
IoT Development
for ESP32 and
ESP8266 with
JavaScript

A Practical Guide to XS and the
Moddable SDK
—
Peter Hoddie
Lizzie Prader

IoT Development for
ESP32 and ESP8266

with JavaScript
A Practical Guide to XS
and the Moddable SDK

Peter Hoddie
Lizzie Prader

IoT Development for ESP32 and ESP8266 with JavaScript: A Practical

Guide to XS and the Moddable SDK

ISBN-13 (pbk): 978-1-4842-5069-3 ISBN-13 (electronic): 978-1-4842-5070-9
https://doi.org/10.1007/978-1-4842-5070-9

Copyright © 2020 by Peter Hoddie and Lizzie Prader

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Natalie Pao
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-5069-3.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Peter Hoddie
Menlo Park, CA, USA

Lizzie Prader
Menlo Park, CA, USA

https://doi.org/10.1007/978-1-4842-5070-9

iii

Table of Contents

Chapter 1: Getting Started ��1

Hardware Requirements ���1

Software Requirements ��6

Downloading the Example Code ���6

Setting Up Your Build Environment ���7

Using xsbug ��7

Important Features for Examples in This Book ��9

Running Examples ��10

Installing the Host ���10

mcconfig ��11

Confirming the Host Was Installed ��11

Installing helloworld��12

mcrun ��13

Finishing Up ���13

About the Authors ���xvii

About the Technical Reviewers ���xix

About the Editor ���xxi

Acknowledgments ���xxiii

Foreword ��xxv

Introduction ��xxvii

iv

Troubleshooting ��14

Device Not Connected/Recognized��14

Incompatible Baud Rate ��16

Device Not in Bootloader Mode ���17

Adding a Display ���18

Connecting a Display to the ESP32 ���19

Connecting a Display to the ESP8266 ���20

Installing helloworld-gui ���22

Conclusion ��24

Chapter 2: JavaScript for Embedded C and C++ Programmers ���������25

Fundamental Syntax ���26

“Hello, world” ��26

Semicolons ��27

Declaring Variables and Constants ��27

The if Statement ��29

The switch Statement ��30

Loops ���32

Types ���33

undefined ��34

Boolean Values ��35

Numbers ��35

Strings ���39

Functions ���47

Objects ��58

null ��68

Comparisons ���68

Comparing Objects ��70

Errors and Exceptions ���71

Table of ConTenTsTable of ConTenTs

v

Classes ��75

Class Constructor and Methods���75

Static Methods ��77

Subclasses ��78

Private Fields ���84

Private Methods ���86

Using Callback Functions in Classes ���87

Modules ��90

Importing from Modules ��90

Exporting from Modules ��93

ECMAScript Modules vs� CommonJS Modules ��94

Globals ��94

Arrays ��96

Array Shorthand ��97

Accessing Elements of an Array ��97

Iterating over Arrays ��99

Adding and Removing Elements of an Array ���101

Searching Arrays ���103

Sorting Arrays ��104

Binary Data ���106

ArrayBuffer��106

Typed Arrays ��107

Data Views ���114

Memory Management ���118

The Date Class ���121

Event-Driven Programming ���125

Conclusion ��126

Table of ConTenTsTable of ConTenTs

vi

Chapter 3: Networking ��127

About Networking ���128

Connecting to Wi-Fi ���129

Connecting from the Command Line ���130

Connecting with Code��131

Connecting to Any Open Access Point ���134

Installing the Network Host ���137

Installing Examples ���137

Getting Network Information ���137

Making HTTP Requests ���138

Fundamentals ��138

GET ��140

Streaming GET ���141

GET JSON ��143

Subclassing an HTTP Request ���145

Setting Request Headers ���147

Getting Response Headers ��148

POST ��149

Handling Errors ��150

Securing Connections with TLS ��151

Using TLS with the SecureSocket Class ���152

Public Certificates ���152

Private Certificates ��154

Creating an HTTP Server ���155

Fundamentals ��155

Responding to a Request ���157

Responding to JSON PUT ���158

Table of ConTenTsTable of ConTenTs

vii

Receiving a Streaming Request ��160

Sending a Streaming Response ��161

mDNS ��163

Claiming a Name ���164

Finding a Service ���165

Advertising a Service ���167

WebSocket ��168

Connecting to a WebSocket Server ���169

Creating a WebSocket Server ��171

MQTT ���173

Connecting to an MQTT Server ��173

Subscribing to a Topic ���175

Publishing to a Topic ��176

SNTP ���177

Advanced Topics ���178

Creating a Wi-Fi Access Point ��178

Promises and Asynchronous Functions ���181

Conclusion ��183

Chapter 4: Bluetooth Low Energy (BLE) ��185

BLE Basics ��186

GAP Centrals and Peripherals ��186

GATT Clients and Servers ��187

GAP vs� GATT ���187

Profiles, Services, and Characteristics ��188

The BLE API of the Moddable SDK ��189

The BLEClient Class ���190

The BLEServer Class ���191

Table of ConTenTsTable of ConTenTs

viii

Installing the BLE Host ��191

Creating a BLE Scanner ��192

Creating Two-Way Communication ���193

Connecting to the Peripheral ���195

Receiving Notifications ��198

Creating a Heart Rate Monitor ��200

Defining and Deploying Services ���200

Advertising ��203

Establishing a Connection ���204

Sending Notifications ��206

Responding to Read Requests ���211

Establishing Secure Communication ��215

Secure Heart Rate Monitor ��215

Conclusion ��220

Chapter 5: Files and Data ���221

Installing the Files and Data Host ���222

Files ��222

File Classes ���223

File Paths ���223

File Operations ��224

Writing to a File ���226

