.conf so that the exec sources
set the tags based on the retrieved file value.

ANSWER

We should end up with a configuration that looks something like Chapter5/
ExerciseResults/monitor-file-out-tag-match-Answer2.conf. Note that
when we run this, the contents of the log events using the exec source will no longer
reach the output because we’ve changed the tag, so it fails the match clause.

5.5 Tag plugins
There are plugins available to further help with routing using tags; let’s look at some
certified plugins outside the core Fluentd (table 5.1).

 When plugins are described as “certified,” it means they come from recognized
and trusted contributors to the Fluentd community. As these plugins are not part of
the core Fluentd, it does mean that to use these plugins, you will need to install them,
just as we did for MongoDB in chapter 4.

Table 5.1 Additional tag-based routing plugins that can help with routing

Plugin name and link Description

rewrite-tag-filter
https://github.com/fluent/fluent
-plugin-rewrite-tag-filter

With one or more rules in the match directive, the log event has
a regular expression applied to it by the plugin. Then, depending
on the result, the tag is changed to a specified value. The rule
can be set such that you can choose whether the rewrite is
applied to a true or false outcome from the regex. The log event
is re-emitted to continue beyond the match event using the new
tag if a successful outcome is achieved.

route
https://github.com/tagomoris/
fluent-plugin-route

The route plugin allows tags to direct the log events to one or
more operations, such as manipulating the log event and copy-
ing it to intercept it by another directive.

rewrite
https://github.com/kentaro/fluent
-plugin-rewrite

This enables tags to be modified using one or more rules, such
as if an attribute of the log event record matches a regular
expression. As a result, performing specific tasks based on the
log event becomes very easy.

https://github.com/fluent/fluent-plugin-rewrite-tag-filter
https://github.com/fluent/fluent-plugin-rewrite-tag-filter
https://github.com/tagomoris/fluent-plugin-route
https://github.com/tagomoris/fluent-plugin-route
https://github.com/kentaro/fluent-plugin-rewrite
https://github.com/kentaro/fluent-plugin-rewrite

137Labels: Taking tags to a new level
5.6 Labels: Taking tags to a new level
As we will see in this section, the label directive uses the basic idea of routing with tags
and takes it to a whole new level. Ideally, we should be able to group a set of directives
together clearly and distinctly for a particular group of log events, but this can
become challenging. Labels allow us to overcome that. They have two aspects: first, an
additional attribute using @label can be linked to a log event, in much the same way
that tags are linked (although, unlike a tag, a label is not part of the log event data
structure). Second, labels offer a directive (<label labelName> . . . </label>) that
we use to group other directives (e.g., match and filter) that are executed in
sequence. In effect, we are defining a pipeline of actions. To differentiate the two for
the rest of the book, we will talk about labels as attributions to log events and direc-
tives as linking one or more directives together as a pipeline or a label pipeline.

 There is one constraint for labels when compared to tags. It is possible to create a
comma-separated list of tags (e.g., <match basicFile,basicFILE2>), but labels
can have only a single label associated with that pipeline (e.g., <label myLabel>).
You will find that trying to match multiple labels in the same way will result in an
error—for example, 'find_label': common label not found (ArgumentError).
This comes about as Fluentd does check that each label declaration can be executed
during startup.

NOTE Unlike tags, the naming convention is usually more functional in
meaning.

5.6.1 Using a stdout filter to see what is happening

To help illustrate the point, we will introduce a special filter configuration. The
important thing about filters with stdout, unlike match directives, is that even if the
event satisfies the filter rule, it is emitted by the plugin to be consumed by whatever
follows. This setup for a filter is a bit like a developer’s println for helping to see
what is happening during code development. We will look more closely at filters in the
next chapter, but for now, let’s see how the stdout plugin behaves in a filter.

 The stdout plugin effectively accepts all events; thus, the following filter will let
everything pass through and send the details to the console:

<filter *>
 @type stdout
</filter>

This configuration is typically referred to as filter_stdout. Using this as an additional
step will help us illustrate the label pipeline behavior. This is another handy way of
peeking at what is happening within a Fluentd configuration.

5.6.2 Illustrating label and tag routing

To illustrate a label-based pipeline, we have created a configuration that tails two sepa-
rate files (from two different log simulators). The configuration of the simulator

138 CHAPTER 5 Routing log events

s
s

output results in two differing message structures (although both are derived from
the same source data). To observe the differences, compare basic-file.txt and
basic-file2.txt once the simulators are running.

 The configuration will illustrate the use of a label being applied to one source and
not another. Then, within the label “pipeline,” one source (file) will be subject to both
the stdout filter (as explained in section 5.6.1) and a file output that is separate from
the output of the other file. This is illustrated in the following listing. As with other
larger configurations, we have replaced sections with ellipses, so relevant aspects of
the configuration are easier to read.

<source>
 @type tail
 path ./Chapter5/basic-file.txt
 read_lines_limit 5
 tag basicFile
 pos_file ./Chapter5/basic-file-read.pos_file
 read_from_head true
 <parse> @type none </parse>
 @label labelPipeline

</source>

<source>

 @type tail
 path ./Chapter5/basic-file2.txt
 read_lines_limit 5
 tag basicFILE2
 pos_file ./Chapter5/basic-file-read2.pos_file
 read_from_head true
 <parse> @type json </parse>
</source>
end - tail basic-file2

<label labelPipeline>

 <filter *>

 @type stdout
 </filter>

 <match *>
 @type file
 path ./Chapter5/label-pipeline-file-output
 @id otherSelfOut
 <buffer> . . . </buffer>
 <format> . . . </format>
 </match>

 <match *>

Listing 5.7 Chapter5/Fluentd/file-source-file-out-label-pipeline.conf label pipeline

Our source attaches a label to the event
it creates; in this case, labelPipeline. Thi
will mean the step operation performed
on these events will be in the <label
labelPipeline> block.

This source is unlabeled. As a result, its log
events will be intercepted by the next match
blog that can consume the tag basicFILE2.

At the start of the label block, any log events with a label that
match will pass through this sequence of operations, assuming
the processing allows the event to output from the plugin.

Use the stdout filter to push the log events
to stdout and output to the next plugin.

Use the match to direct
content to a file.

We will never see any result from this stdout filter,
as the preceding match will have consumed the
log event. To send log events to both stdout and
the file would require the use of the copy.

139Labels: Taking tags to a new level
 @type stdout
 </match>
</label>

<match basicFILE2>

 @type file
 path ./Chapter5/alt-file-output
 @id basicFILE2Out
 <buffer> . . . </buffer>
 <format> . . . </format>
</match>

To run this configuration, we need to run the commands

 fluentd -c Chapter5/Fluentd/file-source-file-out-label-pipe-
line.conf

 groovy LogSimulator.groovy Chapter5/SimulatorConfig/basic-log
-file.properties

 groovy LogSimulator.groovy Chapter5/SimulatorConfig/basic-log
-file2.properties

When running this setup, the log events can be seen in basic-file.txt and on the
console. Additionally, there will be two more files, as the log content is output to
label-pipeline-file-output.*_*.log and alt-file-output.*_*.log (wild-
cards represent the date and file increment number). Neither file should have tags
mixing.

 While the match expression defined continues to use a wildcard within the label
pipeline, it is possible to still apply the tag controls on the directives within the pipe-
line. If you edit the configuration setting to align the match clause with <match
basicFILE2>, you will see the logs displayed on the console but not in the file.

5.6.3 Connecting pipelines

As configurations become more sophisticated, you will likely need to create pipelines
and link them together. This can be done using the relabel plugin. Relabel does what it
says; it changes the label associated with the log event. As relabel is an output plugin,
the log event can change the label and emit the log event rather than consume it. For
example, you might have a label with several directives that can manipulate a log
event into a human-friendly representation and send it to a social platform such as
Slack. But before you use your label to do that, you may wish to take the log events
through a labeled pipeline of filters that exclude all log events representing business-
as-usual events.

 As our Fluentd configuration structures become more complex with pipelines, it
helps to visualize what is happening, as shown in figure 5.7. As you can see, we have
now made the match that feeds the alt-file-output a labeled pipeline called
common. To illustrate the use of relabel, the match in our original labelPipeline
(as we saw in listing 5.7) has been modified. We have introduced a copy plugin to

Defines the end of the
label series of events

Outside of a label, the match will
be applied to all no label events.

140 CHAPTER 5 Routing log events
ensure that the log event goes to both the output and relabel (highlighting the store
declaration can be done for more than just storage plugins). When we run this config-
uration, alt-file-output files will now contain both sources.

Figure 5.7 Label routing example, with two label pipelines connected (labelPipeline and common)

We can run the configuration using the commands

 fluentd -c Chapter5/Fluentd/file-source-multi-out-label-

pipelines.conf

 groovy LogSimulator.groovy Chapter5/SimulatorConfig/basic-log
-file.properties

 groovy LogSimulator.groovy Chapter5/SimulatorConfig/basic-log
-file2.properties

The following listing shows the configuration with the application of relabel. Note
the use of the ellipsis again, so you can focus on the key elements.

<source>
 @type tail
 path ./Chapter5/basic-file.txt
 read_lines_limit 5
 tag basicFile
 pos_file ./Chapter5/basic-file-read.pos_file
 read_from_head true
 <parse> . . . </parse>
 @label labelPipeline

Listing 5.8 Chapter5/Fluentd/file-source-multi-out-label-pipelines.conf use of relabel

common

labelPipeline

basic-file.txt

basic-file2.txt

label-pipeline-file-output.*

alt-file-output.*

1. Apply out filter
2. Match + copy:
- Out file
- relabel

This links this source’s log events to a
label, as we did in the previous example.

141Labels: Taking tags to a new level
</source>

<source>
 @type tail
 path ./Chapter5/basic-file2.txt
 read_lines_limit 5
 tag basicFILE2
 pos_file ./Chapter5/basic-file-read2.pos_file
 read_from_head true
 <parse> . . . </parse>
 @label common

</source>

<label labelPipeline>
 <filter *>
 @type stdout
 </filter>

 <match *>
 @type copy

 <store>
 @type file
 path ./Chapter5/label-pipeline-file-output
 <buffer> . . . </buffer>
 <format> . . . </format>
 </store>
 <store>

 @type relabel

 @label common

 </store>
 </match>

</label>

<label common>

 <match *>
 @type file
 path ./Chapter5/alt-file-output
 <buffer> . . . </buffer>
 <format> . . . </format>
 </match>
</label>

5.6.4 Label sequencing

Unlike tags, the relative positioning of label directives does not matter, taking our cur-
rent configuration shown in figure 5.7 as an example. While labelPipeline will
trigger the use of the common label using relabel, the common label could be declared

Sets the second source to use the
common label rather than trust
directives catching log events

Using the copy plugin within the match, we
can cause the log event to be consumed
by more than one output plugin.

The log event will get pushed
to a file output plugin first.

As the copy directive is being used,
we can force the log event to be
processed by further operations.

Using the relabel plugin to change the log event's
label until this operation is 'labelPipeline'

The label is now set to be common; as
we leave this match and label block,
the event will be consumed by the
label directive called common.

The label common starts, which will now receive log events from both
sources. One source’s event comes directly, and another passes
through the labelPipeline before reaching the common pipeline.

142 CHAPTER 5 Routing log events
before the labelPipeline. The steps within a label pipeline are still sequential in
execution. You can see and try this with the provided configuration file Chapter5/
Fluentd/file-source-multi-out-label-pipelines2.conf. In the configura-
tion, you can see

1 A relabel declaration that used to be for common, but has been changed to use
the label outOfSequence. With it, we have moved the filter out to the new
label section.

2 The outOfSequence label pipeline then redirects to the common, as we had
previously and as illustrated in figure 5.8. The configuration file order actually
reflects the appearance in the figure when reading the diagram left to right
(ignoring the flow shown in the diagram).

Figure 5.8 This configuration illustrates that labels are not order-sensitive.

The scenario can be executed using the commands

 fluentd -c Chapter5/Fluentd/file-source-multi-out-label-

pipelines2.conf

 groovy LogSimulator.groovy Chapter5/SimulatorConfig/basic-

log-file-small.properties

 groovy LogSimulator.groovy Chapter5/SimulatorConfig/basic-

log-file2-small.properties

common

labelPipeline

basic-file.txt

basic-file2.txt

label-pipeline-file-output.*

alt-file-output.*

Match + copy:
- Out file
- relabel

outOfSequence

filter
relabel

143Labels: Taking tags to a new level
The simulator properties have been configured with a small data set to make it easier
to confirm, and we do not get any accidental looping.

NOTE While we have illustrated that labeling sections out of order is possible,
we would not necessarily advocate it as good practice. As labels could be com-
pared to goto statements in some respects, it is preferable to try to structure
the configuration files to be as linear as practical.

5.6.5 Special labels

Fluentd’s label feature includes a predefined @Error label. This means we can use
the label directive to define a pipeline to process errors; those errors can be raised
within our configuration or within a plugin executing the configuration. This does
rely on the plugin implementation to use a specific API (emit_error_event). We
can be confident that core Fluentd plugin implementations will use this API, but it
might be worth checking to see if a third-party plugin uses the feature rather than sim-
ply writing to stdout. We will see this later in the book when we look at building our
own plugin.

 We could therefore build upon our existing Fluentd configuration steps to capture
these errors. With this, we could do things like relabel the log event so that it gets
picked up by a common pipeline or simply direct it to its own destination. In the next
example, we’ve added a new label pipeline to our previous configuration that writes to
its own file, as illustrated in the following listing.

<source> . . . </source>

<source> . . . </source>

<label labelPipeline> . . . </label>

<label common> . . . </label>

<label @Error>

 <match *>

 @type file
 path ./Chapter5/error-file-output
 <buffer> . . . </buffer>
 <format>
 @type out_file
 delimiter comma
 output_tag true
 </format>
 </match>
</label>

TIP It is always useful to create a simple generic pipeline for handling errors.
The pipeline raises some sort of problem ticket, a social notification (e.g.,

Listing 5.9 Fluentd/file-source-multi-out-label-pipelines-error.conf using @Error

The start of the pipeline using the predefined
@Error label. As a result, any plugin that sets this
label will have its error(s) handled in this pipeline.

Matches all tags to write errors to file once
log events are labeled with Error. But we
could get clever and handle errors associated
with different tags differently. For example,
specific tags that experience an error that
needs more urgent attention could be sent
to a notification or collaboration tool.

144 CHAPTER 5 Routing log events
Slack, Teams), or simply an email to notify the event within its own Fluentd
configuration. Then use include as standard practice in all of your configu-
rations. So, if you don’t have any specific error-handling configuration, then
the generic answer will kick in for you.

5.6.6 Putting a common pipeline into action

You have been asked to refactor the configuration referenced in listing 5.8 to have a
single pipeline. This will allow the service to be incorporated into the main configura-
tion through inclusion. This change will allow all of the different log event routes
being developed by other teams to occur more safely. To help those teams, you should
create an additional pipeline with a null output as a template.

ANSWER

The result actually involves three files. The core is Chapter5/ExerciseResults/
file-source-multi-out-label-pipelines-Answer.conf. This uses @include
to bring in the configurations Chapter5/ExerciseResults/label-pipeline-

Answer.conf, which contains the refactored logic, and a template containing the
null output defined by Chapter5/ExerciseResults/label-pipeline-

template-Answer.conf.

Summary
 Fluentd provides a null output plugin that can be used as a placeholder for out-

put plugins. The plugin will simply delete the received log events.
 Fluentd provides an exec plugin that allows us to incorporate the triggering of

external processes, such as scripts, into the configuration. The external process
can be invoked with arguments from the log event.

 Fluentd provides several mechanisms to route log events through a configura-
tion. The simplest of these is using the tag associated with each log event.

 For more sophisticated routing where we want a “pipeline” of actions, Fluentd
provides a label construct. The use of labels can also help us simplify the com-
plexity in a configuration file when it comes to ordering configuration values.

 Fluentd provides naming conventions by using the conventions we can group
and namespace tags. We can use wildcards in the configuration to group tags
together.

 A Fluentd configuration can be assembled from multiple files through the use
of the @include directive.

 If Fluentd experiences an error (e.g., can’t connect to an instance of Elastic-
search), we can catch the error and perform actions using the custom @Error
label.

Filtering and extrapolation
In chapter 5, we touched upon using the filter directive to send log events to stan-
dard out. Using filters this way, while helpful, is almost a sideshow to the full capa-
bility of the directive. The filter directive can help us to

 Filter out specific log events, so only particular log events go to particular
consuming systems

 Filter out specific pieces of a log event message and allow us to record them
as unique attributes of the log event (ultimately making it easier to apply
logic with that data)

This chapter covers
 Applying filters to control log events

 Implementing the record_transformer filter

 Extrapolating information from log events

 Injecting environmental information into a log
event

 Masking elements of log events to maintain data
security
145

146 CHAPTER 6 Filtering and extrapolation
 Enrich the log events by amending the tag and timestamp to reflect the
dynamic content of the log event record itself (e.g., adjusting for upstream
caching of events)

 Further enrich log events; for example
– Using plugins that can add geographical location information based on the

public IP (known as GeoIP)
– Attaching error guidance by identifying information in the log event(s)

(e.g., if an error code is generic but the path to the code that generated it
matched something, then annotate the log with a qualification, such as “root
cause is DB connection error”)

– Adding contextual information, which can help you perform further analysis
later (e.g., the Fluentd worker_id and server_id)

 Apply changes to address security considerations (e.g., anonymization, masking
and redaction of any sensitive data that finds its way into log events)

 Calculate or extrapolate new data from the log event and its context (e.g., take
two timestamps and calculate the elapsed time)

 Filter out log events that confirm everything is running as expected

This chapter will explore why we may want to filter log events in or out and how the fil-
ters are configured to do this. As filters can be used to manipulate event logs, we’ll
look at how this can be done, whether we should, and why we might want to do this.

6.1 Application of filters
We have just seen a brief summary of the breadth of possibilities for using filters; let’s
dig into some of these applications to better understand why we might want to use
them.

6.1.1 All is well events do not need to be distributed

A lot of log information will actually indicate to us that things are running as they
should. Getting these events is important; as noted management consultant and
author Peter Drucker said, “You can’t manage what you don’t measure.” Perhaps even
more pertinent, Dag Hammarskjöld (economist and secretary-general of the United
Nations) said, “Constant attention by a good nurse may be just as important as a major
operation by a surgeon.” In other words, we need to actively observe, quantify, and
qualify the state to know everything is well. This steady, constant observation will allow
us to make minor adjustments to keep things well, rather than needing skilled but
major change.

 But we do not need to share with everyone every log event that confirms things are
fine. Like a heart monitor, when things are not right, the alarms and signals all go off
to ensure everyone is aware help is needed. If everything is within expected parame-
ters, the data doesn’t go further than the monitor’s display. For example, Elastic Beats
can generate heartbeat log events, such as 2017-12-17T19:17:42.667-0500
INFO [metrics] log/log.go:110 Non-zero metrics in the last 30s:

147Application of filters
beat.info.uptime.ms=30004 beat.memstats.gc_next=5046416. This is prob-
ably a log message that doesn’t need to be retained, or if retained, does not need to be
distributed and is instead logged locally for a short period.

 If we are getting log events indicating all is well and unlikely to yield any more
insight, do we need to propagate the events to downstream systems? This will mean it
will be easier to see significant events. By filtering out mundane information, we are
also controlling costs. Physical infrastructure has a maximum amount of data it can
transmit before we need more hardware. We pay for public network capacity based on
bandwidth (i.e., data volume), so consuming the bandwidth distributing every “heart-
beat” log event can accumulate cost with little gain—more networking hardware,
more bandwidth, and so on. Over the last couple of years, it has been observed that
the cost of data egress from cloud platforms can influence commercial decisions. In
other words, pushing data out of one cloud to another location costs money, and that
cost can become significant. But we don’t want to cut off that one event in a hundred
that is important and worth transmitting.

6.1.2 Spotting the needle in a haystack

Filtering can be used to isolate those innocuous-looking events that are a warning of
more significant problems to come. These occur when someone has wrongly classified
what should be a warning log event as informational or even debug. The ability to
identify and flag these kinds of events is important when you can’t get the logging to
generate more helpful events (e.g., off-the-shelf software, legacy solutions that no one
wants to touch).

6.1.3 False urgency

Sooner or later, we will encounter a situation where a warning or error log occurs, and
the issue escalates up the management chain. Lots of “shouting” starts about a prob-
lem that must trump all other priorities to be fixed. But ultimately, the consequences
of the issue and its impact don’t require everything to be dropped; yes, an error
occurred, but it isn’t the end of the world. What has been detected is a problem that
could have been handled by routine day-to-day operations tasks. With filters, we can
define rules that can help us separate the “world will end” events from the “please fix
me when you log in and direct the information accordingly” events.

 Even better, if there are known operational steps to address an issue, we add the
reference to the remediation process to the log event. So when the alerts are trig-
gered, they’ve got the remediation information linked to them. Unnecessary escala-
tion is avoided, actions that can compound a problem aren’t taken, and so on.

6.1.4 Releveling

The previous application is when a log event can be generated and tagged with a log
level higher than it should be—for example, Error instead of Warning or Info. As
before, if people can’t or won’t fix the issue, then we can modify the log event as it gets
passed on. This is done by manipulating the log event to change the record’s log level

148 CHAPTER 6 Filtering and extrapolation
to a less alarming and more accurate classification. Alternatively, tagging the log event
with additional attributes with commentary shows this is a known incorrect log level.

6.1.5 Unimplemented housekeeping

As long as software development exists, business drivers will prioritize functional capa-
bilities over nonfunctional ones such as housekeeping (archiving or deleting folders
of processed files, etc.). When this is a characteristic of a legacy application, it is not
unusual for people to fear changing anything to improve the system, such as cleaning
up after itself. The typical result is that routine support processes are done manually,
which we may then automate via scripts and just have to run in certain circumstances.
Filtering out the indicators in logs alerting that housekeeping tasks need to be done
(e.g., Fluentd capturing log events relating to disk space, for example) is a small step
that triggers the execution of housekeeping tasks.

6.2 Why change log events?
Some filters allow us to modify log events. Why should we consider this, and how can
this capability help us? Some might argue that modifying log events is also tampering
with the “original truth,” so should we even allow it?

6.2.1 Easier to process meaning downstream

When we process log events, we often need to extract more meaning from the logs
provided. The log event is unstructured, semi-structured, or even structured but
needs to be reparsed to a suitable data structure (e.g., reading JSON text files). The
structure can help filter, route, create new reporting metrics, and measure using the
log event data. Once we have invested the effort to extract meaning from a log event,
why not make that easy to reuse downstream? In other words, apply the principle of
DRY (don’t repeat yourself). So, if you have extracted meaning and structure, don’t
make people do it again later. Simply pass the derived information with the log event.

6.2.2 Add context

To process an event correctly, we may need additional context. When trying to diag-
nose why an application is performing poorly, it isn’t unusual to look at what else was
happening around the events—for example, did the server have a large number of
threads running? Sometimes it is easy to link this contextual data to the log event. The
easiest way to associate additional context is to add it to the log event.

6.2.3 Record when we have reacted to a log event

We have already referred to the possibility that we initiate some sort of action due to a
log event. In retrospect, it can be helpful to understand which event(s) triggered an
action. Adding information to the triggering log event can be a more straightforward,
acceptable action rather than correlating separate log events later to show cause and
effect.

149Why change log events?
6.2.4 Data redaction/masking

When we are developing software, it is often helpful to log an entire data object being
processed during the development phase. This isn’t a problem during development
and testing, as it’s just test data. But if the data includes sensitive information, such as
data that can be used to identify individuals (PII, personally identifiable information),
as in health care or credit card use, for example, it can become a challenge. Any part
of an IT system that handles such data becomes subject to a lot of legal, legislative,
and contractual technical requirements. Such requirements come from international,
national, and regional data laws such as

 GDPR (General Data Protection Register)
 HIPAA (Health Insurance Portability and Accountability Act) and other health

care legislation
 PCI DSS (Payment Card Industry Data Security Standard)

You can add to this list that many companies may also wish to treat some financial
accounting data with the same sensitivity. The obvious solution would be to fix the
software so it doesn’t log the data or limit the impact of such logging, limiting the
“blast radius” of needing to apply extra extremely stringent controls, security mecha-
nisms, and reporting. Fluentd provides an excellent means to address this:

 Remove or redact/mask the data from the logs. Masking is typically done by
replacing sensitive values with meaningless ones. Redaction is removing infor-
mation from sight by either deleting it from the communication, or simply
never making it visible in logs, and so on. We can see data being masked on pay-
ment card receipts with asterisks or hash characters replacing your card num-
ber. Any approach to masking can be used as long as it can’t be reversed to get
back the original data.

 Co-locate Fluentd with the log source so that the amount of infrastructure sub-
ject to the elevated data security requirements is limited. The smaller the scope
of elevated security, the smaller the “attack surface” (i.e., the smaller the num-
ber of servers and software components that may be subject to malicious attacks
attempting to get the data, the better).

 Connect the main application’s logging directly to Fluentd using RPC (remote
procedure call) techniques rather than log files, so the log events are transient.
We will see more on directly connecting applications to Fluentd in chapter 11.

Security not as a cost
It would be easy to read into what has been said here, concluding that security is an
undesirable cost, and avoiding security is good. The reality is that today, security
should be deemed an asset, and the application of security is a positive selling point.
SaaS solution providers like Oracle do use their security as a virtue. The cost impact
of data loss, particularly when the level of impact is not limited or understood, can

150 CHAPTER 6 Filtering and extrapolation
6.3 Applying filters and parsers
In this section, we’ll look at the practical configuration and use of filters and parsers to

 Manage the routing of log events
 Manipulate log events

To manipulate log events, we may need to impose or extract some meaning from
them. To extract that meaning, we need to parse unstructured log event content, so
we will need to touch upon the use of parsers.

6.3.1 Filter plugins

Filter as a directive is like a match, in so far as the directive can include tags in the dec-
laration (e.g., <filter myApp> or <filter *>). The difference is that if the log
event complies with the filter expression, rather than the log event being consumed, it
can pass into the next part of the configuration without resorting to a copy action, as
illustrated with the match directive in chapter 3.

 Within the Fluentd core are the following filter plugins:

 record_transformer—The most sophisticated of the built-in filters; also provides a
diverse set of options for manipulating the log event.

 grep—Provides the means to define rules about log event attributes to filter
them out of the stream of events. Multiple expressions can be provided to
define cumulative rules.

 filter_parser—Combines the capability of parser plugins with the filter.
 stdout—We have seen this plugin at work. Every event is allowed to pass through

the filter but is also written to stdout.

Fluentd comes with a core set of filter plugins; in addition to this, there are
community-provided filter plugins. Appendix C contains details of additional plugins
that we believe can be particularly helpful.

6.3.2 Applying grep filters

The grep parser allows us to define a search expression and apply it to a named attri-
bute in the log event. For example, we could extend our routing such that the events
with log entries explicitly refer to computers in the text. This is the basis of the follow-
ing scenario; while a computer reference is relatively meaningless, we could easily
replace or extend it with a reference to a cataloged error code. For example, a Web-
Logic notification starts with BEA-000.

(continued)

easily outweigh the savings perceived of not having invested in securing against the
risks. But the smaller the potential blast radius, the better. These days, a breach
(malicious or accidental) is a matter of when, not if. The adage “assume the worst,
hope for the best” is very appropriate.

151Applying filters and parsers
 While we are demonstrating the use of the filter, let’s use a different output plugin.
Chapter 1 introduced EFK (Elasticsearch, Fluentd, Kibana), so we’ll bring Elastic-
search into the mix to show more of this stack (appendix A provides instructions on
how to install Elasticsearch). The Fluentd configuration we’re going to use is shown in
figure 6.1.

Figure 6.1 Application of filter and Elasticsearch as an output

We can apply a filter using the grep plugin, which will execute a regular expression
whose result can be treated in a binary manner. The result will determine whether the
log event is to be stored. This is all done by setting the directive to be regexp. We
need to define the key, which is the log event’s element to examine. In this case, we
want to look at the core log event called msg. Once we’ve identified where to look, we
need to provide a pattern for the regex parser to look for. Bringing this together with
the attribute name gives us

<regexp>
 key msg
 pattern /computer/
 </regexp>

With the filter defined, we need to send any matching log events to our installation of
Elasticsearch. We do this using the match directive and a @type value of elastic-
search. The Elasticsearch plugin is incredibly configurable, with over 30 attributes
covering behaviors ranging from caching control to determining how the log events
are populated and indexed in Elasticsearch, and so on. We’re not going to cover all of
these, as we’d end up with a book explaining Elasticsearch, and for that, you’d be bet-
ter off with Elasticsearch in Action by Radu Gheorghe, et al. (www.manning.com/
books/elasticsearch-in-action); however, we should touch upon the most common
attributes that you’re likely to encounter.

Match * + Filter

Basic-file.txt

Elasticsearch

Stdout

http://www.manning.com/books/elasticsearch-in-action
http://www.manning.com/books/elasticsearch-in-action

152 CHAPTER 6 Filtering and extrapolation
 As with the MongoDB connection, details must be provided to address the server
(attributes host and port). Access credentials are likely to be required (user and pass-
word). As we haven’t set up any such restrictions using the out-of-the-box deployment,
we don’t need to provide them. The scheme or type of communication, such as http or
https, will dictate whether additional details will be needed (e.g., where the certificates
to be used can be found); end-to-end SSL/TLS is always good security practice.

 Once the means to connect to Elasticsearch have been defined, we need to declare
where inside Elasticsearch the data should go (index_name) and what data to pro-
vide, such as whether to include the tag value in the core log event record
(include_tag_key, tag_key). Remember, we also set how the data being passed is
being represented. With the relationship between Elasticsearch and Logstash, it
should come as no surprise that the plugin allows us to tell Fluentd to present the log
events as Logstash would set the attribute logstash_format to true.

 The Elasticsearch plugin also leverages helper caching plugins; thus, we need to
consider how this can impact the behavior. For ease and speed, let’s use a memory
buffer being set to flush every 5 seconds by using the attribute flush_interval 5s.
This configuration can be seen in the following listing.

 <filter *>
 @type grep
 <regexp>

 key msg
 pattern /computer/
 </regexp>
 </filter>

<match *>

 @type elasticsearch
 host localhost
 port 9200
 scheme http

 reload_on_failure true
 index_name fluentd-book

 logstash_format false

 include_tag_key true

 tag_key key
 <buffer>
 flush_interval 5s
 </buffer>
</match>

Listing 6.1 Chapter6/Fluentd/file-source-elastic-search-out.conf

Allows the filter to
process any tag

Defines the type of filter

Defines the field to apply the regular
expression to and then the expression,
which needs to yield a binary result

All log events that have passed through
the filter will now be processed by this
match configured to write to file.

While we do not explicitly need to set the scheme, as it defaults
to http rather than https, it is worth including it to remind
ourselves of the low-security threshold in use. You could also
include the username and password as commented out as well.

Defines the index to be used; if
unspecified, it will default to Fluentd

Tells Elasticsearch to add to the named index,
rather than it creating new ones using a timestamp
name, as is the case for Logstash connectivity

Shows we’re telling the Elasticsearch plugin to
include the log event tag in the data to be stored,
giving it the name key, as shown in the next attribute

153Applying filters and parsers
Let’s see the result of the configuration. As this uses a file source, we need to run the
LogSimulator as well. Assuming Elasticsearch is also running and ready, the following
commands are needed to run the example:

 fluentd -c ./Chapter6/Fluentd/file-source-elastic-search-out
.conf

 groovy logSimulator.groovy ./Chapter6/SimulatorConfig/log-
source-1.properties

We can verify the records in Elasticsearch with the UI tool by reviewing the index con-
tents, which we configured as fluentd-book. (Appendix A also covers the setting up
of Elasticvue for this purpose.) You should find that the index contains the same log
events that we sent to stdout.

6.3.3 Changing log events with the record_transformer plugin

Using a filter to control which log events are processed or not based on the log event’s
contents addresses many previously described scenarios. Modifying log events to add
additional contextual information and derived values or to extract and record log
event values in a more meaningful and usable manner helps with some of the other
scenarios mentioned.

 To illustrate how this can work, we’re going to add to our log events new fields in
addition to the standard ones, specifically the following:

 A field called computer containing the name of the host running Fluentd.
 Apply a prefix to the standard message of 'processed-' to illustrate the modifi-

cation of existing values.
 The example log messages contain a JSON structure that includes a name

attribute comprising firstname and surname. This combination could be

Should filters modify log events?
The idea that we can change log events can be a contentious subject. If you change
the original log event, are you modifying the original truth? To use a TV detective anal-
ogy, messing with the original log event is like tampering with a crime scene. Shouldn’t
Fluentd handle log events like the chain of custody for evidence? Generally, I would
agree that the original log event should be retained unmodified. However, we often
need to associate additional information to a piece of evidence (extending our analogy,
a ballistics report would be attached to the relevant weapon). Rather than trying to
keep the details separate, careful attachment of the details can be more helpful.

In the real world, the guidance we use is to keep a copy of the log event unaltered,
with one exception—information security. If you need to mask or remove data, con-
sider keeping an unadulterated copy somewhere safe that can be traced back to if
necessary. Then any manipulated, extracted values can be kept along with the origi-
nal. You might consider adopting a naming convention, so when those elements of a
log event are manipulated, constructed, or enriched, the origin is clear.

154 CHAPTER 6 Filtering and extrapolation
considered making the log data sensitive to PII rules, as it references an identifi-
able individual. We will tease out the firstname and create a new log event attri-
bute called from and delete the surname to address this. There should be no
reason for the new attribute from; it does allow us to see how to copy elements.

Our log event message is structured and, when received, will look like

{"msg": "something about computers",
 "name":
 {
 "firstname": "Computer",
 "surname": “AI”
 },
 "age": 404
}

RECORD DIRECTIVE

The essential part of the filter definition is the record directive. Each line within the
directive represents a field name and a field value. For example, if we wanted to add a
new field called myNewField with a literal value of aValue, then we would configure
the directive as follows:

<record>
 myNewField aValue
</record>

Just incorporating a design-time literal value isn’t going to provide much value. To tell
Fluentd that it needs to process a derived value, we need to wrap the expression
within ${}. We can reference the other fields within the log event by placing the
name within the brackets (e.g., ${msg}). To access the log event message, we use the
notation record["<field name>"] (e.g., record["msg"]). Record is a reference
to a function made available to use.

 Within the characters ${}, we are being allowed to use a small subset of Ruby
objects, functions, and operators, including some provided by Fluentd. To allow this, we
can include an attribute within the filter attribute enable_ruby; when this is set to
true, it will allow the full power of the Ruby language to be used. This is defaulted to
false, as it creates more work for the parser, such as ensuring that it can resolve depen-
dencies, and so on; to keep things efficient, it’s best not set to true unless necessary.

ACCESSING NESTED JSON ELEMENTS

To obtain the firstname element, we need to navigate the JSON structure within the
message part of the log event. This can be done with either the standard record
method—for example, record["name"]["firstname"]—which would traverse to
the firstname as a child attribute but requires the attribute to be present. This can
be a problem if part of the structure is optional, as any part of the path that is missing
will trigger a run-time error. The alternative approach is to use a function called dig
provided by the record operator. The syntax is remarkably similar; however, a nil
result is provided rather than an error if the path does not exist. The dig function is

155Applying filters and parsers

Mo
ms
record.dig ("msg", "name", “firstname”). This does require the enable_ruby to
be set to work.

JSON ELEMENT DELETION

The record_transformer includes several attributes that allow the control of the
composition of the log event elements. This can be done by using optional attributes
in the configuration for listing elements to delete (remove_keys) or defining which
elements (other than mandatory ones like tag) should remain (keep_keys). This
includes the notation to traverse the JSON structure (which also works in other parts
of the plugin). The order of attributes in the configuration is important. In our exam-
ple, the remove_keys attribute needs to appear after the record directive; other-
wise, we will find ourselves without an element to copy. To delete specific elements
within a structure, we use the attribute remove_keys with the path through the
object, such as $.name.surname. In the notation, $ (dollar sign) effectively rep-
resents the root of the log event. This is then followed by the attribute name using dot
notation to traverse the structure. This does go back to the previous point of whether
we can trust the path to exist. A single remove_keys attribute can be extended to
more elements by making it a comma-separated list; for example, remove_keys
$.name.surname, $.name.anotherName, $.somethingElse.

VALUE REPLACEMENT

The record operator includes a function that allows us to replace values in JSON ele-
ments. This is necessary for masking data and correcting values, such as the error mes-
sage level, as described in section 6.1.4. This is done by referencing the element name
and then invoking the function gsub followed by the parameters containing the value
to replace and its replacement. For example, in our data set, the msg contains some
occurrences of 'I'. Using the expression ${record["msg"] .gsub('I', 'We')},
the use of 'I' can be replaced with 'We'. In the following listing, we have included
this expression. Rather than replacing the msg with the substituted string, a new attri-
bute has been added to make the comparison easy.

<filter *>
 @type record_transformer
 enable_ruby true
 <record>
 computer ${hostname}
 from ${record.dig("name", "firstname")}
 msg processed ${record["msg"]}
 msg_gsub ${record["msg"].gsub('I ', 'We ')}

 </record>
 remove_keys $.name.surname

</filter>

<filter *>
 @type stdout

Listing 6.2 Chapter6/Fluentd/file-source-transformed-elastic-search-out.conf

Enables Ruby to support the record.dig
approach of locating values

Adds an attribute using the
 known contextual values

Creates a new value by finding a
sub-element and retrieving its valuedifies the

g element
by adding

textual
content

Performs the string substitution
of 'I' with 'We'. A white space
character is included to avoid
accidentally picking up
characters, in other words.Deletes the surname element to ensure

we’re not at risk with PII considerations

156 CHAPTER 6 Filtering and extrapolation
 <inject>
 worker_id_key

 </inject>
</filter>

Let’s see the result of the configuration. As this makes use of a file source, we need to
run the LogSimulator. So, to run the example, the following commands are needed:

 fluentd -c ./Chapter6/Fluentd/file-source-transformed-elastic
-search-out.conf

 groovy logSimulator.groovy ./Chapter6/SimulatorConfig/log-
source-1.properties

Before starting the UI to review log events stored in the fluentd-book-
transformed index in Elasticsearch, the changes from the record_transformer
and the inject directive should be visible on the console because of the stdout filter.

PREDEFINED VALUES

The record_transformer also helps by providing some predefined values, including

 Hostname—The name of the computer host
 Time—The current time
 Tag—The current log event tag

With the Ruby flag enabled, we can extend the ability to get and set values to access
any public class methods by using the ${}. For example, using a method in a class
would use "${#<class>.<method>}" where <class> is the name of the Ruby class
and <method> is the corresponding public class method. "#{Dir.getwd}" will
retrieve the current working directory.

6.3.4 Filter parser vs. record transformer

The record_transformer plugin provides us with the means to work with the log
event as a JSON payload. If the log event is simply a single block of text, we will likely
need to parse it to obtain meaningful values. In chapter 3, we introduced the use of
parsers to extract meaning out of log events. The parsers we saw, like regexp, also
work with the filter directive. As a result, where a regexp expression defines the
parts of the string to capture as named values, the parser’s behavior is extended such
that the named elements will be made top-level log event attributes.

 Let’s take the same expression (included in the following listing) and put it into
the context of the filter directive. The essential difference here is that we need to
tell Fluentd which log event attribute to process before the parser definition. This
means we can target a specific part of a log event. We can also use consecutive filters to
break down nested structures if we wanted. In listing 6.3, we expect the output to
result in additional attributes called time, level, class, line, iteration, and
msg. Like the record_transformer plugin, we can determine whether the log event
attribute that is processed is retained or not using the reserve_data configuration

The inject directive shown here allows the worker_id
for the process to be added to the log event. The
inject directive allows some different useful values to
be added to provide additional context.

157Extract to set key values
element. We can make the control a bit more nuanced by adding remove_key_
name_field and setting it to true; Fluentd will remove the original attribute only if
the parsing process was successful.

<filter>
 @type parser
 key_name log
 reserve_data true

 <parse>
 @type regexp
 expression /

(?<time>\S+)\s(?<level>[A..Z]*)\s*(?<class>\S+)[^\d]*(?<line>[\d]*)\-
(?<iteration>[\d]*)\)[\s]+\{"log":"(?<msg>.*(?="\}))/

 time_format %Y-%m-%d--%T
 time_key time
 types line:integer,iteration:integer

 keep_time_key true
 </parse>
</filter>

6.4 Demonstrating change impact with stdout in action
As the application generating logs already needs to be securely locked down to limit
the impact of recording this information, the Fluentd installation will be collocated
with the source. As manipulating log events is discouraged, the decision has been
made to

 Add to the Fluentd configuration so that stdout outputs show the unmodified
log event, so they can be observed in a contained but transient situation

 Allow the modified log events that are desensitized to go into Elasticsearch

Chapter6/Fluentd/file-source-transformed-elastic-search-out.conf

is the starting point for making the required changes.

6.4.1 A solution demonstrating change impact with stdout in action

You can compare your configuration modifications to our implementation of the
solution shown in Chapter6/ExerciseResults/file-source-transformed-
elastic-search-out-Answer.conf. The fundamental changes are the position-
ing of the filters with the type set to stdout.

6.5 Extract to set key values
Sometimes we need to be clever and set the primary attributes of the log event (time
and tag) more dynamically. This may be because we don’t want to have a static value as
part of the tag configuration (we typically set reflecting the source), but rather have it
set dynamically reflecting an attribute of the log event. In doing so, we set ourselves

Listing 6.3 Chapter6/Fluentd/rotating-file-read-regex.conf—parse extract

Identifies the log event
attribute to parse

Tells Fluentd to retain the existing
value so if there are more attributes,
we can retrieve them downstream

Tells Fluentd what data type the
extracted values should be, making
further transformation easier

158 CHAPTER 6 Filtering and extrapolation
up to filter more effectively with the match expressions. For example, we want the log
event tag to reflect the name of a microservice, but we’re collecting the log events
from Kubernetes-level stdout, so a single feed will reflect from multiple services. As a
result, we need to extract the value needed as the tag from the log event record.

 When it comes to the timestamp, we may wish to adjust it to a time value in the log
event, reflecting when the event occurred rather than when Fluentd picked the log
event up. This may be necessary, as there is some latency between the event genera-
tion and Fluentd getting it.

 The extract feature allows us to perform such a task. Unlike our filters and pars-
ers, the extract directive can be incorporated into the source, filter, and match
(out) plugins such as exec. The extract mechanism is very flexible in its use, but it is
limited to only manipulate the tag and time log event attributes.

 The extract parameters allow us to declare how to interpret the time value. The
value to be used could be the time represented as seconds from epoch (midnight 1
Jan 1970 [UTC]). For example, 1601495341 is Wednesday, 30 September 2020
19:49:01. Another possible format can be the ISO 8601 standard (more at www.w3
.org/TR/NOTE-datetime).

 Let’s consider a simple example. We should set the tag using the value obtained by
the exec source plugin. As with our previous use of exec, we’ve chosen a simple com-
mand that is easy to use or adapt to different OSes. We also get a structured object, so
there are no distractions from needing to parse the payload before retrieving a value.
The source directive needs to set the tag attribute to a value that won’t come from
our exec plugin.

 To ensure we can see the impact of the data changing, let’s set the run_interval
to 10 seconds. This means the same file will be captured as the input but gives us time
to save changes to the file between executions. Try changing the file when running
the configuration. We’ve told the parser to ensure that the exec command is then
treated as a JSON object.

 Finally, we have included in the extract the tag_key attribute; this tells Fluentd
which log event element should be retrieved and used to set the tag. We copy the con-
tents of the log event element to another tag to preserve the original log event record.
This attribute is called keep_tag_key, and we’ve elected to retain the captured pay-
load unmodified. This is demonstrated in the following listing.

<source>
 @type exec
 command more TestData\exe-src.json
 run_interval 10s

 tag exec
 <parse>
 @type json

Listing 6.4 Chapter6/Fluentd/exec-source-extract-stdout.conf

Keeps the source capture
iterating so we can modify the
payload and see the consequences

http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime

159Deriving new data values with the record_transformer

 </parse>
 <extract>
 tag_key msg
 keep_tag_key true
 </extract>
</source>

<match *>
 @type stdout
</match>

To run this configuration, we need only run Fluentd with the command fluentd -c
./Chapter6/Fluentd/exec-source-extract-stdout.conf. Once Fluentd is
running, change the value in the TestData\exe-src.json file and see how the
change impacts the tag.

6.6 Deriving new data values with the record_transformer
With the ability to exclude log events from subsequent actions and extract specific val-
ues from log events, we can now consider the possibility of generating derived values
and metrics. For example, we may want to understand how often errors occur, or
which components or even which parts of the codebase are the source of most errors.
While generating such measures using Elasticsearch or Splunk is possible, they are
used sometime after the event analysis. If we want to be more proactive, we need to
calculate the metrics more dynamically as the events occur.

 In chapter 1, we introduced the idea that monitoring covers both textual-based
contents and numeric metrics. Both log events and metrics are often, but not always,
used within a time-based context (log events are seen in time order, and metrics often
measure details such as a value over a period, such as CPU usage per second). Flu-
entd’s core doesn’t have the capabilities to generate time series–based metrics. How-
ever, some plugins written by the community, including the contributors to the core of
Fluentd, can provide some basic numeric and time-series measures. As we’ll see later,
there are ways to address time-series data.

 Time-series data points are not the only valuable numeric data that could be help-
ful. For example, how an alert is signaled may be a function of the transaction value
(unit value × quantity) or how long or how many times a system has been retrying and
failing with a database connection (current time – original error timestamp). The
record_transformer can generate numeric metric values by taking data values and
performing mathematical operations.

 Using our example data set, we could consider replacing the age with the birth
year, as the expression would be the current year minus age. For example:

 <record>
 birthYr ${Date.today.year - record['age']}
 </record>

While this may not be a very real-world example, it does show the art of the possible.

The extract
directive Identifies the name of the element

to use as the tag going forward

Indicates we want to leave the retrieved
log event content unmodified

160 CHAPTER 6 Filtering and extrapolation
NOTE Quoting attributes needs to be done with care. If wrongly used, you
will experience odd behaviors, where some log event attributes are found and
others are not. When using the record['xxxx'] approach, you need to use
single quotes. Double quotes are necessary when using the dig method—that
is, record.dig("xxxx").

6.6.1 Putting the incorporation of calculations into a log event
transformation into action

Some people hold the view that adopting birth years is less personal than age. This
means you’ve been asked to amend the logged data that is stored downstream. The
case has been made that the birth year is added, and the age attribute is removed. The
Chapter6/Fluentd/file-source-transformed-elastic-search-out.conf

configuration file has been identified as the starting point to incorporate the neces-
sary changes. The same test source (./Chapter6/SimulatorConfig/log-source
-1.properties) can be used to exercise the configuration. To make it easy to iden-
tify output from this scenario, change the index_name in your match configuration.

ANSWER

Our implementation of the configuration can be seen in Chapter6/Exercise-
Results/file-source-transformed-elastic-search-out-Answer2.conf. The
essential changes are the inclusion of birthYr ${Date.today.year - record
['age']} in the record directive and after the remove_keys $.age directive. The
results can be examined in the contents of Elasticsearch using the UI as previously
described.

6.7 Generating simple Fluentd metrics
Fluentd has an excellent partner project under the control of the CNCF in Prometheus
(https://prometheus.io/), whose role is to handle and create metrics-based data. Pro-
metheus is typically also associated with Grafana for the visualization of such data. Pro-
metheus and Grafana are associated with microservices. Like Fluentd, there aren’t any
real constraints or reasons for not using such tools outside of a microservice ecosystem.

The partnership of Fluentd and Prometheus
Given the mention of Prometheus, it is worth seeing how Fluentd can fit in with Pro-
metheus’s architecture and broader metrics and monitoring ecosystem. As the fol-
lowing figure shows, Fluentd can relate to Prometheus at several points.

As the figure shows, Fluentd has several possible relationships with Prometheus,
covering

 A data feed into the Push Gateway as a source from which Prometheus can
calculate metrics.

 A feed of Fluentd internal metrics in a Prometheus format ready to be pro-
cessed by the server (no preparation step needed from the Push Gateway).
This is achieved using the monitor_agent plugin.

 A channel for recording alerts for metrics via the Alert Mgr.

https://prometheus.io/

161Generating simple Fluentd metrics
Prometheus’s value lies in processing event series data and extracting and providing
metrics data. If we can easily avoid sending every log event to Prometheus (or any
other tool) to calculate basic metrics, there is an obvious case for not doing it. After
all, why pass all this data around? As previously mentioned, there are community
plugins to support time-series measures. The currently available plugins we think are
worth considering for these kinds of requirements are

 fluent-plugin-datacounter (http://mng.bz/voX7)
 fluent-plugin-numeric-counter (http://mng.bz/4j9w)

Both plugins work in a similar fashion. The data counter will count log events based
on matches to regular expressions. The numeric counter is looking to apply numeric
meaning to the values. For example, we could use the numeric counter to count log

Prometheus architecture and how Fluentd can relate to it

The Prometheus plugin for Fluentd (installed with fluent-gem install fluent-
plugin-prometheus) provides several measure options. The Prometheus plugin
allows us to create metric values in the filter and match directives.

More about the Prometheus plugin can be found at https://github.com/fluent/fluent-
plugin-prometheus, and information about Prometheus can be found at https://
prometheus.io. There are also several books on the subject, such as Manning’s
Microservices in Action by Morgan Bruce and Paulo A. Pereira (2018) (www.manning
.com/books/microservices-in-action), which can also help.

Prometheus server

TSDB HTTP server

Storage Prometheus
UI

Grafana

API clients

Exporters

Prometheus
alert mgr

Exporters

Exporter
Fluentd

Email

Other

External process
push
Fluentd process

Service discovery

File AD

Prometheus push
gateway

Kubernetes Fluentd

Retrieval

https://github.com/fluent/fluent-plugin-prometheus
https://github.com/fluent/fluent-plugin-prometheus
https://prometheus.io
https://prometheus.io
http://www.manning.com/books/microservices-in-action
http://www.manning.com/books/microservices-in-action
http://www.manning.com/books/microservices-in-action
http://mng.bz/voX7
http://mng.bz/4j9w

162 CHAPTER 6 Filtering and extrapolation
events if an event attribute has a value in the range of one to ten. Both count over a
defined period and emit log events based on the occurrences.

 For instance, in our previous illustration of filtering, we isolated log events that
referred to the word computer in the msg attribute of the event. We could change this
to record how many log events every minute include a reference to computer, rather
than filter these log events in or out.

 In listing 6.5, we have amended the configuration so that the log event’s element to
examine is msg, as specified by the count_key attribute. We’ve only defined a single
expression using pattern1 and used count_interval using the standard Fluentd
notation as to the duration over which to count—in this case, 1 minute.

<match *>
 @type datacounter
 @id counted
 tag counted
 count_key msg
 count_interval 1m
 aggregate all
 output_messages yes
 pattern1 p1 computer

</match>

<match *>
 @type elasticsearch
 host localhost
 port 9200
 index_name fluentd-book-counted
 scheme http
 logstash_format true
 reload_on_failure true
 include_tag_key true
 tag_key tag
 <buffer>
 flush_interval 5s
 </buffer>
</match>

Typically, we would not expect a match directive to allow any events onward without
using a copy plugin. However, as the plugin utilizes the underlying emitter helper
plugin, it can consume the matched log events and emit new events to be consumed
downstream. To run this configuration, we need to install the fluent-gem by executing
the command fluent-gem install fluent-plugin-datacounter.

 The way threads and timing are handled within the plugin means that while there
are inbound log events, the calculated values are not written to Elasticsearch. As a
result, depending on the timing, you might not see the metrics written immediately.

Listing 6.5 Chapter6/Fluentd/file-source-counted-elastic-search-out.conf

Defines the match directive
to use the datacounter plugin

Tells the plugin which element
of the log event to examine

Defines the period over
which we are counting events

By providing a numeric sequence of
patterns, we can include the individual
patterns.

file:///C:\personal-docs\Dropbox\Fluentd%20-%20Unified%20Logging%20Book\book\C6%20-%20filtering%20and%20extrapolation\fluent-plugin-datacounter

163Summary
 As with the previous Elasticsearch scenarios, it is easier to see what is stored by
changing the index name; for example, fluentd-book-counted. Assuming Elastic-
search is ready and running, we can run the scenario with the following commands:

 fluentd -c ./Chapter6/Fluentd/file-source-counted-elastic-
search-out.conf

 groovy logSimulator.groovy ./Chapter6/SimulatorConfig/log-
source-1.properties

6.7.1 Putting log event counting into action

The LogSimulator provides the means to set and change the rate at which log events
are played through. Try changing the count_interval in the Fluentd configuration
file and altering the LogSimulator configuration to send the log events through at dif-
ferent speeds (SimulatorConfig/log-source-1.properties). Add a pattern to
the datacounter to locate occurrences of Unix in the message.

ANSWER

The changing of the LogSimulator speed will result in changing numbers of log
events being counted. Changing the period of the count is varied by modifying the
count_interval attribute in the configuration file. The second pattern defined in
the match directive should look like pattern2 p2 Unix.

Summary
 Fluentd filters can isolate specific log events that need actions to be triggered,

such as executing a housekeeping script.
 The application of record_transformation in a filter creates the possibility

of modifying events to add, remove, and mask the content, including a look at
cases as to why it helps to modify log events.

 Applying Fluentd transformation plugins to remove and mask sensitive data in
log events enables us to limit the impact of requirements to satisfy regulations
(from additional auditing to additional work to establish a higher level of secu-
rity configuration).

 Fluentd provides the means to navigate JSON data structures, such as a trans-
formed log event payload. As a result, we can apply more intelligence to event
handling. For example, if a log event’s customer attributes identify a high-value
customer, we could also signal the CRM system in addition to signaling Ops.

 The tag, time, and record values of an event can be manipulated. The extract
and inject features can ensure they reflect meaningful values—for example,
changing the tag to reflect the log event record so routing and filtering using
tags can be more dynamic.

 There are pros and cons of manipulating log events, from impacting an accu-
rate record of what happened or having meaningful log data for downstream

164 CHAPTER 6 Filtering and extrapolation
use. Understanding the potential applications of the logs can help us deter-
mine the best course (e.g., use in possible legal actions needs unaltered logs).

 Fluentd can play several roles in a CNCF’s Prometheus deployment, from feed-
ing specific events and their event attributes to Prometheus to capturing the
Prometheus output data and assisting in monitoring Prometheus.

Part 3

Beyond the basics

In Part 2, we worked through the core features, from source and matching
directives to filtering, routing, and log event transformation and manipulation.
We also saw some common sources and targets, from log files to Elasticsearch,
MongoDB, and Slack. With this, we have enough knowledge to develop monitor-
ing solutions to address many needs. But eventually, we will find ourselves need-
ing to look beyond the basics.

 We have made references to Cloud Native, Docker, and Kubernetes through-
out the book but have not invested too much in the specifics of configuring Flu-
entd into these environments. This is mainly because it is worth appreciating that
Fluentd is more than just a utility for Kubernetes. Before we specifically address
logging with Docker and Kubernetes, we should first handle how Fluentd can
scale, as this will inform aspects of how we can support containerization.

 When we look at Docker and Kubernetes, we will address how Fluentd sup-
ports containerized applications and how we capture the log events from these
technologies and the challenges they can bring.

 Finally, we take on the challenge of what to do when existing plugins can’t
help us deal with esoteric or archaic applications or platforms with their custom
ways of exposing data to be logged. Perhaps it is an application with an overly
complex data structure, or maybe we need a custom parser to process it effi-
ciently instead of using a regular expression. Maybe the only way to get log
events is to call an application API. Whatever the problem, we need to develop
our own plugins. So we’ll build a custom plugin to understand how to address
such a problem and reveal the heart of Fluentd’s extensibility.

166 CHAPTER

Performance and scaling
In previous chapters, we worked with just a single Fluentd instance. Still, we live in
a world of distribution, virtualization, and containerization, which typically needs
more than a single instance. In addition to distribution considerations, we need to
support elasticity through scaling up (adding more CPUs or memory to a server to
support more processes and threads) and scaling out (deploying additional server
instances to have workload distributed via load balancing) to meet fluctuating
demands (along with the reverse scale down and in). Enterprises demand resil-
ience to handle failure and disaster scenarios. To provide good availability, we

This chapter covers
 Tuning Fluentd to maximize resources using

workers

 Deploying Fluentd with fan-in and -out patterns

 Using deployment patterns for scaling

 Implementing high availability and deployments

 Using Fluentd with microservice patterns
167

168 CHAPTER 7 Performance and scaling
should at least have an active server and a standby server deployed, with both servers
using configuration files that are kept synchronized. Configuration synchronization
makes it possible to start up the standby server on short notice if the first instance fails
(active-passive). In the more demanding cases, active-active deployments are needed
with servers spread across multiple data centers; this is very conventional as a deploy-
ment pattern. A single server solution in the enterprise space is a rarity.

 This chapter will explore the techniques and features available to let us scale Flu-
entd up using worker processes and resource management, and scale out with multi-
ple Fluentd nodes. With scaling out, we can also factor in increased options for
resilience. As Fluentd needs only a small footprint, we can implement some of the
techniques and features to scale Fluentd on our desktop.

7.1 Threading and processes to scale with workers
One of the ways we can scale a Fluentd deployment is to use its ability to spawn addi-
tional child processes (workers) to exploit the fact that modern machines have multi-
ple CPU cores available to run concurrent processes. Before configuring any scaling,
it is vital to understand how Fluentd is impacted by its implementation with Ruby and
how Ruby handles threads. Ruby has a Global Interpreter Lock (GIL), which means that
while a process is not I/O bound, it will block other jobs (see appendix E for more
detail on GIL and Ruby threading). Therefore, any computationally intensive tasks
are best performed in separate OS processes and use the OS to provide more effective
resource sharing. Some plugins do this for you (e.g., the AWS S3 plugin when using
gzip compression), but not all, so we must be very mindful of this for performance
optimization. Without that separation, the Fluentd process will effectively be locked
until the process has completed or released the thread. Generally, Fluentd as a vehicle
for routing log events is more likely to be I/O bound—whether that I/O is network-
based or is ultimately storage (even if that is indirectly through physical storage for a
database of some sort).

 Fluentd addresses the thread locking constraint by launching separate processes,
known as workers. By default, Fluentd has one worker and one controller process, but
we can configure the number of workers. This effectively takes advantage of the fact
that the OS typically allocates processes to CPUs and swaps between processes to give
them a fair proportion of the CPU’s compute capacity. As shown in figure 7.1, each
worker will pick up and execute source, filter, and match directives, depending
upon the configuration.

NOTE When there are more processes than CPU cores, the processor will
swap between the processes. More processes will mean more swapping. The
activity of swapping requires a small amount of effort. If you have too many
running processes, you’ll spend more effort swapping processes than per-
forming any meaningful work.

169Threading and processes to scale with workers

Figure 7.1 Default deployment and how new workers are managed

7.1.1 Seeing workers in action

The best way to understand the behavior of worker processes is to configure an exam-
ple and see what actually happens. The most straightforward way to illustrate workers
is to create a variation of the Hello World configuration. We will establish multiple
workers and attribute to the workers the application of the dummy source plugin.
Using the dummy source plugin means the source doesn’t have I/O dependencies
impacting behavior. The relevant match directives then push the output to stdout.
Using a filter, we can inject into the log event which worker was involved in the pro-
cess, building on what we learned in the previous chapter.

 Let’s define how many workers we will use and add this into the system directive
alongside the log_level attribute we have been setting. This is done by setting the
attribute workers in the system directive.

 To define explicitly what each worker does, we wrap the directives in a directive of
<worker x> where x represents the numeric worker ID that will execute the directives.
For example, <worker 2> would use the third worker (IDs start at 0). If we want to
effectively allocate more resources (i.e., workers) to a specific set of directives, we can
specify a range of workers in the directive. For example, <worker 1-3> would allocate
workers 1, 2, and 3 to perform the same activities. All workers will get directives not
assigned. So worker 0 in our configuration would process only these directives.

 In listing 7.1, we have defined four workers and have deliberately left the
subsequent directives outside of the worker configuration. The result of this is that
every worker will pick up the configuration. This means we can share a common

Worker 0

Source

Filter

Match

Default deployment

Supervisor

Worker 1

Source

Filter

Match

Worker 2

Source

Filter

Match

Worker 3

Source

Filter

Match

https://docs.microsoft.com/en-us/windows/win32/seccrypto/managing-certificates-with-certificate-stores
https://docs.microsoft.com/en-us/windows/win32/seccrypto/managing-certificates-with-certificate-stores
https://docs.microsoft.com/en-us/windows/win32/seccrypto/managing-certificates-with-certificate-stores

170 CHAPTER 7 Performance and scaling
output—but this has to be handled with care, as it can have undesirable side effects.
These side effects can range from losing events to storage corruption, such as the
problem of multiple processes trying to write to the same file. In our example, we’re
just applying a filter to extract the worker_id, add it to the log event, and send it to
stdout (console).

<system>
 log_level info
 workers 4
</system>

<worker 0>
 <source>
 @type dummy
 tag w0
 auto_increment_key counter
 dummy {"hello":"from worker 0"}
 </source>
</worker>

<worker 1-2>
 <source>
 @type dummy
 tag w1
 auto_increment_key counter
 dummy {"hello":"from worker 1-2"}
 </source>
</worker>

<worker 3>
 <source>
 @type dummy
 tag w2
 auto_increment_key counter
 dummy {"hello":"from worker 3"}
 </source>
</worker>

<source>
 @type dummy
 tag w-any
 auto_increment_key counter
 dummy {"hello":"from workerless"}
</source>

<filter *>
 @type record_transformer
 enable_ruby
 <record>
 worker_id ${ENV['SERVERENGINE_WORKER_ID']}
 </record>
</filter>

Listing 7.1 Chapter7/Fluentd/dummy-stdout-multiworker.conf—illustrating workers

Declares the number
of workers

Activities specific
to worker 0

Defines activities
for two workers

Defines a source outside of the
workers—we should see this
being picked up by all workers.

Uses a filter to add the ID of the
worker involved in that log event

171Threading and processes to scale with workers
<match *>
 @type stdout
</match>

This configuration can be started up with the command

fluentd -c Chapter7/Fluentd/dummy-stdout-multiworker.conf

Before examining the stdout console, it is worth seeing what is happening in terms of
processes. With a command console in Windows or a Linux shell, the following appro-
priate command should be run:

Windows: tasklist /fi "IMAGENAME eq Ruby.exe"
Linux: ps -ef | grep ruby

These commands will show you the Ruby processes, which will include Fluentd pro-
cesses. As a result, you should see five processes listed if Fluentd is the only Ruby solu-
tion running. If other Ruby solutions are running, we can differentiate them, as the
Fluentd processes will have identical or very nearly identical start times. The processes
are made up of four workers and one controller process.

TIP We can make processes easier to identify by using the process_name
attribute in the <system> configuration (e.g., process_name Fluentd).

With the Fluentd processes having been run for a while, we’ll want to shut things
down. This is a little more complex to do now, as we have multiple processes. For Win-
dows, this can be done with the command line taskkill /IM Ruby.exe /F, and the
Linux equivalent is pkill -f ruby as long as you don’t have any other Ruby pro-
cesses running. If you have other Ruby processes running, you’ll have to isolate the
processes and manually kill each one.

 Looking through the stdout results from having run Fluentd with the dummy
-stdout-multiworker.conf configuration file, you should be able to see that the
following has occurred (but be aware there is a level of arbitrary behavior):

 Log events with the tag w-any will appear with any of the worker_id entries.
 Logs linked to tag w0 (including "hello":"from worker 0") will only be

linked to "worker_id":"0".
 Logs linked to tag w1 (including "hello":"from worker 1-2") will only be

linked to "worker_id":"1" or "worker_id":"2".

7.1.2 Worker constraints

When using workers, there are some constraints that need to be considered. This
relates to how processes can share (or not) resources such as file handles. So if you
allocate multiple workers to a Fluentd configuration that writes to file output, the file
needs to be separated, as only one worker can use one file properly. We can solve this
by setting the file path to include the worker_id; for example, path "logs/
#{worker_id}/${tag}/%Y/%m/%d/logfile.out.

http://www.vaultproject.io
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

172 CHAPTER 7 Performance and scaling
 Sharing ports among workers can be realized when the plugin uses the server
helper plugin or when the plugin can natively handle the sharing of ports. The for-
ward plugin is an example of native port management. As each process cannot use the
same port, a reliable mechanism to overcome this and select suitable ports is needed.
When the server helper plugin is used, it will then allocate consecutive ports to each
worker. So if we had specified the use of four workers and then defined the use of a
monitor_agent plugin with a port set to 30000, then worker 0 uses port 30000, worker 1
uses 30001, worker 2 uses 30002, and so on. If you are using workers, ensure that the
ports being used are well separated. Separating the ports will avoid potential port col-
lisions because the algorithm assigns the same port to different plugin instances
across multiple workers. For example, specifying ports 30000 and then 30002 to differ-
ent plugins, but then introducing four workers, would see ports 30002 and 30003 try-
ing to be used by two different plugins.

7.1.3 Controlling output plugin threads

The threading behavior of output plugins can be controlled through the use of a
property called num_threads. This value defaults to one. Increasing the number of
threads can potentially increase the performance, as it allows context switching
between threads to occur when a thread is blocked. As a result, any in-process latency
can be used more effectively. But this won’t overcome the constraints of GIL.

 You could consider using such a configuration for output plugins where the con-
figuration distributes the workload to several different destinations, as one thread
works until it ends or has to stop for I/O. Then the next thread, not I/O bound, will
be allowed to work. This all means we gain performance—rather than waiting for the
I/O to release and the execution to continue, we swap the thread being executed to
where work can be done.

 Tuning the use of threads is difficult, as you must know how processes perform in
order to recognize the potential for threads to wait on something such as I/O. With the
thread switching overhead, there is a point at which it is more effective to wait on I/O
rather than swap threads. This can also be compounded by the potential level of pro-
cess switching at the OS level. Correctly tuning threads can often come down to run-
ning realistic workloads and measuring performance, then comparing test runs with
different threading configurations to see where performance actually starts to drop off.

7.1.4 Memory management optimization

Another area that can be tuned is the Ruby VM layer. This means tuning the garbage
collection and memory block allocation. To tune at this level, you need to have a good
understanding of the specifics of the Ruby implementation, along with tooling to help
you analyze how the configuration is impacting performance. In appendix E, we pro-
vide resources that can help with Ruby.

173Scaling and moving workloads
7.2 Scaling and moving workloads
Chapter 4 looked at the output plugins’ ability to work with buffers, which will provide
us with a means to optimize the performance around each I/O activity, particularly
with the memory buffer. Beyond buffers and the tuning of threads and workers, the
scaling options are about workload distribution. This could be achieved by

 Feeding the log events to an event stream technology like Kafka.
 Using tools such as Redis or Memcached for large-scale caches.
 Taking advantage of Fluentd’s ability to pass log events to other Fluentd nodes.

This ability provides the opportunity to move the workload to dedicated Flu-
entd nodes, either fanning out if the workload needs a lot of additional com-
puting power, or, more likely, fanning in, bringing lots of log events from many
smaller nodes down to one or two Fluentd instances.

In the following sections, we’ll look at the fan-in (sometimes referred to as concentrator
or aggregator networks) and fan-out deployments, as they are implemented using the
same core set of plugins.

 Fluentd’s compute footprint is so small, we can run some configurations to illus-
trate the setup on a single machine.

7.2.1 Fan-in/log aggregation and consolidation

The most likely scenario for deploying multiple Fluentd and Fluent Bit nodes is sup-
porting concentrator networks (fan-in), particularly in a containerized environment.
This model describes two or more Fluentd nodes collecting log events and passing the
events to a central Fluentd/Fluent Bit instance. For example, as we’ll see later in this
section, log events may originate at the Fluentd nodes at the tip of each “spine” of the
fan. The log events are filtered as needed, and then events flow down the spine to the
center of the fan—hence the name fan-in or concentrator.

 Let’s first start with log aggregation in a more generic form relevant to traditional
virtualized or native hardware environments, which can also work in a containerized
deployment. Then we’ll see how this can vary with containers.

FAN-IN RELATION TO APPLICATION ARCHITECTURE AND DEPLOYMENT

Environments that handle high volumes and/or need a high level of resilience will see
application software distributed across multiple servers. We can configure servers so a
single Fluentd instance can see every server’s log files or deploy a Fluentd (or Fluent
Bit) instance on each server. Opening a server so parts of the file system can be
accessed from another server creates challenges with security. Each server having a
Fluentd node is a more robust and secure model to adopt. The better security comes
from the fact that data flows outward from Fluentd to locations it knows about and
with log events determined okay to share. This is illustrated in figure 7.2.

https://livebook.manning.com/book/understanding-api-security/chapter-4/point-11727-30-52-1

174 CHAPTER 7 Performance and scaling
Figure 7.2 Illustrating scaling using the full-stack model, where each server has all the features deployed.
As a result, call sequences are more likely to remain within a server.

Scaling out can be implemented by the following:

 Each server holding a complete solution stack (presentation layer, mid-tier, and
sometimes even the backend storage).

When this occurs, you are likely to track a single request and response from
end to end within the logs of a single server. But linking multiple request
responses from a single client to the same backend (known as server affinity) can
bias workload to specific servers. This can impact the effectiveness of dynamic
scaling, as the new node(s) only taking on new clients.

 Segmenting the solution into logical parts and allocating parts to one or more
specific servers. We often talk about this as an N-tier model with servers dedi-
cated to running a tier, such as the presentation tier; other servers deployed
with business logic tier; and other servers for persistence tier; and so on. We can
see in figure 7.3 an N-tier or three-tier deployment. Each of the different-
colored verticals represents a tier—UI or presentation tier on the left, mid-tier
in the middle (typically a business tier when there are three tiers), and in this
case, a reporting tier on the right. Server affinity for user sessions is likely to be

Svc A
(UI tier)

Server 1

Svc B
(UI tier)

Svc F
(mid-tier)

Svc G
(mid-tier)

Svc H
(mid-tier)

Svc X
(Reporting tier)

Svc Y
(Reporting tier)

Svc A
(UI tier)

Server n

Svc B
(UI tier)

Svc F
(mid-tier)

Svc G
(mid-tier)

Svc H
(mid-tier)

Svc X
(Reporting tier)

Svc Y
(Reporting tier)

Scaling by adding and removing full-stack servers

…

Clients

Svc A
(UI tier)

Server 2

Svc B
(UI tier)

Svc F
(mid-tier)

Svc G
(mid-tier)

Svc H
(mid-tier)

Svc X
(Reporting tier)

Svc Y
(Reporting tier)

Svc A
(UI tier)

Server 3

Svc B
(UI tier)

Svc F
(mid-tier)

Svc G
(mid-tier)

Svc H
(mid-tier)

Svc X
(Reporting tier)

Svc Y
(Reporting tier)

175Scaling and moving workloads
less of an issue, so the same server may see the same user sessions for their frag-
ment of a user event.

Ultimately, tracking the activities of a user’s session end to end will require us
to bring all the logs together to see the complete picture. Sometimes the com-
plete picture isn’t handled until all the logs reach an analytics platform and are
periodically processed. This is fine, but we’ve already highlighted that we may
wish to quickly react or be proactive and trigger actions from the log event pro-
cessing. Bringing the logs through a centralized node presents several benefits:

– Dedicated node(s) for handling a workload allows resources to be tuned for
that job.

– When configuration becomes complex, it’s easier if the logic is more central-
ized, as deploying improvements and refinements involves a smaller number
of deployments—even with automation, fewer nodes are generally better.

Svc A
(UI tier)

UI server 1

Svc B
(UI tier)

Scaling by adding and rem
oving servers in each tier

Mid-tier server 1

Svc F
(mid-tier)

Svc G
(mid-tier)

Svc H
(mid-tier)

Svc A
(UI tier)

UI server 2

Svc B
(UI tier)

Mid-tier server 2

Svc F
(mid-tier)

Svc G
(mid-tier)

Svc H
(mid-tier)Svc A

(UI tier)

UI server 3

Svc B
(UI tier)

Reports server 1

Svc X
(Reporting tier)

Svc Y
(Reporting tier)

Different servers with differing roles

C
lie

nt
s

Figure 7.3 In this situation, the services are grouped by a common purpose to target scaling more efficiently.
However, following the invocations, end to end is more complex.

176 CHAPTER 7 Performance and scaling
– Rather than lots of nodes needing credentials and access to a repository of
credentials (such as Vault), we keep the access to such details restricted to a
smaller set of servers. Therefore, it is harder for the details to be exploited.
This is essential if storing credentials (or certificates when using mutual
Transport Layer Security [TLS]) is handled in a less-sophisticated manner
than Vault.

– It can be easier to demonstrate security if the number of points of origin for
data is controlled. This is particularly true if the final destination of logs is
outside the network, as it means the number of servers needing outbound
access is constrained. It also makes it easier to handle when outbound proxy
servers are involved.

Figure 7.4 illustrates how such a configuration could be deployed with the application
servers having a relatively small-footprint Fluentd node. The outermost (top)
instances of Fluentd are capturing log events (and maybe filtering out some of the
low-value/unneeded log events) before passing log events onto an inner node (shown
at the bottom) being fed by multiple Fluentd nodes.

Figure 7.4 An example concentrator network deployment with multiple Fluentd instances
feeding a central Fluentd instance on a dedicated server doing the majority of the work

Dedicated Fluentd host

Ops alerting
service

Shared persistence /
analytics platform

Svc E
(mid-tier)

Server

Svc E
(mid-tier)

Server

Svc E
(mid-tier)

Server

Server

177Scaling and moving workloads
It is common to illustrate a fan-in configuration with a single server in the middle;
however, this could be a cluster of servers, particularly when considering hyperscale
environments. What continues to characterize the model as fan-in is that the number
of log event sources is far greater than those at the center doing the core log event
processing.

FLUENTD CONFIGURATION FOR FAN-IN
Let’s walk through the setup of this kind of concentrator network configuration.
We will need two Fluentd configuration files, one of which will work for as many
source servers as we want to represent using the forward plugin as an output. A sec-
ond configuration uses forward as an input to process and direct traffic to a final des-
tination. To keep things simple, we’ll use the dummy source plugin rather than
running the simulators. To make the origin node easy to identify, we need to incorpo-
rate something into the log event. Normally we could do that with the node host-
name, but since we’re running everything on a single machine, that doesn’t help us.
Another approach to this is to retrieve an environmental variable and use it for the tag
name. As long as the environment variable scope is restricted to the scope of the shell
used to launch the Fluentd instance, this will work. Figure 7.5 illustrates the configura-
tion in more detail.

Figure 7.5 A detailed view of how multiple Fluentd nodes running the same configuration feed a single
instance

To get the environment variable into the payload, we’ve added a filter into the source,
which takes the tag value and is set using the Ruby command "#{ENV["Node-
Name"]}"; this retrieves the value of NodeName.

<system>
 log_level info
</system>

Listing 7.2 Chapter7/Fluentd/dummy-foward1.conf—illustrating forward out

Central node
(single instance)

Stdout

Source node(s)

Filter stdout

Dummy
plugin

Forward

Forward

178 CHAPTER 7 Performance and scaling
<source>
 @type dummy
 tag "#{ENV["NodeName"]}"

 auto_increment_key counter
 dummy {"hello":"world"}
</source>

<filter *>
 @type stdout
 <inject>
 tag_key fluentd_tag
 </inject>
</filter>

<match *>
 @type forward
 buffer_type memory
 flush_interval 2s

 <server>
 host 127.0.0.1
 port 28080
 </server>

 <secondary>

 @type stdout
 </secondary>
</match>

Before starting Fluentd, the shell used to run Fluentd will need to set or export
(Windows or Linux) NodeName=Node1. Each source node has a new number in the
assignment. Then we can start up Fluentd with

fluentd -c Chapter7/Fluentd/dummy-forward1.conf

Repeat the steps of starting a shell, setting the environment variable, and launching
the source Fluentd node to get a second Fluentd node generating log events and
sending them to the central Fluentd node.

NOTE If the environment variable is not set up, and if Fluentd is showing its
configuration (at the info log level), you can see if the value has been prop-
erly inserted. If the value is absent, depending on the attribute, you’ll observe
a startup error at best; at worst, things will start up but not appear to do any-
thing. This comes from the fact that a default value may be defined and
taken. For example, the port attribute will be 0.

We have used a filter to ensure that the tag is captured into the log event. In addition,
we can also utilize the stdout plugin so the console from the sender will show us the
log events that we should receive in the central node. Ideally, we need to run several
shells and set the environment variable accordingly. Depending on how long it takes

Here, we are grabbing the
environment variable to
make each instance distinct.

Puts the tag into
the log event record

Declares the forward
plugin output Buffers up events before sending; for convenience,

we’re limiting this. In the real world, you’d
probably consider a longer duration.

Defines the target server
to direct the log event to

If we can’t communicate with the central Fluentd instance, we
need to send the log events somewhere. In this configuration,
we’re just sending the events to the console if they can’t be
handled. You’ll probably want to do something more robust in
a production scenario, like writing events to a file.

179Scaling and moving workloads
to start up the central (consuming) node, periodic network errors will be reported on
the source nodes, as there is no response to the network calls.

 This brings us to the consuming configuration, which is simply accepting the for-
warded events and pushing them out to the console. We’ve seen much of this before,
although the use of the forward plugin is new. For Fluentd to receive the events, we
need to define a Fluentd source, which binds to a network address and port. This obvi-
ously needs to match the sender’s configuration. We can see all of this in the following
listing.

<system>
 log_level info
</system>

<source>
 @type forward
 port 28080

 bind 127.0.0.1
</source>

<match *>
 @type stdout
</match>

With the consuming Fluentd node defined, we can fire up a single instance (for the
more common concentrator network). Once all the Fluentd nodes are communicat-
ing, we’ll see all the log events in this node’s console. So, let’s start up the consumer
node with the command

fluentd -c Chapter7/Fluentd/forward-stdout.conf

When you look at the console output now being generated, you should see that the
node name included in the console output will vary. The variation reflects that the log
events are from two different Fluentd nodes, as we made the tag values dynamic in the
configuration.

NOTE The application of the msgpack plugin will help reduce network traffic,
as a formatter can be set to msgpack for the forward plugin. The receiving for-
ward plugin can recognize msgpack-formatted events and automatically unpack
them. As a result, Fluentd-to-Fluentd traffic is transmitted very efficiently.

7.2.2 Fan-out and workload distribution

We can see how we can increase the compute effort available to Fluentd processes by
offloading work from a node collocated with the application workload to one or more
dedicated Fluentd servers, as figure 7.6 illustrates. If we’re simply offloading work, it
may be worth using Fluent Bit as the application’s collocated log collector. Fluent Bit

Listing 7.3 Chapter7/Fluentd/forward-stdout.conf—illustrating forward as a source

Defines the use of the
input forward plugin

Network address to bind to (DNS
or IP)—in our case localhost.
This needs to match the sender.

Shows on the console what
log events have been sent

180 CHAPTER 7 Performance and scaling
is smaller, and if it can collect the log events (remember Fluent Bit is more restricted
in plugin options), it can easily forward to Fluentd. We then use the downstream Flu-
entd to do the hard work of processing the log events. Revisit chapter 1 to review
Fluent Bit’s differences from Fluentd.

 The application of a fan-out pattern is unusual, at least in our experience. If you
find yourself using unusual configurations, it is worth reviewing the situation to
ensure there isn’t a larger issue. For example, restrictive default resource allocation
forces the need to fan out, but easing or removing the restrictions could eliminate
some distribution complexity.

Shared persistence /
analytics platform

Scaling by workload offloading Scaling by fanning out offloaded work

Svc E
(mid-tier)

Server

Dedicated Fluentd host
Server

Dedicated Fluentd host

Shared persistence /
analytics platform

Server

Svc E
(mid-tier)

Server

Dedicated Fluentd host
Server

Figure 7.6 Deployment options for work distribution allow the allocation of more compute power to
Fluentd’s processing of log events without impacting the originating application(s), as we can route log
events to more servers with dedicated capacity for Fluentd.

181Scaling and moving workloads
FLUENTD CONFIGURATION FOR FAN-OUT

With both fan-out and high-availability deployments, we need to have the ability to
send workload to potentially multiple nodes. In the context of high availability, send-
ing traffic to a different node will be triggered by communication loss, and in fan-out,
the connectivity is driven by workload sharing. Let us examine both requirements, as
there is some commonality in the configuration. As shown in figure 7.7, this time we
will deploy only one node with the dummy source generator, but route log events to
multiple consumer nodes that will output to the console.

Figure 7.7 Our example configuration of Fluentd fan-out with one node passing log events to multiple
nodes to process

The key difference between this and the previous source node configuration is that
the configuration of the forward plugin will now need multiple servers specified. In
high availability, which node should be considered the primary and which should be
the standby must be addressed. For fan-out, we may want to weigh the workload in
favor of one node over another. All of this can be done within the configuration
through properties. For multiple servers, as shown in listing 7.4, we can simply declare
multiple contiguous blocks of attributes for the server helper plugin <server>. As
this is a basic fan-out, we have added a weight attribute to establish a ratio of work-
load between the servers. In our case, that ratio is 10:1. If unspecified, then all the
nodes get the same weighting applied.

<source>
 @type dummy
 tag dummy-fanout-source
 auto_increment_key counter
 dummy {"hello":"world"}
</source>

Listing 7.4 Chapter7/Fluentd/dummy-forward2.conf—illustrating forward to multiple servers

Central node
(single instance)

Stdout

Source node(s)

Filter stdout

Dummy
plugin

Forward
Forward

182 CHAPTER 7 Performance and scaling
<filter *>
 @type stdout
 <inject>
 tag_key fluentd_tag
 </inject>
</filter>

<match *>
 @type forward
 buffer_type memory
 flush_interval 2s
 <server>

 host 127.0.0.1
 port 28080
 weight 10

 </server>
 <server>
 host 127.0.0.1
 port 38080
 weight 1
 </server>

 <secondary>
 @type stdout
 </secondary>
</match>

As we’re running everything on the same machine, the Fluentd instances forming the
fan side will need to be configured to operate on different network ports to avoid con-
flicts. A production-like environment with the Fluentd instances is configured to run
on separate servers but using the same network port. Utilizing the naming trick we
saw in listing 7.2, we can make the value configuration-driven and avoid needing mul-
tiple configuration files with different values. As a result, each node will need an envi-
ronment variable called NodePort, defining one of the ports used on the source side
of the node configuration, as shown in the following listing.

<source>
 @type forward
 port "#{ENV["NodePort"]}"
 bind 127.0.0.1
</source>

<match *>
 @type stdout
</match>

Let’s see what happens with this configuration of nodes. Start the source node with
the command

fluentd -c Chapter7/Fluentd/dummy-forward2.conf

Listing 7.5 Chapter7/Fluentd/forward-stdout2.conf

First server definition with
its differing ports so we
can run on the same host

Defining the weighting, which will
favor the first server configuration.
If unset, this value defaults to 60.

Defines
alternate port

Weighting set to bias
traffic away from this server

Setting the port number up
dynamically allows us to run
the same configuration twice.

183Scaling and moving workloads
Then we need to configure a shell with the command set NodePort=28080 for Win-
dows or export NodePort=28080 in a Linux-based environment. Once this is set, we
can start the Fluentd instance with the command

fluentd -c Chapter7/Fluentd/forward-stdout2.conf

We then repeat the steps again, replacing 28080 with 38080 in the set/export step.
 Once everything is running, the log events should appear on the consoles of the

Fluentd instances running the dummy-forward2.conf configuration. With the ratio
set, we should see that the logs are heavily biased to the node running on port 28080.
But if you count how many updates go to one console over the other, you’re not guar-
anteed to see every output on the server using the 38080 port and ten on the other, as
the ratio is calculated every time we want to send an output. The calculation then
yields a value that will dictate on which side of the ratio it will fall.

ROUNDROBIN PLUGIN

Another way of distributing the workload is to leverage the roundrobin plugin. This
plugin is a core Fluentd output plugin that works with the store helper plugin. This
is illustrated in the following listing, with a roundrobin rotating the outputs to each
individually identified server. As this is for a fan-out implementation, each store
block will use a forward plugin, but that isn’t mandatory.

<source>
 @type dummy
 tag dummy-fanout-source
 auto_increment_key counter
 dummy {"hello":"world"}
</source>

<filter *>
 @type stdout
 <inject>
 tag_key fluentd_tag_roundrobin
 </inject>
</filter>

<match *>
 @type roundrobin

 <store>

 @type forward
 buffer_type memory
 flush_interval 1s
 <server>
 host 127.0.0.1
 port 28080
 </server>

Listing 7.6 Chapter7/Fluentd/dummy-forward3.conf—illustrating the use of roundrobin

To get the roundrobin behavior, we need to use
it as the output plugin. It will then use each
store helper plugin in turn, in the same way as
the copy plugin uses all the store helpers.

Declares the store configuration, but as we want
the roundrobin to use each target equally, the
configuration for a store can have only one server.

The server definition
for the destination

184 CHAPTER 7 Performance and scaling
 </store>
 <store>
 @type forward
 buffer_type memory
 flush_interval 1s
 <server>
 host 127.0.0.1
 port 38080
 </server>
 </store>

 <secondary>
 @type stdout
 </secondary>
</match>

Let’s look at how the roundrobin behaves in comparison to the weighting. We need
to start up as before; if the console for the two fan nodes doesn’t have the variable set
for NodePort, we need to reestablish the settings. We then start the event source Flu-
entd instance with the command

fluentd -c Chapter7/Fluentd/dummy-forward3.conf

Then start the two instances of the fan node using the same command:

fluentd -c Chapter7/Fluentd/forward-stdout2.conf

This time the output will consistently go to the alternate console outputs as the round-
robin deliberately ensures the allocation is consistently even. The use of the weight
attribute can also be applied, but this does undermine the roundrobin behavior.

7.2.3 High availability

The configuration for the high-availability arrangement is not that different from the
fan-out. Rather than using the weight attribute to distribute the workload, we use the
standby attribute and set one node to have the value true and the other false. An
example of the server part of a match plugin can be seen here:

 <server>
 name myserver1
 host 127.0.0.1
 port 28080
 standby false
 </server>
 <server>
 name myserver2
 host 127.0.0.1
 port 38080
 standby true
 </server>

As the fragment shows, we have defined two servers; for example, using the forward
output plugin would be two instances of Fluentd to send log events to. When the

The second server configured
to be using a different port

185Fluentd scaling in containers vs. native and virtual environments
Fluentd instance with this configuration starts up, it will try to send the log events
using the server named myserver1, as it is marked as not being the standby. However,
if this Fluentd instance experiences communication issues with myserver1, it will
send the log events to the standby called myserver2.

 In this fragment, we have used the name attribute. The name is normally used only
for Fluentd logging and certificate verification. But as you can see, using the name
attribute can also help you determine which server is which, particularly when IP
addresses rather than meaningful DNS names are being used.

7.2.4 Putting a high-availability comparison into action

Your customer wants to see how a high-availability configuration differs in setup and
behavior. Your team has agreed that configuration files Chapter7/Fluentd/dummy-
forward2.conf and Chapter7/Fluentd/forward-stdout2.conf should be
refactored to provide the comparison.

 Once the configuration has been refactored, run the two configurations and shut
down individual instances of Chapter7/Fluentd/forward-stdout2.conf. Note
the resultant behavior to show the customer the differences.

ANSWER

The configuration to illustrate high availability based upon Chapter7/Fluentd/
dummy-forward2.conf and Chapter7/Fluentd/forward-stdout2.conf can be
found in Chapter7/ExerciseResults/dummy-forward2-Answer.conf and
Chapter7/ExerciseResults/forward-stdout2-Answer.conf.

 The only change of importance in the configuration is removing the weight attri-
bute and introducing the attribute standby set to true or false in the relevant
server configuration. The difference can be observed as soon as the nodes have
started (it’s best to start dummy-forward2-Answer.conf node using port 38080,
so it doesn’t immediately think the primary destination node is down and switch to
the reserve). The console output will only show up on the node listening to port
28080. However, when this node is shut down, the log events will pass to the Fluentd
instance working on port 38080.

7.3 Fluentd scaling in containers vs. native and virtual
environments
So far, we’ve looked at how we can scale Fluentd from a pure Fluentd node-to-node
perspective. In most cases where you’re working in a virtualized or native hardware
environment, you can use the configurations as shown with Fluentd or Fluent Bit
instances deployed. These deployments can be described as having Fluentd collocated
with the application running on a VM or server. Each node is capturing the applica-
tion log events along with those from the host OS. As a result, scaling out the VMs or
native servers will drive the scale-out of Fluentd.

 We have more options and considerations for containerized environments such as
Kubernetes, as containers are typically more finely grained (therefore, more containers

186 CHAPTER 7 Performance and scaling
are needed for a complete solution). We have an additional abstraction layer in the
form of pods, and the orchestration is far more sophisticated. While we’ll focus on
Kubernetes, the principles aren’t very different for OpenShift and other related
products.

7.3.1 Kubernetes worker node configuration

Not only do your applications need to log content, but so, too, does the orchestration
layer, such as Kubernetes, Apache Mesos, Docker Swarm, and others (including the
container engine itself). As a result, the Kubernetes engine creates special services
that it uses on each worker node. The deployment would then look as shown in figure
7.8. All the log events in the individual containers must be directed to stdout for this
deployment to work.

Figure 7.8 Illustration of Fluentd deployed as a daemon service in a Kubernetes context. Fluentd collects all the
pod stdout and stderr outputs.

7.3.2 Per-cluster configuration

The per-cluster model looks a lot like the worker node configuration but is a little
more structured. The structure is due to the containers writing to a defined location
via mapping rather than simply trusting stdout and stderr and hoping something is lis-
tening in. It is also a little easier to segment the different types of logs and infer some
meaning as a result. The containers now just need to mount the cluster-wide file sys-
tem and write their logs to files as they would if running locally (mapping the local
filesystem to shared storage is a Kubernetes configuration issue).

 With logs being written to the filesystem, a pod with a Fluentd container simply
uses the tail plugin(s) to capture and process the log files. With good directory

d

Shared persistence /
analytics platform

Pod Pod

App A
container

(front end)

App A
container
(mid-end)

App A
container
(mid-tier)

Pod PodPod

d

Worker node Worker node

Kubernetes
controller

Master node

Stderr

Stdout

Stderr

Stdout

Ops alerting
service

Po
(Daemonset)

Po
(Daemonset)

App A
container

(front end)

App A
container

(front end)

187Fluentd scaling in containers vs. native and virtual environments
and/or file naming, we can define specific details about the log file format. Knowing
the log file origin determines the kind of things that are particularly important. This
approach is illustrated in figure 7.9.

Figure 7.9 Kubernetes cluster shared log capture, where pods write to the file system and a Fluentd pod then
gathers the files and processes

In figure 7.9, we reference SAN (storage attached network), which would be ideal for
on-premises deployments. It will give you disk redundancy and, typically, storage allo-
cating the physical disks, giving high performance. In a cloud context, you would
implement this with block or file style storage and trust the quality of service and per-
formance controls the cloud provider offers.

7.3.3 Container as virtualization

This reflects the simple idea of taking an existing environment and configuring it
within a container, converting a virtual machine with its own OS to a container that
delegates OS work to the shared host. So, a logical deployment could look like figure
7.10, with each container hosting the application and Fluentd, or, more preferably,
Fluent Bit if it has the right adaptors and a smaller footprint.

Pod

Ops alerting
service

Shared persistence /
analytics platform

App A
container
(mid-end)

Pod

App A
container
(mid-tier)

Pod

App A
container
(front end)

Pod PodPod

Pod

Worker node Worker node

App A
container
(front end)

App A
container
(front end)

Cluster wide shared file system (e.g., SAN)

188 CHAPTER 7 Performance and scaling
7.3.4 Sidecar pattern

Container-based technologies such as Kubernetes have pod design patterns, such as
the sidecar (http://mng.bz/nYNK). The idea of the sidecar pattern is that within the
pod of containers, there are containers added to provide support services; this can
include a proxy layer supplying security to logging. This would mean a container with
Fluentd or Fluent Bit would exist supporting all the other containers within the pod,
as illustrated in figure 7.11. This is the most flexible and, for Fluentd, the easiest to

Figure 7.10 Fluentd in a container, as you might do in a virtualized application deployment

Pod

Shared persistence /
analytics platform

App A
container
(mid-end)

Pod
App A

container
(mid-tier)

Pod
App A

container
(front end)

Pod PodPod

Pod

Worker node Worker node

App A
container
(front end)

App A
container
(front end)

Ops alerting
service

Pod PodPod Pod

Pod

Shared persistence /
analytics platform

App A
container
(mid-end)

Pod
App A

container
(mid-tier)

Pod
App A

container
(front end)

Pod PodPod

Pod

Worker node Worker node

App A
container
(front end)

App A
container
(front end)

Ops alerting
service

Pod PodPod Pod

Side
car
container

Side
car
container

Side
car
container

Side
car
container

Side
car
container

Side
car
container

Figure 7.11 Make Fluentd available to all the containers in a pod using the sidecar pattern illustrated here.

http://mng.bz/nYNK

189Fluentd scaling in containers vs. native and virtual environments
configure but does require more sophistication in the configuration of containers
and pods.

7.3.5 Options comparison

Having looked at the different deployment models, we should take the time to under-
stand the pros and cons of the different approaches. In table 7.1, we’ve taken each of
the patterns described and pulled out the pros and cons of both Fluentd and Fluent Bit.

Table 7.1 Fluentd deployment options in a containerized environment

Approach Pros Cons

Fluentd as part
of the worker
node

Simplest in terms of deployment, as it
involves only the worker node.
No need to change pods or containers
to deploy patches to Fluentd.

Requires more work to translate logs back
into more meaningful structures.
To apply meaning to log events requires
some context, such as an understanding of
the application or service. The downside is
that the application context resides outside
the application domain (the services used).
Fluentd patching configuration changes
impact the entire worker node.

Fluentd in the
application
container

Isolates configuration to the smallest
component.

A larger compute footprint, running lots of
instances of Fluentd—this makes Fluent Bit
a better proposition.

Fluent Bit in
the applica-
tion container

Isolates configuration to the smallest
component.
Smaller footprint than Fluentd.

Total compute effort increases compared to
the other models. But smaller than Fluentd.
Limitations in terms of types of inputs that
can be consumed, as the plugin options are
smaller.
Fluent Bit is not as rich as Fluentd concern-
ing available plugs, limiting the processes
performed on the log events.

Fluentd as a
sidecar

Minimizes the number of Fluentd
instances within a pod.
Service awareness is linked to an
application’s pod (e.g., intercepting
specific log events).
Potential to use a generic Fluentd con-
tainer and leverage configuration to
dynamically retrieve configuration.

More complex pod configuration.
Fluentd patch process is more complex, as it
has an impact on the pod.
The container will be a bit larger than a Flu-
ent Bit variant.

Fluent Bit as a
sidecar

Minimizes the number of Fluentd
instances within a pod.
Service awareness is linked to an
application’s pod definition (e.g., inter-
cepting specific log events).
Smaller footprint than Fluentd.
Log event handling is within the appli-
cation context.
Potential to use a generic Fluentd con-
tainer and leverage configuration to
dynamically retrieve configuration.

More complex pod configuration.
Fluentd patch process is more complex, as it
will impact each pod.

190 CHAPTER 7 Performance and scaling
7.4 Securing traffic between Fluentd nodes
When communicating between Fluentd nodes, you’ll likely want to provide some level
of security. Using unsecured network traffic can result in credentials being exposed,
not only as part of authenticating between Fluentd nodes, but also between Fluentd
and source or targets such as Elasticsearch. We have made it very easy for someone to
acquire the credentials when listening to network traffic. Not only are credentials
exposed, but the communicated log information will also provide an attacker with the
means to work out how your solution may work, harvesting sensitive data if the log
events are for auditing, and so on. Using HTTPS encryption with TLS, the successor
to SSL (Secure Sockets Layer), can mitigate these issues.

 If your log events include PII data, a proactively secure configuration will be
needed for the application and the log events during transmission and when stored.
You have all of these considerations in addition to the possibility that log events may
be communicated between clouds and data centers over insecure networks (i.e., the
internet). But security should not come down to just adopting TLS or, better still,
mutual TLS (mTLS), as we’ll see shortly.

 Setting up TLS is not the scary black art that it once was, possibly in part because
we’ve moved past the idea of SSL/TLS termination at the network edge, and the com-
pute overhead of encrypting and decrypting is not seen as being so onerous now. But
configuring SSL/TLS is still rather context-sensitive and does require some basic
understanding of TLS ideas (a subject addressed in depth in other books, such as
Securing DevOps by Julien Vehent, available at www.manning.com/books/securing
-devops). So rather than a lengthy process of going through a TLS configuration that
will work for everyone, we’ll take a brief look at the support provided. (Appendix E
provides links to a range of resources that can help you apply TLS yourself.) With con-
temporary security approaches adopting a trust-no-one stance, it is worth investing
time in establishing TLS security.

7.4.1 TLS configuration

When it comes to configuring network transport, we can provide a set of transport
configurations. Some adaptors leverage the helper plugin directly, and as a result,
sometimes offer slightly different attribute names. For example, secure_forward
uses tls_version in the server part of its configuration. In contrast, the attribute is
called version when using the transport helper directly (which can be provided in
source, filter, and match directives). The transport construct is represented in the
configuration within XML brackets and includes an element indicating the type of
transport (udp, tcp, tls). For example:

<transport tls>
 . . .
</transport>

While we’ve been focusing on TLS and the plugins that abstract more of the network,
we can process TCP (Transmission Control Protocol) or UDP (User Datagram Proto-
col) traffic. Still, these require more configuration effort to use.

www.manning.com/books/securing-devops
www.manning.com/books/securing-devops
www.manning.com/books/securing-devops

191Securing traffic between Fluentd nodes
TLS VERSION AND ALGORITHM

The version of TLS that can be supported can be controlled through the Fluentd
configuration. TLS 1.3 (published as RFC 8446; https://tools.ietf.org/html/rfc8446
in August 2018) is presently the latest version of the standard published. Currently,
TLS 1.2 is the default version used by Fluentd, reflecting that TLS 1.2 is the most
widely adopted. Industry practice recommends using the latest version of TLS possi-
ble (as it is the most secure) and accomodating lower versions only where necessary.
The TLS compatibility and cipher options can be managed via the version and
ciphers attributes.

SPECIALIZED FORWARD PLUGIN FOR SSL/TLS
There is a secured version of the forward plugin for both in and out actions, as previ-
ously referenced. This can be deployed like all plugins using gem. For example:

gem install fluent-plugin-secure-forward

This version of the plugin still requires certificates but simplifies the configuration
and masks the transport layer configuration section.

7.4.2 TLS not just for encryption

Using TLS isn’t just for providing an encryption key but can and should be verified as
an authentic certificate from a certificate authority (CA) for the server using it. Typi-
cally, part of the handshake is when the client and server connect. If the effort in con-
firming a certificate’s authenticity with the certificate authority is harming latency,
then you might consider disabling the check if you’re entirely within a trusted net-
work environment (e.g., a physical private data center network, but not a cloud-hosted
network). Switching such checks off does go against the concepts of security in-depth,
so consider what risks this may bring. You’ll need to go further if you use self-signed
certificates, as there is no CA involved. Additional attributes—tls_insure_mode and
tls_allow_self_signed_cert—are needed to prevent Fluentd from checking the
certificate with a CA.

7.4.3 Certificate and private key storage

To use a certificate, we obviously need to be able to store it and the private key. This
information is defined as several attributes and includes accommodating Windows
store options (for more info, see http://mng.bz/vo6M).

More on TCP and UDP
For more information on how these protocols can be used, the following resources
will help:

 www.vpnmentor.com/blog/tcp-vs-udp/
 www.cs.dartmouth.edu/~campbell/cs60/socketprogramming.html
 www.openssl.org/docs/

http://mng.bz/vo6M
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc8446
www.vpnmentor.com/blog/tcp-vs-udp/
www.cs.dartmouth.edu/~campbell/cs60/socketprogramming.html
www.openssl.org/docs/

192 CHAPTER 7 Performance and scaling
 Regardless of where the certificate is stored, we need to tell Fluentd where the
certificate is located via cert_path (e.g., cert_path ./myFluentd.crt) along
with the private key location, via private_key_path (e.g., private_key_path
./myFluentd.key). Ideally, certificates are provided by a public or private CA, which
can be contacted to confirm the authenticity of a certificate being used. We can tell
Fluentd whether or not it should make that verification via the client_cert_auth
attribute (true or false). With a self-signed setup, this has to be false.

7.4.4 Security is more than certificates

Securing communications is more than simply the application of TLS. Some organiza-
tions will require more, such as passing a username, password, and tokens. The use of
attributes like this and token IDs can provide additional assurance. If we’re going to
pass sensitive values like this, then the use of TLS should be considered mandatory.

7.5 Credentials management
We have the challenge that the Fluentd configuration doesn’t have the means to
encrypt and decrypt credentials in its configuration file. So, a username and password
needs to appear in the configuration when Fluentd starts in cleartext. Any system
administrator (sysadmin) aware of a file with cleartext credentials will not be happy,
and if you work with an IT security officer, they will be even more concerned. Some
strategies are available to limit this risk; these are the ones we’ve seen or adopted. The
list is ordered in increasing strength of security:

1 Lock down the Fluentd file so access is very tightly restricted. Remember, this
also means blocking or restricting the use of the Fluentd UI (illustrated in
chapter 2), as well as the UI’s credentials. This approach is really the bare mini-
mum, and if sensitive data such as PII is involved, it is probably not seen as
acceptable.

This is likely to need localhost users to be set up and run Fluentd or Fluent
Bit. Such a setup brings a range of other administrative considerations.

2 Use inclusions to separate the core configuration from the credentials. Then
just the inclusion files need to be subject to the aggressive file access controls.
This is an improvement, as it allows you to work with the configuration more
freely. But this will prove to be fiddly if there are lots of credentials to handle
and is unlikely to be considered acceptable if PII data is involved.

3 Wrap the Fluentd startup with a script that, before starting Fluentd, loads the cre-
dentials into environmental variables within the OS session and then start Flu-
entd. The Fluentd configuration then incorporates access to the environment
variables, as we’ve previously illustrated. As a result, the configuration file has no
sensitive values until Fluentd parses the file. But we can incorporate into the
script a means to source and decrypt the environment variable. This allows you
to then utilize standard OS security features. In a containerized environment,
this may get messy, and in a world of multiple OS types, this means potentially

193Credentials management
different configurations. Indeed, different scripts load the required credentials
into memory.

4 Another component typically associated with the more cloud-native approach
that can be equally applied in traditional deployment environments is the use
of Vault (www.vaultproject.io) from HashiCorp. Vault comes in a free (open
source) version and an enterprise edition with additional features (synchro-
nized distributed vaults). We can then embed it into the configuration file and
call the Vault to retrieve the credentials needed using the Vault CLI or API.
This alleviates the issue of needing to load into the OS environment before-
hand. We won’t go into the detailed specifics of aligning application roles to
credentials available in Vault, as the documentation provides an excellent
explanation at www.vaultproject.io/docs/auth/approle.

If you’re working within a Kubernetes environment, then, of course, you have an addi-
tional option in terms of using Kubernetes secrets (more about this at http://mng.bz/
4j4V). Vault has a raft of plugins to work with other native credentials frameworks such
as Kubernetes’s Secrets, those from cloud vendors, or older standards like LDAP (Light-
weight Directory Access Protocol).

7.5.1 Simple credentials use case

We can define username and password credentials as part of a security configuration
between Fluentd nodes. This allows a Fluentd node receiving forwarded log events to
have an increased level of trust.

 The credentials are obviously associated with a server, so in the forward output
configuration, we provide the attributes username and password in the server
attributes set. In the following listing, we have taken the dummy-forward.conf and
extended it to include the credentials.

<source>
 @type dummy
 tag "#{ENV["NodeName"]}"
 auto_increment_key counter
 dummy {"hello":"world"}
</source>

<filter *>
 @type stdout
 <inject>
 tag_key fluentd_tag
 </inject>
</filter>

<match *>
 @type forward
 buffer_type memory

Listing 7.7 Chapter7/Fluentd/dummy-user-forward1.conf with user credentials

http://mng.bz/4j4V
http://mng.bz/4j4V

194 CHAPTER 7 Performance and scaling
 flush_interval 2s
 compress gzip

 <security>

 shared_key hello
 self_hostname source_host
 </security>

 <server>
 host 127.0.0.1
 port 28080
 username hello-this-is-a-long-username
 password world-of-security-likes-long-passwords
 </server>

 <secondary>
 @type stdout
 </secondary>
</match>

Building on forward-stdout.conf, the consumer side also needs the same creden-
tials to verify against. In listing 7.8, we show the additional attributes involved. The
consumer side will need the username and password specified and an explicit indica-
tion in the security structure using the attribute user_auth. The server logical
name should expect the forwarded log event to be defined using the attribute self_
hostname and mandatory security attribute shared_key.

<source>
 @type forward
 port 28080
 bind 127.0.0.1
 <security>
 user_auth true
 self_hostname destination_host
 shared_key hello
 <user>
 username hello-this-is-a-long-username
 password world-of-security-likes-long-passwords
 </user>
 </security>
</source>

<label @FLUENT_LOG>
 <match fluent.*>
 @type stdout
 </match>
</label>

<match *>
 @type stdout
</match>

Listing 7.8 Chapter7/Fluentd/forward-user-stdout.conf receiving with credentials

Mandatory attributes need to be
provided for security, which include
a logical name and a common key.

Provides the
user credentials

Starts the security
configuration Tells Fluentd that we must

apply user authentication
Declares how this node
should be addressed
by the client

Declares the credentials
expected to arrive

195Credentials management
We can run this configuration with one shell running:

fluentd -c Chapter7/Fluentd/forward-user-stdout.conf

Along with this, we need another Fluentd running. Before starting Fluentd, the shell
used to run Fluentd will need to set or export (Windows or Linux) NodeName
=Node1. Each source node has a new number in the assignment. Then we can start up
Fluentd with

fluentd -c Chapter7/Fluentd/dummy-user-forward1.conf

Everything should run as it did when we ran without the user credentials. However, we
are validating credentials on the consumer side. Stop the client side, change the pass-
word, and restart that Fluentd instance. This will now fail with reported password
issues.

7.5.2 Putting certification into action

Your company needs the Fluentd deployment to span multiple data centers so that the
security team can use their preferred monitoring tool across the WAN. Your chief secu-
rity officer (CSO) is pleased that an element of security is applied for internode com-
munication. But they are not happy that credentials could be communicated in
cleartext. The CSO has approved the use of Fluentd nodes spanning the company-wide
network as long as you can provide SSL/TLS configuration to encrypt the traffic. The
data centers do not have direct internet connectivity to enable validating and direct dis-
tribution of certificates from a public CA. There isn’t an internal CA at present,
although there are discussions about one in the future. The infrastructure team has
said that they will distribute self-signed certificates for you. Therefore, we will need to
configure Fluentd using self-signed certificates. To demonstrate that the infrastructure
team can meet certificates requirement and that they understand what is needed, it has
been agreed that dummy-user-forward1.conf and forward-user-stdout.conf
will be modified to include the use of self-signed certificates to prove the process.

ANSWER

Proof that the solution will work can be achieved by running the Fluentd nodes by
replacing the certificate or key file with a dummy file. This should cause the data
exchange to fail.

 The example configuration can be found in the configuration files Chapter7/
ExerciseResults/dummy-user-forward1-Answer.conf and Chapter7/

ExerciseResults/forward-user-stdout1-Answer.conf. We have referenced
dummy certificate files within the Fluentd configurations (if used, this will trigger a
failure). For this to work, you will need to replace these files with proper certificates.
As the certificates take details and have a lifetime, you should create your own certifi-
cates and replace the dummy file with the certificates you generate. This is because
certificates can be linked to identities and have defined lifetimes. Guidance on how to
do this using OpenSSL (www.openssl.org) can be found in the liveBook version of

www.openssl.org

196 CHAPTER 7 Performance and scaling
Understanding API Security by Justin Richer and Antonio Sanso (Manning, 2017) at
http://mng.bz/QWvj.

 An alternative approach is to adopt Let’s Encrypt, which will provide an automated
mechanism to renew certificates (https://letsencrypt.org/).

 In the configuration, you’ll note that we have opted to switch from the standard
forward plugin to the secure forward plugin, so we don’t explicitly need to set the
transport layer attributes. We have also assumed that the passphrase used in creating
the key and certificate is your_secret. To change the configuration-held passphrase
to align with what was used, you’ll need to modify the forward-user-stdout1
-Answer.conf, which contains an attribute called ca_private_key_passphrase
that will need the correct value.

 To run the configuration, we’d need to start the Fluentd nodes with the
commands

fluentd -c Chapter7/ExerciseResults/forward-user-stdout1-Answer.conf
fluentd -c Chapter7/ ExerciseResults /dummy-user-forward1-Answer.conf

As we’ve seen, Fluentd is very flexible for implementing scaling, distribution, and
resilience. But with that comes the use of network connectivity. We should protect our
network traffic as much as we work to secure individual servers or containers. This
does mean handling certificates both for authentication and encryption. Certificate
use can make things more challenging, but such issues will become a lot easier if a
well-thought-out strategy is adopted, not just for monitoring but for the application
communications as well.

Summary
 Fluentd performance can be tuned by using workers running individual CPU

processes or through thread management constrained by how Ruby works.
 Workers do require some careful consideration to avoid mistakes like putting

log events out of sequence. There are strategies to help determine how to con-
figure workers so they don’t introduce new problems.

 Workloads can be distributed using fan-out and fan-in patterns to distribute or
concentrate the processing of log events.

 High availability can be implemented using a distributed deployment of Flu-
entd nodes.

 The same basic distribution principles can be applied within a microservices
environment. The use of Kubernetes allows several different ways of deploying
and using Fluentd.

 Communication between different Fluentd and Fluent Bit instances should be
made secure by using SSL/TLS certificates and should be further enhanced
with the use of credentials or tokens.

 Security should not only address communication between Fluentd nodes but
should also extend to sending and retrieving the log events to other services,
such as a Mongo database or Elasticsearch.

http://mng.bz/QWvj
https://letsencrypt.org/

Driving logs with
Docker and Kubernetes
Previous chapters have referred to Fluentd’s relationship with Docker and Kuber-
netes, but we have focused on running Fluentd independently of these technolo-
gies to minimize complexity. This has helped underpin the point that despite the
association with CNCF, Fluentd certainly is not restricted to cloud-native use cases.