Reading from a File ���229

Directories ���231

Getting File System Information ��233

Preferences ���234

The Preference Class ���234

Preference Names ���235

Table of ConTenTsTable of ConTenTs

ix

Preference Data ���235

Reading and Writing Preferences ��236

Deleting Preferences ���237

Don’t Use JSON ���237

Security ���239

Resources ���239

Adding Resources to a Project ��240

Accessing Resources ��241

Using Resources ��241

Accessing Flash Memory Directly ���243

Flash Hardware Fundamentals ��244

Accessing Flash Partitions ��246

Example: Frequently Updated Integer ���251

Conclusion ��254

Chapter 6: Hardware ���255

Installing the Hardware Host ���256

Notes on Wiring ���256

Following the Wiring Instructions ��256

Troubleshooting Wiring Issues ���257

Blinking an LED ���258

Reading a Button ��260

Other Digital Input Modes ��262

Monitoring for Changes ���266

Controlling a Tri-color LED ��267

LED Setup ��268

ESP32 Wiring Instructions ���268

ESP8266 Wiring Instructions ���269

Table of ConTenTsTable of ConTenTs

x

Using Digital with a Tri-color LED ��270

Using PWM with a Tri-color LED ��271

Rotating a Servo ���274

ESP32 Wiring Instructions ���275

ESP8266 Wiring Instructions ���275

Understanding the servo Code ���276

Getting the Temperature ���277

TMP36 ���278

TMP102 ���282

Conclusion ��294

Chapter 7: Audio ���295

Speaker Options ��295

Adding the Analog Speaker ���297

ESP32 Wiring Instructions ���298

ESP8266 Wiring Instructions ���299

Adding an I2S Chip and Digital Speaker ��300

ESP32 Wiring Instructions ���300

ESP8266 Wiring Instructions ���302

Installing the Audio Host ���303

The AudioOut Class ���304

AudioOut Configuration ���304

Audio Hardware Protocols ���304

Audio Data Formats ���308

Audio Compression ��310

Setting the Audio Queue Length ��310

Playing Audio with AudioOut ���311

Instantiating AudioOut ���311

Table of ConTenTsTable of ConTenTs

xi

Playing a Single Sound ��312

Repeating a Sound ��313

Using Callbacks to Synchronize Audio ���313

Using Commands to Change Volume ���314

Playing a Sequence of Sounds ��314

Playing Sounds Simultaneously ��315

Playing Part of a Sound ���316

Flushing the Audio Queue ��317

Conclusion ��317

Chapter 8: Graphics Fundamentals ��319

Why Add a Display? ���320

Overcoming Hardware Limitations ��322

Pixel Rate Impacts Frame Rate ���323

Drawing Frames ��324

Scanline Rendering ���326

Restricting the Drawing Area ���327

Pixels���331

Pixel Formats ���332

Configuring a Host for a Pixel Format ��333

Freedom to Choose a Display ��335

Graphics Assets���335

Masks ��336

Fonts ��341

Color Images ��345

Display Rotation ��349

Rotating in Software ��350

Rotating in Hardware ���351

Table of ConTenTsTable of ConTenTs

xii

Poco or Piu? ��352

Conclusion ��355

Chapter 9: Drawing Graphics with Poco ���357

Installing the Poco Host ��357

Preparing to Draw ���358

Drawing Rectangles ��361

Filling the Screen ���361

Updating Part of the Screen ��363

Drawing Random Rectangles ��364

Drawing Blended Rectangles ��366

Drawing Bitmaps���370

Drawing Masks ��370

Drawing Color Images ���377

Drawing JPEG Images ���378

Filling with Color Images ���381

Drawing Masked Color Images ��383

Drawing Text ���387

Drawing a Text Shadow ���388

Measuring Text ��389

Truncating Text ��390

Wrapping Text ��391

Additional Drawing Techniques ���393

Restricting Text to a Box ��393

Easily Reusing Drawing Code ��396

Efficiently Rendering Gradients ���398

Touch Input ���402

Accessing the Touch Driver ���402

Reading Touch Input ��402

Table of ConTenTsTable of ConTenTs

xiii

Using Multi-touch ��404

Applying Rotation ��404

Conclusion ��405

Chapter 10: Building User Interfaces with Piu ���������������������������������407

Key Concepts ��408

Everything Is an Object ��408

Every User Interface Element Is a Content Object ���������������������������������������410

Not All Piu Objects Are Content Objects ���411

Installing the Piu Host ���413

“Hello, World” with Piu ��414

Fonts ��416

Adding Color ��423

Responding to Events with Behaviors ���428

Adding Images ��435

Drawing Part of an Image ��436

Drawing Multiple Icons from One Image ���438

Using Masks ��440

Tiling Images ���442

Building Compound User Interface Elements��448

Creating a Header ��449

Building Responsive Layouts ��454

Row and Column Layouts ��456

Scrolling Content ���460

Templates for Content Objects ��463

Creating a Button Template Class ��463

Content Constructor Arguments ��466

Table of ConTenTsTable of ConTenTs

xiv

Accessing Content Objects in a Container ��471

Using first, last, next, and previous ��471

Accessing Children by Index and Name ��472

Accessing Content with Anchors ���472

Defining and Triggering Your Own Events ���476

Triggering Events on a Content Object ��477

Distributing Events Inside a Container ��480

Bubbling Events Up the Containment Hierarchy ��484

Animation ��488

Easing Equations ���488

Animating Content Objects ��489

Animating Transitions ��494

Drawing a Graph in Real Time ���497

Adding an Onscreen Keyboard ��500

Organizing User Interface Code Using Modules ��506

The