 In this chapter, we will now look at how Fluentd can be used with Docker and
Kubernetes. We should recognize that the more advanced configuration of Docker
and Kubernetes is not trivial; both technologies deserve and have many dedicated

This chapter covers
 Setting Docker to use Fluentd as its log driver

 Understanding components used for Kubernetes
logging

 Tailoring Kubernetes DaemonSets for Fluentd

 Configuring Fluentd to collect Kubernetes
component log events

 Discovering how Kubernetes node monitoring
works
197

198 CHAPTER 8 Driving logs with Docker and Kubernetes
books. We can view the different technologies as layers of a “cake” that form a cloud-
native microservice development platform—each layer adding increased sophistica-
tion, abstraction, and scaling. Typically, each layer assumes an understanding of the
one preceding it. Operating systems provide a bedrock on which containers provide
the first layer, commonly through Docker. The next layer is container orchestration—
Kubernetes for us (but others, such as Mesos and OpenShift, exist). A further layer
could be added to provide a service mesh like Istio or Linkerd. However, as they bring
another layer of components from telemetry to mutual TLS, we’ve opted not to
address this.

 However, we want to look at a small slice through these layers to understand how
logging fits into each technology layer in turn. To get this perspective, we will assume
that you have a basic conceptual appreciation of Docker and Kubernetes. The expla-
nations of Docker and Kubernetes will only be at a high level as we aim to provide
insight into how Fluentd and the prebuilt solutions support logging can be applied.
We’ll keep the setup and illustration of the different points as minimalist as possible,
so the approaches and considerations don’t need a deep hands-on experience of
every layer. By the end of the chapter, you will have grasped the ideas and seen how to
deploy Fluentd to work with Docker and Kubernetes. If you’d like to know more
about these technologies, appendix E provides recommendations for additional book
resources.

8.1 Fluentd out of the box from Docker Hub
The previous chapter illustrated a range of deployment configurations, including pat-
terns applicable in a Kubernetes environment. These use cases can be addressed
directly using predefined containers provided by Fluentd and others and published in
the central Docker Hub repository (https://hub.docker.com/r/fluent/fluentd/).
The container has been configured so that it is possible to pass a location to write out-
put log files—this allows appropriate mount points to be used and allows the logs to
be accessed from outside of the container, avoiding the issue of losing logs when a
container terminates. In addition to the location for log files, we can also pass in our
own custom Fluentd configuration if the default is insufficient. The default settings
include the following:

 Port 24224 is used for receiving logs using the forward plugin.
 Logs tagged with Docker.** are written to /fluentd/log/docker.log.
 All other logs go to /fluentd/log/data.*.log.

8.1.1 Official Docker images

The Fluentd has a single official image, according to Docker Hub. The official image
means we can be assured the image is being maintained and can be found at https://
hub.docker.com/_/fluentd (you will need at least a free Docker Hub account to
access this). This isn’t the only Fluentd-provided Docker image available, but the
other images don’t come with the same assurances. Other than the official image, the

https://hub.docker.com/r/fluent/fluentd/
https://hub.docker.com/_/fluentd
https://hub.docker.com/_/fluentd

199Fluentd out of the box from Docker Hub
other image of particular interest is the DaemonSet, which was first referenced in
chapter 2. The DaemonSet, as you may recall, provides the means to ensure each
Kubernetes worker node (host machine) runs a pod that provides foundation ser-
vices, such as logging and monitoring of infrastructure health. The Docker files are
available in the Fluentd GitHub repository if you want to use them as a starting point.

 If you search the Docker Hub for Fluentd, you will find hundreds of entries. This is
because many organizations (including many vendors who want to make it easy for you
to send log events to their product) use Fluentd and have their own image configura-
tions. It is worth keeping in mind that the official Docker images only include the core
plugins. To use your custom or community-contributed plugins, the Docker image
needs to be modified to retrieve that plugin and install it, along with any dependencies.
It is worth considering where the Docker image you elect to use has originated. Doing
so will enable us to track whether the image provider maintains the image with the lat-
est patches and releases to the OS and software, including Fluentd in the image.

8.1.2 Docker log drivers

The purpose of the log drivers is to capture the output streams for stdin, stdout,
and stderr (i.e., the content you would expect to see on a console) and direct them
to a suitable destination; otherwise, this information will “disappear into the ether.”
Docker supplies, out of the box, several bundled log drivers covering

 Fluentd—Communicates with the Fluentd forward endpoint, which must be on
the host machine.

 JSON file—The default setting; stores events in a file using JSON format.
 local—A file-based storage custom to Docker and optimized for its operations.
 Syslog—Integrates with the Syslog product.
 journald—A daemon service that uses the same API as Syslog but produces a

more structured file. This comes with systemd which provides a range of OS ser-
vices beyond the Linux core (http://mng.bz/XWZ6).

 GELF—Graylog Extended Log Format; a format adopted by several logging
frameworks such as Graylog and Logstash (https://docs.graylog.org/en/4.0/
pages/gelf.html).

 ETW logs—Windows log events (http://mng.bz/y4vq).
 Google Cloud Platform, AWS CloudWatch, Rapid7, Splunk—Some of the vendors

and platforms that have provided log drivers to their services.

In addition to these Docker-shipped log drivers, you can also build your own. But
unless you want to tightly couple Docker logging to a product or platform, there are
plenty of options without resorting to development.

8.1.3 Getting set up for Docker log drivers

To use Fluentd log drivers, we will need to get Docker installed (as well as Kubernetes
for later parts of this chapter). As these technologies have significant differences

https://docs.graylog.org/en/4.0/pages/gelf.html
https://docs.graylog.org/en/4.0/pages/gelf.html
http://mng.bz/XWZ6
http://mng.bz/y4vq

200 CHAPTER 8 Driving logs with Docker and Kubernetes
between Windows and Linux, we will adjust our approach to accommodate both plat-
forms (a practice that recognizes many people who work from a Windows machine
but often work with Linux in production). Microsoft and Docker have made several
significant advancements that allow Linux containers to run on Windows servers. This
is through using the Windows Linux Subsystem (WSL), but this isn’t available on all ver-
sions of Windows OSes (but if you have the means to use WSL, it is a great way for-
ward). For this chapter, we will focus on just Linux containers. This means working
with WSL, Hyper-V, or VirtualBox for Windows users. In appendix A, we have provided
the resources to help you get set up.

8.2 Using Docker log drivers
Docker provides the means to control what happens to logs. By default, Docker uses a
JSON log driver that writes to stdout and stderr (i.e., our console unless you’ve
overridden the routing of these outputs in your environment). There are two ways to
control the log driver, either with additional parameters in the Docker run command
or by modifying the Docker configuration. The difference is that the command-line
approach means you can use alternative configurations for specific Docker contain-
ers. The downside of the command-line approach is the parameters need to be pro-
vided every time.

8.2.1 Docker drivers via the command line

For our first use of log drivers, we’re going to use the command-line approach. It is
the least invasive approach to tailoring log driver behavior; therefore, experimenting
with configuration controls involves the least disruptive change.

 We’ll continue to run a configuration of Fluentd on our host computer to receive
and output log events. First, we will run the Hello-World Docker image from within
the Linux VM (virtual machine) established using the guidance in appendix A. If your
host operating system is Linux, this may seem a little perverse, but this approach has
the following benefits:

 Clear separation of network layers, as the virtualization layer will provide a sepa-
rate network layer besides the network abstractions from the Docker layer.

 Keeps the number of VMs needed down and the resource overhead that virtual-
ization creates.

 The outcomes will be the same regardless of the host operating system. This can
be particularly beneficial if your host is Windows, as it helps to emphasize that
Fluentd is platform-agnostic.

Personally, this is going to be done using my Windows 10 Pro host running Hyper-V
with an Ubuntu 18 LTS VM. This means we will be using Ubuntu to run Docker con-
tainers. We can visualize the deployment as shown in figure 8.1.

201Using Docker log drivers

Figure 8.1 The layers of the operating system and virtualization and containerization being used to
ensure our host environment isn’t disturbed with just Docker

8.2.2 A quick check of network connections

Getting network configurations correct is a significant consideration for using Docker,
Kubernetes, and virtual machines. This means it is always worth doing quick and easy
checks to ensure the network connectivity works as expected, such as using curl or Post-
man to send HTTP log events to Fluentd. To help with this and use the Fluentd log
driver, we have prepared a simple Fluentd configuration to send anything received to
stdout. We can start Fluentd just as we have many times before using the command

fluentd -c Chapter8/Fluentd/forwardstdout.conf

Once Fluentd is running from the Linux environment, we can execute a variation on
our “Hello World” test used in chapter 2. In the following configurations and com-
mands, we need to replace w.x.y.z with the host computer’s IP, as seen by the Linux
guest. You can get the IPs of a machine with the command ipconfig on Windows
and ip addr show on Linux hosts (ifconfig may also work but is deprecated). Our
test command on the Linux VM or container has to be

curl -X POST -H "Content-Type: application/json" -d '{"foo":"bar"}' http://
w.x.y.z:18080/test

This should result in the JSON details {"foo":"bar"} being displayed on the con-
sole where Fluentd is running on the host.

Strict bind controls
Strict bind controls can be an excellent thing. They allow us to apply security controls
when dealing with components that may reside on machines with multiple network
connections, regardless of whether those connections are physical or virtual (as is
the case for Docker and Kubernetes environments). The bind configuration attribute
for input plugins like forward will ensure Fluentd invocations will come through the

Host O/S (e.g., Windows 10/11 Pro)

Ubuntu 18.04.5 LTS
Run with Hyper-V

or VirtualBox

Docker 19.03

Fluentd

Hello-World:Latest
Docker image

Host O/S (e.g., Ubuntu)

Ubuntu 18.04.5 LTS
Run with

VirtualBox or KVM

Docker 19.03

Fluentd

Hello-World:Latest
Docker image

202 CHAPTER 8 Driving logs with Docker and Kubernetes
8.2.3 Running Docker command line

Having set and checked our deployment, particularly networking, we can move on to
using the Docker daemon. Rather than build our own Docker image, we will retrieve a
traditional “Hello World” one from the Docker Hub website. The hello-world
Docker image is straightforward, and when people are finding their way with Docker,
it’s a good starting place. Details of the image are available at https://hub.docker.com/
_/hello-world.

 We can stipulate a specific version through the use of tags. The tag is added after
the name with a colon separator. As the hello-world Docker image has been tagged
following the convention of using a latest tag for the most recent stable version, we
can add :latest to the command. This can be done by running on the VM the
Docker CLI command

docker pull hello-world:latest

We haven’t made any changes to the Docker configuration, which means we will see
the standard Docker log driver behavior when asking the Docker daemon to run our
image. While the location of Docker logs can vary, typically we should locate them in
the folder /var/lib/docker, where we will see a folder called containers. We can
see this as highlighted in section 1 of figure 8.2, with each container instance having
its own folder created using its unique ID. Of course, there won’t be any containers
present initially. With a local copy of the image now available, we should tell Docker
daemon via the CLI to run the hello-world image using the command

docker run hello-world

If we now refresh our view of the folder /var/lib/docker/containers, the folder
will have a new entry, highlighted in section 2 of figure 8.2. In the new container’s
folder structure, we will see a log file with a long name (Docker image instance; e.g.,
b361e69a1 . . .). Navigating into a container’s folder, we’ll see the resources for that
Docker instance, including a folder called local-logs (highlighted in section 3 of
figure 8.2). Finally, navigating into the local-logs folder, we can see the container’s
log file called container.log (highlighted in section 4 of figure 8.2). The log file
contents will be unreadable because it’s stored in its own custom format (section 5 of
figure 8.2).

 To make things more practical, we want to configure Docker to log using a more
consumable format. We can override the default settings, so Docker uses the Fluentd

(continued)

relevant networks. But when Docker and Kubernetes create network addresses, we
must be a lot more aware. When connections fail, it is easy to start looking at host
firewalls, network configurations, and so on. The reality is that the target system is
at fault for listening to only one specific network connection.

https://hub.docker.com/_/hello-world
https://hub.docker.com/_/hello-world

203Using Docker log drivers
log driver. This is done by telling the Docker daemon to use an alternative with the
parameter -–log-driver=fluentd. We don’t need to do anything more, as the Flu-
entd driver is bundled in the deployment of Docker. We also need to tell the driver
where to find our Fluentd node to receive the log events. This and other configura-
tion options are provided using the parameter -–log-opt followed by a name-value
pair separated by the equals (=) character. In our case, we need to give the address
(just like the previous curl command) of our host machine’s Fluentd. As the Docker
log driver can use the forward plugin (and benefit from msgpack providing compres-
sion), we need to ensure the network address, including that port, is provided. This
results in the command to run hello-world like this:

docker run –-log-driver=fluentd --log-opt fluentd-address=w.x.y.z:28080
hello-world

1

2

3

4

5

Figure 8.2 Directory structures holding Docker and the folders per container instance,
followed by the listing of a container and a container log, which is encoded in a custom manner
(numbers in the screen shot are explained in the preceding text)

204 CHAPTER 8 Driving logs with Docker and Kubernetes
The outcome of executing the statement will be to see log events from the Docker
image being output on the Fluentd console. If the Docker command returns with an
error message such as

docker: Error response from daemon: failed to initialize logging driver: dial
tcp w.x.y.z:28080: connect: connection refused.

then something is wrong on the network or in Fluentd (e.g., it is not binding to the
correct network). The order in which the docker image and the target Fluentd node
are started up should also be noted. This will become particularly important when
moving into container orchestration with Kubernetes, as it manages the order in
which pods start up. In the event of such issues, we would recommend checking the
Docker configuration values for network ports to ensure network traffic is allowed out
of the container. If any port number mapping is happening, then that is fine.

 The Fluentd driver can use any of the standard features Fluentd offers, such as
making communication asynchronous (i.e., exploiting the memory buffer capabili-
ties; more on this in chapter 9). But we’ll look at more of these when we move to the
complete configuration.

 In figure 8.3, we can see the output generated from running our command. Notice
how the log events include the following attributes:

 container_id—The complete 64-character ID of the container uniquely
identifying an individual container.

 container_name—The name of the container when the container was
started. Any renaming actions after the startup aren’t reflected until restarted.

 source—Details whether the log came from stdout, etc.
 log—The content from the source (e.g., a line from stdout).

Figure 8.3 The console output from Fluentd received from executing the hello-world container
from Docker

8.2.4 Switching to driver configuration through a configuration file

With a parameterized solution proven, we can advance the configuration in a more
readable manner and add further options that are relevant. Given all the possible con-
figuration options, using a command line for an advanced configuration will make for

205Using Docker log drivers
a challenging maintenance task. By default, changing the Docker daemon configura-
tion file will impact all Docker images being run. The Docker command line also
allows us to point to a configuration file with the parameter –-config, followed by
the filename for alternate configuration.

 The Docker daemon keeps its configuration, including the log driver configura-
tion, in a file called daemon.json. The default location for the file is /etc/docker/
for Linux setups. If you use an instance of Docker on Windows (rather than the indi-
rect approach we’ve chosen to adopt), the location is ProgramData\docker\
config\ (ProgramData is typically found on the C drive root). It is possible that the
file does not exist if the Docker setup is running entirely on default values.

 In the daemon configuration file, we clearly want to include the setting of the type
of log driver and connection to our Fluentd instance. To do this, we include into the
JSON file the configuration version of the command line parameter "log-driver":
"fluentd". In the command line, we also provided the fluentd-address attribute.
When it comes to the fluentd-address, we can provide the address as tcp://
w.x.y.z:28080 or as an explicit path reference to the relevant socket file (e.g.,
unix:///usr/var/fluentd/fluent.sock).

 In addition to the address, we should also introduce several additional parameters
directly related to the log driver and other general parameters relevant to logging.
The general settings we’ve included are

 raw-logs—Should be set to either true or false. If specified as false, then
a complete ANSI timestamp is applied (e.g., YYYY-MM-DD HH:MM:SS), and the
coloring of the log text through the use of escape codes is switched off from any
encoding.

 log-driver—As shown in the command line example used to set the log driver.
 log-level—The log filter threshold to apply to Docker daemon. The

accepted levels are debug, info, warn, error, and fatal, with the default
being info.

Within the configuration file, we can start an inner group of attributes called log-
opts; these logging specific options include

 env—We can ask the driver to capture and include specific environment vari-
ables. This is done by defining a comma-separated list. For our purposes, we
can use "os, customer". This does assume that something has set such values.
It is also possible to define a regular expression version of this by using the attri-
bute env-regex.

 labels—This works very much in the same way as env, insofar as a list of labels
(Docker metadata name-value pairs) can be specified, or a regular expression
can be provided via labels-regex.

 fluentd-retry-wait—Each time a connection fails, a waiting period is
applied before retrying again. The value needs to include the duration type
(e.g., s for seconds, h for hours).

206 CHAPTER 8 Driving logs with Docker and Kubernetes
 fluentd-max-retries—The maximum number of connection retries before
giving up. This defaults to 4294967295—that is, (2**32 - 1). We don’t want
things hanging for that many retries. Given that we have set retry to one per sec-
ond, up to 10 minutes retrying would be plenty, meaning a value of 600.

 fluentd-subsecond-precision—Allows us to get the timestamp precision
to millisecond accuracy if the hardware is capable of it. While the default value
is false, it is worth setting explicitly, even if it’s to the default value. By explic-
itly setting the value, we’re reminded that we won’t have such precision.

 tag—The tag to associate with the log event record. This can be built using sev-
eral predefined values (the complete list is in appendix A) using a notation
defined by Docker. In our case, let’s define the tag using the shortened ID and
Image ID using the following representation: {{.ID}}-{{.ImageID}}.

 fluentd-address—As in the command-line configuration, this is the location
of the Fluentd server to talk with. This, as with the parameter approach, needs
to be tailored to the host IP of the Fluentd instance.

The outcome of addressing these other needs means we arrive at the code shown in
listing 8.1. Running the Docker daemon process in debug mode is the easiest way to
ensure that the configuration file is processed correctly. This means that as this is a
daemon service, we need to stop the current process using the command

sudo service docker stop

{
"log-driver" : "fluentd",
"log-level": "debug",
"raw-logs": true,

"log-opts": {
 "env": "os,customer",
 "labels": "production_status,dev",
 "fluentd-retry-wait": "1s",
 "fluentd-max-retries": "600",
 "fluentd-sub-second-precision": "false",
 "tag": "{{.ID}}-{{.ImageID}}",
 "fluentd-address": "w.x.y.z:28080"
 }
}

Once the service has stopped, we need to copy our modified daemon configuration
file to the default location /etc/docker/. Then we can start the process manually
with the command

sudo dockerd -D

Listing 8.1 Chapter8/Docker/daemon.json configuration for Docker Fluentd log driver

This tells Fluentd to use the
Fluentd version of the log driver.

This is setting Docker to use raw logs, so the formatting
isn’t used, and the ANSI timestamp is applied.

This tailors the tag to be
used in the log events.

This specifies to the log driver
where the Fluentd server is.

207Kubernetes components logging and the use of Fluentd
This will launch Docker in debug mode, picking up the configuration from the default
location. If there are any issues with the configuration file, the Docker daemon will
almost immediately stop or generate warnings about not parsing the configuration.
Messages will be displayed on the console, such as

unable to configure the Docker daemon with file /etc/docker/daemon.json:
invalid character '\n' in string literal

Once the file is read okay, the Docker daemon will direct log events to our Fluentd
instance, including the output when running the Hello-World docker image. As our
previous command has started the Docker daemon in the foreground, we need to use
an additional shell to run the docker image. We can use the same command as before:

docker run hello-world

If you’re feeling brave, then you can jump straight to running Docker as a service
again. This means terminating the current execution of the Docker daemon process
in debug mode. Then execute the command

sudo service docker start

When you’re confident about any further changes to the configuration file (dae-
mon.json), rather than running the Docker daemon manually, we can adopt an
approach of simply restarting the daemon to force it to pick up the latest config. This
is done by replacing the start command with restart. For example:

sudo service docker restart

Suppose you want to verify that config attributes have been accepted by the Docker
daemon. In that case, it is possible to run the command docker --info, which will
display all the settings being used, including those defaulted values on the console.

8.3 Kubernetes components logging and the use of Fluentd
The nature of Kubernetes and the model making it highly pluggable means that the
landscape can become complex. To illustrate this, if we look at the containerization
aspect of Kubernetes, Docker may be the most predominant container technology
today. Still, Kubernetes, through the API model, allows us to use other container tech-
nologies such as containerd (https://containerd.io/) and cri-o (https://cri-o.io/), both
under the governance of CNCF. Some of the complexity is addressed through the
Open Container Initiative (https://opencontainers.org/), also under CNCF governance,
which helps abstract the interaction between the container implementation and
Kubernetes’s orchestration of containers. The essential question here is how does that
impact us and the use of Fluentd?

 The important thing here is that, as we have seen, we can configure Docker to cap-
ture the events propagating through stdout and stderr; therefore, do the other
containers support such a capability? Not all containers are as mature as Docker when

https://containerd.io/
https://cri-o.io/
https://opencontainers.org/

208 CHAPTER 8 Driving logs with Docker and Kubernetes
it comes to logging. Many simply line up with Kubernetes’s internal logging frame-
work klog (https://github.com/kubernetes/klog), which adopts the logging approach
of using journald when it is deployed, and otherwise logging to a default file location.

8.3.1 Kubernetes components and structured logging

The application of structured logging today in Kubernetes components is an evolving
journey. Not all components within Kubernetes have adopted structured logging yet
(although this is changing). We should be prepared for the possibility that any addi-
tional system components or extensions used in the future might not apply structure.
This reinforces the recommendation that it is better to actively adopt logging and
deployment patterns outlined in chapter 7 (Fluentd as a sidecar pattern, embedded
with the application, etc.) rather than try to harvest logs out of Kubernetes.

8.3.2 Kubernetes default log retention and log rotation

When the logs come through to Kubernetes from a container because of the con-
tainer configuration, Kubernetes will push the log entries into a log file for each con-
tainer instance. To manage the size and log rotation, it is our responsibility to
establish a log rotation tool, which can control how many log files and how frequently
they are rotated.

 Kubernetes doesn’t have its own log rotator; it is the responsibility of the deployer
of Kubernetes worker nodes to address log rotation challenges. That said, if the worker
node is set up using a Kubernetes provided script (kube-up.sh, http://mng.bz/
M25n), it will deploy the open source tool logrotate (https://github.com/logrotate/
logrotate). Logrotate can be configured to retain a specified number of files. Some fla-
vors of Linux will have logrotate deployed, so it is a matter of additional configuration.
How logrotate is set up can vary across Linux flavors only because of how the Linux con-
figuration is applied. Some flavors use systemd, and logrotate is provided as part of that.
Where logrotate isn’t already deployed, it is typical to be able to perform an indepen-
dent installation via the Linux flavor’s package manager of choice.

 Logrotate is not cross-platform as a solution, so running Kubernetes on Windows
needs another answer to achieve log rotation, which isn’t obvious and more challenging

Klog’s evolution
Klog goes back to the Google C++ libraries (https://github.com/google/glog). As
Kubernetes is implemented in Go, C++ libraries aren’t an option, and along the way,
a Go implementation was developed (https://github.com/golang/glog). Since then,
the Kubernetes developers determined that glog presented some challenges regard-
ing containerization and thus forked the code base, leading us to klog. The APIs
remain essentially the same. In all cases, the logging mechanisms are streamlined
for optimal performance; thus, plugging and configuring logging is very much down to
command-line options offered by an application using the library rather than a config-
uration file.

https://github.com/google/glog
https://github.com/kubernetes/klog
https://github.com/golang/glog
http://mng.bz/M25n
http://mng.bz/M25n
https://github.com/logrotate/logrotate
https://github.com/logrotate/logrotate

209Demonstrating logging with Kubernetes
when examining the Kubernetes discussions on the subject. Regardless of log rotation,
logs generated by klog are automatically truncated when they reach 1.8 GB. So any log
rotation needs to be established to occur before hitting that threshold.

 Kubernetes will automatically delete all except the current log files when a con-
tainer is removed. If the process of capturing such log events is too far behind, there is
a risk of losing log events—something to be considered when establishing log capture.

 The takeaway from this is that managing logs at the Kubernetes layer presents chal-
lenges with potential differences based on the deployment approach and infrastruc-
ture setup. As a result, our preference is to minimize the issues by focusing on log
capture in the layers where we can see more consistency and the means to assert more
control. We can’t entirely ignore Kubernetes logs, but intercepting the log events else-
where means the loss of Kubernetes log events isn’t as critical.

8.3.3 kubectl with logging

As you may well already know, kubectl is the primary CLI tool for interacting with Kuber-
netes. When Kubernetes understands where the logs are being written, we can utilize
kubectl to perform various tasks, such as tailing one or more log files, forwarding logs
to different ports, and supporting the everyday log file activities. Rather than describe
kubectl log commands, all the details can be found in the kubectl command reference
at http://mng.bz/aDJB.

8.4 Demonstrating logging with Kubernetes
We need to collect Kubernetes process logs and understand whether internal con-
tainer processes such as Kubelet are logging errors. Kubernetes has plenty of mecha-
nisms to help us check the health of containers. Still, understanding that everything is
running without issue in Kubernetes is essential to knowing whether the containers
are being cared for, or the nodes are slowly failing. If an application is logging into the
console and events go to Kubernetes, where do we retrieve the events?

Easing of deployments into Kubernetes
The easing of deployments into Kubernetes for solutions is necessary. Within the
Kubernetes ecosystem, several tools, such as Helm (https://helm.sh) and Rancher
(https://rancher.com), have been developed to ease the challenges. Helm (the more
dominant solution) even refers to itself as the package manager for Kubernetes.
Given Helm’s dominance, the Fluentd committers have developed Helm configuration
files (known as charts) to support Fluentd deployment. The charts consolidate and
define the configuration details unique to deployment, and then Helm uses templates
and scripts to complete the rest. The DaemonSet chart included in the GitHub Fluentd
repository (https://github.com/fluent/helm-charts) provides a baseline start, leaving
you to just apply configurations for your specific needs. If you’re involved with the reg-
ular development of Kubernetes deployments, then we recommend investigating
Helm and leveraging the Fluentd charts.

https://rancher.com
https://github.com/fluent/helm-charts
http://mng.bz/aDJB
https://helm.sh

210 CHAPTER 8 Driving logs with Docker and Kubernetes
 To address this, we will deploy a ready-built pod containing the LogSimulator,
which is configured to direct the log events to stdout. The log events will propagate
through the container mechanism and let Fluentd intercept them in the Kubernetes
layer, so we will be capturing the Kubernetes and container internal logs. This may
reflect the recommended setup described by the twelve-factor app (https://12factor
.net/logs). But it does, in many ways, represent a worst-case scenario, as we have to
invest effort in deriving the context (separating multiple log events in stdout that
could have been from the platform or container versus the application, etc.) and
restructuring the log events.

 At this point, if you haven’t followed appendix A to install minikube as our Kuber-
netes implementation, then now is the ideal time. Once complete, your environment
will look like the layout shown in figure 8.4.

Figure 8.4 The layers of operating system and virtualization and containerization being used to ensure
our host environment isn’t disturbed with minikube

8.4.1 Kubernetes setup

To demonstrate the Kubernetes configuration to keep things nice and compact, we’re
going to use minikube. Minikube is a version of Kubernetes pared down to keep the
footprint as compact as possible. If you haven’t already followed the instructions in
appendix A, that is the first step to perform on the Linux virtual machine. It also hap-
pens to be the Kubernetes implementation used in Kubernetes in Action by Marko
Lukša (http://mng.bz/g4wE). Once minikube is installed, let’s fire it up and use the
Kubernetes dashboard to look around at the initial state. We do this with the following
command for Windows:

minikube start --vm-driver hyperv --hyperv-virtual-switch "Primary Virtual

Switch"

The Linux equivalent is

minikube start --vm-driver docker

Host O/S (e.g., Windows 10 Pro)

Hyper-V VM
(minikube
generated)

Kubernetes &
Docker (minikube)

Fluentd

LogSimulator
Docker image

Host O/S (e.g., Ubuntu)

KVM or VirtualBox
VM

(minikube
generated)

Kubernetes &
Docker (minikube)

Fluentd

LogSimulator
Docker image

http://mng.bz/g4wE
https://12factor.net/logs
https://12factor.net/logs
https://12factor.net/logs

211Demonstrating logging with Kubernetes
This will establish a single node “cluster” of Kubernetes stripped down to the minimum.
The download package for this chapter contains Linux shell and Windows batch
scripts, which will perform this command (making it a lot easier than remembering or
copying the commands every time). Then we can start up the dashboard with this com-
mand in either Windows or Linux:

minikube dashboard

This command starts a foreground process that will deploy the necessary pods to run
the dashboard UI and provide the dashboard page URL. With the dashboard page
open, we can navigate using the UI’s left-hand menu to see what DaemonSets, Deploy-
ments, and Pods are currently deployed (as part of the Workloads section of the
menu). As you can see in figure 8.5, there are no DaemonSets currently deployed. You
will find the basic hello-minikube deployment and associated pod running.

Figure 8.5 Kubernetes dashboard running on minikube, currently only showing the
default namespace rather than the kube system or where most DaemonSets will be.

Simplify navigation with all namespaces
Simplifying the UI navigation can be done by setting the drop-down next to the Kuber-
netes logo to All Namespaces rather than default (as shown in figure 8.5); this will
make seeing details easier. Otherwise, you will likely get tripped up when you navi-
gate the UI, wondering why you cannot see expected information, such as the Fluentd
DaemonSets. Within our environment, displaying everything (i.e., all namespaces) is
not going to be problematic, although in a production setup, this is not something we
would recommend.

212 CHAPTER 8 Driving logs with Docker and Kubernetes
8.4.2 Creating logs to capture

We first need an application to generate log events so we can observe a log DaemonSet
collecting events from Kubernetes and the applications not logging more directly to an
endpoint (i.e., they are simply sending logs to stdout and stderr). For this, we can
use a containerized version of LogSimulator. The containerized version of this tool is,
by default, configured to loop through a simple data set several times and then stop.
Each log event is simply written to stdout; thus, log events will get collected by Kuber-
netes. When the LogSimulator pod completes its run, it will stop the pod, at which
point, Kubernetes will intervene to restart the deployment. The LogSimulator Docker
image already exists within Docker Hub. The Kubernetes configuration to use this
Docker image within a pod is shown in the following listing, which can be retrieved
from http://mng.bz/5KQB. As there is no need for any configuration or external fac-
ing endpoints, the YAML configuration is straightforward.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: log-simulator
 labels:
 app: log-simulator
spec:
 replicas: 1
 selector:
 matchLabels:
 app: log-simulator
 template:
 metadata:
 labels:
 app: log-simulator
 spec:
 containers:
 - name: log-simulator
 image: mp3monster/log-simulator:v1

To deploy this pod, you need to ensure the environment variable LogSimulator-
Home is defined, which references the root folder of the LogGenerator that has been
previously installed. Alternatively, edit the provided script (deploy-log-sim-
k8.bat or deploy-log-sim-k8.sh), replacing the environment variable reference
with the absolute path. If you use the script, it will always try to remove any possible
existing pod deployment first to be safe. This means that if you want to keep redeploy-
ing, then just use the script. To issue the deployment command yourself, then, in a
shell, issue the following statement:

minikube kubectl -- apply -f %LogSimulatorHome%\Kubernetes\log-simulator-
deployment.yaml --namespace=default

Minikube should confirm the deployment as being successful.

Listing 8.2 Chapter8/LogGenerator/Kubernetes/log-simulator-deployment.yaml

This is the reference to the Docker
Hub image, which, when deployed,
will be downloaded. If a newer
version of this pod needs deploying,
the version reference at the end of
the name (i.e., :v1) must be updated.
Without this, Kubernetes will ignore
the request as it already has that
version of the LogSimulator.

http://mng.bz/5KQB

213Demonstrating logging with Kubernetes
UNDERSTANDING LOGSIMULATOR’S VIEW

Before we move on to look at the DaemonSet, it is worth taking a “little peek under
the hood” to see things happening. As we’ve previously started the Kubernetes dash-
board, we can use this to help us. We need to access the list of pods (left menu
option); thus, we will see a list like the details shown in figure 8.6. We need to access
the log-simulator pod instance, which can be done by clicking on the name that
starts with log-simulator.

Figure 8.6 Kubernetes dashboard showing the instances of pods that contain our
LogSimulator and Fluentd

Difference between minikube CLI and kubectl
The difference between kubectl and minikube commands is minimal. Minikube has
wrapped the use of kubectl so that the minikube command can provide additional
commands and the kubectl commands. If you have installed kubectl, it is possible to
configure it to direct instructions to the minikube instance of Kubernetes. Then you
can replace the first part of the commands, which appear as minikube kubectl
–-, with just kubectl. An alternate approach to this for Linux hosts is to introduce
an alias into the Linux environment. This is done by using the command - alias
kubectl="minikube kubectl --". Now when you use the command kubectl,
Linux will substitute it for the full expression. If you find yourself having to prefix a lot
of the calls with sudo to ensure the privileges are correct, you could incorporate that
into the alias as well.

214 CHAPTER 8 Driving logs with Docker and Kubernetes
This will display the details about the specific pod, and the top of the screen will look
something like the details shown in figure 8.7.

Figure 8.7 Kubernetes dashboard showing a specific instance of the log-simulator

As you’ll note in figure 8.7, there are four icons in the top right-hand side of the
image. Clicking on the first icon will display a view like the one in figure 8.8. The fig-
ure shows us the stdout being generated by the LogGenerator.

Figure 8.8 The console (stdout) of our instance of the LogGenerator with its simple
configuration generating events to be collected by our Fluentd setup

While this is useful and confirms the container is functioning as expected, we need to
know which file Kubernetes is pushing this output to, as we need to set up a tail input
plugin against that file. Returning to the screen, we saw in figure 8.7 that we want to

215Demonstrating logging with Kubernetes
use the arrow-based icon (second from left), as this will provide us with a shell view
into the container being executed.

 It is also worth logging into a shell provided by this container image, because you
will see the environment as your application will. Any container exploration needs to
be quickly done—once the LogGenerator has completed generating log events, it will
stop. As a result, our container will die, taking our session with it. If you try to see what
logs exist, you shouldn’t see anything, as the log events will be captured on the host
running Kubernetes, not in the container. By doing this, we have clearly established
the first of the requirements of our Kubernetes container—the fact that access to the
host file system is needed to collect the logs generated.

8.4.3 Understanding how Fluentd DaemonSets are put together

Our first contact with Kubernetes was in chapter 2, where we looked briefly at using a
DaemonSet provided by Fluentd. We’ve said Kubernetes configuration gets complex.
However, it would be easy to question this given the Kubernetes.yaml we’ve used
for the LogGenerator. Let’s take a moment to step through what is involved with the
Kubernetes and Docker resources for Fluentd. There are a couple of crucial reposito-
ries relevant to this, specifically the following:

 Kubernetes DaemonSet in GitHub—This is where most of the necessary implemen-
tation details are (http://mng.bz/6ZXo).

 Docker file base images—(https://github.com/fluent/fluentd-docker-image).
These are the Docker base images, including the template mechanism used to
help generate the different OS variations.

 Docker Hub repository—This is where the Docker images are pulled from for the
Kubernetes configuration (https://hub.docker.com/u/fluent). One or more
Docker images form a pod based on the configuration provided.

 Metadata filter—This is incorporated into the DaemonSet (http://mng.bz/
oa2d). The metadata filter enriches the Kubernetes log records with additional
context to help you better understand what is happening.

When you visit the GitHub repository for Fluentd’s DaemonSets, you see a range of
YAML files. The Fluentd community has provided a range of standardized configura-
tions for capturing Kubernetes logging and sending the contents on to a single desti-
nation. The configurations range from forwarding the content to another Fluentd
node, to sending to various cloud-native services provided by AWS, Azure, and Google,
to dedicated services such as Graylog, Loggly, and the more common targets Elastic-
search and Syslog.

 When examining the Kubernetes YAML configurations, you’ll see they are all very
similar in nature, with the following characteristics:

 Setting the image up, so it will be deployed in the kube-system namespace
 Referencing a suitable container image

http://mng.bz/6ZXo
http://mng.bz/oa2d
http://mng.bz/oa2d
https://hub.docker.com/u/fluent
https://github.com/fluent/fluentd-docker-image

216 CHAPTER 8 Driving logs with Docker and Kubernetes
 Defining environment variables that can be used in the relevant Fluentd config-
uration file to connect with the external service—typically details such as the
host and port of the target solution

 Specifying the number of resources that should be allocated to the container
 Defining the host-file locations that need to be visible within the container—

specifically /var/log and /var/lib/docker/containers—and how the
path should be seen within the container.

What isn’t shown in the configurations is that some additional environment variables
can be set and passed through, further changing the container’s behavior; for exam-
ple, whether to try and interact with systemd. But we’ll see this in more detail shortly.
We can assume that the “real magic” occurs in the container, and therefore in the
Docker file.

KUBERNETES DOCKER IMAGES

If you examine the README in the repository’s root, you’ll see a list of Docker pull
commands, with one or more references for each type of daemon. Looking through
the list, you’ll note they have been broken into two major groups: x86_64 images
and arm64_images. The need for this may not be immediately apparent until we
remember that the Docker file has to ultimately reference binaries specific to the
computer hardware. This is a downside of delivering virtualized or containerized solu-
tions over using a more generic package manager. This means we have a lot of Docker
images to maintain.

 The Kubernetes Docker images are also generated using templates, but we can
characterize the activities as doing the following things:

 Establishing a dependency on the relevant Docker image
 Setting up Ruby and Gem, including defining environment variables to the

appropriate locations
 Installing various gem files
 Configuring files covering Fluentd, systemd, Kubernetes, Prometheus

Using an example such as https://github.com/fluent/fluentd-kubernetes-daemon-
set/tree/master/docker-image/v1.12/arm64/debian-forward/conf, we can examine
the configuration and file relationships in detail. Figure 8.9 also provides a visual rep-
resentation of the file relationships:

 Fluent.conf is in the root container and uses the include mechanism to
bring in the contents of other configuration files, as we saw back in chapter 5.
This configuration file also has a single match that, in the case of the forward
DaemonSet, matches all log events and sends them on to the target server. It is
worth noting that the forwarding configuration does not include any security
(no TLS, etc.); this isn’t a problem if the logs are not sensitive. But if they are,
then you will need to replace the configuration files with ones that include the
necessary configuration. We’ll see more of how this can be done later in the
chapter.

https://github.com/fluent/fluentd-kubernetes-daemonset/tree/master/docker-image/v1.12/arm64/debian-forward/conf
https://github.com/fluent/fluentd-kubernetes-daemonset/tree/master/docker-image/v1.12/arm64/debian-forward/conf

217Demonstrating logging with Kubernetes
The inclusion of the systemd and Prometheus configurations are subject to
environment variable controls, specifically the existence of settings for
FLUENTD_SYSTEMD_CONF and FLUENTD_PROMETHEUS_CONF.

The Kubernetes.conf is needed, so it is included. Finally, any configura-
tion in the conf.d folder is included, so extending the configuration with any
specific customizations is possible.

 The Prometheus.conf file is straightforward. It defines the use of the input
plugins for Prometheus and Prometheus_output_monitor to monitor Pro-
metheus. Environment variables define the server addresses to bind, port, and
a path if the metrics URI are different using the variables FLUENTD_
PROMETHEUS_BIND, FLUENTD_PROMETHEUS_PORT, and FLUENTD_PROMETHEUS_
PATH, respectively.

Fluentd.conf

systemd.conf

prometheus.conf

kubernetes.conf tail_container_
parser.conf

Control of K8s
metadata source,
file paths to ignore

Host and port
for destination
Prometheus instance

File format
info

Operating system
environment

variables

Points toward where the file is included

Host and port for
destination Fluentd
instance

Import is conditional—
controlled by
environment variables.

Figure 8.9 A representation of the relationship between the configuration files and how they are influenced
by environment variables

218 CHAPTER 8 Driving logs with Docker and Kubernetes
 The Systemd.conf file defines the sources for Docker, Kubelet (the Kuberne-
tes node controller and bootkube service using the systemd source plugin). It is
worth noting that this plugin is separate from the Fluent Git repository and
has been separately authored (details at https://github.com/fluent-plugin
-systemd).

 The Kubernetes.conf file is the most interesting of the inclusions in the con-
figuration. Like systemd, it also uses an external plugin, this time a filter called
kubernetes_metadata (the details of which can be found at https://github
.com/fabric8io/fluent-plugin-kubernetes_metadata_filter). The filter’s job
incorporates or excludes additional metadata into the log events. This is done
by communicating with the Kubernetes API endpoint using the environment
variables FLUENT_FILTER_KUBERNETES_URL or combining KUBERNETES_
SERVICE_HOST and KUBERNETES_SERVICE_PORT. This requires metadata
from the log events for essential context to retrieve information from the
Kubernetes API. The info can be drawn from the journald if being used or pos-
sibly from the log file names. Some of the attributes used with the plugin either
assume the default values or are hardwired into the container. The controls that
can be configured map to the plugin attributes as follows:

– KUBERNETES_VERIFY_SSL—verify_ssl sets a flag indicating whether the
SSL/TLS certificates should be checked. If your environment has a certifi-
cate authority for the certificates used, we recommend this be set to yes.

– KUBERNETES_CA_FILE—This attribute provides the path to the CA file for
Kubernetes server certificate validation.

– FLUENT_KUBERNETES_METADATA_SKIP_LABELS—Don’t retrieve the labels
from the metadata if set to true.

– FLUENT_KUBERNETES_METADATA_SKIP_CONTAINER_METADATA—If set to
true, then the metadata relating to the container image and image_id will
not be included.

– FLUENT_KUBERNETES_METADATA_SKIP_MASTER_URL—If true, the mas-
ter_url metadata will not be included.

– FLUENT_KUBERNETES_METADATA_SKIP_NAMESPACE_METADATA—If set to
true, then the metadata such as namespace_id will be excluded.

– FLUENT_KUBERNETES_WATCH—When set to true, it tells the plugin to
watch for changes in the metadata held by the Kubernetes API server for the
pods.

For a filter to do anything meaningful, the configuration needs to include sources. In
this case, the tail source plugin is used multiple times to capture any logs generated in
the folders /var/log/containers/*.log, /var/log/salt/minion, /var/log/
startupscript.log, /var/log/docker.log, /var/log/etcd.log, /var/log/

https://github.com/fluent-plugin-systemd
https://github.com/fluent-plugin-systemd
https://github.com/fluent-plugin-systemd
https://github.com/fabric8io/fluent-plugin-kubernetes_metadata_filter
https://github.com/fabric8io/fluent-plugin-kubernetes_metadata_filter
https://github.com/fabric8io/fluent-plugin-kubernetes_metadata_filter

219Getting a peek at host logs
kubelet.log, /var/log/kube-apiserver.log, /var/log/kube-controller-
manager.log, /var/log/kube-scheduler.log, /var/log/rescheduler.log, /
var/log/glbc.log, /var/log/cluster-autoscaler.log, and /var/log/

kubernetes/kube-apiserver-audit.log. You may have recognized these as the
log files for the core Kubernetes processes. Based on this, we should see log events
picked up as long as our container’s log events get written somewhere in the /var/
log/containers/ folder on the Kubernetes host.

8.5 Getting a peek at host logs
Earlier in the chapter, we peeked at what our LogGenerator container could see of
the environment and established that it couldn’t see any part of the host, and there-
fore any logs. This is because we didn’t configure the container to mount a file system.
A folder mount wasn’t necessary, as we trusted the container to capture stdout and
put the content in a suitable location. However, when we demonstrated that behavior,
we had control of Docker. Now Docker will be managed by Kubernetes. Additionally,
we need to think about how we monitor Kubernetes itself. A review of the prebuild
Fluentd resources points to the log content residing in /var/log. Minikube provides
a convenient tool that allows easy access to the host environment. Once we can access
the host, we can examine the environment to locate the relevant log files and under-
stand what needs to be captured. Using a new shell (Windows or Linux), we can use
the command

minikube ssh

This will provide us with a secure shell into the host environment. Let’s look at the
folders we’ve seen in the current configuration using the command

ls -al /var/log/containers

The result is perhaps not as expected, given this is a folder of symbolic links to files in
/var/log/pods, as shown in figure 8.10. Fortunately, everyone can see the links.

Fluent Bit in Kubernetes
We have primarily focused on Fluentd with Docker and Kubernetes as the main way
to provide a flexible means to capture log events. But in a containerized environment,
Fluent Bit, with its smaller footprint, should be considered, especially if the goal is to
push the log events out to a dedicated Fluentd node or log analytics platform like
Elasticsearch and perform the “heavy lifting” with these parts of your solution. It is
worth noting that Fluent Bit has its own projects within GitHub to provide a Docker
base setup and to extend Docker images for different environments and operating
systems, such as Debian, CentOS, Raspbian, and Amazon Linux. The Docker images
support some possible targets and a Fluent Bit configuration deployed as a Daemon-
Set in Kubernetes.

220 CHAPTER 8 Driving logs with Docker and Kubernetes
Figure 8.10 The result of looking at the /var/log/containers folder—you can see the files
listed as symbolic links to another file in the pods folder

If we follow the links to /var/log/pods, we see that each link resolves to a folder
that reflects instances of the pods, as shown in figure 8.11.

Figure 8.11 The result of looking at the /var/log/pods folder, which turn out to be directories

Examining one of the pod folders, such as log-simulator, previously deployed
into the default namespace (hence the default_ prefix), we see a folder with incre-
menting log file numbers and another layer of symbolic links, shown in figure 8.12.

Figure 8.12 The content of one of the pod folders in /var/log/pods, which again are symbolic links to
another part of the file system

221Getting a peek at host logs
Following the link into /var/lib/docker/containers yields a new challenge—the
privileges are greatly restricted, and we need to use a sudo command to list the
folder’s contents, as shown in figure 8.13.

Figure 8.13 The restricted contents of /var/lib/docker/containers can be seen here;
note the very restrictive privileges.

If we look inside one of these folders, we find the log files shown in figure 8.14. But the
last couple of steps have worked only with elevated permissions. It also helps us under-
stand the different file paths being used in the predefined configuration. This means
that in the YAML file, we need to ensure that the mounts work with appropriate per-
missions. It also confirms that the paths inside the containers are the same as the host.

Figure 8.14 Having overcome the restrictions, we can see the contents of /var/lib/docker/containers,
which include a genuine log file rather than another symbolic link.

We should also note that minikube’s log access security is very coarse-grained, and as a
result, if you can see one log, you’ll be able to access them all if you interact with the
host. In a production context, this is not very desirable from a security perspective.
The takeaway is if you’re sensitive about logs in a containerized environment, control
the visibility more directly using patterns such as the sidecar, as discussed in chapter 7.
Taking more active control of your container’s log events means you won’t be subject
to how access controls are managed in Kubernetes.

 Navigating through the file system makes it clear that the way Kubernetes is config-
ured is not trivial. This brings us back to the point that the more we can monitor at
the container and application levels, the easier things will be.

222 CHAPTER 8 Driving logs with Docker and Kubernetes
8.6 Configuring a Kubernetes logging DaemonSet
Given the overview, it would be reasonable to assume that we can copy the configura-
tion YAML to establish the Kubernetes DaemonSet for logging. We can leverage the
existing Docker images provided by Fluentd in our configuration. The YAML configu-
ration will need to give specific environment variable values and mount the right parts
of the file system. If we wanted the DaemonSet to also apply some customized configu-
ration, we would need to map additional configuration files into the system.

 Rather than set a lot of environment values to control the current Fluentd configu-
ration, we can look at how we can point Fluentd to an alternative configuration file
and inject the modified configuration. This also gives us a chance to address content
layout in a Docker file that can impact downstream applications.

8.6.1 Getting the Fluentd configuration ready to be used

With the customized Fluentd configuration, we could deploy this by modifying the
Docker build. However, a more elegant way is to exploit the features of the Kuberne-
tes configuration. This means if we wish to alter the configuration, we only need to
redeploy a configuration change rather than changing the Docker image and the
subsequent steps involved in redeploying it. This is made possible because the Flu-
entd Docker files work by configuring Fluentd through environment variables and
suitably placed additional configuration files that can be picked up through the
includes statements.

 With our Fluentd configuration established, we need to get it ready to be con-
sumed by the container. We’ll do this using a Kubernetes ConfigMap, which we’ll
explain a bit more shortly. We need to start by deploying the ConfigMap into Kuber-
netes, ready to be referenced. The ConfigMap can be included in our core Kuberne-
tes YAML file, or we can use the Fluentd file, translate it to a suitable format, and
deploy the configuration separately. This latter approach is more desirable, as we can
check the configuration using the Fluentd dry-run feature we saw in chapter 3 to vali-
date the configuration before deploying. If the configuration is embedded in the
larger configuration file, the validation step won’t be possible.

 The Fluentd ConfigMap is associated with the kube-system namespace to match
the fact that the standard Fluentd DaemonSet is deployed into that namespace. The
use of this namespace makes sense; in this case we’re configuring and deploying a
Kubernetes-wide service. Listing 8.3 shows the Fluentd configuration that we want to
introduce. As you can see, it sources logs from the containers and pods and sends the
log events to a configurable target. We also need to note the name of the ConfigMap
(fluentd-conf), as this will be referenced in the YAML file. As with the LogSimula-
tor deployment, we’ve bundled a batch and shell script, removing any previous config-
uration (deploy-config.bat and .sh).

 To deploy the configuration file, we need to use the minikube command:

minikube kubectl -- create configmap fluentd-conf –from-file=Fluentd/
custom.conf --namespace=kube-system

223Configuring a Kubernetes logging DaemonSet
If you want to confirm the deployment, use the dashboard to view the configuration
and select Config Maps (from the left-hand menu). Then, in the center part of the
dashboard, you’ll see all the ConfigMaps, including our fluentd-conf. The content
of the ConfigMap can then be displayed by clicking on the name of our ConfigMap.
You may see each line terminated with \r; this is the Linux encoding of a carriage
return and won’t present any issues when the file is processed.

<system>
 Log_Level debug
</system>

<source>
 @type tail
 path /var/log/containers/*.log
 read_from_head true
 read_lines_limit 25
 tag deamonset
 path_key sourcePath
 emit_unmatched_lines true
 <parse>
 @type none
 </parse>
</source>

<source>
 @type tail
 path /var/log/pods/*/*.log
 read_from_head true
 read_lines_limit 25
 tag deamonset2
 path_key sourcePath
 emit_unmatched_lines true
 <parse>
 @type none
 </parse>
</source>

<source>

 @type tail
 path /var/lib/docker/containers/*.log
 read_from_head true
 read_lines_limit 25
 tag deamonset3
 path_key sourcePath
 emit_unmatched_lines true
 <parse>
 @type none
 </parse>
</source>

<match *>
 @type forward
 <buffer>

Listing 8.3 Chapter8/Fluentd/custom.conf overriding configuration for Kubernetes

This source is part of the secured
file system and needs the privileges
set to allow Fluentd to read.

We’ve set a very short-lived buffer so we can see the
events flowing through quickly; given our deployment,
the networking overheads aren’t an issue.

224 CHAPTER 8 Driving logs with Docker and Kubernetes
 buffer_type memory
 flush_interval 2s
 </buffer>
 <server>
 host "#{ENV['FLUENT_FOWARD_HOST']}"
 port "#{ENV['FLUENT_FOWARD_PORT']}"
 </server>
</match>

PASSING CONTENT TO THE CONTAINER THROUGH KUBERNETES

Kubernetes provides a range of ways to share content into a container as a mount
path. The number of options is such that Kubernetes in Action has several chapters ded-
icated to the subject. Essentially, the different techniques can impact whether the con-
tainer can modify the file system, whether the storage has persisted beyond the
container's life, and so on. A ConfigMap is immutable (read-only), which is ideal for
our scenario. The contents of a ConfigMap can be consumed through environment
variables, command-line values, and files, depending upon the options used. How-
ever, they are limited in size, so they may not be suitable if you wish to pass over a log
file to be replayed.

 When sharing files into Kubernetes-managed containers, we must be mindful that
any content already in the folder (volume) of the container receiving the shared
folder will effectively get overwritten with the shared content from Kubernetes. So,
pushing new configurations into the container needs to be done carefully. For exam-
ple, replacing just the Kubernetes.conf file in the standard Docker setup wouldn’t
be wise because it shares a common folder with all the configuration files. By adopting
the approach used in the containers of putting the new configuration files into a dif-
ferent location and modifying the path to the configuration file Fluentd picks up via
the environment variable, we protect ourselves from such issues. This means if we
wanted, we could include the standard Kubernetes and Prometheus configurations
and then replace them when necessary.

8.6.2 Creating our Kubernetes deployment configuration

Let’s adapt and deploy that standard Fluentd repository DaemonSet for our minikube
environment. To do that, we need to download the file locally, as we need to make a
couple of tweaks. This can be done by using either a wget command on the raw view
(http://mng.bz/OGpE) or by using the git clone command. My preference is wget
(it’s the easiest way to retrieve lots of things in Docker files, etc.), which looks like

wget https://raw.githubusercontent.com/fluent/fluentd-kubernetes-daemonset/
master/fluentd-daemonset-forward.yaml

We need to then make the following additions and modifications:

1 Set the values for the location of our Fluentd node that we want to forward the
log events to. This means we should replace the text REMOTE_ENDPOINT with
the address or IP of the host machine (e.g., 192.168.1.2). The value for the

Allows the addressing of the
server to be driven through the
Kubernetes configuration file

http://mng.bz/OGpE

225Configuring a Kubernetes logging DaemonSet
FLUENT_FOWARD_PORT also needs to be changed from 18080 to 28080. This
is to reflect the port being used in our Fluentd node configuration.

In a production setup, we would always recommend this be a DNS address.
That way, any changes in the environment or scaling Fluentd with load balanc-
ing are masked from the configuration. This will require understanding how
DNS is handled within Kubernetes, which is not a subject for this book.

2 Add the environment variable FLUENTD_SYSTEMD_CONF into the env section
of the YAML, and set its value to "FALSE".

3 Override the FLUENTD_CONF environment variable in the same section so that
it points to our custom.conf file we’ve supplied via the ConfigMap.

4 Add a securityContext section to the container’s part of the YAML file with
the privileged attribute set to true to overcome the previously identified
permissions challenge.

5 Add the volumeMount entry for our ConfigMap so that the path is defined as
expected. This means adding to the volumeMounts section an additional
name called config-volume, a mountPath of /fluentd/etc/custom.

6 We then reference the volumes section as an additional entry with the name of
config-volume (linking the volumes and VolumeMounts) with an attribute
of configMap, which is then referenced by name, which we previously set up as
fluentd-conf.

As we have tailored the existing configuration, you will still reference the Docker
image defined by the Docker file at http://mng.bz/p2dz. The actual Docker image
will come from Docker Hub at http://mng.bz/QWvG. The result of tailoring the
Kubernetes YAML file can be seen in the following listing.

apiVersion: apps/v1
kind: DaemonSet
metadata:
 name: fluentd
 namespace: kube-system
 labels:
 k8s-app: fluentd-logging
 version: v1
spec:
 selector:
 matchLabels:
 k8s-app: fluentd-logging
 version: v1
 template:
 metadata:
 labels:
 k8s-app: fluentd-logging
 version: v1

Listing 8.4 Chapter8/Kubernetes/fluentd-daemonset.yaml modified for our requirements

http://mng.bz/p2dz
http://mng.bz/QWvG

226 CHAPTER 8 Driving logs with Docker and Kubernetes
 spec:
 tolerations:
 - key: node-role.kubernetes.io/master
 effect: NoSchedule
 containers:
 - name: fluentd
 image: fluent/fluentd-kubernetes-daemonset:v1-debian-forward

 env:
 - name: FLUENT_FOWARD_HOST

 value: "192.168.1.2"
 - name: FLUENT_FOWARD_PORT
 value: "28080"
 - name: FLUENTD_SYSTEMD_CONF
 value: "FALSE"
 - name: FLUENTD_CONF
 value: "custom/custom.conf"
 resources:
 limits:
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 volumeMounts:
 - name: varlog
 mountPath: /var/log
 - name: varlibdockercontainers
 mountPath: /var/lib/docker/containers
 readOnly: true
 - name: config-volume

 mountPath: /fluentd/etc/custom/
 securityContext:

 privileged: true
 terminationGracePeriodSeconds: 30
 volumes:
 - name: varlog
 hostPath:
 path: /var/log
 - name: varlibdockercontainers
 hostPath:
 path: /var/lib/docker/containers
 - name: config-volume
 configMap:
 name: fluentd-conf

8.6.3 Putting the implementation of a Fluentd for
Kubernetes into action

Using the understanding gleaned from chapters 3 and 7 and exploiting the existing
Fluentd configuration files for the DaemonSet (see http://mng.bz/XWZv), construct a
simple single configuration file that tails any relevant files from the Kubernetes

We continue to reference the
prebuilt Fluentd Docker

image setup for managing
logging for Kubernetes.

The IP and port for the log events
to be forwarded to, set by using
environment variables

Overrides the location of the
configuration file to be used
when Fluentd starts up

Defines the mount location that the
container will see. This path is then
mapped to a file system outside of
Kubernetes, giving us assurance the
logs can be safely retained.

The additional security setting so
that the container can access the
restricted folders and files we saw
when exploring the host server

Maps the volume to the
ConfigMap that was loaded
into Kubernetes earlier

http://mng.bz/XWZv

227Configuring a Kubernetes logging DaemonSet
cluster. As the log events are collected, forward them to the Fluentd node previously
used with the Docker log driver configuration.

ANSWER

A simple Fluentd configuration has been provided in the download pack as shown in
listing 8.4, which we will utilize for the following steps. Still, there is nothing to stop
you from substituting your configuration into the next steps.

8.6.4 Deploying to minikube

Before deploying the DaemonSet, we should start our local Fluentd instance ready to
receive log events. This is the same step as we have done many times before with the
command

fluentd -c Chapter8/Fluentd/forwardstdout.conf

The next step is to deploy to Kubernetes our DaemonSet:

minikube kubectl -- apply -f Kubernetes/fluentd-daemonset.yaml --
namespace=kube-system

Again, we’ve made a batch and shell script in the download pack called deploy
-deamonset.bat or .sh, which will remove any preexisting deployment and push
the current configuration into Kubernetes. You can confirm the DaemonSet’s deploy-
ment for the other assets using the dashboard by selecting the menu option for Dae-
mon Sets (in the left-hand navigation menu under Workloads); this should list
fluentd. Clicking on the title will show the details of the pod containing our container.

 If Kubernetes has been in a steady idle state, then we may not see any logs imme-
diately. We can address this by redeploying our LogSimulator configuration as we had
did earlier in the chapter using the script deploy-log-sim-k8. This will quickly
result in various events from Kubernetes being sent across, including the stdout log
events from the LogSimulator container. We can see an example of the output in
figure 8.15.

Figure 8.15 The received log events in our receiving Fluentd node

228 CHAPTER 8 Driving logs with Docker and Kubernetes
8.6.5 Tidying up

Having run Kubernetes and retrieved various Docker images and minikube assets,
you’ll reach a point where you want to clear or refresh the environment. One of the
simple but excellent features is that minikube will completely wipe the environment
with a single command to release resources because you’ve finished, or reset and start
again if you want to validate everything again. This is done with the command

minikube delete

8.7 Kubernetes configuration in action
We have established a basic configuration that gives us a sight of the log events within
a Kubernetes environment. However, the configuration isn’t enterprise-ready. To get
to enterprise readiness, we will need to improve the configuration. Your challenge is
to identify the changes necessary and take the provided configurations and amend
them as necessary.

8.7.1 Answer

The changes you have identified should include the following points:

 The tail source is not recording its tracking position in the file; thus, a restart
could duplicate log events.

 The recorded pos_file needs to be mapped to a mount point so that if the
pod is restarted, the position information is not lost.

 The tail configuration needs to address this issue of log rotation being managed.
 The additional Kubernetes metrics and Prometheus information should be

available and controlled through the configuration.
 The Kubernetes core components (in the kube-system namespace) should have

their logs tagged separately to hosted applications and the receiving end sepa-
rating out the tags.

 Exploit the Kubernetes plugin to tag the log events with the additional
metadata.

 Tune the caching in Fluentd to be more production-friendly and take into
account the resources provided by Kubernetes.

 The log level should be moved from debug to info.

8.8 More Kubernetes monitoring and logging to watch for
We have addressed the core logging considerations for Kubernetes, but there are
additional areas you should be aware of that may need further consideration. Kuber-
netes is continuing to evolve and be extended rapidly. As a result, some features may
not be provided, as the deployment being run on is not the latest iteration, or if
you’re using a managed service, the service provider may have implemented certain
features differently as the different capabilities are typically API-led. And, of course,

229Summary
you may wish to overlay Kubernetes with a mesh framework, like Istio or Linkerd, that
will have its own logs. We believe the following areas are the most valuable areas to
track with core Kubernetes.

8.8.1 Node monitoring

So far, we have focused on the core logs involved with our containers. But you may
wish to also address the monitoring of the health of the underpinning of the Kuberne-
tes node. There are various options around this, including using Fluentd or Fluent Bit
on the native node and monitoring the server’s raw statistics. However, this may not be
allowed in some environments. Kubernetes also provides an additional DaemonSet
for a service called the Node Problem Detector.

 The node problem DaemonSet is an optional add-on for minikube, and some
other prebuilt Kubernetes clusters provided by cloud vendors and others take this
approach. As a result, the DaemonSet needs to be enabled. The Node Problem Detec-
tor monitors the kernel log file and reports on specific issues based on the configura-
tion, which can be overridden with a ConfigMap, in the same manner as we have
modified the Fluentd configuration. The detector includes an exporter element that
sends the information to different endpoints, including the Kubernetes API server
and the Stackdriver, which integrates to our Fluentd Daemon.

 More information on this service can be found at https://github.com/kubernetes/
node-problem-detector.

8.8.2 Termination messages

Within the configuration of a pod, it is possible to configure the recording of informa-
tion relating to a pod’s termination. So in the event of an abnormal termination, it is
possible to perform a retrospective diagnosis. Within a container configuration,
Kubernetes can be given a path to where the termination messages are in a container
using the property terminationMessagePath (which is defaulted to /dev/
termination-log). We need to verify that the Kubernetes configuration ensures
the log event is directed to a location picked up by Fluentd or that Fluentd knows how
to retrieve this information from Kubernetes. More information on this can be found
at http://mng.bz/y4aB.

Summary
 The default Docker log driver works in such a way that trying to track its

log files directly using standard Fluentd plugins isn’t possible (e.g., use of
compression).

 Fluentd can be used as a log driver for Docker, making accessing and using
Docker log events a lot easier.

 Fluentd GitHub repository includes predefined DaemonSet configurations.
Alternative Fluentd configurations are also made available in prebuilt images to

https://github.com/kubernetes/node-problem-detector
https://github.com/kubernetes/node-problem-detector
https://github.com/kubernetes/node-problem-detector
http://mng.bz/y4aB

230 CHAPTER 8 Driving logs with Docker and Kubernetes
accommodate OS differences and the possibility of routing logs directly to ser-
vices such as Elasticsearch.

 Kubernetes configurations such as minikube are complex, with levels of indi-
rection through symbolic links making it difficult to determine which files are
the real logs if we want to monitor.

 Using the power of Kubernetes’s ConfigMaps, it is possible to tailor or extend
the out-of-the-box Fluentd configuration. So, a prebuilt Fluentd Docker image
will capture log events and send them to a different Fluentd node.

Creating custom plugins
At various points in the book, we have referred to Fluentd’s support for the devel-
opment of plugins beyond those from the core product. The extensibility of Flu-
entd has led to a robust ecosystem of third-party plugins to make it easy to capture,
filter, manipulate, and send them to many different systems and data stores. We
have also discussed how custom plugins could connect to and monitor esoteric and
legacy solutions when things cannot easily or efficiently be achieved with the exist-
ing plugins.

 In this chapter, we will walk through the process of creating an input and output
plugin that makes use of Redis’s list capability. We will take a closer look at Redis
and the rationale behind its use.

This chapter covers
 Developing custom Fluentd plugins for Redis

 Using Fluentd utilities to speed up development

 Implementing the Fluentd plugin life cycle
methods

 Testing and packaging custom Fluentd plugins

 Creating documentation for the custom plugins
231

232 CHAPTER 9 Creating custom plugins
9.1 Plugin source code
Code for the plugin developed here is included with the download of the book or
retrievable from our GitHub repository (http://mng.bz/M20W). If you want to build
upon what is provided, we encourage you to fork the GitHub repository and develop it
as you wish; enhancement opportunities you might like to consider include

 Moving to use the RedisTimeSeries feature (more on this in a moment)
 Developing support for Fluentd’s block size-based buffering
 Increasing security on the connection to Redis (e.g., using SSL/TLS connec-

tions and credentials, such as username and password)

Whatever approach you take, all we ask is for you to acknowledge this book as the
starting point in the code.

9.2 What is Redis, and why build a plugin with the Redis
list capability?
Redis is an open source, scalable, in-memory storage solution built around name-
value pairs. The ability to define details such as time to live (TTL; this means that the
time to hold the data is defined, after which it is automatically deleted) on data ele-
ments held, making for an exceptional caching tool. (In appendix E, we have pro-
vided plenty of supporting references for Redis in addition to those for Ruby.)

 Aside from using Redis to help demonstrate plugin development, there are some
potential real-world benefits of developing such a plugin:

 Rather than using a small, embedded, in-memory cache, we can use a highly
resilient open source option that can be far more effective in scaling and repli-
cating the cached data across multiple servers (for more insight into the use of
caches, check out https://techterms.com/definition/cache).

Developing Ruby
This chapter does call for some development experience. Still, you do not need to be
a hardcore Ruby developer to take the information shown here and put it into action.
Like most languages, once you have had some development experience with one lan-
guage, you can use that understanding to start coming to grips with others. I count
myself in this category given that I’ve come through a career of programming with Ada,
C, C++, and then Java for the last 15 or more years. We are not going to write another
Ruby book; others have done an exceptional job of this already, such as David A. Black
and Joseph Leo III with The Well-Grounded Rubyist, 3rd edition (Manning, 2017). I have
tried to provide just enough detail for you to understand what we are doing with Ruby
and the code without first learning the language. After all, it is our goal to help you
understand what is happening with Fluentd. In appendix E, we have included links to
resources to help you learn the basics of Ruby and to better understand the tools
used, or you might want to make use of them if you take on the exercises.

http://mng.bz/M20W
https://techterms.com/definition/cache

233Illustrating our objective using Redis CLI
 It provides an additional option for enabling Fluentd nodes to collaborate
efficiently.

 It creates integrations with Redis lists, such as the Ruby Resque (Ruby queuing
implementation; https://github.com/resque), providing opportunities to sup-
port or use additional services.

 It provides a means to keep events held in order, as Redis lists support the first
in, first out (FIFO) pattern; this allows us to keep log events in sequence (i.e., in
time series).

Caching solutions such as Redis operate by storing the data within memory data struc-
tures rather than long-term storage like a conventional database. The structures han-
dle the data as key-value pairs. The internal structures can be very sophisticated to
allow the cache to quickly locate the correct bit of memory. In addition to this, the
data can be handled as a time series of events. The data held can also have a TTL
before being automatically removed from the store.

9.2.1 Redis list over RedisTimeSeries

At the time of this writing, Redis Labs has developed the high-performance Redis-
TimeSeries, which handles data in a time-series format made of two 64-bit structures
representing the time and a value (more at https://oss.redislabs.com/redistime
series). Using it presents some challenges:

 There is no support for a Windows native option, and we want to keep things as
simple as possible without needing to work through the different approaches to
Linux virtualization.

 The data structure used by RedisTimeSeries cannot hold the log events in 128
bits, which means that to use this structure, the value part must act as a “foreign
key” to another data structure. Taking the example solution to an enterprise-
class capability may make this worthwhile, but it adds complexity related to
Redis, not Fluentd, and therefore won’t be beneficial to this book.

Given these points, we will stick with the vanilla Redis features.

9.3 Illustrating our objective using Redis CLI
Before we start looking at any development activities, let’s simulate the behavior we
want to achieve with the plugins. Simulating the behavior will make it easier to relate
the development activities back to the solution. To do this, we first need to install
Redis, using the details provided in appendix A. Once Redis is installed, we will use its
command-line interface (CLI) to simulate the effect of the plugins we will build.

 The Redis server needs to be started in its own shell. This can be done with the
command

redis-server

Once we see evidence of that process running (Redis reporting to the console), the
next step is to start the Redis CLI with the command redis-cli in a new console

https://github.com/resque
https://oss.redislabs.com/redistimeseries
https://oss.redislabs.com/redistimeseries
https://oss.redislabs.com/redistimeseries

234 CHAPTER 9 Creating custom plugins
window. We can recognize when the command has worked, as the command prompt
will look like

redis 127.0.0.1:6379 >

We can confirm that we have a proper Redis server connection by entering the command
info. This will result in a lot of settings information, including the Redis version displayed
in the console. With one redis-cli running, we need to repeat the process in a separate
shell to simulate the effect of two different processes interacting with the cache. For
the rest of this section, we will refer to these as CLI 1 and CLI 2. As we go through the
simulation, imagine CLI 1 is acting as a Fluentd output plugin and CLI 2 as a Fluentd
input plugin. In CLI 1, we want to run the following list push (lpush) commands:

lpush fluentd '{"tag":"demo", "timestamp" : 1606076261, "record" : {"blah" :
"blah 1"}}'

lpush fluentd '{"tag":"demo", "timestamp" : 1606076263, "record" : {"blah" :
"blah 2"}}'

lpush fluentd '{"tag":"demo", "timestamp" : 1606076267, "record" : {"blah" :
"blah 3"}}'

Each time the command is issued, you will get a response looking like (integer) 1. To
start with, we will see this response changing as the list depth changes. We can use the
list length (llen) command

llen fluentd

to find out how many entries in the list exist. The reference to fluentd in these com-
mands is the name of the list we are using. Notice how we need to use single quotes at
the beginning and end of the record so that we can use double quotes in the JSON.
Now, in CLI 2, issue the list pop (lpop) command:

lpop fluentd

As a result, you will see the first entry provided in CLI 1 displayed on the CLI 2 con-
sole. Repeat the command lpop fluentd, and the response will include the second
record added. Add more entries on CLI 1 and continue popping on CLI 2 until you
see a nil response. This means the list has been emptied.

 CLI 1 is effectively our output plugin behavior in our simulation, and CLI 2 is our
source plugin behavior. This can help our Fluentd setup by smoothing out the spikes
in the activity. Fluentd input and output nodes are transient in nature (as may be the
case of a containerized environment). In that case, we have efficient in-memory stor-
age of log events (holding events in memory will not suffer the same I/O perfor-
mance impacts of storage to disk).

9.4 Preparing for development
Before we can start any development, some basic preparation is needed. You need to have

 Prepared an installation of Fluentd and Ruby, or continue using the existing
installation that has been used with the previous chapters (if you would rather
start fresh, then all the necessary steps are detailed in appendix A).

235Plugin frameworks
 Prepared a simple installation of Redis, if you have not already done this
(details for this are in appendix A).

 Chosen an IDE (integrated development environment) that can support Ruby
and installed the IDE and any relevant extensions needed (we will be using
Visual Studio Code). As this tends to be a personal choice, we will leave the
choice and installation up to you.

 Installed the Redis Gem to write Ruby code to talk with Redis (detailed in
appendix A).

 Established a folder for implementing our plugin; this may align with the folder
structure created when you retrieved all the book’s support files.

We do not want to accidentally pollute the use of Ruby and the catalog of gems
with our development efforts. One way to achieve this is to allow our develop-
ment code to be picked up by Fluentd when we start it rather than require it to
be packaged as a gem and deployed to test code. There are also ways to comingle
development code with the gems file system, which we would not recommend.

For the rest of this chapter, we will assume that path starts as c:\myDev\GitHub
|LoggingInAction\Chapter9. Once these components are in place, then we are
ready to start.

9.5 Plugin frameworks
As you have seen throughout the book, Fluentd works with a strong foundation of
plugins of different types—input, output, filter, parser, and formatter. Fluentd needs to
impose some common mechanisms, including naming conventions and folder struc-
ture, to make plugins work and tell the core of Fluentd about the different plugins
installed. To help with this, Fluentd includes some tools to help make sure plugin devel-
opment complies with the required conventions. Plugins have a class hierarchy with
classes to build upon for each plugin type. Figure 9.1 illustrates this class hierarchy.

Figure 9.1 The foundation classes on which we can build our plugin, all of which are located within the lib/
fluent/plugin folder of the source tree

9.5.1 Creating the skeleton plugin

Fluentd provides a tool for building the skeleton framework for our plugin. Before this
is executed, you need to be in the correct location that you want to use for Fluentd
development (e.g., the root folder for your own GitHub project), as it will use that

Base
(base.rb)

Output
(output.rb)

Input
(input.rb)

Parser
(parser.rb) Filter (filter.rb) Formatter

(formatter.rb)
Storage

(storage.rb)
Buffer

(buffer.rb)

Helper plugins

236 CHAPTER 9 Creating custom plugins
folder as the starting point for all the artifacts. Once in the correct location, we can use
the command fluent-plugin-generate <plugin type> <plugin name>. The
plugin type represents the type of plugin (input, output, etc.) and the plugin’s name.
We are going to start with the output plugin. In our case, this makes the complete call:

fluent-plugin-generate output redislist

We have opted for the name redislist, as the plugin works specifically with Redis’s
lists capability. As with most data stores, there is already a general-purpose Redis
plugin in existence (http://mng.bz/aDP7); you might want to build a plugin to moni-
tor its health as well.

 As a result of using the utility, we get a directory structure as illustrated in figure
9.2, which includes some skeleton configuration and code files. As we progress
through this chapter, we will address each of the files.

Figure 9.2 The directory structure and files generated when we run the fluent-plugin-generate utility.
Colors indicate what needs to be modified to complete a plugin, as shown in the key.

Pl
ug

in
 ro

ot

License

Rakefile

lib fluent plugin

test

helper.rb

plugin

File doesn’t need
modification, but you
may wish to do so.

Folder

Key

<plugin name>.rb
e.g., fluent-plugin-out-

redislist.rb

File needs
modification.

test_<plugin name>.rb
e.g., test_fluent-plugin-

out-redislist.rb

<plugin name>.gemspec
e.g., fluent-plugin-out-

redislist.gemspec

Readme.md

Gemfile

http://mng.bz/aDP7

237Plugin frameworks
The code we will develop for the plugin is shown in the /lib/fluent/plugin folder,
as illustrated in figure 9.2, with the Ruby file based on the plugin name (e.g., out_
redislist.rb). The code we develop in the following few sections will go into this file.

9.5.2 Plugin life cycle

Plugins are taken through a life cycle, with each stage having a method that can be
overridden if you need to implement the logic for that specific stage of a life cycle. As
we will see during the development of our input and output plugins, we do not have
to use every stage, but some are essential in nearly every case—for example, config-
ure, start, and shut down. Each of these states also has a query function to determine
whether that is the current state—for example, after_shutdown? Figure 9.3 illus-
trates the full life cycle that a plugin supports along with the goal of each stage.

Setting up the properties ready for use. Validating values as necessary.•

1. Configure

The point at which we translate configuration to connections. Establish •
timers, etc.
Buffering threads are established.•

2. Start

Once the startup has completed, we enter this state.•
From this we can infer that we’re now running.•

3. After start

The first state in a shutdown cycle, used to set flags in buffering processes, •
threads, etc., so that any logic can decline to add to the buffer, for example.

• No errors should come from this graceful operation.
Pass onto the buffering the stop command.•

4. Stop

Once all the stop actions are completed, this method is triggered.•
This allows us to perform tasks such as flush buffers.•

5. Before shutdown

We can now perform service and resource closing, such as releasing •
connections, closing files, and releasing network resources.

6. Shutdown

Used to complete the emission of any log events still held.•
Implementation of this state should be rare.•

7. After shutdown

Anything that has not or could not be previously closed should now be •
closed.

8. Close

• In testing rather than a complete process stop. This is used to reset state
to a position prior to configuration.

9. Terminate

Figure 9.3 Plugins
go through this life
cycle with methods
provided in the
skeleton to be
overloaded and
implement specific
logic needed at each
life cycle stage. Not
all states have to be
overloaded.

238 CHAPTER 9 Creating custom plugins
9.6 Implementing the plugin core
We’ve generated the skeleton and taken a moment to look at the life cycle stages; now
the plugin can inject any specific behavior required. We can now get down to writing
the plugin code that processes the configuration and executes the handling of log
events, and we’ll cover connecting and disconnecting with Redis.

9.6.1 How configuration attributes work

With the plugin structured, the first step is to define the configuration attributes the it
will use. This is achieved by using the config_param object, which takes the values
for

 The attribute name as it would be used in the configuration file.
 The attribute’s data type, which could be any of string, integer.
 The default value, if one can be specified.
 Whether the value should be kept secret when Fluentd performs a dry run or

the startup output of its configuration. By default, this is false and therefore not
needed. But to illustrate the behavior, we have included its use.

 The ability to define an alias for the attribute name. Aliasing can be helpful
when a plugin changes over time.

We need to capture a port number, host address (a DNS name or IP), and the list’s
name held by Redis. To do this, we need to define several configuration attributes to
be specified in the configuration file. The code is a sequence of desc and
config_param statements, with the desc providing the description of the following
config_param appearing in the code. We know the data types and potential default
values mean we should exploit the available attributes to simplify data validation. This
will also make the user’s experience as simple as possible. As a result, we should end
up with code as illustrated in the following listing.

desc "specifies the port to connect to Redis with, will

➥ default to 6379 if not specified"

config_param :port, :integer, default: 6379, secret: false, alias:

➥:portNo

desc "Defines the host address for Redis, if not defined

➥ 127.0.0.1"

Listing 9.1 Chapter9/fluent-plugin-out-redislist/lib/fluent/out_redislist.rb

Providing the desc entry before each config_param means that
tools can be used to generate the documentation for the plugin

configuration, as well as provide documentation internally.

This is an example of setting an integer configuration value and defaulting the
value. We can also indicate to Fluentd when it generates the summary of the
configuration at startup and outputs it; we can tell Fluentd with the secret
parameter whether the value should be included. We have also told Fluentd that if
it receives portNo as a configuration value, then use it as the port number source.

239Implementing the plugin core

config_param :hostaddr, :string, default: "127.0.0.1",

➥ secret: false

desc "Defines the name of the list to be used in Redis, by

➥ default this is Fluentd"
config_param :listname, :string, default: "fluentd"

desc "Defines the number of reconnection attempts before giving

➥ up on connecting to the Redis server."
config_param :reconnect_attempts, :integer, default: 2

desc "Defines the number of seconds before timing out a connection

➥ to the Redis server"
config_param :connection_timeout, :integer, default: 5

desc "Defines the number of log events in a chunk"
config_param :chunksize, :integer, default: 20

Once defined, we can refer to the values as class-level elements and use the Ruby @
notation (e.g., @port) within the rest of the code.

 We should also hold the Redis connection as a class member, so we do not need to
re-create the connection every time we interact with Redis. With the configuration
details, we could also try to create the Redis connection now. Still, by the life cycle
definitions, that would be incorrect, and if another plugin configuration failed, Flu-
entd might choose not to start our plugin. As a result, we would be consuming unnec-
essary resources, such as the network connection. But we need the Redis dependency
incorporated into the code with require "redis" declaration at the top of the file.

NOTE When it comes to coding style, I create the steps needed in the plugin
as small functions. This may appear inefficient, but the optimizers in compil-
ers, interpreters, and language virtual machines can usually optimize out
these overheads. This approach does make for easier testing, and each step is
easier to examine in isolation.

The framework provides a configure function, as seen in the life cycle (see figure
9.3). This gives us the chance to implement any additional custom validation needed.
We can also use this method to define our own class-level variables. To illustrate this
capability, we will implement code to check if the network port defined is the default
Redis port. If it isn’t the default port, log a warning message to remind developers that
they need to ensure ports are deconflicted. This code is in the following listing, with
both our check function and the implementation of the configure function, which
uses any inherited behavior.

def check_port(conf)
log.trace "checkport invoked"
 port = conf['port']

Listing 9.2 Chapter9/fluent-plugin-out-redislist/lib/fluent/out_redislist.rb

As with the previous
example, we are setting a
default value. This time
we are providing a string.

Retrieves the configuration value
from the list of configuration
attributes using the defined name

240 CHAPTER 9 Creating custom plugins
 if (port != RedislistOutput::DefaultPort)
 log.info ("Default Redis port in use")
 else
 log.warn ("Non standard Redis port in use - ensure ports are deconflicted")
 end
end

def configure(conf)

super
 checkPort (conf
end

9.6.2 Starting up and shutting down

After the configuration, the most critical functions in the life cycle will be the start and
shutdown functions for most plugins. These are the ideal moments to create or close
connections, such as those to Redis. Since establishing connections to storage solu-
tions is often relatively slow, we want to perform the task before actively communicat-
ing with the remote solution. Redis allows us to define time-outs on the connections
and how many reconnection attempts we can have. We’ll set these up as configuration
values, but for now, let’s hardwire them. If the connection fails to be established, we
should make it easy to recognize during the plugin life cycle. We can do this by setting
the connector to nil and logging the issue.

 We need to incorporate the start and shutdown functions shown in the following
listing into our plugin and our supporting functions to ensure that the required
behavior is achieved.

def connect_redis()
 log.trace "connect_redis - Create connection if non existant"
 if !@redis
 begin
 @redis=Redis.new(host:@hostaddr,port:@port,connect_timeout:@connection_
 ➥ timeout,reconnect_attempts:@reconnect_attempts)
 log.debug "Connected to Redis "+@redis.connected?.to_s
 rescue Redis::BaseConnectionError, Redis::CannotConnectError => conn_err
 log.error "Connection error - ", conn_err.message, "\n connection

 ➥ timeout=", @connection_timeout, "\n connection attempts=",
 ➥ @reconnect_attempts

 @redis = nil
 return nil
 rescue => err
 log.error "Error connecting to redis - ", err.message,

 ➥ "|",err.class.to_s
 ➥ @redis = nil
 return nil

Listing 9.3 Chapter9/fluent-plugin-out-redislist/lib/fluent/plugin/out_redislist.rb

We defined a constant in the
class for the default port.

This is the method that is invoked as
part of the plugin life cycle and
triggers our check_port method.

Makes sure any inherited
logic is executed first

Invokes our method, passing
all the configuration data over

Establishing the Redis connection, informing the
connection parameters from values retrieved from the

configuration properties and defined constants

Handles Redis connection errors separately
from the general catchall, as we can guide the
user more effectively for these kinds of issues

241Implementing the plugin core
 end
 end
end

def start
 super
 log.trace "starting redis plugin\n"
 connect_redis()

end

def shutdown
 super
 log.trace "shutdown"
 if @redis
 begin
 @redis.disconnect!
 log.debug "disconnecting from redis\n"
 @redis = nil
 rescue
 log.error "Error closing Redis connection"
 end
 end
end

9.6.3 Getting the plugin to work with our Fluentd installation

With enough code to prove we can get our plugin to at least start and stop, we can run
a simple test with the full Fluentd. The Fluentd tooling includes extensions to help
with unit testing, but it is always rewarding to see code firing up as part of something
bigger, particularly when the startup is quick. To do this, we need to ensure Fluentd
can pick up our plugin code.

 We need a test configuration to be able to run Fluentd. We have prepared one for
this job, and it can be retrieved from Chapter9/Fluentd/dummy-plugin.conf. Of
course, you might like to choose to develop your own configuration, given everything
you’ve learned in the book.

 We have repeated using the dummy source Fluentd plugin to generate log events,
as the content is not essential. The crucial element is the match configuration, as illus-
trated in the following listing.

<match *>
 @type redislist
 portno 6379

 #<buffer>

 # flush_interval 120
 #</buffer>
</match>

Listing 9.4 Chapter9/Fluentd/dummy_plugin.conf

Establishes a connection to Redis
as part of the startup once all the
inherited activities are completed

Ensures any inherited
tasks are completed

If we still have a Redis connection,
then start the disconnection process.

This is the declaration
to use our plugin.

As we build upon the base class provided, the in-memory helper
plugin is available if the use of the buffer attribute is defined.
For now, we have the buffer configuration commented out.

242 CHAPTER 9 Creating custom plugins
Before starting Fluentd, we need to start the Redis server as we did earlier in the chap-
ter. Eventually, we will want to package and deploy our plugin just like any other Flu-
entd plugin using the gem tools. But to start with, we do not want to go through the
additional effort of deploying and undeploying a gem every time we make a change.
To avoid the gem deployment issue, we can add parameters to the command line tell-
ing Fluentd to pick up the source code of our plugin from a Ruby file. For example,
my copy of the plugin directory structure starts at

c:\myDev\GitHub|UnifiedLoggingWithFluentd\Chapter9\

➥ fluent-plugin-out-redislist

Then the extended Fluentd command will look as follows:

fluentd -c Chapter9\Fluentd\dummy-plugin-out.conf -p

➥ c:\myDev\GitHub|UnifiedLoggingWithFluentd\Chapter9\fluent-plugin-out-
➥ redislist\lib\fluent\plugin -vv

Going forward, we will show the path as <plugin absolute path>\Chapter9\
fluent-plugin-out-redislist\lib\fluent\plugin, where you need to substi-
tute <plugin absolute path> accordingly.

 Combining the configuration file and extending the path to collect our plugin
mean our command to start Fluentd will result in Fluentd displaying the configura-
tion as it starts up. With the Redis server running at the command line, it will be
possible to see Redis logging the number of connections it has as we start and stop
Fluentd.

9.6.4 Putting additional configuration validation into action

Your objective is to restart the Redis server on a different port and create an alterna-
tive Fluentd configuration to connect to Redis on a different port. You need to con-
firm that our configuration check is performing correctly. To restart Redis on a
different port, add --port nnnn, where nnnn represents the port number to use with
the startup command.

ANSWER

The modified configuration file solution can be found at Chapter9\Exercise-
Results\dummy-plugin-Answer.conf, where we have changed the port from
6379 to 16379. We also modified the log message generated by the dummy output
plugin, although we will not see that yet.

 When the Redis server is started, we need to add --port 16379 to override the
default. Our Fluentd startup command now becomes

fluentd -c Chapter9\ExerciseResults\Fluentd\dummy-plugin-Answer.conf -p

➥ <plugin absolute path>\Chapter9\
➥ fluent-plugin-out-redislist\lib\fluent\plugin

When Fluentd starts up, we should see the warning in the log output from Fluentd
about using a nonstandard port. But the Redis server should report the connection.

243Implementing the plugin core
9.6.5 Implementing the Redis output logic

Having proven we can configure, start up, and shut down the plugin, we can move to
the next step of implementing the logic of sending the events to Redis. There are sev-
eral ways the logic can be executed:

 Synchronous—Process each event by implementing the method def process
(tag, es). This is the most straightforward approach and the least performant
for execution, as it does not use any buffering.

 Synchronous buffered—Output is implemented by the method def write
(chunk).

 Asynchronous buffered—Output is implemented by the method def try_write
(chunk).

Which implementation method is used is dictated by whether the configuration
includes a <buffer> section or not, unless we configure some override to the stan-
dard behavior. For the first implementation, we will keep it nice and straightforward
with the synchronous model.

 Our implementation process needs to tag the event stream passed as (es) and
iterate through the events. As the stream could contain multiple events, we can make
the process a little more efficient by telling Redis to batch up executing the insertion
of the events. This is done by telling Redis it will receive multiple transaction calls
using the command redis.multi. Once we have iterated through the events, tell
Redis it can execute the transactions using the call redis.exec. As we iterate
through the log events, we need to perform the following actions:

 Build a JSON representation of the log event(s). If you have reviewed the out-
put interface, you will note that there is a predefined formatter function. We
have chosen not to override or use this, as we do not want to impact other appli-
cations of this method within the plugin’s base classes; we can therefore format
the presentation in any desired manner—for example, using msgpack.

 Perform a Redis list push function.

We should be defensive in our code to handle the scenario of losing the Redis connec-
tion before all the events have been committed to Redis.

 We need to transform the log event to JSON for potentially three different func-
tions; we should write the logic once and invoke it from the different plugin methods
involved. The result of this is two methods, as shown in the following listing.

def redisFormat(tag,time,record)

 redis_entry = Hash.new
 redis_entry.store(RedislistOutput::TagAttributeLabel,
 ➥ tag.to_s)

Listing 9.5 Chapter9/fluent-plugin-out-redislist/lib/fluent/pluginout_redislist.rb

This is our function that translates the log event into a JSON
representation. We need to build our own JSON representation,

as we need to capture all the log event attributes.

By using predefined
constants, these
could be shared with
the input plugin.

244 CHAPTER 9 Creating custom plugins

 redis_entry.store(RedislistOutput::TimeAttributeLabel,
 ➥ time.to_i)
 redis_entry.store(RedislistOutput::RecordAttributeLabel,
 ➥ record.to_s)
 redis_out = JSON.generate(redis_entry)

 return redis_out
end

def write(chunk)
 log.trace "write:", chunk

 @redis.multi

 chunk.each do |time, record|
 log.debug "write sync redis push ", chunk.metadata.tag,
 ➥ time, record, @listname @redis.lpush(@listname,redisFormat
 ➥ (chunk.metadata.tag, time, record))
 end
 @redis.exec

end

9.6.6 Putting the testing of synchronous output into action

We have reached a state where we can confirm that we can write to Redis. Using the
previously illustrated approach, restart Fluentd and use the illustrated Redis com-
mands to review the list in Redis and pop entries in the list.

ANSWER

In repeating the Fluentd test, with the write method now in place, you should expect
the Redis commands to show the list structure to grow with JSON content, looking
something like this:

{"tag" : "dummy", "time" : "2014-12-14 23:23:38", "record" :

➥ {"hello" : "world", "counter":1}}

The log events as they are generated will increment the counter value due to the
source configuration. This will mean there should be a correlation between the
counter attribute values and the Redis list length. This can be confirmed with the
llen command in the Redis CLI. You will also be able to pop the entries from the list
using the command lpop fluentd, as the configuration will allow the default list
name to be used.

9.7 Implementing the Redis input plugin
Before implementing one of the other write methods, let’s complete the circuit with
the input plugin. We can use the same utilities that generated the output plugin to
generate the skeleton folders and files for the input side. Everything is the same as
before rerunning the utility, except that we specify the plugin as input, not output.
This will result in the generated code extending a different base class (as we saw in fig-
ure 9.2); thus, we need to implement some different functions.

As the record, event time, and tag represent
a flat structure, we can build a simple hash
structure and then exploit the prebuilt
operations to convert it to JSON. Note we
don’t use the formatter method, as this is
used by other parts of Fluentd, such as the
buffer, and we don’t wish to confuse that
logic with a variant representation.

This is one of the
standard functions used
by an output plugin.

This tells Redis to accept multiple statements
that should be executed in a single operation.

This releases the Redis library to send all the
statements to the Redis server as a single block.

245Implementing the Redis input plugin
 For Redis, the input plugin is effectively a polling activity, as most solutions don’t
support callbacks or webhooks (it is worth noting that Redis does have a webhook
concept). This means we will need a configuration value as to how quickly the plugin
needs to poll Redis. As with the output plugin, we will need the information necessary
to connect to Redis. For this latter task, we can copy the code written for the output
plugin. While this does not support the excellent coding principles of DRY (don’t
repeat yourself), there are plenty of opportunities to improve our code later.

 Although we have some additional values to consider, the input plugin processes
the configuration attributes just as the output plugin does. The two key functions that
need to be implemented on the input plugin are to handle the run command and the
emit function (as shown in listing 9.6). The run method will be responsible for start-
ing our scheduling thread. The emit function handles calling Redis and emitting the
log events to the next process in Fluentd defined by the configuration file.

 As a source plugin, the framework will set the tag and timestamp values on the
event to reflect the current time and the tag default behavior. Do these values make
sense, as they do not truly reflect when the original event occurred? To address this,
we are providing the means to determine whether the original tag and time are added
to the event record or should be used in the core log event. It is probably best if we
allow the person configuring the plugin to determine what should be replaced. If the
values should be inserted into the log event, we must determine what attribute names
to use. We can address this using the same mechanism for capturing plugin configura-
tion attributes already used.

def emit
 log.trace "emit triggered"
 if !@redis
 log.debug "reconnecting Redis ",@hostaddr,":",@port
 connect_redis()
 end

 if @redis
 keep_popping = true

 while keep_popping
 if (@fifo)
 popped = @redis.rpop(@listname)
 else
 popped = @redis.lpop(@listname)
 end

 log.debug "Popped",@listname, ": ", popped
 if popped
 data = JSON.parse(popped)

 if (@use_original_time)
 time = data[TimeAttributeLabel]

Listing 9.6 Chapter9/fluent-plugin-redislist/lib/fluent/plugin/in_redislist.rb

Determines whether a new
connection is required

Sets the loop controller up so we keep
calling Fluentd until a shutdown process
changes the status of this flag

Redis allows us to treat a list as first in, first out (FIFO) or last
in, first out (LIFO). So we can use this configuration to control
whether we want to operate the list in a FIFO or LIFO manner.

246 CHAPTER 9 Creating custom plugins
 else
 time = Fluent::EventTime.now
 end

 if (@use_original_tag)
 tag = data[RedislistInput::TagAttributeLabel]
 else
 tag = @tag
 end

 data_record = data.fetch(RecordAttributeLabel).to_s
 log.debug "original data record=>",data_record

 if (@add_original_time && !(data_record.include?
 ➥ '"'+@add_original_time_name+'"'))
 data_record= inject_original_value(data,data_record,
 ➥ RedislistInput::TimeAttributeLabel,@add_original_time_name)
 end

 if @add_original_tag &&
 ➥ !(data_record.include? '"'+@add_original_tag_name+'"')
 data_record = inject_original_value(data,data_record,
 ➥ RedislistInput::TagAttributeLabel,@add_original_tag_name)
 end

 log.debug "Emitting -->", tag," ", time, " ", data_record
 router.emit(tag, time, data_record)
 else
 keep_popping = false
 end
 end
 else
 log.warn "No Redis - ", @redis
 end
end

def run
 log.trace ("run triggered")
 while thread_current_running?
 current_time = Time.now.to_i

 emit() if thread_current_running?
 while thread_current_running? && Time.now.to_i <= current_time
 sleep @run_interval
 end
 end
end

9.7.1 Testing input and output plugin execution

With our input plugin implemented, we can perform a simple test. We could easily
incorporate both the input and output plugins into our single configuration (see

Determine whether
the tag and date-

time values should
replace the new log
event or simply be

incorporated in
their log event

record.

This is when we tell Fluentd to
pass the log event onto the next
step of the process based on the
configuration definition.

The thread handling for the run
method, and for as long as the
thread is allowed to run

Once we’ve decided the thread has
legitimately been woken since the last cycle,
we can use emit to send all the log events.

247Extending output with buffering
Chapter9/fluentd/dummy-plugin.conf); the problem would be that the log
information for input and output would intermingle. We would need to extend the
plugin path parameter to include both plugins, like this:

fluentd -c Chapter9\fluentd\dummy-plugin.conf -p <plugin absolute

➥ path>\Chapter9\fluent-plugin-out-redislist\lib\fluent\plugin -p <plugin
➥ absolute path>\Chapter9\fluent-plugin-redislist\lib\fluent\plugin

Alternatively, we can start two instances of Fluentd with each using their own configu-
ration, so each process has one input. This will make seeing what is happening a lot
easier. To do this, repeat the steps previously used to see the output plugin at work.
Then, in another console window, we can adapt the command to reference our input
plugin path and the Chapter9\Fluentd\dummy-plugin-in.conf that we have
prepared already. The result should look like this:

fluentd -c Chapter9\Fluentd\dummy-plugin-in.conf -p <plugin absolute

➥ path>\Chapter9\fluent-plugin-redislist\lib\fluent\plugin

With everything running, you should see in one console messages showing the log
events being added. Another shows them being removed and the Redis console dis-
playing the two interactions of adding and removing from the list.

 With the ability to write and consume log events with a Redis list now in place, let
us go back to the write logic and extend the implementation with alternate ways of the
output logic working, such as by using the buffer.

9.8 Extending output with buffering
As we saw in chapter 4, if the plugin supports a buffer, the I/O process can be opti-
mized. We have already done some performance optimization by configuring the syn-
chronous process to bunch the Redis push operations together, so the Redis
connector executes them all at once if we receive more than one log event. But we can
further accelerate the process by using the buffer to process larger groups into a sin-
gle transaction in Redis.

 As we saw in chapter 4, out of the box, there are two types of buffers for Fluentd
using either a temporary file or memory. Supporting a file implementation does not
make sense when our target is an in-memory solution that provides better perfor-
mance than using physical storage such as disks. This means our solution should only
allow the use of the memory buffer.

 In figure 9.4, we can see how the log event passes through the different paths of
the base Fluentd output class and the functions that need to be implemented,
depending on whether buffering is used and whether buffering is synchronous or
asynchronous in nature.

248 CHAPTER 9 Creating custom plugins
Figure 9.4 The different methods involved in outputting log events from an output plugin depending on the use
and type of buffering

As shown in figure 9.4, to keep things simple, we will implement the synchronous buff-
ered path to start with once we have plugins for input and output; then we will revisit
to extend the plugin for the buffered use case.

 The asynchronous path is largely the same as the synchronous path regarding how
we interact with Fluentd. But we have to manage the additional logic that makes the
behavior asynchronous and uses the buffer chunk data structures. With the buffering,
we could offer either or both approaches to handling the buffer chunks. The options
include the following:

 Each chunk is controlled by the number of log events it can contain. This is a simple
mechanism and very efficient and predictable when log events are consistent in
size. But if log events are variable in size, you can exhaust the available memory
before filling a chunk.

 Each chunk is controlled by allocating the same amount of memory. With the size
model, we have the responsibility to implement the logic around calculating
the size of the log event, determining if the log event can fit into the current
chunk or needs to be put into another chunk. Also, we must decide what to do
if the log event is larger than the chunk size limit.

The benefit of this model is that if log events are variable in size, we don’t
risk memory exhaustion scenarios, as we’ve capped the number of resources
that will be used. The additional code complexity here is not about how

Router Emit Emit_sync

Emit_buffered

Process

Write

Buffer
chunk

Output_flush_threads[].join Try_write

D
estination

Mechanism for
determining when
chunk needs to be
written

Managed threads form
queue for being processed.
Failed write falls back into
queue.

Output

Fluentd

Output method that
may need
overloading

Internals of the
output framework

Sync or async
groups of

functionality

Key

Format
Async

buffering

Synchronous
buffering

249Extending output with buffering
Fluentd plugins are written and more about understanding Ruby and how it
works with data structures.

In the spirit of “keep it simple stupid” (KISS) and focusing on Fluentd, we will illus-
trate the number of log events per chunk model. The responsibility of understanding
the log events and avoiding the risk of memory exhaustion is on the user. With our
approach worked out, we should make it easy for the user by defaulting some of the
buffer settings as we would like to have them. As a result, we can incorporate with the
configurations the following code fragment:

 config_section :buffer do
 config_set_default :@type, 'memory'
 config_set_default :chunk_keys, ["tag"]
 config_set_default :chunk_limit_records, @chunksize
 end

As you can see, we have defined a chunk size configuration attribute, which has itself
defaulted. As a result, we will default to the buffering approach without any configura-
tion values unless explicitly overridden. We should also extend the configure func-
tion to consider the possibility of being supplied with configuration values that we do
not recommend or are not supporting, as they are intended for the chunk size model
of buffering.

 The next step is implementing the write function, which takes a buffer chunk once
complete and passes the chunk building up the Redis push calls. We can leverage the
previous logic to generate the representation we want to use in Redis. Just as with the
synchronous bufferless path, we want to brace the looping through the chunk with
the instruction to the Redis connector to batch up all the Redis commands to execute
in one go using the redis.multi and redis.exec functions. The new write method
is shown in the following listing.

def write(chunk)
 log.trace "write:", chunk

 @redis.multi
 chunk.each do |time, record|
 log.debug "write sync redis push ", chunk.metadata.tag, time,
 ➥ record, @listname
 @redis.lpush(@listname,redisFormat(chunk.metadata.tag,time,record))
 end
 @redis.exec
end

Listing 9.7 Chapter9/fluent-plugin-out-redislist/lib/fluent/out_redislist.rb

The function is called from the base class logic. We have
implemented our own version. Unlike functions like configure,
calling super would trigger a not-implemented exception.

Instructs the Redis connector to group
all the Redis statements that follow

The chunk has a different
structure to the stream

structure provided in the
unbatched path, so we need a

different loop. This will
iterate over each chunk entry.

As before, we need to take the log
event, time, and tag to build a
representation to be used in Redis.

Handles Redis connection
errors separately from the
general catchall, as we can
guide the user more effectively
for these kinds of issues

250 CHAPTER 9 Creating custom plugins
We can rerun our test with a slightly different configuration to ensure we use the buff-
ering behavior with this method introduced. This can be done with the following
command:

fluentd -c Chapter9\Fluentd\dummy-plugin.conf -p <plugin absolute

➥ path>Chapter9\fluent-plugin-out-redislist\lib\fluent\plugin -vv

With the test configuration provided, we should see the write method trace statements
occurring periodically. The internal tracing writes log events to stdout in short bursts
as the write function logs the details as it calls the Redis connector.

9.8.1 Improving our scenario by putting maintainability into action

Our proof-of-concept level implementation of the Redis list plugin has shown how we
can deliver a new plugin. In the process of development, there is some commonality
between the input and output code. As a result, we have received the go-ahead to
make some improvements. Therefore, the first goal is to refactor the input and output
to use a common base class.

9.9 Unit testing
The testing we have done so far is a manual process that we all know is not the best. In
the real world, we would lead with unit testing and build up from there. Ideally,
changes in the code should trigger a continuous integration and continuous delivery
process, automatically running the unit tests and end-to-end testing.

 We will not go into depth here, as unit testing is primarily an aspect of Ruby devel-
opment, rather than Fluentd. The Fluentd team has built some support libraries that
can be used with any major unit test frameworks, including test-unit (https://test
-unit.github.io/), RSpec (https://rspec.info/), and minitest. Our example utilizes test-
unit, as it is a well-adopted framework and feels like many other major unit test frame-
works, such as NUnit, JUnit, and so on.

 When we used the utility for generating the plugin skeleton and generated the
main Ruby code, the tool also generated a folder structure test in the base plugin
folder. This includes providing a skeleton class to help us get started. The test class has
the same name as the plugin but with a prefix of test_. This is a small piece of helper
code (helper.rb) in the base of the test path. This loads the framework’s helper
code into the test-unit tool.

 To illustrate the possibilities, we have built a couple of tests for the output plugin,
as illustrated in listing 9.8. These tests focus on validating the configuration-related
logic that drives the behavior of our plugins. This is achieved using part of the Fluentd
test framework that implements different types of drivers. The type of driver needed is
dictated by the plugin type and mimics the core of Fluentd. We can trigger the neces-
sary operations using the driver, including feeding in log events to the plugin. The
driver also provides the means to retrieve and evaluate the results, such as how many
times events have been through specific stages (e.g., emit, write). The evaluation can
be done using the driver to access and examine the processed events, such as the

https://test-unit.github.io/
https://test-unit.github.io/
https://test-unit.github.io/
https://rspec.info/

251Putting the development of unit tests into action

the
output of the synchronous and asynchronous write operations, and to simply know
how many events have been handled.

 The driver capability can be extended to handle the impact of scheduled activities,
such as events accumulating in a buffer. The test utilities can also capture standard out
and process the text. Capturing such output allows you to verify that the processing of
log events is being generated as expected. In our test for advanced config, we apply
this technique. If log events are not going to stdout, but to a log file for Fluentd, it
can also be interrogated, looking for how much log information is generated and
whether specific log events have occurred.

test 'advanced config' do
 conf = %[
 host 127.0.0.1
 port 24229
]

 captured_string = capture_stdout do
 d = create_driver(conf)
 assert_equal 24229, d.instance.port
 assert_equal '127.0.0.1', d.instance.hostaddr
 end

 assert_true (captured_string.include? "Non standard Redis port in use")

 d.shutdown
 end

To execute the unit tests, we simply need to follow the unit test framework’s guidance.
In the case of test-unit, that comes down to using Ruby to execute the unit test file. For
example:

ruby Chapter9/fluent-plugin-out-redislist/test/plugin/test_out_redislist.rb

9.10 Putting the development of unit tests into action
Previously, we identified the need to test different configurations through running
Fluentd with alternative configuration files. These should be replaced with unit tests.
As the output plugin has restricted how we can use buffering, we need to further test
configuration handling. This is best done with unit tests for the configure and
write functions.

9.10.1 Answer

Within the Chapter9/ExerciseResults directory, we have included two child
directories called test-out and test-in. These contain the directory structures
and files with additional unit tests covering the configure and other operations that
you can compare against.

Listing 9.8 Chapter9/fluent-plugin-out-redislist/test/plugin/test_out_redislist.rb

Declares the
unit testCreates a set of

configuration values
to be passed Defines a variable to capture any

stdout generated within the
following statement block

Creates the
driver using
 test config

provided

Tests the values set in
the plugin for the port

Evaluates whether the
warning about no standard

port has been produced
Shuts down
everything cleanly

252 CHAPTER 9 Creating custom plugins
9.11 Package and deployment
Having completed testing, we can think about packaging and deploying our plugins.
This includes preparing the metadata files and documentation.

9.11.1 Documentation

Part of packaging up a solution includes providing the licensing information and doc-
umentation for the plugin. The template utility will have provided a standard license
document and a basic README. The most important thing here is to ensure that the
readme is clear and complete. Like any good product, the plugin’s ability to be suc-
cessfully used is predicated on people understanding how to use it, so good documen-
tation will make a meaningful difference. In the download pack (and GitHub
repository), we have provided a separate completed readme, so the initial generated
state (readme.md) and final state (readme-final.md) can be compared. You may
notice in the readme content some instructions for helping to complete the Gemfile,
which we will come to in a moment.

 The task of generating the documentation for the plugins is greatly simplified
using another Fluentd-provided utility. The fluent-plugin-config-format util-
ity takes the plugin type (in the same way that the utility that created the skeleton for
us) and names the plugin’s parameters. We can then tell the utility how we would like
the documentation to be generated. In the following example, we have used mark-
down (it makes it easy for GitHub and other Git-like repositories to render nicely, but
other options include pure text and JSON). As we want to generate the documenta-
tion from the source, we need to provide the path to the Ruby plugin code. Using this
utility with the following parameters will produce the documentation about the
plugin configuration information:

fluent-plugin-config-format output redislist -f markdown -p lib/fluent/plugin/

The result of the utility is sent to the console rather than to a file, so we do need to cut
and paste the output into our readme.md file (or use some shell/console tricks to
pipe the output into the file). We have incorporated the output into the readme
- final.md file.

USING RDOC OR YARD
In the directory structure shown in figure 9.2, we had a doc folder that was not gener-
ated by the Fluentd utility. This comes from running RDoc or YARD on the code,
resulting in developer-level documentation being generated. In this case, we have
opted to use YARD, as it provides some additional neat features over standard RDoc.
To find out more about YARD and install it, see appendix E. Note that if you prefer to
stick with RDoc, the metadata tags YARD uses will appear in the generated output.

 With YARD installed, maintaining this document comes down to looking after the
code, commenting, and running the commands from the root folder of the plugin:

yard doc lib/fluent/plugin/out_redislist.rb
yard doc lib/fluent/plugin/in_redislist.rb

253Package and deployment
This will update the documentation for you, but it focuses on general Ruby code and
comments, not the specifics relating to Fluentd, such as the configuration values and
their parameters.

9.11.2 Complete metadata aka manifest

The Gemfile needs to be updated as directed by the README in its defaulted con-
tent. Therefore, we need to add to the gemspec file the name of the gem we want to
create. It takes the form of gem <name of the gem>—for example, gem "fluent-
plugin-out-redislist"—for our input plugin.

 The gemspec file will also need to be completed with additional information,
including the summary, description, home page, license, contact details, and version-
ing (Semantic Versioning format is expected; https://semver.org). This also needs to
include details of any dependencies. When set up, we installed several additional
gems, such as the Redis connector. This means we need to add the dependencies into
the gemspec file so they are retrieved when this plugin is installed:

spec.add_runtime_dependency "redis", "~>4.0"

This indicates that the Redis gem is needed at a version of 4.0 or later. The gemspec
standard does allow for complex rules to be defined for what versions can be used.

9.11.3 Building the gem package

Once complete, we can do this using the RubyGem tooling that we previously
installed. This means we can use the gemspec tools to create the final package. But be
careful where you execute the command from, as the gemspec file includes scripting,
which uses relative paths to locate all the files that need to be included. We can switch
on the verbose mode using the -V parameter to the command to make it easy to see
what is going on. To complete the task, we use the command to create the gem file:

gem build in-redislist.gem --config-file ./fluent-plugin-redistlist.gemspec -V

With the gem file is created, we need to install it into our local library of gems. Once
complete, we can then use the gem without providing the path to the actual Ruby
code. This can be done with the command

gem install ./fluent-plugin-out-redislist-0.1.0.gem

We can confirm that the gem is in place by executing the command

gem search -l redis

This should yield a list including our gem.

9.11.4 Rerun without the plugin paths

With the plugins built and the gems created and installed, we can rerun our test sce-
nario. This time the test can be run without referencing the Ruby code directly, as we
have made the code available via the gems we created to ensure we don’t accidentally

https://semver.org

254 CHAPTER 9 Creating custom plugins
run using the -p parameter in the Fluentd command line. As a result, we can see our
plugin working, but the execution commands reflect the conventional way of working
that we would see in production.

9.12 Extending to be an enterprise-class solution
The plugin development has been successful and has met all our requirements. But it
doesn’t yet reach the level at which we could call the solution suitable for enterprise-
class use cases. To bring things up to a suitable standard, we recommend some
changes:

 Credentials used on the Redis connection—configure the plugin to optionally
use an authenticated connection with Redis. This should be done to allow the
credentials to be injected from a secure source, such as Vault.

 Using an authenticated connection to Redis means passing credentials. We do
not really want to be doing that with an HTTP connection with the credentials
in cleartext. So, the connection to Redis should be implemented securely with
SSL/TLS certificates.

 One of the features within Redis, and what makes it such a good cache solution,
is the inclusion of TTL. By incorporating TTL, we can control the size of the
Redis buffer, and if we cannot keep up, then events will simply expire.

 As events are handled, some basic stats could be generated that could poten-
tially be consumed by Prometheus.

 Extend and enhance the unit testing to achieve a target of greater than 60%
coverage.

 Develop the prebuilt Rakefile to include and execute all the unit tests. Also,
incorporate activities such as

– Lint code analysis.
– Maintaining the additional documentation using of RDoc or YARD. Cur-

rently, the doc folder is generated using YARD.
– Generating fluent-plugin-config-format output and determining if

there have been any changes since the last build.

 Incorporate the process into a continuous integration tool suite.
 Consolidate the readme.md documentation rather than using the readme

- final.md

If you wish to develop your plugin development skills or use this as a practical oppor-
tunity to develop your Ruby development skills, we would encourage you to try imple-
menting these suggested improvements. As you won’t be following our steps when
implementing these features, we would recommend that you adopt your preferred
development tool(s). We do not have a reference solution to this, but running the test
scenarios as you implement your solution to this exercise will confirm a successful out-
come functionally.

255Summary
Summary
 Fluentd plugin tooling provides the means to create the skeleton code to

develop both input and output plugins.
 Fluentd’s skeleton supports asynchronous and synchronous buffering output

plugin functions.
 Fluentd input plugins need to be able to set the time and tag details. The input

plugin implements this logic.
 The plugin framework includes defining, creating, and defaulting the configu-

ration properties for the plugin loaded from the configuration file.
 Fluentd plugins are typically made available as RubyGems. The utilities pro-

vided by Ruby and Fluentd make this easy to achieve.

256 CHAPTER 9 Creating custom plugins

Part 4

Good logging practices
and frameworks

to maximize log value

Software is only as good as the data it processes. Likewise, log processing is
only as good as the logs generated. Perhaps we should look at it this way: good
information enables good insights and effective decisions. To gain benefits from
capturing, manipulating, and routing log events, we need log events that are
clear and precise in meaning. The more directly software can get log events to
Fluentd, the lower the overheads and the less opportunity for ambiguity to creep
into monitoring.

 In the remaining chapters, we will focus on ensuring the log content has
maximum value and meaning. In short, what makes a good log event? When are
logs oversharing or not sharing enough? Is the context of the log event clear?

 Many applications these days use logging frameworks either as part of the
language or from third parties. What should we look to gain from such frame-
works? What should we look for when choosing a framework? What options exist
if there isn’t a framework or a specific means to connect to Fluentd? Fluentd
provides a range of additional utilities and libraries that can help, so what is
available? These are all questions we’ll engage with in the last part of the book.

258 CHAPTER

Logging best practices
The technology used is only as good as the log events themselves, regardless of how
log entries are generated, whether applications write to stdout, stderr, OS event
frameworks, or logging frameworks. To maximize the technical investment, we
need to make the log events and their creation as effective as possible.

 We have delved deeply into the technology, so we need to do the same for log
events. This chapter will explore what should and should not be logged in terms of
business data, and it will examine what information can make log events more
helpful. With that, we’ll identify some practices to help get values from the log
events. The business data our systems process can be subject to a wide variety of
contractual and legislative requirements. So we’ll look at some of the better-known

This chapter covers
 Applying log levels to filter and prioritize actions

 Identifying characteristics of good logs

 Easing operational activities with good logs

 Understanding the impact of legislation on logs

 Coding practices for improved logging
259

260 CHAPTER 10 Logging best practices
legislation needs, some options to mitigate their impact, and sources that can help us
identify any other legislative requirements that can impact the use of logging.

10.1 Audit events vs. log events
When is an event an audit event, and when is it a log event? Let’s start with defining
what the two events are (figure 10.1):

 Audit events—These are typically a record of an action, event, or data state that
needs to be retained to provide a formal record that may be required at some
future point to help resolve an issue of compliance (such as accounting pro-
cesses or security). Many of these actions will be user-triggered.

 Log events—These record something that has occurred; the log event will be pro-
vided for a technical reason, ranging from showing how a transaction has been
handled to reporting unexpected circumstances to show how code is executing.

From the description, you can see a fair degree of overlap. The overlap comes from
the fact that logging as a technical mechanism can be used to meet auditing require-
ments, and both have a common core of data. Audit events are often informed by
well-structured content with a bias to security-related events, such as logging in and
out. The question is more about whether the tool the events are routed to is suited to
audit-related tasks. This all points to the fact that a log unification tool like Fluentd
can support audit needs; we need to concentrate on ensuring the information in the
event is suitable and that we send it to a suitable tool for analysis.

10.2 Log levels and severities
Going back to chapter 1, we talked about how log messages will support different roles
at different times, whether you work in a DevOps organization (the development
team is also operationally responsible) or on a classic separated operation and devel-
opment team. Some logs help development and testing, others help with trouble-
shooting, and still others help with forgetting audit, security, and performance
tracking. The simplest thing that can be done is to attribute every log with a log level
or severity reflecting the impact of what the log event represents. Typical log levels are

AuditingLogging

Time

Location

Event

Who

How often
Performance

What order

Why

Event severity

Figure 10.1 Venn diagram showing the
relationship between logging and auditing

261Log levels and severities
trace, debug, info(rmation), warn(ing), error, and fatal. The idea of event severity and these
severity levels goes back to the ’80s and Syslog development. Many aspects of how Sys-
log does things have become standards with the IETF (Internet Engineering Task
Force; https://tools.ietf.org/html/rfc5424). But there is a correlation between these
levels on the associated activities, as we’ll see in a moment.

NOTE Should log events be described using terms such as severity or log levels?
The IETF talks about severity; however, this carries connotations suggesting
the log information is linked to something bad. However, logs should legiti-
mately be generated to indicate that everything is running as expected. As a
result, many people, including myself, use the term log level to avoid the con-
notations that come with the word severity.

Of course, the key to this is a common understanding of what the log level represents.
Misclassification of log entries is a common mistake with log events, which is why we've
mentioned the possibility of correcting those issues using Fluentd in previous chap-
ters. But it also means we should be explicit and that teams agree on the meaning of
the levels. The following sections provide a common set of log level definitions.

10.2.1 Trace

Primarily for development activities, the execution can have simple events written to
the log to indicate what method is executing. This allows us to confirm/validate that
execution paths are as expected.

 When it comes to the ideas of open tracing and open telemetry, we do need to separate
these from the classification. These technologies collect “trace” information showing
how a “transaction” has flowed through our environment. Open tracing depends on
the granularity of the tracing implemented. If the trace reflects the technical steps of
what is executed during the transactional flow, for example, in and out of compo-
nents, functions, and so on, then we will see a fine-grained and comprehensive trace,
and it should be logged using a trace categorization. If the tracing reflects the busi-
ness perspectives (e.g., executing all the actions related to getting goods into a ware-
house), then we’re going to see coarse-grained details, and this is best logged at an
information level.

10.2.2 Debug

This level is intended for sharing logging data to support any development and
debugging activities. This logging level should be information-rich to make trouble-
shooting easy or to re-create an operational issue, since it will yield the most insight
into what the software is doing. The content of such information should be produced
with both developers and those involved in more detailed troubleshooting. We often
see this level of logging being used rather than trying to use an IDE debugger and
attaching it to running software.

 These log messages are the most vulnerable to accidentally logging too much
information (e.g., personal or financial data), as whole data objects can be easily

https://tools.ietf.org/html/rfc5424

262 CHAPTER 10 Logging best practices
logged. This shouldn’t be an issue in non-production environments since the data is
likely to be synthetic. This also means it is easy to overlook the risks for production.

 The risk of logging sensitive data could be addressed by

 Developing standards that include details to address what data is or isn’t logged
and testing processes to ensure synthetic event data isn’t logged.

 Putting a blanket ban on enabling debug-level logging in production (produc-
tion should never have debug-level logging). In the event of a serious opera-
tional issue, the temptation to help diagnose a significant operational issue will
be high, and the consequences of setting debug-level logging are overlooked
until it’s too late.

10.2.3 Info(rmation)

This is the typical threshold for logs in everyday operational environments. It should
provide sufficient log information that diagnostic tasks can be undertaken if a system
doesn’t appear to be behaving correctly. The information recorded should include
details like

 Software versions, and so on, logged during startup and deployment.
 Audit logging, such as what and who, through details like session IDs (this

brings challenges involving personal data security, which we’ll discuss in more
depth later).

 Data values that influence decision logic.
 Interaction with sources and targets, such as URIs for other services, databases.

10.2.4 Warn(ing)

When things are not working as expected, there is a risk of an error, but the software
can continue to execute. For example, database connections fail, and the code sup-
ports a rollback or a successful retry operation. This may result in a warning to say that
it failed to connect, and then an error if it retries, or a complete rollback and the
transaction being abandoned.

 Warnings should not require immediate intervention but should be indicative of
the possibility of remediation being needed. This should include handling unex-
pected paths, and therefore assuming an action.

 Warnings ideally are linked to operational guidance documentation such as advis-
ing that maintenance processes may need to be performed sooner than the mainte-
nance schedule would lead us to expect, or that mitigation actions have been
automatically taken, such as scaling up a resource. Other warning actions may include
reviewing how a transaction has been completed as the system hasn’t processed it con-
ventionally or the code has assumed something incorrectly.

 We should also think about our solutions being defensive, checking if things are
getting close to dangerous thresholds, and creating warnings. For example, this might
include ensuring there is disk capacity to cope with the current rate of data growth.

263Log levels and severities
Other defenses should include validating data received, even if it originated from a
trusted source.

10.2.5 Error

This is used to record an event that will require intervention; for example, performing
an operation on an empty data structure that is assumed to always have a value can
trigger a null pointer exception. This will likely create a situation where a process does
not complete cleanly and thus needs to reflect as an error. For logging to help with
error resolution, the log events need to clarify the error cause. The location in the
code where the error occurred is crucial in order to enable improvements to be effec-
tively applied. This means a developer needs consumable information in an error log
event to help implement improvements, and Ops need details to determine what
remediation is needed.

 When errors occur, not only do we need a fix, but the errors also need to have
operational corrections applied to data (e.g., dividing by zero results in a calculated
value not being updated). Therefore, the information must also be clearly understood
by Ops people and the development/support team. Error codes can be beneficial, as
the remediation steps can be documented without swamping code with lots of text.

 Errors should try to fail gracefully—that is, they are handled and minimize the dis-
ruption (e.g., record the requested transaction and then allow subsequent transac-
tions to be processed without being tainted if possible).

10.2.6 Fatal

This kind of error should only be used in exceptional circumstances, such as when the
application has to terminate unexpectedly. The termination is likely to be ungraceful.
As with errors, the information needs to be as comprehensive as possible. However,
with a fatal error, there may be limitations on the information that can be gathered—
for example, a fatal error because of a failed file system will limit the ability to grab
related data values that may have influenced the cause of the problem.

 Again, error codes can be helpful, both to direct recovery tasks and by providing indi-
cations to underlying causes without resorting to having to build nice error messages.

10.2.7 Extending or creating your own log levels

These definitions do not mean you can’t formulate your own levels, but they have sig-
nificant implications in using a framework and ensuring common understanding. For
example, from time to time, I have wondered whether the error level should be split—
some errors demand immediate intervention, as they are a precursor to a fatal event if
you don’t intervene. And some errors mean a bad outcome, but they can wait until reg-
ular operating hours to be resolved. Consider an overnight payroll run—the calculation
of the pay for one individual has failed because the formula didn’t allow for someone
being paid for 0 hours one month, triggering an error such as dividing by zero. While
this is an error and needs addressing, should it stop the payroll run for everyone?

264 CHAPTER 10 Logging best practices
The log levels have a hierarchy of severity, and with that comes a frequency of occur-
rence. Trace logs are likely to be pretty pervasive, but fatal log events should be very
rare. We can see this in figure 10.2. If we add a new log level, how does it fit into the
hierarchy?

Figure 10.2 Log levels as a hierarchy of severity and occurrence

While creating additional or different log levels is possible, I have concluded that
changing log levels from industry norms is like swimming against the tide and have
settled on clearly worded definitions of log levels. If you’re considering customized
log levels, the bottom line is to be prepared for a considerable amount of effort, from
communicating the log-level details to figuring out everything impacted to determin-
ing the log framework settings.

 Should audit events use log levels, given the overlap previously described? Typi-
cally, audit events should be benign in nature and as a result should be logged at the
info level, as indicated in section 10.2.3. However, if your auditing includes financial
considerations, then failed transactions such as credits/debits to an account balance
should form part of the audit trail and reflect the event’s significance. As such, events
may require manual intervention, which will create subsequent audit events showing
possible interventions. It is worth considering the possibility of linking the log events
together to enable better insight.

10.3 Clear language
Writing log entries can at times feel tedious, and searching through log files is unexcit-
ing. It is tempting to include jokes (or worse) in the messages, making logs more enter-
taining, or add random keywords that are easy to search for when it’s our code rather
than simple, straightforward language. The problem is that there will be a time when
you will no longer be the person looking at these messages. There is a fair chance that
someone who needs to work with the logs may not have the language you are using as

Fatal

Error

Warn

Info

Debug

Trace

Volume of log events at a level

The severity of log events:
the more critical the log,
the more important
it is that we get
good-quality logging.

265Context is key
their first language, so the message’s meaning will not be understood. Logging things
like Geronimo . . . or one giant leap for code when logging about raising an excep-
tion is lighthearted for most, but it may cause confusion or, worse, may offend someone
in the future—so, sorry, it’s time to be boring, simple, and direct. Using wording to
make log searches easier is good but not at the price of risking understanding.

 In the same vein as this, we should carefully choose the words we use in log mes-
sages. This is important, as we do often overload the meaning of words. For example,
when using API, some treat the term as just the interface specification, as you would
see with technologies like OpenAPI, Blueprint, and Swagger. Others actually mean
the code that implements the logic behind the Swagger, Open API, or Blueprint defi-
nition. This problem isn’t just an IT issue; it happens within the business domains we
are using or in writing software.

10.4 Human and machine-readable
Calling out the need for logs to be both humanly readable and machine-readable may
seem rather obvious. But when we’re writing log event entries, it is easy to focus on
what reads well for us humans and forget that perhaps we want to make the log event
actionable downstream, which means we should ensure the log event is as structured
as possible. For example, if I had a log entry that said "received 12345678 date-
time for the schedule that is in the past," that could become {"Incorrect-
Data": "12345678", "AttributeImpacted": "schedule", "DataType":

"date-time", "Reason": "date past"}. It may require a little more cognitive
effort to read the log message, but the latter format can be subjected to many possibil-
ities in processing, from the error cause to the way we represent values.

10.5 Context is key
Understanding any log event requires context. When we’re developing and using
trace and debug logs, the context will, to an extent, be known to us, perhaps implic-
itly, as the position in the code will be part of the context or the test scenario being
run will be the context. But when we come to production, the context is not likely to
be implicit, so we need to make it explicit. The key to the context is how well we’re
answering the following:

 What—What is being reported, an error or just a trace?
 When—The date and time. This is the easy bit if you’re using some form of log-

ging framework.
 Where—Where in the code and where in the infrastructure the source of the log

event is.
 Why—When it comes to log levels of info and higher, why we provide the infor-

mation is essential. Is there a problem about to occur, or are we reporting some-
thing you want to track, like a login action?

 Who—Who triggered the action? Whose data could be impacted?

Let’s explore these points in a bit more detail.

266 CHAPTER 10 Logging best practices
10.5.1 Context: What

The log event’s “what” is partially addressed by the log level being included in the event.
For trace log events, the fact that the event is logged is probably enough when com-
bined with where. For info log level and above, we’re going to provide some additional
detail: Is the info record for audit purposes? What kind of error has occurred? What
does the warning relate to (e.g., shortage of storage)? The “what” is best supported with
details that allow a transaction to be identified, including the type of transaction. The
transactional data or a proxy, such as a unique ID for a transaction (so we can look up
the actual transaction data), should provide sufficient insight; for example, if the trans-
action is missing a reference to associated data, we need to see that value isn’t set.

10.5.2 Context: When

Logging frameworks address most of this for you without any effort but are likely to go
back to the server’s system clock. In chapter 2, we highlighted the implications of time
zones, clock skew, and so on. These can catch you out if you’re looking for a solution
that is running in a time zone that applies daylight saving time (because someone is
looking at the timestamp and it appears to be out because they’re applying daylight
saving time but the log isn’t) or the solution is globally distributed. So you need to
know which time zone the server is in. One option is to configure the logging frame-
work to include the time zone in the log, but better still, align all servers to UTC
(Coordinated Universal Time).

 When trying to align a log analysis with a user error report, you will need to be
clear about which time zone the user is working in and whether the error report is
recorded against their time or system time.

10.5.3 Context: where

Naming the code location requires some awareness of how the code is handled. This is
especially important when the code is deployed for a commercial solution where obfus-
cation and minifier tools are likely to be used, particularly on script-based solutions such
as JavaScript. As a result, relying on reflection to get details of where the code is can be
unhelpful. Although there are tools, some obscurification providers will include map-
ping information to identify the original code given the correct information.

NOTE For more information on code minifying and obscuring, check out the
following resources:

 The liveBook version of Web Performance in Action by Jeremy L. Wagner (Man-
ning, 2016) at http://mng.bz/g4RV

 http://mng.bz/p26z

Applications are typically either multithreaded (e.g., Java) or context switched on an I/
O wait (e.g., Node.js) and they are single-threaded. The context switching means we
don’t handle one transaction at a time, so understanding whether log events preceding
or following the event of interest are related can become challenging. This can be over-
come by incorporating transaction IDs or session IDs, or by leveraging open tracing or

http://mng.bz/g4RV
http://mng.bz/p26z

267Context is key
open telemetry IDs as part of the log event. Some logging frameworks will help you cap-
ture a thread or process ID in their configuration. For example, in Fluentd, we can uti-
lize the WorkerId in log file output.

 “Where” can also be influenced by software versions. We can have multiple ver-
sions of the same logic in production at one time to support activities such as

 Operating A/B deployments to help evaluate whether one implementation
improves user interaction

 Operating with high availability, so software updates require rolling updates to
occur

Here’s another way to look at it: you spot an image that has not been rendered very
well in this book. You contact Manning. To help you, we need to know which figure is
faulty. What if the issue has been seen before and been fixed in a new edition of the
book? This isn’t saying that every log event needs to publish every aspect of version
information, but we do need to make it easy to supply sufficient information. Perhaps
when we log errors or worse, this information is written into the log. This is an area
where injecting into log events can be helpful. If a log event is identified as reposting
something abnormal in the software, such as an error, then Fluentd could retrieve the
version of the software running and inject it into the logs for future reference.

10.5.4 Context: Why

This comes down to why an event has occurred—is it an error or just a signal to show
where the code is (trace) or the application’s current state (debug)? As we move to
the higher levels (warning, error, and fatal in our classification), “why” becomes more
important and less evident from just the log level. The information-level log events
could be an audit or a periodic snapshot of the system’s current state regardless of
whether things are good or bad—for example, logging how deep a message queue is.
However, the log event consumer needs to be able to understand why the event is
being generated. With a bit of thought, this is easily solved.

 A simple attribute, such as “current status” or “audit action,” could be included
along with the shared data. We are, in effect, providing a secondary classification in
many cases for the log event. Given that we provide additional metadata, we might
structure it as long as we are consistent within the development organization.

 When it comes to reporting warnings and errors, the why comes back to what trig-
gered the warning or error. Is it the primary error, or has something occurred as a
by-product of a previous issue? Trying to indicate whether an error is cause or effect is
difficult. If we can be certain, we should be clear; if it isn’t, we can perhaps give the log
event consumer some hint about the possibility. Coding such information can be com-
plicated and hard to test. But it is easy to link to an error code and provide steps to
confirm cause or effect.

 The record we generate with the event needs to clearly provide the information to
help perform a diagnosis, not just operationally, but also whether something in the
code may be needed, such as a more defensive code or better data validation. As the
solution is now on an unhappy path, we should not be afraid to be generous with the

268 CHAPTER 10 Logging best practices
information—as long as it doesn’t raise sensitivity issues, which we’ll look at shortly. For
error-handling paths, we’re in a place where performance should not be a consider-
ation, as this part of the codebase should only execute infrequently. Generally, too little
information is a lot worse than too much.

10.5.5 Context: Who

Logging of “who” can be tricky. As we’ll see a little later, logging information that is
identifiable to an individual will make our log processing subject to legislative, con-
tractual, and commercial requirements. Still, we will explore this a bit more later in
the chapter. The important thing is to consider when the “who” is necessary and
whether we can safely use other data as a proxy for the true identity. For example, per-
haps the “who” is relevant only during the logged-in session, so we just need to carry
the session ID and use that. If we need to attribute the actions in a session back to a
specific individual, we record that separately in a secure way. That session ID could
equally be a transaction or order ID, and so on.

 When recording events such as failed logins, or application interactions that do
not require a specific individual, we may still need a value for who, such as an originat-
ing IP address. For example, a single server ping may be harmless (alive service
reporting is likely to just do this), but a really rapid repeated occurrence from the
same location is not good. However, having that IP means it is possible to determine
that it was the same system calling and therefore who to block.

Don’t forget that the “who” could be a system or application component. For exam-
ple, when processing payroll, that activity is triggered by a scheduler. So it is helpful to
know which schedule or scheduler triggered the process.

10.5.6 a practical checklist for capturing context

Addressing what, when, where, why, and who can be a little abstract. Personally, I try to
address it using the following questions:

 Where in the code is the event coming from?
 If there is a chance that there are multiple versions of your code in production?

If so, then which version becomes important.
 How is the transaction handled? This is especially important if the impact of a

problem needs to be remediated in the data later.

“Who” context in action
Working with a client’s DevOps team, we discovered the client’s security team
employed a third-party organization to regularly run probes across all their internet-
facing servers. We figured out what was happening, as we’d see our API gateway serv-
ers reporting illegal requests originating from one of several IPs on a regular fre-
quency. Once we identified the pattern and the logged details like the IP origin, time,
and the HTTP request, we raised our suspicions with the security team, who con-
firmed the use of a third party.

269Error codes
 Which server, process, or thread experienced the problem? If the issue is
infrastructure-related, you need to know which server, virtual machine, or con-
tainer it relates to.

 Is the cause of the error identifiable (e.g., divide by zero as an error identifies
the values involved in the error)? Can the error log be tracked back to a loca-
tion in the code? At a minimum, express the nature of the error and, if practi-
cal, the data values associated (e.g., a divide by zero error—say what was being
divided by zero and the values involved).

 What data values led the execution in a specific path?

10.6 Error codes
As developers, we tend to write log details with ourselves in mind. This is fine in a
DevOps organization, where the development team also handles the ops. But many
larger organizations may choose to operate an Information Technology Infrastructure
Library (ITIL) approach to error- and problem-management, or you may have a product
that people are deploying in locations beyond your reach; we need to think further
ahead. One of the important aspects of ITIL for us is its definition of a known error:

A Known Error is a problem that has a documented root cause and a Workaround.
Known Errors are managed throughout their lifecycle by the Problem Management
process. The details of each Known Error are recorded in a Known Error Record stored in
a Known Error Database (KEDB). As a rule, Known Errors are identified by Problem
Management, but Known Errors may also be suggested by other Service Management
disciplines, e.g., Incident Management.

More information can be found at http://mng.bz/enpQ

In simple terms, an organization will keep a record of errors with resolutions. This is why
we assign errors with error codes. An error code allows us to provide a simple lookup
for an error that can be linked to the appropriate documentation. The documentation
should describe the error and provide details, including a remedial set of actions to per-
form (this is essential if this involves bringing the system back to an optimal state without
corrupting or losing data). If, of course, the log event is recorded and acted upon before
things really go wrong, then the actions could be preventative in nature.

 The cause of the error could be either from a user action or a bug in the applica-
tion that has been caught; either way, we should add error codes to the log informa-
tion. It is best not to pop up error codes in a UI, as you’re likely to undermine user
confidence in your product. But that shouldn’t stop you from linking error codes to
messages suitable for users when a user action triggers a problem.

 Error codes make it straightforward to enable customers to look up error codes,
descriptions, and recommended responses to incorporate into a KEDB (Known Error
Database). Building such error code content may seem very demanding; this can be
far from the case. While developing the software, the simplest solution is to have a col-
laborative spreadsheet that allocates error IDs, ensuring the IDs are unique. Then
capture the expected cause with a brief description from the developer. Building out
resolution documentation can always follow later.

http://mng.bz/enpQ

270 CHAPTER 10 Logging best practices
 One of the benefits of using error codes is that it becomes pretty easy to standard-
ize and internationalize the documentation about the errors. The error codes are
language- and locale-agnostic; once you have the code, you can then look up the code
documentation in an appropriate language.

 There are all sorts of additional tricks that you can incorporate into the software
development processes, such as including the documentation into the code manage-
ment tool. Hence, you release the document with the code so the details are linked to
your release process. Code quality tooling could look for error or fatal log entries and
apply a regular expression to see if an error code is linked to it, and so on.

Error code numbering
A few tips for creating your error code numbering:

 Don’t use leading zeros in the number unless prefixed with an alpha charac-
ter—this risks getting truncated if handled numerically or creates additional
work for formatting (e.g., number string with stipulated length and prefix char-
acter). Then, if that number is converted back to a string, it won’t match as a
key for information lookup anymore.

 Don’t start at 1; it’s best to start with the lowest digit for the full range (e.g.,
1000).

 Make the error code easy to find using search tools (e.g., 1000), as a code is
less likely to be indexed than AppErr1000. For example, Oracle prefixes their
DB error codes with ORA, and WebLogic starts with BEA; thus, they’re more
likely to be indexed and more unique in searches.

 It is tempting to simply document all the error codes within a piece of code
(class, interface, header file, depending on your language); after all, there is
one place to go, and documentation can be generated from the code. But this
is not recommended. You will end up with code on which everything will
become dependent and constantly changing while the system is being devel-
oped. Each addition to the error code makes a code change with an enor-
mous dependency impact. Code changes with that much impact will give rise
to concerns (even if they’re not justified) and resistance to the change.

Better to compile the details in a shared knowledge repository, such as a
wiki or collaborative knowledge base that everyone can maintain without con-
sequence. Note that defining a local subset of errors in the code is fine—this
applies the DRY principle. For example, error codes relating to a specific mod-
ule could be defined together, as adding an error code is likely to go hand in
hand with the module development.

 Group error codes together into families, as seen in the HTTP RFC, but be
pragmatic about it; an error code may logically belong in two groupings (e.g.,
with a DB connection error—is that a DB issue or a network connectivity
issue?).

 This doesn’t necessarily mean reserving ranges of numbers. Still, the codes
could be prefixed or postfixed with a shortcode to provide a scope at the prod-
uct or subsystem level; for example, BEA-00000 and ORA-00000 denote error
codes for two different Oracle products (WebLogic and Oracle Database).

271Too little logging or too much?
10.6.1 Using standard errors

Some technologies provide codes to indicate success and errors, which have been well
documented, such as those for HTTP (RFC https://tools.ietf.org/html/rfc7231#
section-6); others include SMTP (email services), Oracle WebLogic Server, and so on.
Using such codes in our logs helps provide more context through a common mean-
ing and understanding as long as they are used correctly. For example, the temptation
to simply do everything through the standard HTTP 200 or 400 codes doesn’t help.
Using an HTTP 413 code to tell the requester they sent too much data is far more
effective and meaningful, not to mention that this will show up in the logs for any net-
work routing devices.

 The use of predefined error codes does need to be judged with care, as exception
classes in software can be considered a special form of error code. But, as we’ll see
later in the chapter, these circumstances could lead to a loss of clarity.

10.6.2 Codes can be for more than errors

Error codes are the most important messages to be uniquely identifiable. The princi-
ple of associating codes to documentation for operational processes (rather than user
ones) means that you can hook the event back to specific operational recommenda-
tions that could range from performing database optimization processes to archiving
log files.

10.7 Too little logging or too much?
What to put into a log can be tricky. It is easy to dump whole data structures/objects
into a logging event on the off chance that it is all relevant. This approach raises two
challenges:

 The volume of data being logged could become very substantial as a result,
excessively increasing the computational and storage workload.

 The chances are that you may end up logging sensitive details.

When it comes to the point of taking too much effort to process logs, there is nothing
to stop the code from applying conditional controls, so when we need a lot of informa-
tion, we can get it. What is worse—configuration controlling the information logged or
modifying code to get enough information? The bottom line is tuning log framework
configurations to avoid over-chatty logs is preferable to modifying code, if for no other
reason than that the change cycle will most likely be quicker for a configuration file.

 If you use the same error code from different exceptions, try to differentiate
the point of origin in the supporting information.

 Consider the error code consumer; an error may come from a single location
but have different causes, so use different error codes for the causes. This
will make the support team’s job or remediation easier.

https://tools.ietf.org/html/rfc7231#section-6
https://tools.ietf.org/html/rfc7231#section-6
https://tools.ietf.org/html/rfc7231#section-6

272 CHAPTER 10 Logging best practices
Software change governance controls will likely demand greater diligence in the
release, slowing the task that the log files will be supporting.

 The problem is that logging whole data structures can result in the logs incorporat-
ing sensitive data, such as personal or credit card data, both of which have strict rules
about protecting anything that contains this kind of data. The important thing is to
provide enough context in the log without writing to log any sensitive data. If the
event is logged early into secure storage, such as a database, we have the possibility of
attributing an ID to that event. Then the rest of the logs can be implemented by log-
ging the recorded event ID. If necessary, this allows you to go back to the data context
without the values being spread across logs.

 Part of this problem extends beyond just how we write application logging to the
design of our solutions. The best illustration of this is the handling of HTTP calls.
Before the HTTP calls reach our application server, the HTTP traffic will pass through
firewalls, load balancers, proxies, network routers, and other infrastructure elements
when we’re implementing a web application. Even if you have the best HTTPS config-
uration ever, header information must be readable to route the traffic to its destina-
tion. Typically, these components will log the URIs and often all of the HTTP headers.
The headers may contain details about handling the request and response (e.g., head-
ers contain attributes instructing infrastructure as to whether content can be cached).
The net result is that if you put sensitive values into payload URIs or headers, the sen-
sitive information may accidentally end up being logged.

 If you have a local log file capturing sensitive data and there is no means to rectify
the code, we need to contain the issues this can create. An approach to this is to use
Fluentd to process the log events with some logic to strip out the sensitive data. Imple-
menting this kind of logic before sending the logs on or simply writing the logs to a
separate local file can help contain the impact (some might say the “blast radius” of
sensitive data being logged). This strategy can be further helped by configuring the
application’s logging so that it is as short-lived as possible, and the original logs are
never backed up or copied anywhere.

10.7.1 What qualifies as sensitive?

Deciding what data is sensitive can be tricky, as it can be driven by a multitude of factors:

 Business valuation of data
 Legislative demands
 Consequences of information becoming available in the public domain

Many of the complexities come from the patchwork of legislation, not only interna-
tionally but also within nations. For example, in Europe, all the countries have ratified
GDPR (General Data Protection Regulation), and a growing list of countries have adopted
similar legislation (e.g., Australia). But within the EU, some countries have additional
legislation, so compliance to just GDPR may be insufficient. In the United States, con-
trols are both federal and state-driven, with California having taken the lead and
adopted GDPR-like legislation, but not all states have followed this.

273Too little logging or too much?
 Given that GDPR appears to be the starting point for many, it’s worth examining what
it seeks to achieve and what impact it can have. The central principles are the following:

 Principle of lawfulness, fairness, and transparency
 Principle of purpose limitation
 Principle of data minimization
 Principle of accuracy
 Principle of storage limitation
 Principle of integrity and confidentiality
 Principle of accountability

These principles cascade down to several entitlements for those we retain data about:

 Individuals are entitled to know why their personal data is held and what it will
be used for.

 Individuals are entitled to ask for the information that is stored about them.
 Individuals can require the correction of any inaccuracies in the data.
 Individuals can exercise a right to “be forgotten,” which will mean all data is

erased.
 Individuals can ask for their personal data to be restricted in its use.

In addition to this, organizations must be able to justify their actions to the body
responsible for overseeing GDPR compliance (the Information Commissioner’s Office in
the UK); for example:

 How long data is stored.
 Demonstrate that actions that ensure integrity and confidentiality are taken.

As you can see, this has some far-reaching implications. For example, if your system is
processing payroll data, then when the data regarding someone’s pay was logged, the
log file would become subject to a large number of security requirements. If this was
your own personal data, you’d want it to be treated just as securely as the copy in the
application. In some countries, there is a legal right to be forgotten (i.e., have all
records of an individual removed from all systems). This would not only create tasks to
remove the data from the applications—the easy bit—but it could also extend to having
to locate and delete log entries for an individual from any server that could have exe-
cuted the processing, along with backups, and so on. Just finding such details alone
would be very time-consuming. This is in addition to the requirements of addressing
the need to make sure log files are secured and that access to log files is defensible.

 All of this leads to the argument that while log data is important for problem diag-
nosis, audit, and so on, we need to minimize the sensitive data put into the logs wher-
ever possible. Control the logged data, and we eliminate those logs from needing to
comply with all the rules.

 If sensitive data is needed to be kept, then keep it separate if you can. When you
can’t keep it separate, don’t use staging logs between the log data source, and secure
the final destination. In terms of Fluentd, this means securing the “data in-flight” by

274 CHAPTER 10 Logging best practices
using the forward plugin configured in a secure manner (e.g., implement TLS, con-
trol access to keys and certificates). If the data is stored in temporary or staging files,
then the setup for the security of the staging files (“data at rest”) is a lot more
involved. This would cover things like access controls for the file system, applying
appropriate encryption of the files, and all the work of creating and managing the
encryption keys. The potential challenge could go as far as needing to put in place
formal processes to manage the disposal of the physical drives storing the data, even if
it was temporary. Don’t forget that this would also apply to files created when a file-
based buffer is being used.

 Going back to the ideas of log analytics and log unification, the underlying princi-
ple is to log sensitive data only when it is necessary, and only keep it in locations that
are adequately secured. Minimize the number of “touch” points in the log events
transmission. Treat logs just as you treat the actual data.

NOTE A global view on data protection law can be freely viewed from global
law firm DLA Piper (www.dlapiperdataprotection.com). Appendix E contains
several links to resources to help jump-start finding what legislation might
impact your logs (or application, for that matter).

10.7.2 GDPR is only the start

National legislation isn’t always about where data is being processed or the nationality
of the company or citizen the data represents. It can come from other sources;
another well-known origin of security requirements is Payment Card Industry (PCI)
Data Security Standards (DSS). PCI is focused on the handling of payment cards such
as credit cards. The level of security required is based upon the total value of transac-
tions handled, with specific, detailed requirements that cover infrastructure, software,
and operational processes. If card data gets captured in a log, there is no doubt that
the logs will need to comply with PCI rules. Like personal data, the rules also apply to
the hardware on which the logs reside, the applications that process the logs, and the
visibility of log information to users (i.e., developers and operations).

 Many organizations have taken steps to define sensitive data and statements of
what they consider to be acceptable use (part of compliance). This is a good port of
call for specific environments. Where a service is provided, the terms and conditions
may also determine what is deemed sensitive. But as a rule of thumb, the following is
considered sensitive:

 Any data that makes an individual uniquely identifiable, such as personal
addresses or social security numbers (aka personally identifiable information, or PII).

 Any data that could have a financial impact on an organization or individual, as
the information leaking could do serious harm. This covers data such as charge
and credit cards, bank accounts, and fiscal reporting (such information becom-
ing known early could result in insider trading on stock exchange–listed
companies).

 Any clinical data relating to an individual.

http://www.dlapiperdataprotection.com

275Log structure and format
So far, we have looked at logs from the viewpoint of trying to minimize their security
impact. Logs, when well defined and managed, can contribute to showing compliance
to commercial and legislative requirements—for example, logs recording who
accessed information and when, and, probably more importantly, when access was
rejected. This information can be used to demonstrate correct controls and can be
made operationally actionable.

 To illustrate the point, the following are just a few examples of other legislation or
standards where the use of log events can provide an audit trail to address aspects of
compliance to legislative requirements:

 Sarbanes Oxley Act (SOX) (http://mng.bz/Bxl8) and variants such as J-SOX
(Japan), C-SOX (Canada), and TC-SOX (Turkey).

 Health Insurance Portability and Accountability Act (HIPAA) (www.hhs.gov/
hipaa/index.html).

 ISO/IEC 27001. While not a legislative-driven set of rules, this is a best-practice
set of standards that can be certified (www.iso.org/isoiec-27001-information-
security.html).

10.8 Log structure and format
By applying structure to the messages, it is possible to make the information more
actionable because the logic processing the logs can derive meaning from the data.
Suppose we experienced an error with a database connection, which produced a
structured log event. It wouldn’t be hard to implement a parser expression to retrieve
the database connector error code and the database details. This could be done by
Fluentd, and therefore a signal could be sent to the relevant database team. The log
analytics tool could act on the same data, but the alert would be later, and more prob-
lems could have occurred. But the log analytics could help us by examining histories
to determine if the problem was reoccurring, and, if so, at what frequency and if there
was a commonality to the nodes(s) registering the problem.

Data risks: An analogy
The risks around handling sensitive data are a little abstract, so let’s look at an anal-
ogy. Think of it as venomous; how sensitive the data is reflects how dangerous the
venom is. If you like to visualize it, consider a nonvenomous snake as a low-risk data
item, and very sensitive data like government IDs as jellyfish. Yet, with the right equip-
ment, environment, and expertise, the risk of a bite or sting is small. A nonvenomous
snake bite may be painful and possibly a source of infection if left untreated; more
venomous stings or bites are serious, but if you are prepared and have the antivenin,
you’ll survive if treated quickly. The problem is not just how venomous the data is;
it’s how much venom (how many bites or stings) there is—in other words, the amount
of data. We can limit the amount and the sensitivity of data being handled in log files;
the lower the risk, the simpler the necessary precautions.

http://www.hhs.gov/hipaa/index.html
http://www.hhs.gov/hipaa/index.html
http://www.iso.org/isoiec-27001-information-security.html
http://www.iso.org/isoiec-27001-information-security.html
http://mng.bz/Bxl8

276 CHAPTER 10 Logging best practices
 The structuring of logs goes further than that, as we need to also have a structure
around details such as timestamps, log levels, location, thread IDs, and so on, that
help provide context. There are some industry-recognized formats. Figure 10.3 pro-
vides details of ones typically associated with application logic.

Figure 10.3 The aspects that, when combined, will provide excellent log events
and robust mechanisms to use them as necessary

10.8.1 Putting making log entries ready for application
shipping into action

As part of a development team, your server-based application reaches the point of
being sufficiently well featured. The beta and early adopter customers are successfully
using your software. The management team recognizes that to provide cost-effective
support, documentation needs to be provided to avoid frustrated system administra-
tors and unnecessary support calls. Also, good support documentation will help pre-
vent support requests from coming back to the development team. You’ve been asked
to identify what needs to be achieved and how long it is likely to take to implement, as
well as if there is anything that can be done to minimize the time before sales can
ramp up activities.

ANSWER

There are a great many things that could be done, and there is no single correct
answer, except to build on what this chapter has discussed. When estimating such a

Context—Who

Context—What

Context—When

Context—Why

Context—Where

Development practices

Use of error
codes

Human readable

Machine readable /
structured

Clarity of
language

277Development practices
task, the simplest thing is to search the currently active code base for log events and
record the type of event. Then estimate the effort to evaluate the log events against
the different factors illustrated in figure 10.3. Being pragmatic, if the estimates are
squeezed, it is best to adopt a top-down approach (see figure 10.2.)

 With the estimated effort of working through the code checking and amending
the log events, you also need to estimate the effort to produce the supporting docu-
mentation. If you provide the documentation through channels such as a website
rather than embedding it in the code, the software release can start before this docu-
mentation is complete. Obviously, there is a temptation to not complete this task and
focus on the following product version with this approach. Conversely, not addressing
this will directly impact the number of support calls, including those that get escalated
back to the developers, even in a more traditional organizational arrangement.

10.9 Use frameworks if you can
Most programming languages provide logging frameworks, either as part of the base
language or as libraries (we will explain these in more depth in chapter 11). Adopting
a framework for logging can help in several ways to improve your logging. Potential
benefits include the following:

 Consistency in the log data.

– Consistency in log levels
– Structure of log entries

 Additional contextual information managed for you (e.g., if the framework
understands OpenTracing, it can pull trace context values).

 The framework can allow us to control what is looked at through configuration,
making it easier to determine how much or how little logging is needed.

 Importantly, when logging in a containerized environment, we can save a lot of
effort if we don’t have to reparse text outputs to apply context and meaning.
This saves processing power, and many log frameworks allow us to direct output
mechanisms that can help avoid this overhead.

Using one of the many third-party or language native solutions is preferable, as they
will be tried and true. Even a simplified piece of your own code that helps drive con-
sistency is valuable. The mission-critical systems I started my career working on fell
into this category. If you go down the route of using Homebrew, we would strongly
recommend adopting one of the industry-standard formats to make ingestion into
other tools a lot easier.

10.10 Development practices
We’ve seen a number of things we can do to positively improve the situation. But there
are some common development practices that can be negative in nature, even if the
intent is presented positively.

278 CHAPTER 10 Logging best practices
10.10.1Rethrowing exceptions

Catching and rethrowing exceptions (the act of having a catch block in code and then
using throw statements to raise the exception again) is a bad practice that can have
undesirable impacts on logs, given that typically, when an exception is caught, it is
logged. This means if you catch and rethrow an exception, the odds are you’ll end up
with multiple log events for the same problem. When it comes to analyzing what is
wrong, you’ve increased the workload for determining which log event was the first
actual occurrence of a problem and have doubled up on the number of alerts, moving
another step closer to a “notification storm.”

10.10.2Using standard exceptions and error structures

My position on using standard exceptions from programming languages is possibly a
more contentious point, as I don’t agree entirely with the assertion that standard excep-
tions should be thrown. For example, Joshua Bloch’s Effective Java (Addison-Wesley Pro-
fessional; 3rd edition, 2017) advocates that if you have defensive code, and a value you
receive is null (nil in Ruby) but shouldn’t be, then your code should use the language’s
own NullPointerException or IllegalArgumentException. The argument
made is that you can benefit from code reuse and that someone reading your API will
understand the API more easily. While the reuse consideration may have merit, using
a language-predefined exception class because it will lend to the understandable defi-
nition is about good naming conventions, not insight into the code.

 The real problems come when looking at log events; it becomes tough to deter-
mine whether this exception resulted from defensive coding or a potential bug. The
difference is that defensive coding points to a possible upstream issue. If someone has
put in defensive checks, then the chances are someone considered the possibility of a
problem and how to leave things in a recoverable state.

 While my example and reference to best practice have focused on Java, the foun-
dation principles apply to languages that support exception frameworks, Python and
Ruby being two examples. Other languages, like Go, have error structures and the

Notification or alert storms
Notification or alert storms are something to watch out for if you link your log events
to a notification mechanism such as email or Slack. If you keep getting the same
error, such as when logic keeps getting stuck in an infinite loop of trying to do some-
thing (e.g., writing to a file with no storage space available), then you end up with the
same message saturating the notification channel. The net result is that everyone
switches off and unsubscribes to notifications; worse still, systems think your appli-
cation generates spam and it gets blocked. Fortunately, there are techniques for sup-
pressing such scenarios, such as filters in Fluentd (http://mng.bz/OG6E) or in the
logging framework itself. For example, Log4j2 provides a BurstFilter (http://mng.bz/
YgKA), and Log4Net has an extension that does the same sort of thing (http://
mng.bz/GG1O)

http://mng.bz/OG6E
http://mng.bz/YgKA
http://mng.bz/YgKA
http://mng.bz/GG1O
http://mng.bz/GG1O

279Development practices
ability to handle the return of different structure types. So the question begs, what is
the answer to this?

 Going back to Java for a moment, from my perspective, there is nothing wrong
with creating a simple one-line class that extends a base class with a clear, meaningful
name (e.g., class IllegalBufferConfigurationException extends Illegal-
ArgumentException). After all, this is how languages apply inheritance for the
native exceptions in Java (e.g., NullPointerException extends class Exception).
Ruby’s approximate match is ArgumentError, which extends StandardError,
which in turn extends Exception. If an exception is well named, it will be clear as to
why the exception is thrown. It also will tell the reader what specific scenarios are
being defended against and what the API caller should or should not be doing. So
when we see a generic exception, like a NullPointerException, we’re likely to be
looking at a more fundamental problem and one that has not been considered. If we
have considered a problem, we probably know what the remediation might be.

10.10.3String construction as a reason not to log

When logging, we sometimes need to construct a log message by combining several
elements to produce a practical level of information. Casting data to strings and con-
catenating them together takes a little bit of CPU effort. Let’s assume for a moment
that we’re creating an info-level log message, so there is a chance the log message will
get filtered out if someone has set the log filter threshold to a warning. In this situa-
tion, the CPU effort constructing the log message is effectively wasted. This has been
used as an argument for not bothering implementing logging in the code since the
log message construction consumes processing effort for no gain.

 This argument attempts to rationalize not investing in evaluating where logging will
help implement appropriate code, at least from my perspective. There are technical
means by which we can minimize the cost. But perhaps, more importantly, the cost of
a small number of CPU cycles compared to the cost of a developer’s time trying to inves-
tigate and understand what is going on with someone else’s code does weigh in favor of
helping the developer. I’m not advocating writing grossly inefficient code. Still, the
extra costs in compute cycles for having supportable and maintainable code (which
includes sensible logging) are far smaller than the money saved in developer effort.

 Coming back to the practical technical means to avoid waste, every logging frame-
work I know of provides the means to query the logging level currently set, allowing the
code to decide whether there is any value in constructing the logging payload. These
are sometimes referred to as “guard” functions and can be applied like this:

Logger.ifDebug
{
 myLogMessage = '{"attribute:" + aStringValue + ","
 ➥ + aArrayOfKeyValues.toJSON + "}"
 Logger.debug (myLogMessage)
}

Obviously, the precise code will differ based on the framework in use and the
language-specific syntax, but you see the point.

280 CHAPTER 10 Logging best practices
 Over the last 5 to 10 years, we have seen most mainstream languages develop to
support Lambda or lazy execution capabilities. This means we can now write code, so
the guard is implicit and if the implicit condition resolves, only then are the subse-
quent expressions evaluated and executed. For example:

LOGGER.atDebug().log('{"attribute:" + aStringValue + "," + aArrayOfKeyVal-
ues.toJSON + "}")

The result is negligible compute cost and optimization without losing the existence of
the logging code. Add to that the performance improvements seen with compilers,
virtual machines, and interpreters. We’re gaining performance—consider GraalVM
and Quarkus as examples of this. When you consider this, we’re seeing more effi-
ciency gains that will far outweigh those from not writing log statements.

Summary
 The application of clear, simple language and, when appropriate, attributing

the log event with error codes will make it significantly easier to understand a
log and apply any necessary actions as a result of a log event.

 Good log events will include contextual information beyond just log levels, includ-
ing details such as indicating on which server the relevant process is running.

 Legislation can impact log events, particularly when the log generation
includes such things as PII or credit card data. As a result, extensive additional
security controls and restrictions are imposed on log data.

 Some organizations will also classify internal data such as commercial values
(e.g., margins on a product or service). It is important to understand organiza-
tional sensitivities when creating or transferring log events so that the organiza-
tional requirements relating to such data being logged are observed.

 The value of using error codes with log events is significant, from identifying
which part of a system the issue originated to making remediation instructions
easily identifiable.

 The application of industry standards to the content logged can accelerate
understanding of data and its meaning.

For more about Quarkus and GraalVM
 Quarkus and microservice development: See the liveBook version of Kuberne-

tes Native Microservices by John Clingan and Ken Finnigan (Manning, 2022)
at http://mng.bz/zQ5Q.

 GraalVM introduction: See the liveBook version of The Well-Grounded Java
Developer, 2nd ed by Benjamin Evans et al. (Manning, 2022) at http://
mng.bz/0w96.

 GraalVM home page: www.graalvm.org/
 Quarkus home page: https://quarkus.io/

www.graalvm.org/
https://quarkus.io/
http://mng.bz/zQ5Q
http://mng.bz/0w96
http://mng.bz/0w96

Logging frameworks
In the previous chapter, we looked at how we can create log events that can be used
to give the most meaning and value. Another significant way we can easily derive
more value from logs is by using logging frameworks for our application develop-
ment. Most programming languages these days will be able to use a logging frame-
work. In some cases, the third-party ones predate the language native feature and
become something of a de facto standard. Other logging frameworks have come as
part of an application container or platform to address weaknesses perceived or
proven in the native solutions.

 This chapter will explore the logging framework landscape, as there is a range
of commonalities in their capability and in design. A general understanding of this
will help us appreciate the “art of the possible” and make informed decisions when

This chapter covers
 Examining characteristics of logging frameworks

 Selecting logging frameworks for use with apps

 Calling Fluentd direct from logging frameworks

 Calling Fluentd from an app without a framework
281

282 CHAPTER 11 Logging frameworks
choosing a framework. We will also look at whether the more dominant frameworks
for different languages can support the ability to connect directly to Fluentd. Fluentd
has also helped us in this space by providing logging libraries for multiple languages,
so we’ll look at those to understand how they may fit into the options we have.

 If frameworks or Fluentd libraries aren’t an option, we can obviously have our
applications write to files. We’ve seen that Fluentd can consume such information.
But connecting via a file is less efficient than connecting the application directly. If
you are working with a Function as a Service (FaaS) like AWS Lambda and Functions
services from Oracle Cloud, Microsoft Azure, and Google, or even self-hosted func-
tions via Fn Project (https://fnproject.io/), you’ll recognize that the services are very
transient. As a result, these very transient services are more challenging to efficiently
log from. Trying to connect to storage can be more complex to configure and slower
to connect, and therefore more suited to network-based logging. So, we will explore
how it is possible to communicate with Fluentd more directly.

11.1 Value of logging frameworks
Regardless of the genesis of the logging framework(s), they all address the following
key themes to a greater or lesser extent:

 Providing an easy way to output log events using a log level classification
 Allowing the control of log events sent via configuration
 Directing the log events to different output forms, such as files, stdout, HTTP, etc.

While log levels can be traced back to Syslog standards (RFC 5424, https://
tools.ietf.org/html/rfc5424) for application development (as opposed to OS-level
tooling that led to the definition of RFC 5424), one of the strongest influencers on
logging libraries is Apache Log4J. This influence could be attributed to the fact that the
Apache Software Foundation ported the design and implementation to several differ-
ent languages. But its influence goes further than that. While it is possible to arrive at
very similar or even the same answers based on the same needs, you can see very simi-
lar if not the same APIs and features in the logging frameworks for many other lan-
guages. Some logging frameworks not linked to the Apache Software Foundation
openly acknowledge drawing on the design principles of Log4J. To be open and trans-
parent, my entry into open source was when I started developing with Java 1.2, so my
perspective may be a little biased.

 The beauty of following the Log4J route is the ability for third parties to imple-
ment certain parts of the framework, so the application doesn’t see any difference.
Still, the configuration could change behaviors, such as how the logs are stored, from
flat files to databases. We’ll see this in more detail in the next couple of sections.

NOTE References to Log4J can cause some confusion, as there are two
versions—Log4J and Log4J2. When referencing Log4J today, you can assume
it refers to version 2. Version 1 was declared as being at the end of its life in

https://fnproject.io/
https://tools.ietf.org/html/rfc5424
https://tools.ietf.org/html/rfc5424

283Typical structure of a logging framework
2015. Versions 1 and 2 aren’t radically different in terms of ideas. But version
2 was rewritten to address some weaknesses of the version 1 implementation;
this meant the implementation could be written to utilize new language
features.

11.2 Typical structure of a logging framework
Given the Log4J influence across many logging frameworks and languages, it is best to
start by examining the Log4J structure. We can easily understand and master other
frameworks. Figure 11.1 illustrates this structure and the relationships with the differ-
ent classes (we’ve used UML class notation with a couple of tweaks, as the key shows;
www.omg.org/spec/UML/). We can see that the classes or modules involved are the
Logger Context, Configuration, Filter, Logger, Logger Config, Formatter, and an Appender.

Figure 11.1 Common logging structure represented using UML class notation, including
indicating the quantities in the relationships, such as 0 or 1 to many

In the following sections, we’ll describe the role that each of these components plays.
We have ordered the components based on how much their logic impacts the use and
behavior of the logging framework.

11.2.1 Logger context

This is the foundation of the framework within your application. It takes responsibility
for holding the references to specific logger objects. It will process any configuration
files, creating the necessary logger objects as necessary.

Logger
context Configuration Filter

AppenderLogger Formatter

Inheritance or
interface for
extension

Class without
interface

Logger
config

1

1 1

0 .. *

0 .. * 1

1

1 .. * 0 .. *

Composition

Dependency

0 .. *

0 .. *

1
0 .. *

1 .. *

1

0 .. *

0 .. *

1

Key

www.omg.org/spec/UML/

284 CHAPTER 11 Logging frameworks
 The logger context typically forms a “one-stop shop” for all your logging elements;
within the application, this class is used to retrieve an object that will handle the rele-
vant processing of log events (represented by an instance of a logger object). When a
request is made on the logger context for a logger object, it can derive or use parame-
ters to determine which logger object to provide. If no specific logging configurations
are associated with the identifier provided (usually a logical name or classpath), then
a default logging behavior will be provided.

 Depending on the implementation, it may also orchestrate any details such as con-
nection pools, and so on. This is the only point where there is a certainty of having a
single object, making it the root for all Log4J configuration values.

11.2.2 Appender

The appender’s task is the easiest to relate to and is key to processing log events.
Depending upon the specific logging framework implementation, the appender may
be called an adaptor or transport, as this layer is responsible for taking the log events
and sending them to the appropriate destination. For example:

 Transmitting them using techniques such as TCP/IP messages
 Using API calls to services such as Logstash
 Writing or appending the log event to the end of a file (hence the name)

Each appender will make use of filters to control which log events it may need to
append. An appender can also use a formatter to convert the internal representation
of the event to how it should be outputted; this can range from JSON to tab-separated
rows. Some types of appender can only emit log events in a specific way; this relation-
ship can sometimes get simplified and combined into a single class or module.

 Within the configuration of a logging framework, it is possible (and expected) to
see several different appenders configured to address sending some events to multiple
destinations with different log levels.

11.2.3 Logger

It is possible to define multiple loggers (or just the context defaults) so that different
application parts can use logging in different ways—for example, a separate logger for
recording official audit events versus generic application audit trails. The official audit
events may need to be sent to the database, and all events, including the audit, should
be sent to the logging framework. These loggers can then be selected within the code.
There will be different configurations with different loggers, such as which appender
to use, which filters to apply, and so on.

 By having multiple loggers, we benefit from varying the configuration for different
parts of the code base and even having multiple configurations for parts of the appli-
cation (e.g., log errors to stdout and log everything to file).

285Appender structures
11.2.4 Filter

The filter determines which log events should be emitted, primarily by determining
whether the log event is at a level above or below the threshold set in the configuration.
As filters are associated with appenders, different log destinations can be configured
with different log levels. For example, I could set the console appender to have a log
level of Warning and a file appender set to Info. The result is that only Warning and
Error events go to the console, but more details are included in the file.

11.2.5 Formatter

As described by the appender, the formatter’s task is to construct the appender output
so that the log entry is presented as wanted or required (e.g., time in a 12- or 24-hour
format). Some appenders will allow flexibility (e.g., file appenders).

11.2.6 Configuration

Typically, we want to drive the logging of an application through configuration rather
than code, as this allows the logging to be configured without necessarily making inva-
sive code changes. This also makes for a quicker turnaround in the verification of con-
figurations. It allows us to change how logs are processed, depending upon the
deployment context. For example, we could have a configuration that sends every-
thing to stdout for our development machines. However, in test and production
environments, the configuration is set to send the logs to Elasticsearch.

11.2.7 Logger config

The logger config is a subset of the total logging configuration for a particular logger
(see section 11.2.3). This will track the relevant configuration section and translate it
into the correct objects in the code. This may include using things like factory design
patterns.

11.3 Appender structures
Typically, appenders are built through a hierarchy of inheritance or encapsulation so
that each layer of sophistication can leverage simpler operations. Ultimately, this will
depend on a standard interface definition so that regardless of appender, they are
orchestrated the same way, just as Fluentd does with its plugins. In figure 11.2, we can
see how Log4J has organized its appenders through inheritance from a base class that
realizes an interface and provides common logic, which is then extended to provide a
set of basic appenders, such as the console appender. From this layer of derivation, we
see the layering build an increase in specializations. This is most notable with the
AbstractOutputStreamAppender, which is then used for general socket use cases
and is further specialized for sending logs into a Syslog compliant solution.

286 CHAPTER 11 Logging frameworks

Figure 11.2 UML representation of how some of the appenders of Log4J are related

11.4 Logging framework landscape
The number of logging frameworks is substantial, with most languages having a native
capability and open source frameworks. In appendix E, we have pulled together a list
of logging frameworks for a range of languages commonly used. We also provide some
details about the dominant frameworks, some of which are the language-native
options and where to obtain more information.

 In addition to logging frameworks, some libraries provide a programmatic interface
and a mapping between the API and several different popular frameworks. Those famil-
iar with Log4J will probably have heard of SL4J (www.slf4j.org), which abstracts Log4J,
the Java native logging framework, and another called Logback. As a result, it is possible
to switch the logging frameworks transparently. With these abstractions, a means to
instantiate the desired logging framework is needed. This can be achieved by imple-
menting a factory (http://mng.bz/KB00) or dependency injection (http://mng.bz/
DxZw) pattern. Another example of this abstraction is .Net native logging (more detail
can be found at http://mng.bz/9KV1).

Abstract
appender

Appender
interface

Class with an
interface

Class without
interface

Composition

Dependency

Async
appender

Console
appender

Abstract
database
appender

Abstract
file

appender

File
appender

HTTP
appender

Syslog
appender

Socket
appender

Abstract
OutputStream

appender

Extends

Key

http://mng.bz/KB00
http://mng.bz/DxZw
http://mng.bz/DxZw
http://mng.bz/9KV1

287Choosing a framework
11.5 Choosing a framework
When evaluating a logging framework to adopt, some things should be considered to
help select the most appropriate framework. We have developed a set of questions
that will help you evaluate your needs and select a framework to meet those needs. By
reviewing these questions, it will help you determine your priorities in terms of a log-
ging framework. Once the questions have been given some form of priority, it
becomes easier to evaluate the frameworks against the questions to see how well they
match your needs. The questions are the following:

 What appenders are available? Are they limited to one type of appender, such as
files? Are there out-of-the-box appenders that can work with your log unifica-
tion solution, such as Fluentd or Logstash?

 Can the appender behavior be tailored or optimized? For example, are log rota-
tion or network ports and addresses configurable?

 Is it possible to tailor the output of log events based on the different parts of the
application? For example, log thresholds for the application framework, such as
Spring or Core .Net, are set to Warning and Error, but your custom logic can
have thresholds set to Info.

 How easy is it to tailor the logging configuration (without using code)? You
may wish to tune logging, and if there is an operational issue, ideally you can
update or override the default logging configurations to selectively get more
information.

 How much information does the framework derive for you (e.g., providing
method and class names for tracepoints) with correctly structured timestamps?

 Can you tailor the log output formatting (e.g., JSON, XML)? This question
reflects the previous chapter where the best logs have a structure allowing the
log event to be both humanly readable and machine-readable.

 How compact is the footprint (this is important in IoT use cases)? For the IoT
and mobile solutions, we need to have a tight footprint to limit resource use.

 Can you make the log output secure—use TLS, encrypt files, and so on? Is the
security good enough for the data being handled?

 Will the framework have a material impact on my application’s throughput/
performance, particularly the final I/O phase? Can logging end up being a
thread-blocking mechanism?

 How easy is the logging framework’s API to work with? If the calls within the
application code are difficult to use, developers may avoid creating log events.
Ideally, the interfaces will be intuitive, but having good supporting documenta-
tion to reference can be invaluable, particularly for those starting their develop-
ment careers.

Rather than evaluating every possible option, it is worth trying to narrow the field of
options. The details in the appendix E, table E.11 can help here, as they reflect what
we believe are the most important and/or most dominant logging frameworks.

288 CHAPTER 11 Logging frameworks
11.5.1 Putting optimizing application logging into action

The adoption of Fluentd in your organization is going well, and you have been asked
to determine whether the current logging framework in use is up to the job going for-
ward or whether the success of Fluentd allows supporting a case of changing logging
frameworks. Using the factors described, evaluate the current solution being used by
your development team. Compare this with an alternative (examine appendix E to see
if an alternative option has been offered).

ANSWER

As we clearly cannot give you a specific solution for this exercise, we hope you have
found that you are already using a logging framework, and it fits well with your needs.
If your logging framework is not a great fit, you will probably have recognized the
issues already. If you haven’t pinpointed the issues with your current framework, this
list of considerations should have helped qualify the problems.

11.6 Fluentd’s own logging and appenders
What happens if the logging framework being used does not provide support specific
to Fluentd? There are several possibilities to overcome this. One approach is through
the use of Fluentd-provided libraries.

 Depending upon the language, the Fluentd logging library implementation may
have some or all of the structures described earlier, such as appenders and filters.
These implementations may work with and extend the native language logging
library, as is the case for Python and Ruby. In other cases, the Fluentd libraries do not
align with a framework, often when there is no native language logging library or an
established dominant solution. In these cases, the library will be more straightforward
and will need to be used directly from your code.

 You may have established the use of a logging framework with no feature for con-
necting to Fluentd, and the Fluentd-provided library does not automatically plug in to
a framework. In these situations, it may be possible to find additional open source
software to wrap or extend the Fluentd library to allow its use within a framework
structure. We can change how the log events are handled using configuration alone
and not impact application code. Of course, you could create the code that bridges
the gap. Depending on the combination of language, Fluentd library, and framework,
the trickiest part of this will most likely be how to supply configuration values into the
Fluentd library.

 In table 11.1, we can see how Fluentd supports different programming languages
with libraries. We have also suggested other open source options that will allow the
logging code to communicate with Fluentd.

289Fluentd’s own logging and appenders

If you don’t have a suitable logging framework or wrapper layer, then there is the
option to use the Fluentd logging library directly within your core application code.
As with all things, there are pros and cons to such an approach. To that end, in table
11.2, we’ve called out the pros and cons of using the libraries directly to help you
make informed decisions.

Table 11.1 Where Fluentd can integrate into a native or commonly used framework directly or
 indirectly

Language
 Has native

logging
library

Fluentd logger library Alternate open source solution

Erlang Y https://github.com/fluent/fluent
-logger-erlang

Go N https://github.com/fluent/fluent
-logger-golang

Java N https://github.com/fluent/fluent
-logger-java

Log4J: https://github.com/tuxetuxe/
fluentd4log4j

Node.js N https://github.com/fluent/fluent
-logger-node

Directly integrates with Log4JS

OCaml N https://github.com/fluent/fluent
-logger-ocaml

Perl N https://github.com/fluent/fluent
-logger-perl

Log4perl: https://metacpan.org/pod/
Log::Log4perl::Appender::Fluent

PHP N https://github.com/fluent/fluent
-logger-php

https://github.com/Seldaek/monolog

Python Y https://github.com/fluent/fluent
-logger-python

Ruby Y https://github.com/fluent/fluent
-logger-ruby

Scala N https://github.com/fluent/fluent
-logger-scala

Via Logback compatibility with SLF4S

Table 11.2 Pros and cons of using Fluentd’s own log framework

Pros Cons

Small footprint, as it is only providing for output to
Fluentd.

Locked into using Fluentd. For packaged solutions,
you had better not try to force its logging to work
differently from the options it provides. This is
where it may be better to consider a custom plugin
or find a compromise configuration.

https://github.com/fluent/fluent-logger-erlang
https://github.com/fluent/fluent-logger-erlang
https://github.com/fluent/fluent-logger-golang
https://github.com/fluent/fluent-logger-golang
https://github.com/tuxetuxe/fluentd4log4j
https://github.com/tuxetuxe/fluentd4log4j
https://github.com/fluent/fluent-logger-perl
https://github.com/fluent/fluent-logger-perl
https://metacpan.org/pod/Log::Log4perl::Appender::Fluent
https://metacpan.org/pod/Log::Log4perl::Appender::Fluent
https://github.com/fluent/fluent-logger-python
https://github.com/fluent/fluent-logger-python
https://github.com/fluent/fluent-logger-scala
https://github.com/fluent/fluent-logger-scala
https://github.com/fluent/fluent-logger-java
https://github.com/fluent/fluent-logger-java
https://github.com/fluent/fluent-logger-node
https://github.com/fluent/fluent-logger-node
https://github.com/fluent/fluent-logger-ocaml
https://github.com/fluent/fluent-logger-ocaml
https://github.com/fluent/fluent-logger-php
https://github.com/fluent/fluent-logger-php
https://github.com/fluent/fluent-logger-ruby
https://github.com/fluent/fluent-logger-ruby
https://github.com/Seldaek/monolog

290 CHAPTER 11 Logging frameworks
The final possible option for logging directly to Fluentd is to leverage a framework’s
plugins to communicate using TCP/IP or HTTP(s) and send log events using those
protocols. These routes mean you have no library dependencies (assuming your pro-
gramming language can provide basic networking).

11.7 Illustrations of an application logging
directly to Fluentd
Having now looked at logging framework structures, the considerations involved in
selecting a logging framework, and the possibility of logging directly to Fluentd with-
out a framework, let’s see how the different approaches for direct logging can look in
reality. Each illustration will move further away from the ideal abstracted connection
to Fluentd but will show how direct communication can be realized. In each case,
we’re going to transmit a simple log message to Fluentd.

 For these illustrations, we’ve chosen to use Python because it

 Supports using the Fluentd library with its native logging framework to show
the most ideal option

 Is a widely adopted language, and the language constructs are easy to read and
map to other languages

 Is a scripted language, so no additional effort is needed to set up and run a
compilation process first (compared to Java, C#, etc.)

 Is a different language from the implementation of Fluentd and so helps illus-
trate the language-agnostic use of working with Fluentd

11.7.1 Python with logging framework: Using the Fluentd library

In most situations, having the Fluentd library plugging directly into the logging
framework is ideal, as we can configure different ways to log without any code
changes. Let’s start with the code that creates the logging framework driven by the
configuration file; our application then uses the framework to record a log event. To

The Fluentd logging library provides the same pro-
grammer interface as other frameworks, giving a
comparable development experience. But the Flu-
entd server offers significantly more sophistication
than a logging framework for handling the log
events.

Communication to Fluentd is over the network.
Using msgpack compression means efficient com-
munication and can limit hosting complexities
(e.g., external storage for containers, complexities
of storage for FaaS).

Table 11.2 Pros and cons of using Fluentd’s own log framework (continued)

Pros Cons

291Illustrations of an application logging directly to Fluentd
achieve this illustration, we need to establish some code and configuration, which we
will review in the coming listings:

 A simple Python test application to use the logging framework and generate a
log event

 A configuration file telling the logging framework how and what to log
 A Fluentd server and configuration so it can receive the log events

In the code shown in listing 11.1, we can see the Python test application, which creates
a configuration object from the configuration file and passes this into the logging
context, and then requests a logger object. With the logging object ready, we could
use that object as many times as we like. In our example, we then construct content in
the log message—here, the date-time string representation. Then the logging frame-
work is called twice, once as a text message and again as a JSON construct. When you
review the code, note the complete absence of Fluentd references. This is all handled
in the logging framework for us based on the configuration.

import logging
import logging.config
import yaml

with open('logging.yaml') as fd:
 conf = yaml.load(fd, Loader=yaml.FullLoader)

logging.config.dictConfig(conf['logging'])

log = logging.getLogger()

now = datetime.datetime.now().strftime("%d-%m-%Y %H-%M-%S")
log.warning ('from log-conf.py at ' + now)
log.info ('{"from": "log-conf.py", "now": '+now+'"}')

The configuration shown in listing 11.2 is the detail loaded in the application and
interpreted by the logging framework to establish the desired ways of logging. Only
the configuration will drive logging to communicate to Fluentd directly through the
definition of handlers (or appenders, using the naming we described earlier). Note
how the configuration entities relate back to the structure illustrated in figure 11.1,
with loggers referencing a handler (appender) by name and the handler referencing
a formatter implemented to work with Fluentd. Here the filters are not decoupled but
specified within the loggers and handlers using the level attribute.

Listing 11.1 Chapter11/clients/log-conf.py—Test Python client—configuration only

Loads the configuration
file, which will describe
the logging setup wanted

Gets the correct logger object; by
not providing a specific name, we
will be given the default setting

Generates
log event

It would be preferable to create JSON for
the log event being passed to the library.
But building JSON objects first distracts

from the point we’re trying to make.

292 CHAPTER 11 Logging frameworks

logging:
 version: 1

 formatters:
 fluent_fmt:
 '()': fluent.handler.FluentRecordFormatter

 format:
 level: '%(levelname)s'
 hostname: '%(hostname)s'
 where: '%(module)s.%(funcName)s'

 handlers:

 fluent:
 class: fluent.handler.FluentHandler
 host: localhost
 tag: test
 port: 18090
 level: DEBUG
 formatter: fluent_fmt

 loggers:

 '': # root logger
 handlers: [fluent]
 level: DEBUG
 propagate: False

For Fluentd to work with the examples, we have provided a configuration file. If you
review the configuration file in listing 11.3, you’ll see two sources configured. The
source using the forward input plugin will receive the log events. You can confirm
that by comparing the port number in the configuration to the logger YAML file; we
will see the other source put to use shortly.

<system>
 Log_Level debug

</system>
<source>
 @type http
 port 18080
 <parse>
 @type none

 </parse>
</source>

Listing 11.2 Chapter11/clients/logging.yaml—Test Python client: configuration

Listing 11.3 Chapter11/fluentd/http.conf—simple HTTP source

Defines how the log event
will be represented

We still need to tell the logging framework
which class will implement the formatter

interface. Here we have a customer
formatter for Fluentd, so the server will

receive a correctly structured event.

Defines the handler (the
appender) and provides it
with the configuration
necessary to communicate
with our Fluentd node

Identifies the class that
knows how to actually
communicate with the

Fluentd server

Defines the default logger object and the
default settings, and links the default logging
configuration to the relevant handlers

Sets the logging to debug to help us understand
what is happening. Given that HTTP is highly
configurable in its behavior, let’s ensure that
assumed configurations are compatible.

Let’s not worry about the expected structure
at this stage and process the log event as a
single string received over HTTP.

293Illustrations of an application logging directly to Fluentd
<source>
 @type http
 port 18085
 <parse>
 @type json
 </parse>
</source>

<source>
 @type forward
 port 18090
</source>

<match *>
 <format>
 @type json
 </format>
 @type stdout
</match>

To start things up, we’ll need two shell windows; having navigated to the folder with all
the provided resources, Fluentd can be started with the following command:

fluentd -c Chapter11/Fluentd/http.conf

This is followed by navigating to the Chapter11/clients folder and executing the
command

python log-conf.py

Once executed, you will see that the Fluentd server will write the generated log event
to the console in a JSON format.

11.7.2 Invoking Fluentd appender directly

Let’s now look at how the code may appear using the Fluentd Python library directly
from our application instead of a logging framework. While this is the Python imple-
mentation, the logger libraries work similarly for most of the supported languages.
Obviously, each implementation may have differences because of the constraints of
how the programming language works. For example, Go doesn’t have classes and
inheritance like Python and Java, but rather has modules and types.

 To make it easy to compare the direct calls to the Fluentd logging library approach
using the logging framework, we have created a new Python test client shown in listing
11.4. The first immediate difference is the client we need to explicitly import the Flu-
entd library into our code. Our code no longer establishes the logger context and log-
ger object but interacts with a sender, which is a specific implementation of an
appender (or handler, as Python calls it). The sender object is constructed with the
configuration needed to connect to Fluentd (you could, of course, retrieve this data
from a generic configuration file). As before, we’re constructing the time to put into
the log event message. Then, finally, we can use either the Fluent library’s emit or

Using a different port, we can take the
log event using HTTP in a JSON structure.

Using the forward plugin, we can
receive the payload as JSON text
or compressed with msgpack.

294 CHAPTER 11 Logging frameworks
emit_with_timestamp functions to transmit the log event. The emit functions
require the payload to be represented as a hashmap (or dictionary, using Python’s
naming).

import datetime, time
from fluent import handler, sender

fluentSender =
 sender.FluentSender('test', host='localhost', port=18090)

now = datetime.datetime.now().strftime("%d-%m-%Y %H-%M-%S")
fluentSender.emit_with_time('', int(time.time()),

➥{'from': 'log-fluent','at': now})

To see this scenario run, restart Fluentd as we did in section 11.7.1. This means that
the log events will, when received, be displayed in Fluentd’s console session. Then, in
the second shell, we need to run the command (from Chapter11/clients folder)

python log-fluent.py

11.7.3 Illustration with only Python’s logging

In the examples so far, the logging has used the Fluentd logging library directly (using
its sender object) and indirectly (using the Python logging framework and configura-
tion). This time, we’re going to look at how we can work without using the Fluentd
library at all. If you examine the code of the Fluentd library, you will find the library
uses the msgpack compression mechanism that we encountered in chapters 3 and 4.
Msgpack is part of Fluentd, not the native Python logging itself. As a result, when
working with only the native layer, we don’t benefit from the compression provided by
msgpack. The only way to overcome this would be to implement our own formatter
code that uses msgpack.

 Without resorting to developing your own version of the Fluentd library, the next
option is to use a prebuilt Python logging handler (or, as we have called it, an
appender) to talk to Fluentd directly. The value of this approach for Python is nonex-
istent. But it may be necessary if you wanted to use a comparative approach in another
language.

 As not all languages benefit from the Fluentd library, let’s look at how things need
to be implemented without that help. In this case, we will exploit the prebuilt
HTTPHandler (most languages have a comparable feature). As with the preceding
illustrations, we have provided another client implementation shown in listing 11.5.
For this to work, we instantiate a Python HTTPHandler for logging, with the necessary
connection details. Note that in the connection, we provide both the server address
and a URL path separately. Fluentd will expect a path rather than an attempt to talk to
the root address. We have provided a custom formatter and attached that to the

Listing 11.4 Chapter11/clients/log-fluent.py—Direct Fluentd library use

The import making a direct
dependency on the Fluentd library

Creates an
instance of the
Fluentd handler

Sends the
log event

295Illustrations of an application logging directly to Fluentd
handler. We then go through the same formatting process to form part of the log
event and invoke the logger object with the log event string.

 Using the prebuilt HTTPHandler means that the Fluentd configuration will need
an HTTP source plugin to be included, which we have already done.

import logging, logging.handlers
import datetime
testHandler = logging.handlers.HTTPHandler('localhost:18080',

➥ '/test', method='POST')

custom_format = {
 'host': '%(hostname)s',
 'where': '%(module)s.%(funcName)s',
 'type': '%(levelname)s',
 'stack_trace': '%(exc_text)s'
}
myFormatter = logging.Formatter(custom_format)
testHandler.setFormatter(myFormatter)

log = logging.getLogger("test")
log.addHandler(testHandler)
now = datetime.datetime.now().strftime("%d-%m-%Y %H-%M-%S")
log.warn ('{"from":"log-simple", "at" :'+now+'"}')

To run this example, open two shells as done previously. Navigate the root folder, and
then start up Fluentd. Once running, execute the Python script in each shell using the
following commands (from the Chapter11/clients folder for the Python script):

fluentd -c Chapter11/Fluentd/http.conf
python log-simple.py

11.7.4 Illustration without Python’s logging or Fluentd library

While there is no reason to stop using the Python logging framework in the real
world, it may not be an option in other languages, so let’s see how that might look. For
continuity and ease of comparison, we’ll demonstrate what this could look like with
Python. Most languages provide the means to interact with HTTP services without any
dependencies. We can interact with the Fluentd HTTP source plugin, as we elimi-
nated Fluentd’s logging library. But we are now responsible for constructing all the
HTTP headers, handling the HTTP connection to keep things open, and closing the
connections, as shown in listing 11.6. This listing follows the same previous pattern of
a client file to make it easy to make side-by-side comparisons.

Listing 11.5 Chapter11/clients/log-simple.py—Direct Fluentd library use

Needs to import the core classes
for both logging and the handlers

Creates the HTTPHandler and provides the
details; in a secured production environment,
this would include the use of certificates as well.

Creates the logger to use
if it doesn’t already exist

We add the log
handler we created
to the root log object
ready for use.

Invokes the handler. When implementing a
language-specific version of this code,

ideally you would use a library to generate
the JSON rather than manually inject it.

296 CHAPTER 11 Logging frameworks
 As you can see, code populates the header with details such as the content type
and content length. This should feel familiar, as, in many ways, these few lines of code
are exactly the same as how we configured Postman in our “Hello World” scenario in
chapter 2. As this is using the HTTP connection, we again don’t benefit from the
msgpack compression.

import httplib, urllib
import datetime

message = '{"from":"log.py", "at":"'+datetime.datetime.now().strftime

➥ ("%d-%m-%Y %H-%M-%S")+'"}'
headers = {"Content-Type": "application/JSON", "Accept": "text/plain",

➥ "Content-Length":len(message)}
conn = httplib.HTTPConnection("localhost:18085")
conn.request("POST", "/test", message, headers)

response = conn.getresponse()
print response.status, response.reason
conn.close()

Assuming that the Fluentd server is still running from the previous examples, then all
we need to do is run the command (from the Chapter11/clients folder)

python log.py

As before, we should expect to see the log events being written to the Fluentd server
console.

11.7.5 Porting the Fluentd calls to another language into action

The company you work for is trialing some smart devices with some custom function-
ality in your manufacturing facility. The trialed smart devices are currently known to
support several core languages, including Java, Python, and Ruby. The idea has been
put forward that the smart devices already call the central server when they need or
have to send data. Doing so allows battery power to be conserved by not powering
wireless until it is needed. That principle could be applied to logging any issues that
the smart devices experience. To keep the software footprint as small as possible, you
have been asked to not add any additional libraries. You have been asked to provide a
proof of concept as to whether the devices could talk directly to your current Fluentd
infrastructure rather than needing a custom solution that acts as a proxy between the
smart device and Fluentd.

ANSWER

Our primary languages are Java and Groovy (Groovy running on the Java Virtual
Machine). We have built a small Groovy example using native HTTP calls to a Fluentd
server. This can be found in Chapter11/ExerciseResults/native-fluentd
.groovy. Groovy does bring an overhead but allows us to produce the proof quickly,

Listing 11.6 Chapter11/clients/log.py—logging without any support

Manually populates the
HTTP header attributes

Creates the
connectionSends the

log event

We’re responsible for
closing the resources.

297Summary
as we don’t need to set up a build and package setup (and we’ve previously introduced
a Groovy setup in the book).

 You should have produced a similar outcome with your preferred language and
demonstrated the result using our simple Fluentd configuration or one of your own.

11.7.6 Using generic appenders: The takeaways

As you have seen, working with common protocols is possible, but it does increase the
development effort. Additionally, without more effort, you do not gain the benefits of
msgpack and knowing that the library has been proven. So, if you cannot use a prebuilt
Fluentd library, consider looking for or developing a wrapper that will translate the way
the logging framework works with the interface provided by the Fluentd library.

Summary
 There are efficiencies to be gained if the logging of events can be sent directly

from the application without having to resort to using an intermediary, such as
a file.

 Many logging frameworks have a common set of characteristics, although they
are often called different things. These include an abstracted mechanism to
send logs to a type of consumer (referred to as an appender, handler, or sender).
Another common element is a decoupled formatter, which translates the log
event to be represented in a manner that can be understood downstream.

 When reviewing logging frameworks, a number of questions need to be asked
about the framework to determine suitability: Does it have a native appender
for Fluentd or other components used? Is it possible to fall back to writing to
files? Can you transmit log events over HTTP(S) or TCP/IP?

 Fluentd provides a series of logging libraries that support various programming
languages, including Ruby, Java, Python, and others. These libraries can, in
some cases, integrate with the language’s native logging framework.

298 CHAPTER 11 Logging frameworks

appendix A
Installation of additional

tools and services

A.1 Tool installation overview
This book uses components and tools in addition to those necessary to run Flu-
entd. These help illustrate how Fluentd can work and integrate with other capabili-
ties, such as MongoDB and Elasticsearch. Chapter 2 looks at the installation and
configuration of Fluentd and Fluent Bit, as they are central to this book, including
Fluentd’s dependency on Ruby and the use of the LogGenerator. If you wish to try
the scenarios described in the book, you will have to download and install the tools
described in this appendix.

 The following sections provide enough details to install the tools to support the
examples in this book. If an installation value is not stated, then the default value
should be assumed. To get the installations to production class deployments, you
will need to look to additional resources, many of which are in appendix E.

 Although we have worked to ensure that we cover both Windows and Linux
installations, there are many Linux flavors and package managers (yum, apt, etc.)
associated with them, complicating things. To test the Linux instructions, we used
Ubuntu 18 LTE. This does mean you may need to tweak the steps for your specific
Linux flavor. Please feel free to share those tweaks through social media or online
Manning forums if you have access.

NOTE As you probably know, Linux and Windows directory and file paths
differ in using forward and backslashes. A number of the tools used in the
book work with the same commands regardless of the OS. As a result, we
have not provided the same command for both types of OS. It has been
assumed that you will recognize when to reverse the slashes as appropriate
for your platform.
299

300 APPENDIX A Installation of additional tools and services
A.2 Creating environment variables and amending PATH
Setting up environmental variables and extending the PATH environment variable is a
common requirement. Let’s summarize how this can be done using the setting of
JAVA as an example. Subsequent installations will reference this section. To check
whether the PATH might need amending, we can see its values with echo %PATH% on
Windows and echo $PATH on Linux.

A.2.1 Windows

The following needs to be done with care, as it represents a system-wide change.
Within the following command, replace <path addition> with the new path—for
example, c:\java\bin:

setx path "%path%;<path addition>"

For more documentation on setx, see http://mng.bz/jyAP.
 Within Windows, you can make the change through the settings UI and search for

environment variables. This will locate the UI element used to manipulate the PATH
and other environment variables. The precise steps will vary slightly between Windows
versions. If you use this approach, any shell windows will need to be restarted to see
the changes.

A.2.2 Linux

Depending on your version of Linux, if you have a desktop UI installed, it is more
than likely to offer a UI-based solution to updating the PATH. However, given the
diversity of UIs available, there isn’t a standard answer, but it is a common need, so a
web search should yield the answer.

 In the following command, replace <path addition> with the relevant path
(e.g., /etc/java/bin). This will add the directory into the path for the shell that
executed the command:

export PATH="$PATH:<path addition>"

To make the change work system-wide, add the previous command into a shell script
(e.g., setup-for-fluentd.sh), and save the shell script in the folder /etc/
profile.d. Make sure the shell script is executable (if necessary, run chmod a+x
setup-for-fluentd.sh). More information on manipulating PATH in Linux can be
found at https://bit.ly/SetLinuxPath.

A.3 Java and Groovy
The core details for these two elements are covered in chapter 2, as they are essentials
for using the LogSimulator. If you wish to work outside of a package manager, retrieve
the appropriate installer resources here:

 Java: www.java.com/en/download/manual.jsp
 Groovy: https://groovy-lang.org/install.html

https://groovy-lang.org/install.html
http://mng.bz/jyAP
www.java.com/en/download/manual.jsp
https://bit.ly/SetLinuxPath

301Elasticsearch
If you wish to use the LogSimulator as a Groovy utility, then it is recommended that
you observe the compatibility details with Java, particularly as the Java release cycle is
faster. Not all releases are long-term editions and therefore tested for compatibility.

A.4 Postman
In chapter 2, we used Postman to send basic HTTP log events. Postman can be used in
a simplified browser manner by accessing https://identity.getpostman.com/login; it
does require a free account to be set up. Alternatively, a desktop solution can be
installed from www.postman.com/downloads.

A.5 Elasticsearch
This section looks at a basic setup of Elasticsearch. Elasticsearch is a commonly used
repository for performing log analytics activities, and therefore an important target for
Fluentd. We only cover enough to allow us to work with Fluentd, so for a more compre-
hensive look at Elasticsearch, check out Elasticsearch In Action by Radu Gheorghe, et al.
(Manning, 2015) at https://www.manning.com/books/elasticsearch-in-action.

A.5.1 Core Elasticsearch installation

The binaries can be downloaded for Elasticsearch, which can be retrieved from
https://www.elastic.co/downloads/elasticsearch. This includes both package manager
versions for the different Linux versions in addition to the zip and tar formats. For
this, we’ll use the zip or gzip/tar, depending on the platform. Once downloaded,
unpack the compressed file. For Windows, we’ll assume c:\dev\elasticsearch as
the target and a similar path such as /usr/bin/elasticsearch. The Windows
installation has a prerequisite of installing Microsoft Universal C Runtime Library
(downloadable from http://mng.bz/W7M1).

 To make things easy, add the Elasticsearch bin folder (e.g., C:\dev\elastic-
search-x.y.z\bin), where x.y.z is the release number in the PATH, as explained in
section A.2. Elasticsearch provides a comprehensive set of instructions at http://
mng.bz/8l2w if you run into any issues.

 To start Elasticsearch, we can run the shell script elasticsearch bat or bash
script. Alternatively, it can be added, removed, and controlled as a service using the
elasticsearch-service script with the following parameters:

 Install
 Remove
 Start
 Stop

The Linux equivalent of a daemon service is elasticsearch -d -p pid with the pid
representing a file to hold the service details. The Elasticsearch installation and
startup can be verified using Postman executing a GET call on localhost:9200. A
successful result will return a JSON payload reflecting the status of the Elasticsearch
server. This is illustrated in figure A.1.

https://identity.getpostman.com/login
https://www.elastic.co/downloads/elasticsearch
http://mng.bz/W7M1
http://mng.bz/8l2w
http://mng.bz/8l2w
https://www.manning.com/books/elasticsearch-in-action
www.postman.com/downloads

302 APPENDIX A Installation of additional tools and services

Figure A.1 Postman verifying Elasticsearch installation

A.5.2 Elasticsearch UI installation

To review the contents of Elasticsearch, rather than formulating expressions using Post-
man, we can utilize one of the available UIs. For the purposes of this book, we found
Elasticvue to be both easy to use and incredibly simple to install. Elasticvue can be
obtained from https://elasticvue.com and provides installation as a browser extension
for Chrome, Firefox, Microsoft Edge, or as a web app or Docker image. We’ve adopted
the Chrome extension, as it requires no configuration and runs locally to accommodate
localhost addressing. This installation requires you to follow the link from the Elas-
ticvue website into the Chrome store and then click the Add to Chrome button.

 Once you’ve started Elasticsearch and opened the extension, you simply need to
confirm the server you wish to connect to (http:/./localhost:9200). Once connected,
Elasticvue provides stats about the server, and selecting the Indices menu will show the
indexes. This will include those we use once the examples are run.

https://elasticvue.com

303Mongo database
A.5.3 Fluentd plugin for Elasticsearch

The td_agent version of Fluentd includes the elastic search plugin out_elastic-
search. However, the unmodified version of Fluentd does not. Therefore, it is neces-
sary to install the plugin manually with the command fluent-gem install fluent
-plugin-elasticsearch.

A.6 Mongo database
We first used MongoDB in chapter 4 as an alternative output destination. MongoDB is
available with Enterprise and Community Editions. We will stick with a Community
Edition, as this provides the features we need and is not subject to commercial licens-
ing. In addition to the core MongoDB, we want to have the MongoDB GUI (graphical
user interface) Compass, which also has variants. We will be using the free edition.

A.6.1 Mongo DB installation

MongoDB provides an MSI installer for Windows and other package management
tools for Linux and macOS (RPM, DMG), and so on. You can download the current
version by going to www.mongodb.com/download-center/community.

NOTE RPM stands for Red Hat Package Manager and DMG stands for disk
image.

We will assume the latest stable release using the MSI installer, ideal for setting up in
development environments because of the simplicity and speed. While in production,
you are more likely to adopt different installation strategies depending on your infra-
structure and use case—for example, Docker in a microservices context or retrieving
native binaries and manually crafted configuration files to exploit networked storage
solutions such as SANs (storage area networks).

 Depending on your OS privileges, you will likely need to run MongoDB as a local
administrator in Windows or with root-based privileges (using sudo) for Linux. In
standard OS configurations, this will undoubtedly be the case.

 With the MSI downloaded, start the installation. The installer is self-explanatory;
make sure you choose the recommended Complete setup. A couple of further steps, and
the installer provides the option of installing Compass; make sure this option is ticked.

A.6.2 MongoDB configuration

Compass should be started once the installation is complete, and it will provide a but-
ton to connect (if your package manager installation doesn’t begin Compass, please
do so). Compass will display a screen with the basic setup. Click the Connect button,
as shown in figure A.2.

http://www.mongodb.com/download-center/community

304 APPENDIX A Installation of additional tools and services

Figure A.2 MongoDB database viewed through Compass UI tool

The final step is to establish a database to be used to store the log events. Click the
CREATE DATABASE button, as shown in figure A.2. This action takes us to a pop-up
screen that will ask for a database and collection name. For our purposes, we will call
them both Fluentd, as figure A.3 shows.

Figure A.3 MongoDB Compass Create Database pop-up—the
simplest way to define a DB for our examples

305Slack
We do not want to specify any MongoDB restrictions (Capped Collection) or customi-
zation for the Collection. This means ensuring the tick boxes are not set. With this, we
have the setup for MongoDB and you can click CREATE DATABASE.

 Once complete, you will see the addition of a Fluentd database in the list and the
default databases provided as part of the installation (admin, config, and local) which
can be seen if figure A1. If you click on the Fluentd database, you will get a view of the
database collection.

 The last step is to add the MongoDB binary to the PATH variable to run some sim-
ple commands to quickly refresh the environment. The precise path will depend on
the version installed and any installation configuration values changed from the
installation defaults you may have provided. A typical location would be C:\Program
Files\MongoDB\Server\4.2\bin, where 4.2 is the MongoDB version number.
The steps to apply this change are detailed in section A.2. Setting up the PATH on
Linux will need a path to the installation location of the MongoDB binaries, which
will be in a folder using the following form: mongodb-linux-x86_64-4.2.0/bin.
The location of this folder will be more dependent on the package manager, but /
usr/bin would be the convention.

A.7 Slack
Slack (https://slack.com) cloud service has a free use tier, which can be used as your
private Slack workspace. We would recommend you set up your own space for the
work with Fluentd to keep things simple. It also means that you will not have any
issues if there are restrictions in the privileges when setting up application tokens if
you’re trying to use a work-related Slack workspace.

 If you are new to Slack, you will find that the web UI is sufficient, but having the
app installed on a device (phone, tablet, or desktop) gives a better experience
(https://slack.com/downloads), particularly for putting the app into the background
instead of keeping another browser tab open.

 The next step will be to set up your token needed by Fluentd. Using the Fluentd
web UI option, Add Features and Functionality, select Incoming Webhooks > Bots >
Permissions, and click Save Changes.

 With a personal Slack workspace, we need to use the Slack administration UI to
configure an application to get an application token. The easiest way to do this is to
jump directly to https://api.slack.com/apps once signed into Slack in the browser.
Click the button Create New App, as shown in figure A.4. We need to provide an App
Name (which we recommend you also use for the username attribute in the plugin
configuration) and ensure that your workspace is selected for the Development Slack
Workspace option; then click Create App. The UI will prompt you to enable the web-
hooks. Once done using the left-hand menu, we need to select OAuth and Permis-
sions. In the lower part of the screen is the configuration for Scopes. We specifically
want to modify the Scopes for Bot Tokens. The list of available API scopes adds
chat:write and chat:write:public and ensures that the incoming-webhook is

https://api.slack.com/apps
https://slack.com/downloads
https://slack.com

306 APPENDIX A Installation of additional tools and services
already included. Once this is complete, you will be shown two tokens at the top of the
page. We need to copy the Bot User OAuth Access Token, as it is required when work-
ing with Fluentd. Then click the Reinstall App button. The configuration of Slack for
our output is now complete.

Figure A.4 Slack UI to create an “app,” and the corresponding form with required values highlighted

A.8 Setting up Docker and Kubernetes
This section covers the installation of Docker and Kubernetes to support chapter 8.
This section is a little tricky because Linux OSes differ in package management and
what is already installed. For the purposes of this section, when it comes to Linux,
we’re going to assume Ubuntu 18.04 or later. This does mean some prerequisite steps
are needed for Windows users.

 If your Linux version isn’t Ubuntu (e.g., Fedora, Debian), the steps may differ
slightly because of the package manager, and so on. In this situation, there are a cou-
ple of options:

 Set up a containerized instance of Ubuntu using tools such as Docker and con-
necting to the container, which, in many ways, will probably be like Ubuntu
anyway.

 Adapt the commands yourself to work on your Linux flavor.
 Follow the Linux version of the VirtualBox setup, which will be explained.

Chapter 8 used a virtual machine for working with just Docker and also used mini-
kube, a CNCF-supported small footprint deployment of Kubernetes for running the
Kubernetes aspects of the chapter. By actioning the Docker-related activities within a
virtualized environment, we don’t accidentally pollute the Kubernetes setup or any
existing work you might have with Docker already.

 Adopting minikube also means we have the same approach for local deployments
as the book Kubernetes in Action by Marko Lukša (Manning Publications, 2017).
Depending on your environment and deployment approach, minikube will use

307Setting up Docker and Kubernetes
VirtualBox or Hyper-V if you’re operating on a Windows platform and Docker if oper-
ating on a native Linux environment.

A.8.1 Windows Prerequisites

The prerequisites will depend on the Windows version being run. Your choices are
limited for Windows 10 and 11 Home or older Windows versions, and will mean
installing and using VirtualBox as described in the next section. Windows 10 Pro or
better offer a couple of options:

 Use the Windows Hyper-V Manager and create a Ubuntu VM; Microsoft’s docu-
mentation to do this is available at https://docs.microsoft.com/en-us/virtualiza
tion/hyper-v-on-windows/quick-start/quick-create-virtual-machine.

If this approach is adopted, you may also need to take additional steps to
ensure that you can copy and paste between the Windows Host and the Ubuntu
VM. The solution to this is detailed at https://docs.microsoft.com/en-us/
troubleshoot/windows-server/virtualization/copy-paste-not-work-hyper-v-vm-
vmconnect-enhanced-session-mode.

 The alternative (and my preference) is to leverage the Windows Subsystem for
Linux (WSL) 2. This provides a far easier way to switch between Windows native
and Linux. The steps to set this are more complex, as you will need to install
Docker Desktop (www.docker.com/products/docker-desktop) and download
and install several additional components from Microsoft. The steps for this are
detailed at https://docs.microsoft.com/en-gb/windows/wsl/install-win10.

When setting up WSL and the Ubuntu distribution (our recommendation),
we have observed that when it comes to running the Docker commands, like the
docker -–version to validate installation, not everything reports correctly. It
has been reported that the configuration with Docker Desktop can be incorrect,
but in the UI, it looks correct. In this situation, we’ve disabled the WSL2 option
within the Docker Desktop, saved the change, and then, without Ubuntu run-
ning, gone back into the Docker Desktop settings and re-enabled WSL2. Next,
we started our Ubuntu instance; once running, things have resolved themselves.

A.8.2 VirtualBox approach

VirtualBox (www.virtualbox.org) is an Oracle-supported open source project to pro-
vide virtualization on desktops covering Windows, macOS, and Linux. It does require
the host to have an AMD or Intel chipset. VirtualBox won’t work on Windows if you’re
using Hyper-V virtualization, and it can be sensitive to BIOS/UEFI settings. More
information on this subject can be found at www.howtogeek.com/213795/how-to-
enable-intel-vt-x-in-your-computers-bios-or-uefi-firmware.

 The first step is to download VirtualBox from the downloads page (www.virtual-
box.org/wiki/Downloads), providing access to a Windows executable as an installer
or the relevant package for your Linux flavor. Once downloaded, run the installation
process to get set up. With the core of VirtualBox installed, installing the Extension
Pack is recommended and available on the download page.

https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/quick-start/quick-create-virtual-machine
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/quick-start/quick-create-virtual-machine
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/quick-start/quick-create-virtual-machine
http://www.docker.com/products/docker-desktop
https://docs.microsoft.com/en-gb/windows/wsl/install-win10
http://www.virtualbox.org
http://www.virtualbox.org/wiki/Downloads
http://www.virtualbox.org/wiki/Downloads
https://docs.microsoft.com/en-us/troubleshoot/windows-server/virtualization/copy-paste-not-work-hyper-v-vm-vmconnect-enhanced-session-mode
https://docs.microsoft.com/en-us/troubleshoot/windows-server/virtualization/copy-paste-not-work-hyper-v-vm-vmconnect-enhanced-session-mode
https://docs.microsoft.com/en-us/troubleshoot/windows-server/virtualization/copy-paste-not-work-hyper-v-vm-vmconnect-enhanced-session-mode
https://docs.microsoft.com/en-us/troubleshoot/windows-server/virtualization/copy-paste-not-work-hyper-v-vm-vmconnect-enhanced-session-mode

308 APPENDIX A Installation of additional tools and services
 The next step is to get the Ubuntu guest OS built. This can be done by either

 Downloading a prebuilt virtual image from the VirtualBox website, although
the image provided for Ubuntu is old. Alternatively, use a site such as OSBoxes
(www.osboxes.org/ubuntu-server/), which offers prebuilt images that can then
be imported into VirtualBox. Using this route means you need to ensure you
have the credentials for a user with root privileges.

 Creating a guest image using VirtualBox is detailed at http://mng.bz/Ex0O.

A.8.3 Ubuntu image preparation for working with Docker

With the image organized, it is recommended that you log into your Ubuntu image
and run the following commands to ensure that the package manager is up to date:

sudo apt-get update
sudo apt-get upgrade

Next, let’s verify whether or not the curl utility is available using the command

curl -–version

If the response comes back positively with version information, then we’re all done. If
not, then the following command is needed to get curl installed:

sudo apt-get install curl

Next up in our installation needs is Docker. This can be done with the shell command:

sudo apt-get install Docker.io

If you have any preferred utilities, Linux shortcuts, and so on, this is the best time to
configure them.

 At this stage, we recommend that you stop the VirtualBox guest VM and Export the
VM to have a ready start state available if going back to a clean state is required. This
means if you wish to abandon the current VM and start afresh, it is simply a case of stop-
ping the VM you’re currently using, deleting it, and importing the exported image.

A.8.4 Kubernetes installation

This installation process isn’t needed until you start working with Kubernetes but will
need the Docker steps to be executed in advance, as they establish some of the prereq-
uisites. In terms of computing power, you’re going to need at least 2 CPUs, 2 GB of
RAM, and 20 GB of storage. The more resources you can give over to minikube, the
better the experience.

 We had looked into the possibility of running minikube within the virtual machine,
so the steps would be the same regardless of the host being Windows or Linux. But it
makes for a more complicated setup for most users who are not likely to need it.

MINIKUBE ON WINDOWS

If you’re going to deploy minikube onto a Windows platform, we’d recommend using
the Chocolatey package manager, and this is how we’re going to deploy minikube. Other

http://mng.bz/Ex0O
www.osboxes.org/ubuntu-server/

309Setting up Docker and Kubernetes
approaches are detailed on the minikube site at https://minikube.sigs.k8s.io/docs/
start/.

NOTE Chocolatey (https://chocolatey.org/) provides a Linux package man-
ager-like experience for Windows. For applications that aren’t bound to a for-
mal Microsoft installation experience (such as MSIs), it is worth using it to take
care of things like setting environment variables, dealing with dependencies,
and cleaning up, which is far better with Chocolatey than trying to remember
the manual install steps to reverse. The process of installing Chocolatey is
clearly explained at https://chocolatey.org/install.

The steps need to be performed using a cmd shell running as an administrator (right-
clicking on the cmd option in the start menu to get the Administrator option). In the
cmd shell, we need to install the core of minikube using the command

choco install minikube

Next, we’ll need the Kubernetes command-line interface (CLI) known as kubectl,
which can be installed using the command

choco install kubernetes-cli

These two steps have established minikube into the environment. As minikube uses
Hyper-V when used on a Windows host, you may wish to set up an additional virtual
network within Hyper-V to avoid any network conflicts with any other virtualization
setups that presently exist. To implement this, the Hyper-V Manager can be started
from the Start menu or with the command line using the command

Virtmgmt.msc

We need to click the Virtual Switch Manager option on the right of the Hyper-V Man-
ager UI, as shown in figure A.5.

Figure A.5 Hyper-V management UI with Virtual Switch Manager option

https://chocolatey.org/
https://minikube.sigs.k8s.io/docs/start/
https://minikube.sigs.k8s.io/docs/start/
https://chocolatey.org/install

310 APPENDIX A Installation of additional tools and services
When the Virtual Switch Manager UI is displayed, we use the New virtual network
switch option at the top of the list of switches to create a new switch. The new switch
settings are displayed on the right. The switch needs to be set to the Internal option.
Once the switch is created with the name Primary Virtual Switch (the name is essen-
tial, as when you create the minikube cluster, we will reference this), the configuration
should look like the details shown in figure A.6.

Figure A.6 Configuration of the virtual switch

MINIKUBE FOR LINUX

For Linux, the OS will need the appropriate Hypervisor installed, such as KVM
(kernel-based virtual machine). As this process can change for different flavors of OS,
we would recommend checking details with your OS documentation. The following
describes the steps for Ubuntu, which are common to many Linux flavors.

 First, we need to check that the hardware can support virtualization; this can be
done with the command

egrep -c '(vmx|svm)' /proc/cpuinfo

A result of 1 or greater means that the computer hardware can support virtualization.
You may wish to perform some checks to determine whether or not the host will

311Setting up Docker and Kubernetes
perform well by examining whether the OS is 32-bit or 64-bit and how many resources
are available. We’re going to assume that this is not an issue. The next step is to install
the virtualization features. These can differ slightly over Linux versions, but for
Ubuntu 18.10 or later, the command is

sudo apt-get install qemu-kvm libvirt-daemon-system libvirt-clients bridge-
utils

The next step is to ensure you have the privileges to use the virtualization; this is done
with the following commands:

sudo adduser 'id -un' libvirtd
sudo adduser 'id -un' kvm

Each of these commands will confirm the addition of your user. The next step is to log
in again for the changes to take effect. The installation and configuration can be
checked with the following commands, which will indicate the ability to connect to
the Hypervisor and access the libvirt-sock:

virsh list --all
sudo ls -la /var/run/libvirt/libvirt-sock

We need to ensure that the ownership and permissions for the folder /dev/kvm are
correct. This is done with the command

sudo chown root:libvirtd /dev/kvm

Again, a login cycle is needed for the changes to take effect. The final step comes
down to whether you want to use the Virtualization GUI; this can be installed with the
command

sudo apt-get install virt-manager

With the virtualization successfully set up, this process is a little simpler, as it only uses
Docker and doesn’t create an additional virtualization layer. The first steps are to use
curl to retrieve the Debian package and then install the downloaded package with
the commands

curl -LO https://storage.googleapis.com/minikube/releases/latest/
minikube_latest_amd64.deb

sudo dpkg -i minikube_latest_amd64.deb

We need to install the conntrack service and ensure that apt-transport-hous-
ings packages that support connection management within the Linux OS are
installed. This can be done with

sudo apt-get install conntrack
sudo apt-get install apt-transport-https

It is helpful to have the Kubernetes key command-line tools in the form of kubectl.
We can get this installed with the following commands:

312 APPENDIX A Installation of additional tools and services
curl -LO "https://dl.k8s.io/release/$(curl -L -s \
https://dl.k8s.io/release/stable.txt)/bin/linux/amd64/kubectl"
sudo install -o root -g root -m 0755 kubectl /usr/local/bin/kubectl
kubectl version --client

The final step is to install minikube. This can be done with the following commands:

wget https://storage.googleapis.com/minikube/releases/latest/minikube-linux-
amd64

sudo cp minikube-linux-amd64 /usr/local/bin/minikube
sudo chmod +x /usr/local/bin/minikube

We should be able to verify the minikube installation with the following command:

minikube version

A.9 Support Ruby development libraries and tools
For chapter 8, where we implement a custom plugin, we recommend installing addi-
tional RubyGems to help with the development. RubyGems can be added using the
command

gem install <name of ruby gem>

You just need to replace <name of ruby gem> with the following recommended
additions:

 test-unit

 ruby-lint

If you want to know more about these tools, the links are provided in appendix E,
along with all the other helpful resource information.

A.10 Redis
Chapter 8 used Redis to demonstrate the development of a custom plugin. It is one of
the leading in-memory cache solutions. The installation for our requirements is mini-
mal. Redis can be installed in a couple of different ways on a Linux platform:

 Follow the Redis Quick Start guide (https://redis.io/topics/quickstart), which
will take you through the process of downloading the source code and run the
make tool to generate a suitable executable.

 Or follow the steps at https://redis.io/download to retrieve a package manager
solution. In either case, you want to be using the latest stable release. Alterna-
tively, Redis can be installed using the apt-get package manager (e.g., Ubuntu)
or Snapcraft (https://snapcraft.io/).

For Windows to adopt this approach, you’ll need to be using Windows 10 Pro with the
WSL. There is a pure Windows port that can be retrieved via https://github.com/
ServiceStack/redis-windows. There is also a popular community port available at https://
github.com/dmajkic/redis/downloads; this is very dated, but it has the features for

https://storage.googleapis.com/minikube/releases/latest/minikube-linux-amd64
https://storage.googleapis.com/minikube/releases/latest/minikube-linux-amd64
https://redis.io/topics/quickstart
https://redis.io/download
https://github.com/ServiceStack/redis-windows
https://github.com/ServiceStack/redis-windows
https://github.com/dmajkic/redis/downloads
https://github.com/dmajkic/redis/downloads

313Vault
our needs. The alternative is to run the Docker prepackaged solution, which will
make some of the steps needed more complex as we need to use the Redis CLI.

 Once this is downloaded and built/installed, you will need to add the location of
the binaries to your path, as described in section A.2. This should pick up both the
server and the CLI.

A.10.1 Redis gem

In addition to the core Redis server, we need a Ruby library that can talk to Redis. This
can be retrieved and installed very quickly using the command

gem install Redis

This will download and install the latest stable gem into your gem library, ready for
use. If you want to know more about this, the documentation of this gem can be
found at https://github.com/redis/redis-rb.

A.11 Python
In chapter 11, to illustrate how default adaptors can be used, we used Python. Installa-
tion of Python depends on your OS. For Windows, the most straightforward approach
is to download the MSI from Python.org. For Linux, the OS package manager will be
the best approach for installation.

 When it comes to using Python 2.x or 3.x, many people are still using Python 2.x,
even though it has reached its end of life. We would advocate for the adoption of
Python 3; we have checked the small apps with both versions. For Windows, we would
recommend using the Python Switcher utility (more details at http://mng.bz/Nx51)
to allow the switching between different Python versions. For Linux, the best option, if
required, is to utilize the Alternatives facility (a Linux generic description can be
found at www.lifewire.com/alternatives-linux-command-4091710, and an Ubuntu
detailed explanation can be found at http://mng.bz/DxDw).

 With Python installed, two additional libraries will be needed, which can be
installed using the Package Installer for Python (PIP), using the commands

pip install pyyaml
pip install fluent-logger

Depending on your preferred way of viewing files, you may wish to install or add a
plugin to your preferred IDE to make it easier to work with Python and YAML files.

A.12 Vault
Within the book, we refer to the use of HashiCorp’s Vault. While it is not necessary,
you might consider trying it out with Fluentd. HashiCorp has produced an excellent
installation guide that breaks the process down to a few pretty straightforward steps.
The details can be found at http://mng.bz/laJ8. As the steps are relatively simple, we
will summarize them here, and if you need more information, refer back to the Vault
tutorial for the dev mode setup:

http://mng.bz/Nx51
http://mng.bz/DxDw
http://www.lifewire.com/alternatives-linux-command-4091710
http://www.lifewire.com/alternatives-linux-command-4091710
http://www.lifewire.com/alternatives-linux-command-4091710
http://www.lifewire.com/alternatives-linux-command-4091710
http://mng.bz/laJ8
https://github.com/redis/redis-rb

314 APPENDIX A Installation of additional tools and services
1 Download the correct binary for your OS from www.vaultproject.io/downloads.
2 Unpack the zip file into a suitable location (e.g., c:\vault or /usr/bin/

vault).
3 Add the installation location to the PATH environment variable (see section

A.2).
4 Run the command vault -install-autocomplete; this will add any

command-line utilities it can to your environment.
5 Start Vault server in development mode using the command vault server

-dev. Note that the output near the start of the command execution will dis-
play a key and token on the console. You’ll need to note these, as the root token
will be required in a minute.

6 Set up two environment variables using Windows set command or Linux’s
export:

– VAULT_ADDR=http://127.0.0.1:8200

– VAULT_TOKEN=<Root Token>

With these steps complete, you can verify the status of the setup with the command
vault status. Note that every time Vault is restarted, the token will change, and the
secrets held will be empty. This behavior is occurring because Vault is running in
development mode, where development mode is nonpersistent.

http://www.vaultproject.io/downloads

appendix B
Processing times and dates,

regular expressions, and
other configuration values

B.1 Expressing relative time
Some configuration attributes of Fluentd require us to express time in a relative
manner, (i.e., how long from now). Such values in a readable form are best done
using simple integers and time types—seconds, minutes, and hours. The following
table shows how this is done in Fluentd.

B.2 Expressing dates and times
The date representation for input and output is driven by how Ruby can parse cus-
tom formatted date-times. The following table shows the mapping of character
codes to the values they resolve to. In several cases, the lowercase and uppercase of

Interval Character Examples

Seconds s 10s  10 seconds
0.1s  100ms

Minutes m 1m  1 minute
0.25m  15 seconds

Hours h 24h  24 hours
0.25h  15 minutes

Days d 1d  1 day
0.5d  12 hours
315

316 APPENDIX B Processing times and dates, regular expressions, and other configuration values
the same character represents truncated and full versions of the same value (e.g., a%
and %A). The lowercase form represents the truncated format. We have put these
cases together in the same row to make them easier to spot.

Code Date element description Example

%a
%A

Three-letter abbreviation of the day of week.
Full name of the day of week.

Mon
Monday

%b or %h
%B

An abbreviated version of the month name.
Full month name.

Feb
February

%c Shortcut to locale default representation. %a %b %e %T %Y
The exact format is driven
by the locale settings.

%C Century in numeric form. 2021 would result in 20
(Ruby derives this value by
rounding down the result of
the year divided by 100.)

%d Day of the month as a two-digit number 01 . . . 31. 06

%D Shortcut for %m/%d/%y (month/day/year). 01/01/21

%e Day of the month, but days less than 10 have a single-digit
representation.

6

%F A shortcut for %Y-%m-%d, which aligns to the ISO 8601 for-
mat (more on the ISO format standard can be found at
www.iso.org/iso-8601-date-and-time-format.html). Often
documented as YYYY-MM-DD.

2021-12-31

%H Hour of the day represented in the double-digit format
against a 24-hour clock.

02

%I
(capital I)

Hour of the day using double-digit 12-hour clock, so 01
could be 1 a.m. or 1 p.m.
The alternate form is %l (lowercase L).

01

%j Three-digit representation of the day of the year starting at
001

211

%k Hour of the day (24-hour format 0 . . . 23); single digits rep-
resent morning hours

3

%l
(lowercase
L)

Hour of the day using one digit for hours < 10, double-digit
for the remaining. This uses the 12-hour clock, so 1 could
be 1 a.m. or 1 p.m.
The alternate form is %I.

1

%L Millisecond part of the time in the three-digit form. 021

%m The month of the year in the double-digit form. 08

%M Minute of the hour in the double-digit form. 09

http://www.iso.org/iso-8601-date-and-time-format.html

317Expressing dates and times
%N or %9N
%6N
%3N

Fractions of a second in nanoseconds (9 digits).
Fractions of a second in microseconds seconds (6 digits).
Fractions of a second in milliseconds (3 digits).

012345678
012345
012

%p
%P

Meridian indicator: AM or PM (uppercase).
Meridian indicator: am or pm (lowercase).

PM
p.m.

%r Shortcut for 12-hour clock time representation—same as
using %I:%M:%S %p.

01:02:06 PM

%R Shortcut for time representation using the 24-hour clock—
equates to %H:%M.

15:01

%s Number of seconds since epoch (i.e., 1970-01-01
00:00:00 UTC); also known as POSIX time or Unix time.

1588115129

%S Number of seconds in the minute using a two-digit represen-
tation.

05

%T Shortcut for %H:%M:%S—time to the second precision
using the 24-hour clock.

01:59:11

%u Day of the week in a numerical form, with Monday being 1. 7

%U Week number in the current year in two-digit format, with
the first Sunday counting as the first day of the first week:
00 . . . 53.

52

%V Week number as defined by ISO 8601 (alternate to %U). 01

%W Week number calculated from the first Monday. 00

%w Alternate numeric representation of the day of the week,
where the first day is Sunday (0).

6

%x Alias for %D. 01/01/21

%X Alias for %T. 01:59:11

%y
%Y

Year as a two-digit number (i.e., century is omitted).
Year including century.

21
2021

%z Time zone offset is expressed as a positive or negative four
digits relative to UTC. For example, New York is 4 hours
behind UTC, so it is -0400. The first two digits represent
hours; the second represents minutes. For example, Austra-
lian Central Standard Time is 9.5 hours ahead of UTC.

+0930

%Z The time zone is represented by its name. A complete list of
time zones and their codes can be found at www.timeand
date.com/time/zones/.

BST

 (continued)

Code Date element description Example

www.timeanddate.com/time/zones/
www.timeanddate.com/time/zones/

318 APPENDIX B Processing times and dates, regular expressions, and other configuration values
B.3 Expressing sizes
Some attributes allow you to express data sizes in terms of bytes up to terabytes. How-
ever, we do not recommend you entertaining terabyte sizing.

B.4 Regular expressions
Regular expressions are a common means by which we can process strings of text to
find specific patterns or break the strings into parts. Unfortunately, Regular Expres-
sions (often REGEX for short) can differ slightly between implementations. For refer-
ence, the following sections highlight the most useful aspects of Regular Expressions as
implemented by Ruby (and as Fluentd is implemented with Ruby) and used by Fluentd.

B.4.1 Escape Codes

Escape codes provide the means to use predefined groups of characters.

B.4.2 Repetition/selection

These characters allow us to define different reoccurrence patterns and define ranges
of acceptable values.

Size Character Examples

Bytes - 100  100 bytes

Kilobytes k 12k  12 kilobytes (Kb)

Megabytes m 5m  5 megabytes (MB)

Gigabytes g 3h  3 gigabytes (GB)

Terabytes T 1t  1 terabyte (TB)

Regex code Explanation

. Any character except a newline, unless multiline options are enabled in the parser

\d A digit character ([0-9])

\D A nondigit character ([^0-9])

\h A hexdigit character ([0-9a-fA-F])

\H A non-hexdigit character ([^0-9a-fA-F])

\s A whitespace character [\t\r\n\f\v] (i.e., space, tab, carriage return, new line,
vertical tab, or form feed)

\S A non-whitespace character [^ \t\r\n\f\v]

\w A word character ([a-zA-Z0-9_])

\W Any non-word character (i.e., inversion of \w)

319Regular expressions

B.4.3 Anchors, groups, and alternates

Anchors are metacharacters that match the zero-width positions between characters,
anchoring the match to a specific position. Groups allow us to define atomic group-
ings, which could be seen as the mathematical use of brackets.

Regex code Explanation

* Zero or more times

? Zero or one time (optional)

[n,m] Defines a choice of accepted values

[n..m] Defines a range of values—the content is impacted by ASCII encoding and can con-
tain multiple ranges by a repetition of n . . . m (e.g., [a..zA..Z0..9])

^ Within a range

{,m} m or fewer times

{n,} n or more times

{n,m} At least n and at most m times

{n} Exactly n times

+ One or more times

Regex code Explanation

$ Matches to the end of the line.

(Starts a grouping.

(? Starts a group without capturing the content.

(?<NAME> Define capture groups with a name. NAME is replaced with the name of choice.

) End of grouping for both capture and non-capture groups.

\A Matches the beginning of a string.

\G Matches the first occurrence of the defined character.

\k<NAME> Allows named groups to be back referenced (i.e., referenced once defined).

\Z Matches end of the string. If the end of the line is a newline character, this is
ignored.

\z Matches end of the string.

^ Matches to the beginning of the line.

| Separates two values or expressions, which can be treated like this or this—for
example, for (a|b), the value could be a or b.

320 APPENDIX B Processing times and dates, regular expressions, and other configuration values
B.5 Docker tag customization
Within the log-opts configuration of the Docker log driver, it is possible to tailor the
tag element of its output. This is done by setting the tag part of log-opts to equal a
configuration string using the predefined template markup, as shown in the following
table.

Using this table, if we provided an additional configuration, such as –log-opt
tag="{{.ID}}-{{.ImageID}}", then the tag would look something like
"myid12xxeerr-mynamefluent" with the hyphen coming from our separation of
the two tag parts in the configuration as we specified.

Markup Description

{{.ID}} Initial 12 characters of the container ID

{{.FullID}} The complete 64-character container ID

{{.Name}} The name of the container at the startup

{{.ImageID}} Initial 12 characters of the image ID

{{.ImageFullID}} The image’s complete ID

{{.ImageName}} Name of the image being used by the container

{{.DaemonName}} Name of software daemon running the container (i.e., Docker)

appendix C
Plugins summary

We have looked at several types of plugins within the book but have not addressed
all the available plugins available out of the box. This appendix addresses that. We
have provided a summary of all the core plugins and some open source ones that
warrant attention.

C.1 Formatter plugins

Plugin name Summary Fluentd core

csv Covered in chapter 4. Basic comma-separated values, although the sep-
arator can be changed through the configuration attributes.

Y

hash This translates the log event record to a representation that Ruby can
handle in a hash format. It is possible to embed Ruby code fragments
into some plugin configurations, hence its inclusion.

Y

json Covered in chapter 4. Allows us to output the log event contents in a
JSON format.
For more information on JSON format, see www.json.org.

Y

ltsv Covered in chapter 4. Label tab (character) separated values—rather
than depending on positioning in the list to get the correct value mean-
ing, we can include a label.
See http://ltsv.org/ for more resources and information.

Y

msgpack Covered in chapter 4. A formatter ideal for compressing log events to
communicate between Fluentd and Fluent Bit.
For more information on msgpack, see https://msgpack.org/.

Y

out_file Covered in chapter 4. This formatter prints out the named log event
attributes, which can be listed using a delimiter.

Y

single_
value

The single_value formatter is a little like the CSV formatter in that it
is possible to select from the log event record and output that content.
However, it is only possible to identify one part of the log event record,
using the message_key attribute in this case.

Y

321

http://ltsv.org/
https://msgpack.org/
www.json.org

322 APPENDIX C Plugins summary
C.2 Extract and inject plugin support
The out-of-the-box source and match plugins support for extract and inject are as
follows:

C.3 Filter plugins

Source Inject Extract

dummy No No

exec No Yes

forward No No

http No No

monitor_agent No No

syslog No No

tail No No

tcp No Yes

udp No Yes

unix No No

windows_eventlog No No

Plugin name Summary
Fluentd

core

add Interesting as it provides an effortless way to add a UUID (universally
unique identifier) and other additional name-value pairs. Unique IDs are
helpful when log events pass through multiple Fluentd nodes. More infor-
mation can be found at https://github.com/yu-yamada/fluent-plugin-add.

N

anonymizer Anonymizer can be configured to perform a one-way hash of the contents
of an element in a log event using the selected algorithm. This is ideal for
masking sensitive data. More can be found at https://github.com/y-ken/
fluent-plugin-anonymizer.

N

autotype Applies typing to the log event attributes based on analyzing the payload.
Ideal for handling numeric values, as it removes the need to effect a man-
ual typecast.

N

filter_
parser

Combines the capability of parser plugins with the filter. Y

fluent-
plugin-
fields-
autotype

This plugin is ideal for parsing the log event structure and selecting the
correct data type to evaluate the attributes. This is also a variant of
fluent-plugin-auto-typ. More information can be found at http://
mng.bz/AxlK.

N

Match Inject Extract

copy Yes No

exec No No

exec_filter Yes Yes

file Yes No

forward No No

http No No

null No No

relabel No No

round_robin No No

secondary_file No No

stdout Yes No

http://mng.bz/AxlK
http://mng.bz/AxlK
https://github.com/yu-yamada/fluent-plugin-add
https://github.com/y-ken/fluent-plugin-anonymizer
https://github.com/y-ken/fluent-plugin-anonymizer

323Tag manipulation plugins
C.4 Tag manipulation plugins

geoip This plugin exploits the fact that internet providers publish the internet
protocol (IP) addresses they have been allocated along with the physical
location at which these IPs connect to the “internet.” This information is
then aggregated together by several organizations. By knowing the IP of
the request, it is possible to look up a location. This is beneficial, as it
allows data to be more effectively routed and filtered. For example, you
could have a global network of Fluentd servers. Using GeoIP will enable us
to direct the logs to the nearest Fluentd server to aggregate the log
events. This can be very helpful when working with high volumes of logs in
distributed use cases such as

 Internet of Things (IoT) deployments
 Global multi-region and multi-cloud solutions

More information can be found at https://github.com/y-ken/fluent-plugin-
geoip.

N

grep Provides the means to define rules about log event attributes to filter
them out of the stream of events. Multiple expressions can be specified
to create cumulative rules.

Y

record_
modifier

A variant of record_transformer has been changed to make the
plugin more efficient: http://mng.bz/ZzoO.

N

record_tran
sformer

The most sophisticated built-in filter and provides a diverse set of options
for manipulating the log event.

Y

stdout Sends all events to stdout, without removing the event from the flow. Y

Plugin name Summary
Fluentd

core

rewrite
http://mng.bz/2jad

This enables tags to be modified using one or more rules,
such as if an attribute of the log event record matches a regu-
lar expression. As a result, performing specific tasks based
on the log event becomes very easy.

N

rewrite-tag-filter
http://mng.bz/1jMV

With one or more rules in the match directive, the log event
has a regular expression applied to it. Then, depending on the
result, the tag is changed to a specified value. The rule can
be set such that you can choose whether the rewrite is
applied to a true or false outcome from the regex. The log
event is re-emitted to continue beyond the match event using
the new tag if a successful outcome is achieved.

N

route
http://mng.bz/PWx9

The routing plugin allows tags to direct the log events to one
or more operations, such as manipulating the log event and
copying it to intercept it by another directive.

N

 (continued)

Plugin name Summary
Fluentd

core

http://mng.bz/ZzoO
http://mng.bz/2jad
http://mng.bz/1jMV
http://mng.bz/PWx9
https://github.com/y-ken/fluent-plugin-geoip
https://github.com/y-ken/fluent-plugin-geoip

324 APPENDIX C Plugins summary
C.5 Preventing alert storms
Some resources can help control or prevent possible alert storms if a continuous
stream of errors is generated.

C.6 Analytical and metrics plugins
Some plugins can help create analytics or metrics values within Fluentd or use tools to
help generate metrics.

Plugin name Summary

Log suppression filter
http://mng.bz/J1l0

The Fluentd plugin keeps a list of previous log
entries based on named log event attributes if
they reoccur more than a defined number of
times within a certain period.

Log4J2 plugin
http://mng.bz/wnPq

Suppresses log events within the Log4J2 frame-
work to prevent too many log events from being
emitted that match a set of rules.

Log4Net
http://mng.bz/7W19

A .Net variant of the Log4J2 solution.

Plugin name Summary

Fluent-plugin-prometheus
http://mng.bz/mxJr

This bundles six plugins together, covering the following:

 prometheus input plugin provides a metrics HTTP endpoint to be
scraped by a Prometheus server on 24231/tcp(default).

 prometheus_input plugin collects internal metrics in Fluentd, a bit
like the monitor agent.

 prometheus_output_monitor plugin collects internal metrics for
output plugin in Fluentd.

 prometheus_tail_monitor plugin collects internal metrics for
the tail plugin in Fluentd. This allows us to provide assurance that the
tail plugin is running as intended.

 The output and filter plugins instrument the log event with additional
metrics, such as the number of occurrences of a value based on the
configuration attributes.

Fluentd Elasticsearch plugin
http://mng.bz/5K1B

Plugin to send log events to Elasticsearch. The plugin provides a very
rich set of configuration attributes.

Fluentd data counter
http://mng.bz/6Z1o

Count log events that match any of the specified regexp patterns in the
specified attribute:

 Counts per min/hour/day
 Counts per second (average every min/hour/day)
 Percentage of each pattern in total counts of messages

The DataCounterOutput emits messages containing results data,
so you can output these messages (with the datacount tag by
default) to any outputs you want.

http://mng.bz/5K1B
http://mng.bz/J1l0
http://mng.bz/wnPq
http://mng.bz/7W19
http://mng.bz/mxJr
http://mng.bz/6Z1o

325Plugin Interfaces
C.7 Plugin Interfaces
The following tables summarize the functions that can or should be implemented
when developing your own plugins. You can see the details by reviewing the Fluentd
code as well at https://github.com/fluent/fluentd/blob/master/lib/fluent/plugin,
but we hope these tables will make life easier.

Fluentd numeric counter
http://mng.bz/oaJd

Plugin to count log events that match numeric range patterns and emits
its result (like fluent-plugin-datacounter):

 Counts per min/hour/day
 Counts per second (average every min/hour/day)
 Percentage of each numeric pattern in total counts of log events

Input

Function prototype Description

def emit This overloads the Fluent::Input class methods for our requirements.

def run Set up the loop thread, and if there’s nothing to emit, then go to sleep.

def configure(conf) This method is for processing the configuration values so that they can be
validated, particularly if values can conflict.

def start A life cycle event to start the creation of connectivity. Start the timer to
nudge the logic to see if any I/O is needed.

def shutdown Start the process of releasing assets such as connections to resources.

Output

Function Prototype Description

commit_write(chunk_id) Once a chunk can be written, this method tells our implemen-
tation which chunk ID to write. On return to Fluentd, the chunk
is purged.

def configure(conf) This method is for processing the configuration values so that
they can be validated, particularly if values can conflict.

def format(tag, time, record) This serializes the code for holding in a chunk. The tag,
time, and record represent the three parts of a log event,
with the time in seconds from the epoch. The record at this
stage is a hash to allow JSON manipulation. Will throw a
NotImplemented error if this isn’t overloaded.

def
formatted_to_msgpack_binary?

To indicate custom format method (#format), returns
msgpack to binary or not. If #format returns msgpack binary,
override this method to return true. By default, it returns
false.

 (continued)

Plugin name Summary

http://mng.bz/oaJd

326 APPENDIX C Plugins summary
def multi_workers_ready? False

def
prefer_buffered_processing

Override this method to return false only when all of these are
true:

 The plugin has both implementations for buffered and non-
buffered methods.

 The plugin is expected to work as a nonbuffered plugin if no
<buffer> sections specified true.

def prefer_delayed_commit Override this method to decide which is used, write or
try_write, if both are implemented.

def shutdown The shutdown is the opposite of the Start event. At this stage,
we should be releasing resources such as network connec-
tions.

def start This is one of the important life cycle events; we should start
consuming or allowing events to be sent on receipt of this.

def try_write(chunk) This method is for implementing the asynchronous I/O. The
base class will throw a NotImplemented error if this isn’t
overloaded but is expected to be implemented.

def write(chunk) This takes a chunk and writes it out synchronously. The base
class will throw a NotImplemented error if this isn’t over-
loaded but is expected to work.

extract_placeholders(str,
chunk)

Used to extract a string value from str using the chunk infor-
mation. A string is returned.

process(tag, es) This method is used for synchronous output.
Will throw a NotImplemented error if this isn’t overloaded.
The tag is the tag that applies to all the events in the es
structure.
The es parameter represents one or more log events to be
written.

rollback_write(chunk_id) The plugin can control rollback and retries for the writing of
chunks using this method.

Output (continued)

Function Prototype Description

appendix D
Real-world use case

D.1 Fluentd use in a real-world use case
Throughout the book, we have focused on explaining how to use Fluentd. The
explanations have focused on specific areas rather than providing a holistic view.
This appendix seeks to redress that by providing a more holistic picture.

 This appendix has taken several similar real-world scenarios and blended them
to avoid giving any client information away. Blending the cases together has
allowed us to also incorporate more lessons. We won’t go into the specific configu-
ration details, as they’re covered in the core of the book, but this should help you
understand why we value some features.

D.2 Setting the scene
Our organization started about 30 years ago as a single-country retailer that has
grown rapidly. The growth has been driven by the following:

 Acquiring its own manufacturing capabilities, as its offerings are custom to
each client.

 Expanding its retail scope to related product lines reflecting changes in the
market.

 Commercially the retail units are established as businesses in their own right
and are either wholly owned by a subsidiary of the main corporation or are
co-owned (with store directors); there are also a few traditional franchisees.
This structure gives the stores a degree of autonomy and individual account-
ability. This has meant independent retailers can become part of the group,
and external investment (share cost in co-ownership or franchise) has
helped growth.

 Technology adoption has been driven by goals to streamline processes and,
therefore, more retail throughput. This has meant growth in mobile device
adoption and, more slowly, engagement with internet-based sales channels.
327

328 APPENDIX D Real-world use case
 International expansion has been driven in Europe, Asia Pacific (including
China), and North America in the last 20 years.

Internally, the organization is split in terms of geographical business and operations.
Within each organization, there are vertical domains of

 Retail
 Manufacturing and distribution
 Corporate (which covers marketing, accounting, external supply chain sourc-

ing, etc.)

A central IT function supports corporate systems, core solutions used at a regional or
manufacturing site level, and retail IT solutions. Still, the level of autonomy the verti-
cals have creates conditions where shadow or gray IT exists. This is further com-
pounded by the regional operations having their own IT teams aligned to the regional
businesses. Corporate HQ and the primary IT operations, including software develop-
ment, are based in Europe.

 Some IT solutions reflect the organization’s age and growth; some corporate solu-
tions have seen years of cumulative extension, patching, and customization and are
clearly aging and brittle. This has led to hesitancy to make changes and some signifi-
cant programs having been started to replace some of the legacy with a COTS (com-
mercial-off-the-shelf) or SaaS approach. Shadow IT has meant local pockets of SaaS
and “integration” have sprung up. European IT is dominated by its own on-premises
data centers. Still, the newer geographic regions are more quickly adopting cloud
rather than seeking the capital outlay for their operational IT and support centers.
Retail currently is an on-premises proposition, as wide area network communications
are not considered robust enough to allow retail locations to continue operating in
the event of an outage. In some parts of the world, the stores simply don’t have suffi-
cient network quality, reliability, and bandwidth to support all the demands of hosting
solutions remotely.

 In addition to COTS, solutions developed in-house for retail and manufacturing
often embody corporate IP or streamline business processes. The organization sees
increasingly connected devices in the manufacturing and retail spaces. The connectiv-
ity is coming either because of the natural IT evolution or because of parts of the orga-
nization commissioning third parties to build solutions or unique customizations of
standard commercial offerings delivered by tablets.

 Much of the system integration has been achieved via messaging, shared databases,
or FTP. The retail and manufacturing capabilities are the most message-based, as store
orders to manufacturing are time-sensitive and reflect dynamic stock allocation
(reflecting these solutions have been bespoke built).

 The rollout of software changes tends to be slow, often coming from nervousness
about brittle legacy solutions. Delays outside non-European geographies have been
compounded by the lack of understanding of software change and operational sup-
port challenges that made people resistant to change. Ironically, this has compounded

329Setting the scene
problems, as outward pressure from Europe for upgrades to be rolled out means the
rollout often entails a lot of change.

 Existing operational and monitoring maturity depends upon geography, with
Europe being the most established and mature. However, monitoring is primarily an
infrastructure-only engagement. Monitoring at the application level is weaker.
Business-level monitoring comes through classic retail and supply chain reporting
metrics (sales and orders) rather than from more contemporary views of how many
tasks are at different stages of their process.

 Some of the problems have come from the continual drive for growth in terms of
geography and market leadership (market share, innovation, regulation change).
These pressures, at times, don’t help with keeping on top of the nonfunctional consid-
erations as they evolve with the growth and technical debt. This isn’t unusual for many
established organizations, but the continued growth embedded into the organiza-
tional DNA increases the pressure. IT momentum is typically measured through new
functional capability and certainly creates some challenges in addressing debt until
debt impacts delivery.

 As you can see, this is not a cloud-born organization, but it was starting to feel its
way into the cloud and needs to understand how to solve monitoring both for
on-premises and when dealing with the cloud.

D.2.1 The operational challenges

It’s worth looking at some of the operational problems that the organization has strug-
gled with. Addressing such issues will bring business value that can be gained through
the delivery of monitoring improvements, including the adoption of Fluentd.

 Third- and fourth-line support for core systems comes from the IT development in
Europe that doesn’t provide 24/7 support. Regional operations working in different
time zones have to provide their own support for their own regional retail. Central
support provided often comes down to organizational politics and the goodwill of
staff to provide out-of-hours support.

 European development, which could effectively support local geographies using
basic DevOps practices, had an insufficient appreciation for the needs of other regions.
DevOps often was a reason not to write things down, so locally, understanding was very
much through verbal and collaborative behaviors. The different geographies not being
an active part of the development process and not benefiting from the collaborative
knowledge transfer meant they lacked understanding of in-house solutions. This has
resulted in problems arising from people using solutions in a way they were not expected
to be used. Fast and dirty processes to recover from problems resulting in the loss of
insight into operational failures (no logs retained or environment imaging/snapshots)
made it very difficult for European IT to investigate and develop preventative measures.

 It can be challenging to gather relevant information for operational support needs
and problem data in a highly distributed environment. Not only is the distribution a
challenge, but there are also network constraints (bandwidth, compliance, and secu-
rity) between different geographic regions and organizational entities restricting what

330 APPENDIX D Real-world use case
is retrieved to get a rich global picture of the problems and operational health. If the
global IT operations can’t retrieve the details of an operational issue and the regional
teams aren’t actively capturing the necessary information when an operational issue
occurs (i.e., logs, software versions, host machine state, etc.) before resting systems or
processes, then the challenges of resolving possible bugs, implementing preventative
actions, and updating operational guidance are going to compound.

D.3 Introducing monitoring
The IT systems effectively formed a series of star structures from the store to regional
operational hubs and from regional hubs to the corporate center. This can be seen in
figure D.1. The manufacturing and distribution are also connected directly to hubs
and to the global center. This lends itself to adopting monitoring as a series of concen-
trator networks. This also fits well because most of the hubs have the most significant
volume of events/transactions passing through, meaning problems in these areas
have the most significant commercial impact.

Figure D.1 The key “actors” in the business and their relationships (and flow of information) across the
organization

Retailer

Global HQ
(central

operations)

Manufacturing

Retailer

Retailer Retailer

Retailer

Regional
operating hub

Retailer

Retailer

Retailer Retailer

Retailer

Retailer

Retailer

Regional
operating hub

Regional
operating hub

Retailer

Retailer

Retailer
Retailer

Retailer

Retailer

Retailer

Regional
operating hub

Retailer

Retailer

Retailer

Manufacturing

Manufacturing

Supply
chain

331Introducing monitoring
The first goal was getting regional hub systems aggregating and unifying their log data.
Working on an 80/20 principle, we looked for standard technologies and common sys-
tems (often those originating from the central IT capability) to create standardized log
event capture configurations. Metrics data collection was also implemented with simple
threshold alarms. Alarms reflected significant threshold breaches (before they went
critical) and had log events generated. When investigating a problem through the logs,
we could see historically that there might have been a performance issue of some sort
(typically the most severe being disk storage exhaustion).

 While aligning infrastructure logs with the application logs would have shown us
these measures, wanting to combine infrastructure monitoring led to conflicting poli-
tics, as the infrastructure teams felt their monitoring was mature. They weren’t the
source of the problems. This wasn’t helped by the fact that IaaS activities didn’t see
the infrastructure teams being involved.

 We pressed development teams to catalog exceptions and use error codes as a first
step to building better support documentation. This provided a vehicle for the regional
teams to attach and share their own operational processes. Over time, we got CI/CD
code quality checks to detect the allocation of error codes and gamified the adoption.

 Traction with unifying the logs progressed, and we had a better understanding of
what might be happening in the different deployments—some of the warning signs of
problems had been identified and weren’t being recognized until too late. Therefore,
alerting was provided through the log monitoring for the well-understood indicators
by using group emails.

 Other candidate indicators started being watched, which triggered a script to
gather more diagnostic information, such as message queue depths, capturing the last
access time to a queue.

 As confidence grew that the monitoring was producing results, with both local
operational teams and central IT resources better seeing what was going on, the
acceptance of extending monitoring was implemented. Forwarding specific events to
the central IT team also helped confirm when data distribution processes from the
corporate center became the source of issues. Some of the problems started to be
identified by examining logs for what was expected to happen. Along with the incor-
poration of the capacity, flags were things like

 Housekeeping wasn’t being run on time.
 Software deployments weren’t always followed as recommended by the central

teams. As a result, automated processes didn’t fire when they were expected or
needed to.

 Manual housekeeping wasn’t consistently practiced, often because the addi-
tional housekeeping steps were passed around by email, which didn’t reach
everyone, or were not added to documentation as a more structured process.

 Some business processes took days or weeks longer than expected in different
geographies. As a result, staging data built up more than was expected, creating
issues.

332 APPENDIX D Real-world use case
 Indications of warnings were not addressed when they needed to be.
 Some application logic wasn’t very defensive, allowing users to do things that

weren’t expected in other parts of the enterprise—for example, product images
were GBs in size when the communication infrastructure assumed such data
would only be a few Kb.

Some of these findings certainly had to be handled with a great deal of care, as the
mistakes and issues of communication gave anyone with an organizational agenda
fuel, and often a lot of finger-pointing could occur.

D.3.1 Extending monitoring

With good progress with the geographical hubs and labs, the same approach was
repeated for retail operations. This had to be done with more care, as anything per-
ceived as impacting retail operations was a sensitive issue. One of the key challenges
was sending sufficient information back to the hubs to provide suitable value while
not consuming precious bandwidth.

 The log aggregation focused on the store’s server-side solutions rather than the
mobile platforms with device-native applications. Understanding native applications
to get meaningful insights ended up being an issue separated from the core monitor-
ing efforts. As the store applications handled PII data, the store servers were tightly
locked down and experienced the occasional erroneous entry to a UI of data that
shouldn’t be there, resulting in PII data occasionally finding its way into log entries.
The subsequent need to filter log events further led to applying data masking for log
events, even locally.

D.3.2 Finessing of monitoring

With the operational insights starting to flow back to central IT teams, some develop-
ment teams switched from using Java logging to files to logging directly to the Fluentd
agent. Where this was adopted, we used a configuration during development that
ensured the log events got written to a file rather than to a central log storage capabil-
ity. Log centralization varied based on willingness to allow additional software to be
deployed and who would deploy it. This meant developers didn’t see the introduction
of Fluentd early in the process as a disruption, because they were used to looking at
their log files to help confirm code was working as expected. But this also helped pro-
mote improvement in logging, as we could still put filters in to highlight potential
issues, such as accidentally logging sensitive data items.

D.4 Cloud dilemma
While cloud impact was very much a SaaS or IaaS issue, increasingly the challenge we
are seeing with matured PaaS is the use of Cloud Native services, rather than a “low
code” style of PaaS, such as MuleSoft, Dell Boomi, and Oracle’s Integration Cloud,
which are closed ecosystems, to varying degrees. AWS, Azure, Oracle, and Google all
provide cloud native services that offer Fluentd-like capabilities for their Kubernetes
services. Therefore, when building with AWS’s Kubernetes or Oracle’s Blockchain,

333Cloud dilemma
should we use the vendor implementations or explicitly instantiate Fluentd and con-
figure Kubernetes to use our Fluentd, not the out-of-the-box logging and monitoring?
We can see this clearly in figure D.2 with a cloud host natural solution using cloud
native technologies and a cloud host-aligned approach.

Figure D.2 This illustrates the difference between a cloud-neutral approach to logging using cloud-native
solutions (top), where you will need to accommodate in the infrastructure as code the networking needs,
versus a vendor-specific model, where all the log events will go into a transparent monitoring layer handled
by the cloud vendor.

Analytics

Cloud-native monitoring
/ cloud watch

Elasticsearch
analytics / search

Kibana
Fluentd

(Aggregate & route)

Limited to subset of SEIM
events

Notification channels
like Slack

Container engine
for Kubernetes

OCI API gateway

App
(Open

Tracing API)
App
(Open

Tracing API)
App /

Microservice

Oracle cloud logging & monitoring

Remote
service

Collector
Collector

Collector

334 APPENDIX D Real-world use case
It isn’t necessarily an easy question to answer. If we use the services provided and ben-
efit from integrating, self-scaling, auto-patching, and so on, we must accept the conse-
quential vendor lock-in. Or we must go the IaaS approach and deploy Fluentd
ourselves, meaning any IaaS cloud vendor can be used, but we have to patch and scale
ourselves. We’ve settled on answering this with several questions:

 What value do you gain by being cloud vendor–agnostic?
 For software vendors, the benefit is obvious—maximum potential in terms of

the consumer base. But the reality is that you’ll probably eventually incorporate
adaptors into the clouds you support the most, as this benefits the customer.
There are the high-profile stories of Zoom being able to switch cloud vendors
quickly to realize substantial savings and Dropbox’s decision to move off AWS as
they reached a scale that meant private data centers offered a better economy.

 Are you likely to need multiple cloud vendors or operate in a hybrid manner?
 For truly global solutions, today’s reality is that you are likely to need to deploy

to multiple clouds. This is simply because not every vendor has a substantial
presence in every geography. You may bump up against specific country data
restrictions, which may mean using a particular vendor (e.g., Azure at the time
of writing doesn’t have a presence in Eastern Europe, and Google doesn’t have
a presence in Africa).

 Also, unless you’re a significant customer with deep pockets, you won’t be using
the cloud in your data center solutions such as AWS’s Outpost or Oracle’s Cloud
at Customer, where the entire cloud platform is deployed onto provided racks of
servers that live in your data center. This means multiple implementation and
configuration issues. This may not be an option if you want to operate in China,
as many IT vendors have restrictions on where and what they will offer.

 How big and capable is your IT team?
 The more variations in how the same problem is solved, the more skills an IT

team or department will need. Suppose your IT organization needs to be very
lean in terms of people. In that case, a standard set of technologies has a lot
going for it. The team can develop their expertise with a smaller, focused set of
tools. Master those to greater depth and maximize the investment. We’re not
suggesting that all monitoring problems can be answered by Fluentd, but why
master three or four log unification tools if one is enough?

 Are your monitoring needs or strategy likely to take you into specialist situa-
tions?

 For those specialist situations, where a restrictive solution is likely to need a lot
of working around or you’re pushing the boundaries of what is possible with
standard tools, then a service model from the cloud vendors is likely to create
more problems than solutions. You won’t be able to tailor their platform
around your unique circumstances like you can when you have complete con-
trol of both code and deployment.

335Conclusion
Exploring these questions will undoubtedly reveal whether adopting Fluentd or some-
thing like the ELK stack is the way to go.

D.5 Solution
The solution that we arrived at on a regional hub level looks like the diagram in figure
D.3. The corporate monitoring would look pretty similar, although the number of
sources grew significantly over time as monitoring became more standard practice.

Figure D.3 Overview solution for monitoring laid against the log event life cycle

The stores and manufacturing centers would have some similarities, albeit a great deal
simpler than the hubs, as they didn’t use containerization and had a smaller suite of
systems in action.

D.6 Conclusion
Hopefully you’ll see from this that several of the Fluentd techniques we cover in the
book helped deliver value to an organization with some challenges. You’ll have
noticed that the application of Fluentd was not bound to any specific type of platform
or technology. While Fluentd does come under the governance of the CNCF, this
reflects the fact that it can help with modern cloud challenges, not that it was
designed exclusively for this context.

 One of our biggest takeaways from this lesson is the need for the organization
implementing the monitoring capability to ensure that the culture and approach to

Elasticsearch
analytics / search

Fluentd
(Aggregate & route)

Notifications

Information source capture Structure & route Aggregate & analyze Visualize data Notify & alert

Limited to subset of
SEIM events

Cloud platform
(platform audit)

Pass on a subset of log
events to the next level
of organization (e.g., HQ)

App
(Open tracing API)

Collector

Analytics

336 APPENDIX D Real-world use case
implementing monitoring is ready and able to embrace the changes necessary. While
hardware monitoring is taken as the norm (after all, you’ve made a significant capital
outlay, so you want to ensure it is paying for itself), application monitoring and the
use of logs often don’t get the same treatment. In the cases that formed this example,
things had to become significantly problematic before a significant commitment was
made to address them.

appendix E
Useful resources

E.1 Helpful Fluentd resources
These are resources directly related to Fluentd and supported by the Fluentd com-
munity.

E.2 Helpful Fluentd third-party tools
Fluentd is built with Ruby, and if you’re writing Fluentd plugins, these resources
will be of great help.

Name URL Description

Fluentd official
documentation

https://docs.fluentd.org/ The official GitHub doc-
umentation for Fluentd

Slack https://slack.fluentd.org Fluentd community on
Slack

Stack Overflow
for Fluentd

https://stackoverflow.com/questions/tagged/fluentd Stack Overflow’s con-
tent relating to Fluentd

Name URL Description

Fluentular https://fluentular.herokuapp.com/ Utility to help validate regular expres-
sions in Fluentd configuration.

Grok parser http://mng.bz/nYJa This uses a Grok-based approach to
pulling details from a log entry. It
includes multiline support.

Microsoft’s Visual
Studio Code

https://code.visualstudio.com/ Free IDE that can support a wealth of
languages and syntaxes through the
use of a plugin framework.
337

https://docs.fluentd.org/
https://slack.fluentd.org/
https://fluentular.herokuapp.com/
https://stackoverflow.com/questions/tagged/fluentd
http://mng.bz/nYJa
https://code.visualstudio.com/

338 APPENDIX E Useful resources
E.3 Helpful logging practices resources
The key to effective use of logs is good logging. We have provided a lot of insight into
recommended practices. But if you wish to find out what others think, then these
resources may help.

E.4 Common log formats and descriptions
The industry has developed several de facto or formalized industry standards for log
file structures. The following are references to these industry specifications.

Multiformat parser http://mng.bz/vo17 Attempts to use different format pat-
terns in the defined order to get a
match.

VS Code—Fluentd
plugin

https://github.com/msysyamamoto/
vscode-fluentd

Search in Visual Studio Code for msys-
yamamoto.vscode-fluentd.

A website version
of the VS Code
plugin

https://regexper.com/ Provides a visual representation of a
regular expression. Helps resolve cor-
rect groups, etc.

Description URL

Logging best practices from Logz.io. https://logz.io/blog/logging-best-practices/

Loggly guide to logging—covers multiple
language perspectives.

https://www.loggly.com/ultimate-guide/

Loggly’s The Pragmatic Logging Hand-
book.

http://mng.bz/4j1w

National Institute of Standards and Tech-
nology (NIST) Guide to Computer Secu-
rity Log Management.

http://mng.bz/QW8G

This defines the standard for Syslog; in
addition to helping you better under-
stand Syslog, it also contains some
good ideas for logging practices.

https://tools.ietf.org/html/rfc5424

Log format Reference for definition

Apache HTTP logs https://httpd.apache.org/docs/2.4/logs.html

Common Event Format (CEF) http://mng.bz/XW5v

Graylog Extended Log Format
(GELF)

http://mng.bz/y4QB

 (continued)

Name URL Description

https://www.loggly.com/ultimate-guide/
http://mng.bz/4j1w
http://mng.bz/vo17
https://github.com/msysyamamoto/vscode-fluentd
https://github.com/msysyamamoto/vscode-fluentd
https://regexper.com/
https://logz.io/blog/logging-best-practices/
http://mng.bz/QW8G
https://tools.ietf.org/html/rfc5424
https://httpd.apache.org/docs/2.4/logs.html
http://mng.bz/XW5v
http://mng.bz/y4QB

339Helpful Ruby resources
E.5 Helpful Ruby resources
The bulk of Fluentd is built with Ruby, and if you’re writing Fluentd plugins, you may
need these resources.

Nginx logging http://mng.bz/M2BW

Syslog https://tools.ietf.org/html/rfc5424

Systemd Journal https://systemd.io/JOURNAL_FILE_FORMAT/

W3C Extended Log File Format
(ELF)

www.w3.org/TR/WD-logfile.html

WinLoG (Windows native logging) http://mng.bz/aD17

Name URL Description

Explanation of
Global Inter-
preter Lock

https://thoughtbot.com/blog/untangling-ruby-
threads

Ruby uses a Global Interpreter Lock,
which impacts how threading is man-
aged and how to tune Fluentd.

Gem spec http://mng.bz/g4BV Defines the details of the gemspec
file needed to package custom-
developed plugins.

Gemspec vs.
Gemfile

http://mng.bz/5Kwa Explains the difference between the
Gemspec and Gemfile.

Minitest—
Ruby Unit Test-
ing framework

https://github.com/seattlerb/minitest Another popular unit testing frame-
work. This resource includes infor-
mation that helps differentiate it
from the other commonly used
frameworks.

Rake https://github.com/ruby/rake Provides a build process that can be
incorporated into a CI/CD pipeline.

rbenv https://github.com/rbenv/rbenv This open source tool makes it eas-
ier to ensure that different applica-
tions can be worked on with different
Ruby versions.

RDoc https://github.com/ruby/rdoc The standard Ruby-Doc generation. If
you need to generate documentation
but don't want to use the extensions
from Yard, then RDoc is standard.

RSpec Ruby
Unit Testing
framework

https://rspec.info/ RSpec is an alternative to Ruby unit
testing, which supports a test-driven
development (TDD) approach to
development.

 (continued)

Log format Reference for definition

http://mng.bz/M2BW
http://mng.bz/aD17
https://rspec.info/
www.w3.org/TR/WD-logfile.html
https://systemd.io/JOURNAL_FILE_FORMAT/
https://tools.ietf.org/html/rfc5424
https://thoughtbot.com/blog/untangling-ruby-threads
https://thoughtbot.com/blog/untangling-ruby-threads
http://mng.bz/g4BV
http://mng.bz/5Kwa
https://github.com/seattlerb/minitest
https://github.com/ruby/rake
https://github.com/rbenv/rbenv
https://github.com/ruby/rdoc

340 APPENDIX E Useful resources
RuboCop https://docs.rubocop.org/rubocop/
installation.html

Lint tool for Ruby. Worthwhile if
developing custom plugins.

Ruby API https://rubyapi.org/ Ruby documentation tool.

RubyGems https://rubygems.org/ Catalog of RubyGems along with the
RubyGems manager.

RubyGuides www.rubyguides.com A set of online guides to implement
specific capabilities with Ruby.

Ruby in Twenty
Minutes

www.ruby-lang.org/en/documentation/
quickstart/

An excellent introduction to Ruby
using Hello World.

Ruby
in Practice

www.manning.com/books/ruby-in-practice Ruby in Practice is a second book
from Manning Publications taking a
different approach to teaching Ruby
development.

RubyInstaller https://rubyinstaller.org/ Windows installer for Ruby.

Ruby
Language
Specification
and Documen-
tation

www.ruby-lang.org/en/documentation/ Includes summary pages of how
Ruby differs from other languages
such as Java.

ruby-lint https://rubygems.org/gems/ruby-lint/ When developing custom plugins,
lint tooling will help keep the code
tidy and, importantly, help spot any
potential errors.

Ruby threading https://thoughtbot.com/blog/untangling-ruby
-threads

A more detailed look at Ruby’s
threading.

Ruby unit test
framework

https://test-unit.github.io/ Fluentd provides additional support-
ing resources to make it easy for
plugins to be tested using the test-
unit tool.

test-unit https://github.com/test-unit/test-unit An xUnit-based unit testing solution
for Ruby.

The Well-
Grounded
Rubyist, third
edition

www.manning.com/books/the-well-grounded
-rubyist-third-edition

Manning bible on Ruby development.

VSCode Ruby
plugin

https://marketplace.visualstudio.com/
items?itemName=wingrunr21.vscode-ruby

Syntax-aware highlighting for Ruby in
Microsoft’s Visual Studio Code.

YARD https://yardoc.org/ RubyDoc-compliant documentation
generator, but also supports a tag-
ging notation that helps provide
more comprehensive metadata.

 (continued)

Name URL Description

www.ruby-lang.org/en/documentation/quickstart/
www.ruby-lang.org/en/documentation/quickstart/
https://docs.rubocop.org/rubocop/installation.html
https://docs.rubocop.org/rubocop/installation.html
https://rubyapi.org/
http://www.manning.com/books/ruby-in-practice
http://www.ruby-lang.org/en/documentation/
https://test-unit.github.io/
http://www.manning.com/books/the-well-grounded-rubyist-third-edition
http://www.manning.com/books/the-well-grounded-rubyist-third-edition
https://marketplace.visualstudio.com/items?itemName=wingrunr21.vscode-ruby
https://marketplace.visualstudio.com/items?itemName=wingrunr21.vscode-ruby
https://yardoc.org/
https://rubyinstaller.org/
https://rubygems.org/gems/ruby-lint/
https://thoughtbot.com/blog/untangling-ruby-threads
https://thoughtbot.com/blog/untangling-ruby-threads
https://github.com/test-unit/test-unit
https://rubygems.org/
www.rubyguides.com

341Docker and Kubernetes
E.6 Docker and Kubernetes
Docker is the most used containerization technology and is usually used with Kuber-
netes. Kubernetes and the adoption by CNCF have been influential to Fluentd adop-
tion. If you want to know more about Kubernetes generally, then these resources will
help.

Name URL Description

Docker www.docker.com Home of the Docker ecosystem.

Docker Hub https://hub.docker.com/ Repository of Docker images, including
Fluentd images and other images used by
this book.

Docker plugin
for Visual
Studio Code

http://mng.bz/6ZDA Plugin to help understand Docker files and
the file syntax.

Home of
Kubernetes

https://kubernetes.io The official Kubernetes website.

Kubernetes log
(klog)

https://github.com/kubernetes/klog The implementation and documentation of
the Kubernetes klog component. Klog is
being adopted by Kubernetes as the
default native logger.

logrotate https://github.com/logrotate/logrotate Logrotate is an open source tool for han-
dling log rotation. Depending on how
Kubernetes is set up, this is deployed to
manage Kubernetes log rotation.

Kubernetes in
Action, Second
Edition

http://mng.bz/oa1p Manning’s definitive guide to Kubernetes.

Kubernetes
secrets

http://mng.bz/nYW2 Kubernetes’s approach to sharing with
pods and container credentials.

Open
Containers

https://opencontainers.org/ A standard supported by Docker and sev-
eral other container development organiza-
tions to standardize how Kubernetes
interacts with containers.

Alternate Con-
tainers to
Docker

https://containerd.io/
https://cri-o.io/

Several alternate initiatives to develop
containerization, with input from
organizations like Intel, IBM, Red Hat, and
other Linux vendors such as SUSE, to
name a few.

Deployment
tools

https://rancher.com
https://helm.sh

Deploying pods and configurations to
Kubernetes can be complicated. Several
solutions have been developed, such as
Helm and Rancher, representing the lead-
ing solutions in this space.

https://hub.docker.com/
http://mng.bz/6ZDA
https://github.com/logrotate/logrotate
https://opencontainers.org/
https://containerd.io/
https://cri-o.io/
https://rancher.com
www.docker.com
https://kubernetes.io
https://github.com/kubernetes/klog
http://mng.bz/oa1p
http://mng.bz/nYW2

342 APPENDIX E Useful resources
E.7 Elasticsearch
Elasticsearch is one of the common targets for log aggregation. The Elasticsearch
plugin is not part of the standard set of plugins for the open source deployment of
Fluentd (although it is for the prebuild Treasure Data agent version). For pure Flu-
entd, the agent needs to be installed.

E.8 Redis
Redis can be used by Fluentd to provide an in-memory cache solution. These
resources will provide additional detail, downloads, and so on.

E.9 SSL/TLS and security
The ability to use SSL/TLS when operating in a distributed manner is indispensable.
The following are helpful links on the matter of using SSL/TLS.

Name URL Description

Elasticsearch
Stack

www.elastic.co/elastic-stack Details for the ELK stack (Elasticsearch, Log-
stash, Kibana). While Logstash can be seen
as competition to Fluentd, Fluentd is often
used with Elasticsearch and Kibana.

Elasticvue https://elasticvue.com A UI tool for looking at the contents of Elas-
ticsearch.

Fluentd Elastic-
search plugin

https://docs.fluentd.org/output/
elasticsearch

A plugin that allows you to integrate Elastic-
search.

Elasticsearch
plugin source

http://mng.bz/von4 Repository for the Fluentd Elasticsearch
plugin.

Manning, Elastic-
search in Action

www.manning.com/books/
elasticsearch-in-action

Manning’s guide to using Elasticsearch.

Name URL Description

Home of Redis https://redis.io/ Provides the basic documentation and
the downloads for Redis. In addition to
the commercial offerings, we will use
Redis in our custom plugin develop-
ment.

Manning, Redis
in Action

www.manning.com/books/redis-in-action While Redis in Action goes beyond what
we need to know for caching, this guide
to Redis is helpful.

Redis RubyGem https://github.com/redis/redis-rb This is the Ruby Redis library for con-
necting and using Redis operations. We
will use this when building our custom
plugin.

https://elasticvue.com
http://www.manning.com/books/redis-in-action
www.elastic.co/elastic-stack
www.manning.com/books/elasticsearch-in-action
www.manning.com/books/elasticsearch-in-action
http://mng.bz/von4
https://docs.fluentd.org/output/elasticsearch
https://docs.fluentd.org/output/elasticsearch
https://redis.io/
https://github.com/redis/redis-rb

343Environment setup
E.10 Environment setup
The following resources are useful additional sources of information that can be used
to set up environments for Fluentd.

Name URL Description

Certificate
Authority

https://jamielinux.com/docs/openssl
-certificate-authority/

A look at establishing your own certificate
authority.

Introduction
to TLS

www.internetsociety.org/deploy360/tls/
basics/

An Introduction to TLS.

Let’s Encrypt https://letsencrypt.org/ Let’s Encrypt is a service developed by the
Linux Foundation that provides free certifi-
cates with a short shelf life. The service
includes some excellent automation to
automate recertification.

OWASP TLS
Cheat Sheet

https://cheatsheetseries.owasp.org/
cheatsheets/Transport_Layer_Protection
_Cheat_Sheet.html

Provides practical, helpful information
about TLS and how it works from the Open
Web Application Security Project.

Self-Signed
Certificate

https://dzone.com/articles/creating-self
-signed-certificate

Explains how to create a self-signed
certificate.

SSL and TLS www.hostingadvice.com/how-to/tls-vs
-ssl/

This site explains the differences between
SSL and TLS.

Vault www.vaultproject.io Vault is a tool for managing secrets,
including details such as usernames and
passwords. It includes the means to safely
distribute information from a master node.

OpenSSL www.openssl.org Open source full-featured toolkit for the
Transport Layer Security (TLS) and Secure
Sockets Layer (SSL) protocols. Adopted by
many products, including Fluentd.

Name URL Description

Browserling Tools www.browserling.com/tools A set of online tools to help with format
conversion, etc.

Chocolatey https://chocolatey.org/ Chocolatey is a package manager for Win-
dows. It provides a user experience with
more Linux-like package managers such as
rpm, yum, and others.

Clang https://clang.llvm.org/ Libraries to support compiling the
platform-native elements.

GCC https://gcc.gnu.org/ The GCC compiler tools, needed if you build
the OS native features for the source.

https://letsencrypt.org/
https://dzone.com/articles/creating-self-signed-certificate
https://dzone.com/articles/creating-self-signed-certificate
http://www.openssl.org
https://clang.llvm.org/
https://jamielinux.com/docs/openssl-certificate-authority/
https://jamielinux.com/docs/openssl-certificate-authority/
www.internetsociety.org/deploy360/tls/basics/
www.internetsociety.org/deploy360/tls/basics/
https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html
www.hostingadvice.com/how-to/tls-vs-ssl/
www.hostingadvice.com/how-to/tls-vs-ssl/
www.vaultproject.io
www.browserling.com/tools
https://chocolatey.org/
https://gcc.gnu.org/

344 APPENDIX E Useful resources
E.11 Logging frameworks
The following is not an exhaustive summary of all logging frameworks, as maintaining
such a list would be a full-time job in its own right. This list does provide coverage with
links to both language-native logging frameworks and open source frameworks that
we believe are active.

GraalVM www.graalvm.org/ Next-generation multi-language virtual
machine, supporting Java and other lan-
guages. It is capable of creating
platform-native binaries.

Linux Package
Manager Summary

http://mng.bz/4jDj Provides information about the different
package managers and the commands to
use depending on your package manager.

NTP (Network Time
Protocol)

https://doc.ntp.org/ The official site for the NTP definition;
includes software and white papers on the
subject.

Quarkus https://quarkus.io/ A Java-based stack using OpenJDK capable
of creating Kubernetes native solutions.

Semantic Versioning https://semver.org/ A standard form for versioning artifacts.

Name Language URL Description

N/A PHP https://www.php-fig.org/
psr/psr-3/

The PHP community has developed various
standards (PSRs), including logging frame-
works (PSR-3). PSR defines an interface
standard for logging, so any framework
supporting this will be compatible. A wide
range of PHP frameworks supports this
specification, from Zend to Drupal. Fram
eworks such as Magneto provide
PSR-compliant logging that supports com-
munication to Fluentd.

Django Python https://docs.djangoproject
.com/en/3.1/

Django is a web application framework that
leverages native logging and provides
some additions. This means the Fluentd
extension can be incorporated.

Language
native

Java http://mng.bz/QWPv This is part of the Java language; however,
it isn’t the definitive logging solution.
Many still prefer using other open source
solutions.

 (continued)

Name URL Description

https://doc.ntp.org/
https://docs.djangoproject.com/en/3.1/
https://docs.djangoproject.com/en/3.1/
http://mng.bz/QWPv
www.graalvm.org/
http://mng.bz/4jDj
https://quarkus.io/
https://semver.org/
https://www.php-fig.org/psr/psr-3/
https://www.php-fig.org/psr/psr-3/

345Logging frameworks
Language
native

C#—Language
Native Library

http://mng.bz/XWNa This is the C# native framework provided
by Microsoft. It supports JSON configura-
tion file controls and injection of loggers
driven from the configuration.

Language
native

VB.Net—
Language
Native Library

http://mng.bz/y4Qd This covers the Microsoft provided capabili-
ties for logging in Visual Basic using .Net.

Language
native

Ruby—
Language
Native Library

https://docs.ruby-lang.org/
en/2.4.0/Logger.html

Ruby provides a native logging class with
logging levels. The output is limited in
choice. The language basics could be
extended to support more destinations.

Language
native

Python—
Language
Native Library

https://docs.python.org/
3/library/logging.html

The Python native language features form
the foundation for several logging frame-
works that extend the capabilities, includ-
ing a number of the Python frameworks
that bring value with the addition of
appenders. This includes the Fluentd
Python library.

Language
native

Go—Native
Logging

https://golang.org/pkg/
log/

This is Go’s native logging package. Com-
pared to many other logging mechanisms,
this is quite simple and best seen as a set
of helper methods for sending log events
in a more structured way to stderr.

lgr R http://mng.bz/M2BB A logging framework for the R language,
drawing its design principles from Log4J.
The number of appenders provided is
smaller and focused on databases (under-
standable, given that this is a data
analytics-focused language).

Log4cplus C++ https://sourceforge.net/p/
log4cplus/wiki/Home/

Based on the Log4J framework.

Log4Cxx C++ https://logging.apache
.org/log4cxx/latest
_stable/

Port of Log4J as part of the Apache Log4J
family.

Log4J2 Java https://log-
ging.apache.org/log4j/
2.x/index.html

Apache also provides several JVM-related
language facades for Kotlin and Scala.

Log4Net C# & VB and
other lan-
guages sup-
ported on .Net
framework

https://logging.apache
.org/log4net/

Log4Net is the port of the Log4J frame-
work by the Apache Foundation, which
developed the original framework.

 (continued)

Name Language URL Description

http://mng.bz/XWNa
http://mng.bz/y4Qd
https://docs.ruby-lang.org/en/2.4.0/Logger.html
https://docs.ruby-lang.org/en/2.4.0/Logger.html
https://docs.python.org/3/library/logging.html
https://docs.python.org/3/library/logging.html
https://golang.org/pkg/log/
https://golang.org/pkg/log/
http://mng.bz/M2BB
https://sourceforge.net/p/log4cplus/wiki/Home/
https://sourceforge.net/p/log4cplus/wiki/Home/
https://logging.apache.org/log4cxx/latest_stable/
https://logging.apache.org/log4cxx/latest_stable/
https://logging.apache.org/log4j/2.x/index.html
https://logging.apache.org/log4j/2.x/index.html
https://logging.apache.org/log4net/
https://logging.apache.org/log4net/

346 APPENDIX E Useful resources
Logrus Go https://github.com/
Sirupsen/logrus

Logrus is now in a maintenance-only state,
as the developers feel it has reached its
extensibility limits without breaking com-
patibility. However, it is referenced as it is
commonly used.

Monolog PHP https://github.com/
Seldaek/monolog

Monolog is just a logging framework sup-
porting the PSR-3 specification. It includes
a formatter for Fluentd, which can be com-
bined with a handler for socket-level com-
munication to Fluentd.

NLog C# & VB and
other lan-
guages sup-
ported on the
.Net framework

https://nlog-project.org/ HTTP appender included in the framework
extension.

Pino Node JS https://getpino.io/ Pino lends itself to being integrated into
various Node.JS frameworks, such as
Express. It uses the concept of transports
to send logs to other systems, including
some native cloud vendor solutions. It
does support sockets and HTTP endpoints,
so these could be used to communicate
with Fluentd.

Serilog C# & VB and
other lan-
guages sup-
ported on the
.Net framework

https://serilog.net/ Serilog is an open source framework that
promotes stronger structured logging. It
provides a wide range of destinations for
output, including Fluentd.

SLF4J Java http://www.slf4j.org/ Simple Logging Facade for Java (SLF4J) is
not a framework, but an abstraction layer
so that different logging frameworks can
be used using the same foundations; for
example, Logback and Log4J2.

Twisted Python https://twistedmatrix.com/
trac/

This is another Python framework with an
event-driven model. It provides a logging
mechanism that integrates into the
broader ecosystem. From there, Twisted
can be used to send log events to a small
set of native publishers or to send log
events via Python’s native logging capability.

Winston
JS

Node JS https://github.com/
winstonjs/winston

Winston has many characteristics of a log-
ging framework, with features such as log
levels and appenders (called transports in
Winston). The range of transports is lim-
ited compared to some, but a framework
for building your own is provided.

 (continued)

Name Language URL Description

https://getpino.io/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://github.com/winstonjs/winston
https://github.com/winstonjs/winston
https://github.com/Sirupsen/logrus
https://github.com/Sirupsen/logrus
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://nlog-project.org/
https://serilog.net/
http://www.slf4j.org/

347Information portals on legislation
E.12 Information portals on legislation
The moment we log sensitive information, such as identifiable individuals, credit
cards, and many other things, our logs and log storage can become subject to a raft of
legislation. The following are a few resources we have looked at in the past to help fur-
ther our understanding.

Common name URL Description

DLA Piper Data
Protection

www.dlapiperdataprotection.com DLA Piper is a global law firm that has
developed and maintained a website
that provides good insight into individual
country positioning on data protection.

GDPR  https://gdpr-info.eu/

 https://ico.org.uk/for-organisations/
guide-to-data-protection/

 https://oag.ca.gov/privacy/ccpa

GDPR (General Data Protection Regula-
tion) was developed by the European
Union to strengthen personal data pro-
tection. All the EU countries have ratified
this legislation and some national legis-
lation that builds upon it. A wide range of
countries and US states have developed
their own derivative legislation; for exam-
ple, California’s California Consumer Pri-
vacy Act (CCPA).

HIPAA www.hhs.gov/hipaa/index.html Health Insurance Portability and Account-
ability Act (HIPAA) covers the detailing of
health care–related information.

ISO/IEC 27001 www.iso.org/isoiec-27001-information-
security.html

Many organizations look for ISO/IEC
27001 compliance; while not a legisla-
tive-driven set of rules, it is a best-prac-
tice set of standards.

PCI DSS (Payment
Card Industry Data
Security Standard)

www.pcisecuritystandards.org/ A standard adopted by all payment card
operators defining a range of require-
ments from infrastructure to develop-
ment practices.

Sarbanes-Oxley
Act (SOX)

www.govinfo.gov/content/pkg/STAT-
UTE-116/pdf/STATUTE-116-Pg745.pdf

The Sarbanes-Oxley Act (SOX) was devel-
oped in the United States to address
corporate legal reporting. But as a by-
product, it set down practices for secu-
rity, including the handling of data. There
are other national variants such as J-SOX
(Japan), C-SOX (Canada), and TC-SOX
(Turkey).

United Nations
Conference on
Trade and Develop-
ment (UNCTAD)

http://mng.bz/aD1m UNCTAD provides a similar resource to
DLA Piper but is focused on e-commerce
considerations.

http://www.dlapiperdataprotection.com
https://gdpr-info.eu/
https://ico.org.uk/for-organisations/guide-to-data-protection/
https://oag.ca.gov/privacy/ccpa
www.hhs.gov/hipaa/index.html
www.iso.org/isoiec-27001-information-security.html
www.iso.org/isoiec-27001-information-security.html
www.pcisecuritystandards.org/
www.govinfo.gov/content/pkg/STATUTE-116/pdf/STATUTE-116-Pg745.pdf
www.govinfo.gov/content/pkg/STATUTE-116/pdf/STATUTE-116-Pg745.pdf
http://mng.bz/aD1m

348 APPENDIX E Useful resources
E.13 Other handy sources of information

Name URL Description

Converting different
time representations

www.epochconverter.com/ Converts timestamps to and from
their second or millisecond epoch
representations as used by Linux/
Unix systems and languages such
as Java.

Examples of docu-
mented error codes

 HTTP codes:
https://datatracker.ietf.org/doc
/html/rfc7231#section-6.1

 Email codes:
https://www.rfc-editor.org/rfc/
rfc5248.html

 WebLogic server: https://docs.ora-
cle.com/cd/E24329_01/
doc.1211/e26117/
chapter_bea_messages.htm#sthref7

An example of good error code doc-
umentation. Covering HTTP and
email from IETF and WebLogic
Application Server.

ISO 8601 Date Time
Standard

www.w3.org/TR/NOTE-datetime This describes the different indus-
try-standard ways to define date
and time.

ITIL (Information Tech-
nology Infrastructure
Library)

www.axelos.com/best-practice-solu-
tions/itil

An industry-standard set of recom-
mended practices and processes
for things like ITSM (IT service man-
agement)

Payment Card Industry
(PCI) Security Stan-
dards Council (SSC)

https://www.pcisecuritystandards.org/ The organization that defines PCI
DSS (Data Security Standard)—the
security standards for processing
payment card data.

Regular expression
development

www.regular-expressions.info/ This website gives a detailed
insight into the use of regular
expressions.

N-tier architectures https://stackify.com/n-tier-architecture/
https://livebook.manning.com/book/
the-cloud-at-your-service/chapter-6/
point-12033-14-14-1

Provides an explanation to N-tier
architectures and the value propo-
sition they make.

TCP and UDP Network
protocols

www.vpnmentor.com/blog/tcp-vs-udp/
www.cs.dartmouth.edu/~campbell/
cs60/socketprogramming.html

Explanation of TCP and UDP and
their differences.

https://datatracker.ietf.org/doc
https://www.rfc-editor.org/rfc/rfc5248.html
https://docs.oracle.com/cd/
http://www.w3.org/TR/NOTE-datetime
https://stackify.com/n-tier-architecture/
www.cs.dartmouth.edu/~campbell/cs60/socketprogramming.html
www.epochconverter.com/
www.axelos.com/best-practice-solutions/itil
www.axelos.com/best-practice-solutions/itil
https://www.pcisecuritystandards.org/
www.regular-expressions.info/
https://livebook.manning.com/book/the-cloud-at-your-service/chapter-6/point-12033-14-14-1
https://livebook.manning.com/book/the-cloud-at-your-service/chapter-6/point-12033-14-14-1
www.vpnmentor.com/blog/tcp-vs-udp/

349Supporting Fluentd resources
E.14 Supporting Fluentd resources
The following table provides links to additional resources provided by the Fluentd
community related to getting log events to Fluentd.

Name URL Description

Fluentd-supplied
logging libraries

https://github.com/fluent/fluent-logger-java Fluentd provided a library for
direct logging from Java.

https://github.com/fluent/fluent-logger-ruby Fluentd provided a library for
direct logging from Ruby.

https://github.com/fluent/fluent-logger-python Fluentd provided a library for
direct logging from Python.

https://github.com/fluent/fluent-logger-perl Fluentd provided a library for
direct logging from Perl.

https://github.com/fluent/fluent-logger-php Fluentd provided a library for
direct logging from PHP.

https://github.com/fluent/fluent-logger-node Fluentd provided a library for
direct logging from NodeJS.

https://github.com/fluent/fluent-logger-scala Fluentd provided a library for
direct logging from Scala.

https://github.com/fluent/fluent-logger-golang Fluentd provided a library for
direct logging from Go.

https://github.com/fluent/fluent-logger-erlang Fluentd provided a library for
direct logging from Erlang.

https://github.com/fluent/fluent-logger-ocaml Fluentd provided a library for
direct logging from OCaml.

msgpack https://msgpack.org/ Compression library imple-
mented in multiple languages
that Fluentd can utilize. Used
when the forward plugin is send-
ing or receiving events.

https://github.com/fluent/fluent-logger-python
https://github.com/fluent/fluent-logger-perl
https://github.com/fluent/fluent-logger-php
https://github.com/fluent/fluent-logger-scala
https://github.com/fluent/fluent-logger-golang
https://github.com/fluent/fluent-logger-erlang
https://github.com/fluent/fluent-logger-ocaml
https://github.com/fluent/fluent-logger-ruby
https://github.com/fluent/fluent-logger-java
https://msgpack.org/

350 APPENDIX E Useful resources
E.15 Related reading
Fluentd, as you will have observed, crosses many boundaries in its potential applica-
tion. The following table reflects this. The books listed might help you extend and
leverage those linked services.

Name URL Description

Core
Kubernetes

https://www.manning.com/books/core
-kubernetes

Fluentd is often used within the context of
Kubernetes and is just one aspect of a
Kubernetes setup. This book and Kuber-
netes in Action will cover much of what
you’ll need.

Design Patterns https://refactoring.guru/design
-patterns/catalog

The details of the core patterns first
described by the Gang of Four (GoF) and
their book Design Patterns: Elements of
Reusable Object-Oriented Software. The
Gang of Four are Erich Gamma, John Vlis-
sides, Richard Helm, and Ralph Johnson.
Here we have provided a link to a brief
guide to each of the patterns.

Docker in Action http://mng.bz/g4Bv Docker is the typical tech to implement a
container. When we do not need the
sophistication of Kubernetes, we’ll use
Docker more directly. This book covers
the core of the building and running con-
tainers.

Effective Unit
Testing

www.manning.com/books/effective-unit-
testing

In chapter 9, when we implemented our
custom plugin, we looked at unit testing.
Ideally, the unit testing built for produc-
tion use is extensive. This book, while
focused on Java, will provide insight into
the best practices.

Elasticsearch in
Action

www.manning.com/books/elasticsearch-
in-action

This book can be handy when working
with Elasticsearch and Fluentd.

Groovy in
Action,
Second Edition

http://mng.bz/en1V Our logging simulator was built using
Groovy, making it extremely easy to bolt
on enhancements to effectively simulate
different sources. If you are interested in
digging further into Groovy, this is the
book that will help.

Kubernetes in
Action

http://mng.bz/p2PK This book covers a lot of details about
Kubernetes and the way it works, giving
more insight into container orchestration.

MongoDB in
Action,
Second Edition

http://mng.bz/OGxw We use MongoDB as an output target.
This will provide all the information likely
to be needed relating to MongoDB.

https://www.manning.com/books/core-kubernetes
https://www.manning.com/books/core-kubernetes
http://mng.bz/p2PK
http://mng.bz/OGxw
https://refactoring.guru/design-patterns/catalog
https://refactoring.guru/design-patterns/catalog
http://mng.bz/g4Bv
www.manning.com/books/effective-unit-testing
www.manning.com/books/effective-unit-testing
www.manning.com/books/elasticsearch-in-action
www.manning.com/books/elasticsearch-in-action
http://mng.bz/en1V

351Related reading

Operations
Anti-Patterns,
DevOps
Solutions

http://mng.bz/Yg1z Getting your operational processes and
logging is an integral part of achieving a
DevOps way of working. This book looks
at the potential pitfalls (or anti-patterns)
you could end up facing.

Redis in Action www.manning.com/books/redis-in-action We used Redis as part of our example of
building a custom plugin. This book will
give more insight into Redis.

Ruby in Practice www.manning.com/books/ruby-in
-practice

More practical guidance on working with
Ruby.

Software
Telemetry

www.manning.com/books/software-
telemetry

Software Telemetry is about the idea of
getting metrics, logging, and certain
types of business application state data
and using them to provide you with a
health perspective. Fluentd can be a cru-
cial part of a telemetry solution.

The Well-
Grounded
Rubyist,
Third Edition

http://mng.bz/GGyD If you’re considering getting under the
hood of Fluentd or developing your own
custom plugins, then this is a great read.

Securing
DevOps

www.manning.com/books/securing
-devops

Looks at the needs and techniques for
securing cloud environments.

YAML https://yaml.org/ The official site for YAML includes details
of its syntax.

 (continued)

Name URL Description

https://yaml.org/
www.manning.com/books/software-telemetry
www.manning.com/books/software-telemetry
http://www.manning.com/books/ruby-in-practice
http://www.manning.com/books/ruby-in-practice
http://mng.bz/GGyD
www.manning.com/books/redis-in-action
http://mng.bz/Yg1z
www.manning.com/books/securing-devops
www.manning.com/books/securing-devops

352 APPENDIX E Useful resources

index
A

adaptors 284
aggregate phase 20
aggregator networks 173
alert phase 20
alert storms 324
analytical plugins 324
analyze phase 20
anchors 319
anomaly detection 8
Apache_Error parser 82
Apache2 parser 81–82
appender component 284

appender structures 285
Fluentd appender 288–290
generic appenders 297
invoking Fluentd appender directly 293–294

application monitoring 7, 11
audit events vs. log events 260
AWS (Amazon Web Services) 18, 20–23, 332–333
AWS CloudWatch 26, 57, 199
AWS Kinesi 26, 117
AWS Lambda 182
AWS S3 26, 168
AWS’s Outpost 334

B

back off approach 102
BAM (business activity monitoring) 11
Beats, Logstash and 18
big data 20

Bloch, Joshua 278
buffering

basics of 95–98
chunks 96–100
controlling 98–101
extending output with 247–250
size settings 103

business activity monitoring (BAM) 11

C

capturing log events 67–92
dry running to check configuration 68–69
imposing structure on log events 81–92

standard parsers 81–86
third-party parsers 86

reading log files 69–78
configuration considerations for tracking

position 71–72
controlling impact of wildcards in

filenames 73–75
expressing time 73
log rotation 75–78
replacing wildcards with delimited lists 75
rereading and resuming reading 71
wildcards 72–73

self-monitoring 78–80
certificate authority (CA) 191
certificate storage 191–192
clear language 264–265
clock 32
CNCF (Cloud Native Computing

Foundation) 22
353

INDEX354
collections 107
concentrator networks 173
ConfigMap 222–226, 229
configuration component 285
configuration execution order 35–36
containers

Fluentd scaling in, vs. native and virtual
environments 185–189
container as virtualization 187
deployment options comparison 189
Kubernetes worker node configuration 186
per cluster configuration 186–187
sidecar pattern 188–189

in Docker Hub 198–200
log drivers 199
official Docker images 198–199
setting up 199–200

context of log events 265–269
practical checklist for capturing 268–269
what 266
when 266
where 266–267
who 268
why 267–268

copying log events 120–126
by reference or by value 122–124
error handling 124–126

Core Kubernetes 350
COTS (commercial-off-the-shelf) 328
credentials management 192–196
CSV formatter 104–105
CSV parser 82–83
custom plugins 231–255

extending output with buffering 247–250
extending to be enterprise-class solution 254
frameworks 235–237

creating skeleton plugin 235–237
plugin life cycle 237

implementing core 238–244
configuration attributes 238–239
getting plugin to work with Fluentd

installation 241–242
starting up and shutting down 240

package and deployment 252–254
building gem package 253
complete metadata/manifest 253
documentation 252–253
rerun without plugin paths 253–254

preparing for development 234–235
Redis 232–233, 247

command-line interface 233–234
implementing Redis input plugin 244
implementing Redis output logic 243
Redis list over RedisTimeSeries 233

source code 232
unit testing 250–251

D

daemon.json configuration file 207
DaemonSets 56–58, 215–219

configuring logging 222–228
creating deployment configuration 224–225
deploying to minikube 227
getting Fluentd configuration ready

222–224
refreshing environment 228

Kubernetes Docker images 216–219
dashboards

Fluentd 223
Kubernetes 210–211, 213–214, 227

data redaction/masking 149
date-time-group (DTG) 89
debug log level 261–262
debugging 6
Design Patterns (Gamma, Vlissides, Helm,

Johnson) 350
development practices 277–280

rethrowing exceptions 278
standard exceptions and error structures

278–279
string construction 279–280

directives 33, 35–37, 54, 130–134, 137
DLA (Piper Data Protection) 347
Docker

deploying Fluentd with container engine
58–59

downloading prepared Docker image 39
Fluentd containers in Docker Hub 198–200

log drivers 199
official Docker images 198–199
setting up 199–200

help resources 341
host logs 219–221
log drivers 200–207

command line 200, 202–204
network connections 201
switching to driver configuration through

configuration file 204–207
tag customization 320

INDEX 355
Ubuntu image preparation 308
VirtualBox approach 307
Windows prerequisites 307

Docker Hub 34, 39, 198–200, 341
Docker in Action 350
document models 107
documentation codes 271
DTG (date-time-group) 89
dummy plugin 55

E

Effective Java (Bloch) 278
EFK (Elasticsearch, Fluentd, Kibana) 15–16
Elasticsearch

help resources 342
installation 301–303

core Elasticsearch 301
Elasticsearch UI 302
Fluentd plugin 303

Elasticsearch in Action 342, 350
ELK (Elasticsearch, Logstash, Kibana) stack 15
enterprise service bus 6
environment

environment setup resources 343
environment variables 300

Linux 300
Windows 300

scaling in native and virtual 185–189
container as virtualization 187
Kubernetes worker node configuration 186
options comparison 189
per cluster configuration 186–187
sidecar pattern 188–189

@error 143
error codes 269–271
error log level 263
escape codes 318
ETW logs 199
exceptions

rethrowing 278
standard 278–279

exec output plugin 135
extract plugin support 322

F

FaaS (Function as a Service) 282
false urgency 147
fan-in 173–179

Fluentd configuration for 177–179

relation to application architecture and
deployment 173–177

fan-out 179–184
Fluentd configuration for 181–183
roundrobin plugin 183–184

fatal log level 263
file exclusions 74
file handles 43
file output plugin 94–103

buffering 95–98
chunks and controlling buffering 98–101
file output 94–95
retry mechanism and back off approach 102

filter component 285
filter plugins 150, 156–157, 322–323

filter parser 153–157
grep 150–153
record_transformer 153–157
stdout 157

filtering log events 145–164
applying filters and parsers 150–157

filter parser vs. record transformer 156–157
filter plugins 150
grep filters 150–153
record_transformer plugin 153–156,

 159–160
demonstrating change impact with stdout 157
extract feature 157–159
metrics 160–163
reasons for modifying log events 148–149

adding context 148
data redaction/masking 149
making easier to process meaning

downstream 148
recording reactions to log events 148

uses for filters 146–148
all is well events 146–147
releveling 147–148
spotting needle in haystack 147
unimplemented housekeeping 148

Fluent Bit 50–55
internal logging levels 52–53
relationship between Fluentd and 17–18
starting 50–52

alternate startup options 52–53
with HTTP 52

uses for 23–24
Fluentd 3–30, 46–63, 199

architecture of 33–35
compared to middleware 5

INDEX356
Fluentd (continued)
core concepts of 30–38

configuration execution order 35–36
directives 36–37
makeup of log events 31–32
time handling 32

deployment of 38–46
considerations for 39–40
for book's examples 39
installing Postman 46
log generator 44–46
minimum footprint 40
Ruby 40–41
simple 41–43
with Kubernetes and containers 55–59

evolution of 20–23
CNCF 22
relationship to major cloud vendors PaaS/

IaaS 22–23
Treasure Data 20

internal logging levels 52–53
log events

capturing 67–92
defined 4
life cycle of 19–20
outputting 93–118

log routing as vehicle for security 18–19
log unification 12–14
logging directly to 290–297

generic appenders 297
illustration with only Python's logging

294–295
illustration without Python's logging or Flu-

entd library 295–296
invoking Fluentd appender directly

293–294
porting Fluentd calls to another language

into action 296–297
Python with logging framework 290–293

logging library implementation 288–290
logs, purpose of 6–8
making operational tasks easier 27–29

actionable log events 27
controlling log data costs 28
generating metrics 28
making log events more meaningful

27–28
multiple targets 28
polyglot environments 28
rapid operational consolidation 29

observability
four golden signals of SRE 9
three pillars of 10–12

platform constraints 23–24
plugins 26–27
purpose of 4
real-world use case 327–336

cloud dilemma 332–335
monitoring 330–332
operational challenges 329–330
overview 327
setting scene 327–330
solution 335

software stacks 14–18
comparing Fluentd and Logstash 16
ELK stack 15
relationship between Fluentd and Fluent

Bit 17–18
relationship between Logstash and Beats 18

UI-based editing 24–25
uses for 23–24
web UI 59–62
where Fluentd and Fluent Bit can be used

23–24
formatter component 285
formatter plugins

csv 104–105, 321
hash 321
json 104, 106, 321
ltsv 104, 321
msgpack 105, 321
out_file 104, 321
single_value 321

forward plugin 191
Function as a Service (FaaS) 282

G

Gamma, Erich 350
GDPR (General Data Protection

Regulation) 272–274, 347
GELF (Graylog Extended Log Format) 199,

 338
gem package 253, 313
GIL (Global Interpreter Lock) 168
GitHub, files on 38, 232

Fluentd 39
configuration files 67–68, 216, 218
DaemonSets 209, 215
logger library 289

INDEX 357
predefined Fluentd Docker files 58–59
Prometheus 161
Slack plugin 114–115

glog 208
klog 208
Kubernetes DaemonSet 215
LogGenerator 44
logrotate 208
Node Problem Detector 229
redisn documentation 313
Ruby Resque 233

Google 208, 332, 334
Fluentd and 20–23

Google Cloud 21, 26, 199
Google’s site reliability engineering (SRE)

guide 9
Grafana 7
grep filters 150–153
Grok parser 86
Groovy

installing 44–45
log generator deployment 300–301

Groovy in Action, Second Edition 350
groups 319

H

handlers 291
Hello World 46

configuration 47
with Fluent Bit 50–52

help resources 337–350
common log formats and descriptions 338
Docker 341
Elasticsearch 342
environment setup 343
information portals on legislation 347
Kubernetes 341
logging frameworks 344
logging practices 338
Redis 342
related reading 350
Ruby 339
SSL/TLS and security 342
supporting Fluentd 349
third-party tools 337

high availability 184–185
HIPAA (Health Insurance Portability and

Accountability Act) 149, 275, 347
host/infrastructure monitoring 11

HTTP/HTTPS
interface check 78–80
starting Fluent Bit 52

human-readable logs 265
Hyper-V 200

I

IaaS (Infrastructure as a Service), Fluentd
and 22–23

IETF (Internet Engineering Task Force) 32, 86,
97

inclusion 126–130
inclusions with MongoDB output 129–130
place holding with null output 129

indicators 9
info log level 262
information source capture 20
Infrastructure as a Service (IaaS), Fluentd

and 22–23
inject plugin support 322
injection

extraction of values 131–132
injecting context into log events 130–132

Internet Engineering Task Force (IETF) 32, 86,
97

interrupt signals 43
IoT (Internet of Things) 17, 22, 323
ITIL (Information Technology Infrastructure

Library) 269, 348

J

Jaeger 10
JAR,running LogSimulator as 46
Java installation 44, 300–301
Johnson, Ralph 350
journald 199, 208, 218
JSON elements

accessing nested 154–155
deleting 155

JSON formatter 104, 106
JSON parser 83–84
JWT (JSON Web Tokens) 26

K

KEDB (Known Error Database) 269
klog 208
Known Error Record 269
kubectl tool 209

INDEX358
Kubernetes
components logging 207

components and structured logging 208
default log retention and log rotation

208–209
kubectl with logging 209

configuring logging DaemonSet 222–228
creating deployment configuration 224–225
deploying to minikube 227
getting Fluentd configuration ready

222–224
refreshing environment 228

deploying Fluentd with containers and 55–59
help resources 341
host logs 219–221
installation 308–312

minikube for Linux 310–312
minikube on Windows 308–310

KLog 208–209, 341
logging 209–219

creating logs to capture 212–215
DaemonSets 215–219
setting up 210–211

Node monitoring 229
termination messages 229
worker node configuration 186

Kubernetes DaemonSet in GitHub 215
Kubernetes in Action 224, 341, 350

L

label tab separated value (LTSV) 84, 104
labels 137–144

connecting pipelines 139–140, 144
illustrating label routing 137–139
label sequencing 141–143
special labels 143
stdout filter 137

LAMP (Linux, Apache, MySQL, PHP) stack 14
latency 9
libbeat library 18
Linux

environment variables 300
file handles 43
interrupt signals 43
minikube for 310–312

log aggregation 14
log analytics tools 26
log driving

Docker

command line 200, 202–204
Fluentd containers in Docker Hub 198–200
network connections 201
switching to driver configuration through

configuration file 204–207
Kubernetes

components logging 207
configuring logging DaemonSet 222–228
host logs 219–221
logging 209–219
Node monitoring 229
termination messages 229

log events
actionable 27, 111–113

through service invocation 112
through user interaction tools 112–113

audit events vs. 260
capturing 67–92

dry running to check configuration 68–69
imposing structure on 81–92
reading log files 69–78
self-monitoring 78–80

context 265–269
practical checklist for capturing 268–269
what 266
when 266
where 266–267
who 268
why 267–268

counting 163
defined 4
filtering 145–164

applying filters and parsers 150–157,
 159–160

demonstrating change impact with
stdout 157

extract feature 157–159
metrics 160–163
reasons for modifying log events 148–149
uses for filters 146–148

life cycle of 19–20
makeup of 31–32
making more meaningful 27–28
outputting 93–118

file output plugin 94–103
output formatting 103–106
sending to MongoDB 106–111
Slack 113–116

routing 119–144
copying 120–126

INDEX 359
inclusion 126–130
injection 130–132
labels 137–144
tag plugins 136
tag-based routing 132–136

log generator deployment 44–46
Groovy installation 44–45
Java installation 44
LogSimulator properties 46
LogSimulator, running as JAR 46

log levels and severities 260–264
debug 261–262
error 263
extending or creating 263–264
fatal 263
info 262
trace 261
warn 262–263

log management
controlling log data costs 28
generating metrics 28
log rotation 75–78
log routing as vehicle for security 18–19
log sequencing by dated folders 74
log unification 12–14
purpose of logs 6–8

log-simulator 213–215
logger component 284
logger config component 285
logger context component 283–284
logging best practices 259–280

audit events vs. log events 260
clear language 264–265
context 265–269

practical checklist for capturing 268–269
what 266
when 266
where 266–267
who 268
why 267–268

development practices 277–280
rethrowing exceptions 278
standard exceptions and error

structures 278–279
string construction 279–280

documentation codes 271
error codes 269–271

standard errors 271
frameworks 277
help resources 338
human and machine-readable 265

levels and severities 260–264
debug 261–262
error 263
extending or creating 263–264
fatal 263
info 262
trace 261
warn 262–263

structure and format 275–277
volume of logging 271–275

security requirements 274–275
sensitive data 272–274

logging frameworks 281–297
appender structures 285
benefits of 277
choosing 287–288
Fluentd's logging and appenders 288–290
help resources 344
landscape of 286
logging directly to Fluentd 290–297

generic appenders 297
illustration with only Python's logging

294–295
illustration without Python's logging or Flu-

entd library 295–296
invoking Fluentd appender directly

293–294
Python with logging framework 290–293

typical structure of 283–285
appender 284
configuration 285
filter 285
formatter 285
logger 284
logger config 285
logger context 283–284

value of 282
LogSimulator

properties 46
running as JAR 46

Logstash
comparing Fluentd and 16
ELK stack 15
relationship between Beats and 18

LTSV (label tab separated value) 84, 104

M

machine-readable logs 265
match declarations 132

INDEX360
match directive 33–34, 37, 47, 94, 120–121, 132,
136, 161, 168–169, 190

measures 9
MessagePack (msgpack) 84–85, 105
metrics 9–10

generating 160–163
metrics plugins 324

middleware
defined 6
Fluentd compared to 5

minifier tools 266
minikube

deploying to 227
for Linux 310–312
on Windows 308–310

MongoDB 303–305
configuration 303–305
inclusions with MongoDB output 129–130
installation 303
MongoDB plugin 108–109
sending log events to 106–111

configuring mongo output plugin 108–110
connection configuration strings 111
deploying MongoDB input plugin 107
viewing log events in MongoDB 109–110

MongoDB in Action, Second Edition 350
monitoring 330–332

extending 332
finessing 332
real-world use case 330–332

multiformat parser plugin 86
multiline plugin 85

N

Nginx parser 82
Node Problem Detector 229
notify phase 20
NTP (Network Time Protocol) 32

O

obfuscation tools 266
observability

four golden signals of SRE 9
three pillars of 10–12

Open Container Initiative 207
open telemetry 10, 261
open tracing 10, 261
Operations Anti-Patterns, DevOps Solutions 351

Oracle
error code numbering by 270
Fluentd and 22
VirtualBox project 307–308

Oracle Cloud 282, 332–334
Oracle SOA Suite 10–11
Oracle WebLogic Server 271
OTLP (OpenTelemetry Protocol) 10
out_file formatter 104
output formatting 103–106

applying formatters 105–106
CSV 104–105
JSON 104, 106
LTSV 104
msgpack 105
out_file 104

output plugins 172
outputting log events 93–118

actionable log events 111–113
through service invocation 112
through user interaction tools 112–113

file output plugin 94–103
buffering 95–98
chunks and controlling buffering 98–101
file output 94–95
retry mechanism and back off approach 102

output formatting 103–106
applying formatters 105–106
CSV 104–105
JSON 104, 106
LTSV 104
msgpack 105
out_file 104

sending log events to MongoDB 106–111
configuring mongo output plugin 108–110
connection configuration strings 111
deploying MongoDB input plugin 107

Slack 113–116
externalizing configuration attributes 116
handling tokens and credentials 115–116

P

PaaS (Platform as a Service),Fluentd and 22–23
PagerDuty 5, 26–27, 34, 113
parser plugins 33
parsers 81–92

standard parsers 81–86
Apache_Error 82
Apache2 81–82

INDEX 361
CSV 82–83
JSON 83–84
LTSV 84
MessagePack 84–85
multiline 85
Nginx 82
none 85
Regex 85
Syslog 86
TSV 84

third-party parsers 86
Grok parser 86
multiformat parser plugin 86

PCI DSS (Payment Card Industry Data Security
Standard) 274, 347

per cluster model 186–187
performance 167–196

credentials management 192–196
Fluentd scaling in containers vs. native and vir-

tual environments 185–189
container as virtualization 187
Kubernetes worker node configuration 186
options comparison 189
per cluster configuration 186–187
sidecar pattern 188–189

scaling and moving workloads 173–185
fan-in/log aggregation and

consolidation 173–179
fan-out and workload distribution 184
high availability 184–185

securing traffic between nodes 190–192
certificate and private key storage 191–192
TLS certificate authenticity 191
TLS configuration 190–191

threading and processes to scale with
workers 168–172
controlling output plugin threads 172
memory management optimization 172
worker constraints 171–172
workers in action 169–171

PII (personally identifiable information) 149
PIP (Package Installer for Python) 313
pipelines,connecting 139–140, 144
Piper Data Protection (DLA) 347
place holding with null output 129
Platform as a Service (PaaS), Fluentd and 22–23
plugins 321–325

analytical and metrics plugins 324
custom 231–255

extending output with buffering 247–250

extending to be enterprise-class
solution 254

frameworks 235–237
implementing core 238–244
implementing Redis input plugin 244–247
package and deployment 252–254
preparing for development 234–235
Redis 232–234
source code 232
unit testing 250–251

dummy 55
exec output plugin 135
extract and inject plugin support 322
file output plugin 94–103
filter plugins 150, 156–157, 322–323
formatter plugins 321
forward plug-in 191
MongoDB plugin 108–109
multiformat parser plugin 86
multiline plugin 85
output plugins 172
plugin Interfaces 325
preventing alert storms 324
record_transformer plugin 153–157
roundrobin plugin 183–184
Slack 113–116

externalizing configuration attributes 116
handling tokens and credentials 115–116
installation 305–306

tag manipulation plugins 323
tag plugins 136
tail (file input) plugin 33, 186, 324

polyglot environments 28
Postman 46, 301
Pragmatic Logging Handbook, The (Loggly) 338
private key storage 191–192
product-specific parsers 81
Prometheus 7, 160
proxies 18
Python 313

illustration with only Python's logging
294–295

illustration without Python's logging or Flu-
entd library 295–296

with logging framework 290–293

R

RDoc 252–253
record

record directive 154

INDEX362
record_transformer plugin 153–156
accessing nested JSON elements 154–155
deleting JSON elements 155
filter parser vs. 156–157
predefined values 156
record directive 154
value replacement 155–156

Redis 232–233, 312–313
command-line interface 233–234
help resources 342
implementing input plugin 244–247
implementing output logic 243
Redis gem 313
Redis list over RedisTimeSeries 233

Redis in Action 342, 351
RedisTimeSeries 233
Regex parser 85–90
regular expressions 318–319

alternates 319
anchors 319
escape codes 318
groups 319
repetition/selection 318

releveling 147–148
remote procedure call (RPC) 149
retry mechanism 102
root cause analysis 7
roundrobin plugin 183–184
routing log events 119–144

copying log events 120–126
by reference or by value 122–124
error handling 124–126

inclusion 126–130
inclusions with MongoDB output 129–130
place holding with null output 129

injection 130–132
extraction of values 131–132

labels 137–144
connecting pipelines 139–140, 144
illustrating label routing 137–139
label sequencing 141–143
special labels 143
stdout filter 137

tag plugins 136
tag-based routing 132–136

dynamic tagging with extract 136
tag naming conventions 135–136
using exec output plugin 135

RPC (remote procedure call) 149
Ruby

development libraries and tools 312

help resources 339
simple deployment of 40–41

Ruby in Practice 340, 351

S

Sarbanes-Oxley Act (SOX) 275, 347
saturation 9
scaling

in containers vs. native and virtual
environments 185–189
container as virtualization 187
Kubernetes worker node configuration 186
options comparison 189
per cluster configuration 186–187
sidecar pattern 188–189

scaling and moving workloads 173–185
fan-in/log aggregation and

consolidation 173–179
fan-out and workload distribution 184
high availability 184–185

threading and processes to scale with
workers 168–172
controlling output plugin threads 172
memory management optimization 172
worker constraints 171–172
workers in action 169–171

scheme 152
secured traffic,between nodes 190–192

certificate and private key storage 191–192
TLS configuration 190–191
TLS not just for encryption 191

Securing DevOps (Vehent) 190
self-monitoring 78–80
sensitive data 272–274
server affinity 174
Service Discovery 27, 34, 161
sidecar pattern 188–189
SIEM (security information and event

management) 7, 11
site reliability engineering (SRE) 9
size values 318
Slack 113–116

externalizing configuration attributes 116
handling tokens and credentials 115–116
installation 305–306

software stacks 14–18
comparing Fluentd and Logstash 16
EFK 15–16
ELK stack 15

INDEX 363
MEAN 15
relationship between Fluentd and Fluent

Bit 17–18
relationship between Logstash and Beats 18

Software Telemetry 351
solution stack 15
SOX (Sarbanes-Oxley Act) 275, 347
SRE (site reliability engineering) 9
SSL (Secure Sockets Layer)

help resources 342
specialized forward plugin for 191

standard Java utility logging framework 76
standard parsers 81–86

Apache_Error 82
Apache2 81–82
CSV 82–83
JSON 83–84
LTSV 84
MessagePack 84–85
multiline 85
Nginx 82
none 85
Regex 85
Syslog 86
TSV 84

stdout filter 137, 157
storage 34
string construction 279–280
structure and route phases 20
structure phase 20
syslog 13, 24, 86, 199, 215, 261, 282, 322,

 338–339
Syslog (system logging) 24, 199
Syslog parser 86

T

tab separated value (TSV) parser 84
tag manipulation plugins 323
tag plugins 136
tag-based routing 132–136

dynamic tagging with extract 136
exec output plugin 135
illustrating 137–139
naming conventions 135–136

tail plugin 33, 186, 324
TCP (Transmission Control Protocol) 190
third-party parsers 86

Grok parser for Fluentd 86
multiformat parser plugin 86

threading, to scale with workers 168–172
controlling output plugin threads 172
memory management optimization 172
worker constraints 171–172
workers in action 169–171

time 315–320
expressing 73, 315–316
expressing relative time 315
handling 32

TLS (Transport Layer Security) 190–191
certificate authenticity 191
help resources 342
specialized forward plugin for SSL/TLS 191
version and algorithm 191

tool and service installation 299–314
Docker

Ubuntu image preparation 308
VirtualBox approach 307
Windows prerequisites 307

Elasticsearch 301–303
core Elasticsearch 301
Elasticsearch UI 302
Fluentd plugin for 303

environment variables 300
Linux 300
Windows 300

Groovy 300–301
Java 300–301
Kubernetes 308–312

minikube for Linux 310–312
minikube on Windows 308–310

MongoDB 303–305
configuration 303–305
installation 303

overview 299
Postman 301
Python 313
Redis 312–313
Ruby development libraries and tools 312
Slack 305–306
Vault 313–314

trace log level 261
trace logs 10
Transmission Control Protocol (TCP) 190
transports 284, 346
Treasure Data 20
TSV (tab separated value) parser 84
two-phase commit 124

INDEX364
U

Ubuntu image preparation 308
UDP (User Datagram Protocol) 190
UNCTAD (United Nations Conference on Trade

and Development) 347
unification, log 12
unimplemented housekeeping 148
unit testing 250–251
Unix-based operating systems

file handles 43
interrupt signals 43

V

Vault 313–314
virtual machine/container monitoring 11
VirtualBox 307
Visual Studio Code 25, 91
visualize data 20
volume of logging 271–275

security requirements 274–275
sensitive data 272–274

W

warn log level 262–263
web UI 59–62

installing Fluentd with 59–62
UI-based editing 24–25

Well-Grounded Rubyist, The (Third edition) 340,
351

wildcards 72–73

controlling impact of in filenames 73–75
explicit listing 73
log sequencing by dated folders 74
only considering recently changed files

74–75
using file exclusions 74

replacing with delimited lists 75
Windows

environment variables 300
minikube on 308–310
prerequisites for Docker 307

Windows services 24
workers

Kubernetes worker node configuration 186
threading and processes to scale with 172

controlling output plugin threads 172
memory management optimization 172
worker constraints 171–172
workers in action 169–171

workloads, scaling and moving 173–185
fan-in/log aggregation and

consolidation 173–179
fan-out and workload distribution 179–184
high availability 184–185

WSL (Windows Linux Subsystem) 200

X

XA transactions 124

Y

YARD 252–253

303

Ops alerting
service

IoT

IoT deviceMonolith app X

Server

Server

Kubernetes worker node(s)

Monolith app Y

Server

App Z

PodPod

Diversity of fluent use
Fluentd and Fluent Bit support a
diverse range of deployment
possibilities from monolithic apps on
native hardware to IoT and containers
in a variety of configurations. Support
includes
- Routing to log analytics and
 collaboration platforms
- Concentrator networks and direct
 to end point
- Dedicated pod deployments,
 sidecars, container co-resident,
 DaemonSets
- Failover and load-balanced options

Pod

Side
car

Pod –
aggregation

Pod –
aggregation DaemonSet

Svc A
(Back end)

Svc C
(Mid-tier)

Svc E
(Front end)

Shared persistence /
analytics platform

Server

Phil Wilkins
Forewords by Christian Posta ● Anurag Gupta

ISBN: 978-1-61729-835-6

D
on’t fl y blind! An eff ective logging system can help you
see and correct problems before they cripple your soft-
ware. With the Fluentd log management tool, it’s a snap

to monitor the behavior and health of your software and
infrastructure in real time. Designed to collect and process
log data from multiple sources using the industry-standard
JSON format, Fluentd delivers a truly unifi ed logging layer
across all your systems.

Logging in Action teaches you to record and analyze applica-
tion and infrastructure data using Fluentd. Using clear,
relevant examples, it shows you exactly how to transform raw
system data into a unifi ed stream of actionable information.
You’ll discover how logging confi guration impacts the way
your system functions and set up Fluentd to handle data from
legacy IT environments, local data centers, and massive
Kubernetes-driven distributed systems. You’ll even learn how
to implement complex log parsing with RegEx and output
events to MongoDB and Slack.

What’s Inside
● Capture log events from a wide range of systems and
 software, including Kubernetes and Docker
● Connect to custom log sources and destinations
● Employ Fluentd’s extensible plugin framework
● Create a custom plugin for niche problems

For developers, architects, and operations professionals familiar
with the basics of monitoring and logging.

Phil Wilkins has spent over 30 years in the software industry.
Has worked for small startups through to international brands.

Register this print book to get free access to all ebook formats.
Visit https://www.manning.com/freebook

$59.99 / Can $79.99 [INCLUDING eBOOK]

Logging IN ACTION

LOGGING/OPERATIONS

M A N N I N G

“I highly recommend
using Logging in Action as
a getting-started guide,

a refresher, or as a way to opti-
mize your logging journey.”—From the Foreword by Anurag

Gupta, Fluent maintainer and
Cofounder, Calyptia

“Covers everything you
need if you want to implement

a logging system using open
source technology such as

 Fluentd and Kubernetes.”—Alex Saez, Naranja X

“A great exploration of the
features and capabilities

of Fluentd, along with very
 useful hands-on exercises.”—George Th omas

Manhattan Associates

“A practical holistic guide to
integrating logging into your

enterprise architecture.”—Satej Sahu, Honeywell

See first page

	Logging in Action
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized
	About the code
	liveBook discussion forum

	about the author
	about the cover illustration
	Part 1 From zero to “Hello World”
	1 Introduction to Fluentd
	1.1 Elevator pitch for Fluentd
	1.1.1 What is a log event?
	1.1.2 Fluentd compared to middleware

	1.2 Why do we produce logs?
	1.3 Evolving ideas
	1.3.1 Four golden signals
	1.3.2 Three pillars of observability

	1.4 Log unification
	1.4.1 Unifying logs vs. log analytics

	1.5 Software stacks
	1.5.1 ELK stack
	1.5.2 Comparing Fluentd and Logstash
	1.5.3 The relationship between Fluentd and Fluent Bit
	1.5.4 The relationship between Logstash and Beats

	1.6 Log routing as a vehicle for security
	1.7 Log event life cycle
	1.8 Evolution of Fluentd
	1.8.1 Treasure Data
	1.8.2 CNCF
	1.8.3 Relationship to major cloud vendors PaaS/IaaS

	1.9 Where can Fluentd and Fluent Bit be used?
	1.9.1 Platform constraints

	1.10 Fluentd UI-based editing
	1.11 Plugins
	1.12 How Fluentd can be used to make operational tasks easier
	1.12.1 Actionable log events
	1.12.2 Making logs more meaningful
	1.12.3 Polyglot environments
	1.12.4 Multiple targets
	1.12.5 Controlling log data costs
	1.12.6 Logs to metrics
	1.12.7 Rapid operational consolidation

	Summary

	2 Concepts, architecture, and deployment of Fluentd
	2.1 Architecture and core concepts
	2.1.1 The makeup of a log event
	2.1.2 Handling time
	2.1.3 Architecture of Fluentd
	2.1.4 Fluent configuration execution order
	2.1.5 Directives
	2.1.6 Putting timing requirements into action

	2.2 Deployment of Fluentd
	2.2.1 Deploying Fluentd for the book’s examples
	2.2.2 Deployment considerations for Fluentd
	2.2.3 Fluentd minimum footprint
	2.2.4 Simple deployment of Ruby
	2.2.5 Simple deployment of Fluentd
	2.2.6 Deploying a log generator
	2.2.7 Installing Postman

	2.3 Bringing Fluentd to life with “Hello World”
	2.3.1 “Hello World” scenario
	2.3.2 “Hello World” configuration
	2.3.3 Starting Fluentd

	2.4 “Hello World” with Fluent Bit
	2.4.1 Starting Fluent Bit
	2.4.2 Alternate Fluent Bit startup options
	2.4.3 Fluent Bit configuration file comparison
	2.4.4 Fluent Bit configuration file in detail
	2.4.5 Putting the dummy plugin into action

	2.5 Fluentd deployment with Kubernetes and containers
	2.5.1 Fluentd DaemonSet
	2.5.2 Dockerized Fluentd

	2.6 Using Fluentd UI
	2.6.1 Installing Fluentd with UI

	Summary

	Part 2 Fluentd in depth
	3 Using Fluentd to capture log events
	3.1 Dry running to check a configuration
	3.1.1 Putting validating Fluentd configuration into action

	3.2 Reading log files
	3.2.1 Putting the adaption of a Fluentd configuration to Fluent Bit into action
	3.2.2 Rereading and resuming reading of log files
	3.2.3 Configuration considerations for tracking position
	3.2.4 Wildcards in the path attribute
	3.2.5 Expressing time
	3.2.6 Controlling the impact of wildcards in filenames
	3.2.7 Replacing wildcards with delimited lists in action
	3.2.8 Handling log rotation

	3.3 Self-monitoring
	3.3.1 HTTP interface check

	3.4 Imposing structure on log events
	3.4.1 Standard parsers
	3.4.2 Third-party parsers
	3.4.3 Applying a Regex parser to a complex log
	3.4.4 Putting parser configuration into action

	Summary

	4 Using Fluentd to output log events
	4.1 File output plugin
	4.1.1 Basic file output
	4.1.2 Basics of buffering
	4.1.3 Chunks and Controlling Buffering
	4.1.4 Retry and backoff
	4.1.5 Putting configuring buffering size settings into action

	4.2 Output formatting options
	4.2.1 out_file
	4.2.2 json
	4.2.3 ltsv
	4.2.4 csv
	4.2.5 msgpack
	4.2.6 Applying formatters
	4.2.7 Putting JSON formatter configuration into action

	4.3 Sending log events to MongoDB
	4.3.1 Deploying MongoDB Fluentd plugin
	4.3.2 Configuring the Mongo output plugin for Fluentd
	4.3.3 Putting MongoDB connection configuration strings into action

	4.4 Actionable log events
	4.4.1 Actionable log events through service invocation
	4.4.2 Actionable through user interaction tools

	4.5 Slack to demonstrate the social output
	4.5.1 Handling tokens and credentials more carefully
	4.5.2 Externalizing Slack configuration attributes in action

	4.6 The right tool for the right job
	Summary

	5 Routing log events
	5.1 Reaching multiple outputs by copying
	5.1.1 Copy by reference or by value
	5.1.2 Handling errors when copying

	5.2 Configuration reuse and extension through inclusion
	5.2.1 Place holding with null output
	5.2.2 Putting inclusions with a MongoDB output into action

	5.3 Injecting context into log events
	5.3.1 Extraction of values

	5.4 Tag-based routing
	5.4.1 Using exec output plugin
	5.4.2 Putting tag naming conventions into action
	5.4.3 Putting dynamic tagging with extract into action

	5.5 Tag plugins
	5.6 Labels: Taking tags to a new level
	5.6.1 Using a stdout filter to see what is happening
	5.6.2 Illustrating label and tag routing
	5.6.3 Connecting pipelines
	5.6.4 Label sequencing
	5.6.5 Special labels
	5.6.6 Putting a common pipeline into action

	Summary

	6 Filtering and extrapolation
	6.1 Application of filters
	6.1.1 All is well events do not need to be distributed
	6.1.2 Spotting the needle in a haystack
	6.1.3 False urgency
	6.1.4 Releveling
	6.1.5 Unimplemented housekeeping

	6.2 Why change log events?
	6.2.1 Easier to process meaning downstream
	6.2.2 Add context
	6.2.3 Record when we have reacted to a log event
	6.2.4 Data redaction/masking

	6.3 Applying filters and parsers
	6.3.1 Filter plugins
	6.3.2 Applying grep filters
	6.3.3 Changing log events with the record_transformer plugin
	6.3.4 Filter parser vs. record transformer

	6.4 Demonstrating change impact with stdout in action
	6.4.1 A solution demonstrating change impact with stdout in action

	6.5 Extract to set key values
	6.6 Deriving new data values with the record_transformer
	6.6.1 Putting the incorporation of calculations into a log event transformation into action

	6.7 Generating simple Fluentd metrics
	6.7.1 Putting log event counting into action

	Summary

	Part 3 Beyond the basics
	7 Performance and scaling
	7.1 Threading and processes to scale with workers
	7.1.1 Seeing workers in action
	7.1.2 Worker constraints
	7.1.3 Controlling output plugin threads
	7.1.4 Memory management optimization

	7.2 Scaling and moving workloads
	7.2.1 Fan-in/log aggregation and consolidation
	7.2.2 Fan-out and workload distribution
	7.2.3 High availability
	7.2.4 Putting a high-availability comparison into action

	7.3 Fluentd scaling in containers vs. native and virtual environments
	7.3.1 Kubernetes worker node configuration
	7.3.2 Per-cluster configuration
	7.3.3 Container as virtualization
	7.3.4 Sidecar pattern
	7.3.5 Options comparison

	7.4 Securing traffic between Fluentd nodes
	7.4.1 TLS configuration
	7.4.2 TLS not just for encryption
	7.4.3 Certificate and private key storage
	7.4.4 Security is more than certificates

	7.5 Credentials management
	7.5.1 Simple credentials use case
	7.5.2 Putting certification into action

	Summary

	8 Driving logs with Docker and Kubernetes
	8.1 Fluentd out of the box from Docker Hub
	8.1.1 Official Docker images
	8.1.2 Docker log drivers
	8.1.3 Getting set up for Docker log drivers

	8.2 Using Docker log drivers
	8.2.1 Docker drivers via the command line
	8.2.2 A quick check of network connections
	8.2.3 Running Docker command line
	8.2.4 Switching to driver configuration through a configuration file

	8.3 Kubernetes components logging and the use of Fluentd
	8.3.1 Kubernetes components and structured logging
	8.3.2 Kubernetes default log retention and log rotation
	8.3.3 kubectl with logging

	8.4 Demonstrating logging with Kubernetes
	8.4.1 Kubernetes setup
	8.4.2 Creating logs to capture
	8.4.3 Understanding how Fluentd DaemonSets are put together

	8.5 Getting a peek at host logs
	8.6 Configuring a Kubernetes logging DaemonSet
	8.6.1 Getting the Fluentd configuration ready to be used
	8.6.2 Creating our Kubernetes deployment configuration
	8.6.3 Putting the implementation of a Fluentd for Kubernetes into action
	8.6.4 Deploying to minikube
	8.6.5 Tidying up

	8.7 Kubernetes configuration in action
	8.7.1 Answer

	8.8 More Kubernetes monitoring and logging to watch for
	8.8.1 Node monitoring
	8.8.2 Termination messages

	Summary

	9 Creating custom plugins
	9.1 Plugin source code
	9.2 What is Redis, and why build a plugin with the Redis list capability?
	9.2.1 Redis list over RedisTimeSeries

	9.3 Illustrating our objective using Redis CLI
	9.4 Preparing for development
	9.5 Plugin frameworks
	9.5.1 Creating the skeleton plugin
	9.5.2 Plugin life cycle

	9.6 Implementing the plugin core
	9.6.1 How configuration attributes work
	9.6.2 Starting up and shutting down
	9.6.3 Getting the plugin to work with our Fluentd installation
	9.6.4 Putting additional configuration validation into action
	9.6.5 Implementing the Redis output logic
	9.6.6 Putting the testing of synchronous output into action

	9.7 Implementing the Redis input plugin
	9.7.1 Testing input and output plugin execution

	9.8 Extending output with buffering
	9.8.1 Improving our scenario by putting maintainability into action

	9.9 Unit testing
	9.10 Putting the development of unit tests into action
	9.10.1 Answer

	9.11 Package and deployment
	9.11.1 Documentation
	9.11.2 Complete metadata aka manifest
	9.11.3 Building the gem package
	9.11.4 Rerun without the plugin paths

	9.12 Extending to be an enterprise-class solution
	Summary

	Part 4 Good logging practices and frameworks to maximize log value
	10 Logging best practices
	10.1 Audit events vs. log events
	10.2 Log levels and severities
	10.2.1 Trace
	10.2.2 Debug
	10.2.3 Info(rmation)
	10.2.4 Warn(ing)
	10.2.5 Error
	10.2.6 Fatal
	10.2.7 Extending or creating your own log levels

	10.3 Clear language
	10.4 Human and machine-readable
	10.5 Context is key
	10.5.1 Context: What
	10.5.2 Context: When
	10.5.3 Context: where
	10.5.4 Context: Why
	10.5.5 Context: Who
	10.5.6 a practical checklist for capturing context

	10.6 Error codes
	10.6.1 Using standard errors
	10.6.2 Codes can be for more than errors

	10.7 Too little logging or too much?
	10.7.1 What qualifies as sensitive?
	10.7.2 GDPR is only the start

	10.8 Log structure and format
	10.8.1 Putting making log entries ready for application shipping into action

	10.9 Use frameworks if you can
	10.10 Development practices
	10.10.1 Rethrowing exceptions
	10.10.2 Using standard exceptions and error structures
	10.10.3 String construction as a reason not to log

	Summary

	11 Logging frameworks
	11.1 Value of logging frameworks
	11.2 Typical structure of a logging framework
	11.2.1 Logger context
	11.2.2 Appender
	11.2.3 Logger
	11.2.4 Filter
	11.2.5 Formatter
	11.2.6 Configuration
	11.2.7 Logger config

	11.3 Appender structures
	11.4 Logging framework landscape
	11.5 Choosing a framework
	11.5.1 Putting optimizing application logging into action

	11.6 Fluentd’s own logging and appenders
	11.7 Illustrations of an application logging directly to Fluentd
	11.7.1 Python with logging framework: Using the Fluentd library
	11.7.2 Invoking Fluentd appender directly
	11.7.3 Illustration with only Python’s logging
	11.7.4 Illustration without Python’s logging or Fluentd library
	11.7.5 Porting the Fluentd calls to another language into action
	11.7.6 Using generic appenders: The takeaways

	Summary

	appendix A Processing times and dates, regular expressions, and other configuration values
	A.1 Tool installation overview
	A.2 Creating environment variables and amending PATH
	A.2.1 Windows
	A.2.2 Linux

	A.3 Java and Groovy
	A.4 Postman
	A.5 Elasticsearch
	A.5.1 Core Elasticsearch installation
	A.5.2 Elasticsearch UI installation
	A.5.3 Fluentd plugin for Elasticsearch

	A.6 Mongo database
	A.6.1 Mongo DB installation
	A.6.2 MongoDB configuration

	A.7 Slack
	A.8 Setting up Docker and Kubernetes
	A.8.1 Windows Prerequisites
	A.8.2 VirtualBox approach
	A.8.3 Ubuntu image preparation for working with Docker
	A.8.4 Kubernetes installation

	A.9 Support Ruby development libraries and tools
	A.10 Redis
	A.10.1 Redis gem

	A.11 Python
	A.12 Vault

	appendix B Processing times and dates, regular expressions, and other configuration values
	B.1 Expressing relative time
	B.2 Expressing dates and times
	B.3 Expressing sizes
	B.4 Regular expressions
	B.4.1 Escape Codes
	B.4.2 Repetition/selection
	B.4.3 Anchors, groups, and alternates

	B.5 Docker tag customization

	appendix C Plugins summary
	C.1 Formatter plugins
	C.2 Extract and inject plugin support
	C.3 Filter plugins
	C.4 Tag manipulation plugins
	C.5 Preventing alert storms
	C.6 Analytical and metrics plugins
	C.7 Plugin Interfaces

	appendix D Real-world use case
	D.1 Fluentd use in a real-world use case
	D.2 Setting the scene
	D.2.1 The operational challenges

	D.3 Introducing monitoring
	D.3.1 Extending monitoring
	D.3.2 Finessing of monitoring

	D.4 Cloud dilemma
	D.5 Solution
	D.6 Conclusion

	appendix E Useful resources
	E.1 Helpful Fluentd resources
	E.2 Helpful Fluentd third-party tools
	E.3 Helpful logging practices resources
	E.4 Common log formats and descriptions
	E.5 Helpful Ruby resources
	E.6 Docker and Kubernetes
	E.7 Elasticsearch
	E.8 Redis
	E.9 SSL/TLS and security
	E.10 Environment setup
	E.11 Logging frameworks
	E.12 Information portals on legislation
	E.13 Other handy sources of information
	E.14 Supporting Fluentd resources
	E.15 Related reading

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

	Logging in Action - back

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /CombiNumerals-Solid
 /HumanistMann521-BoldCondensed
 /Univers
 /Univers-Light
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

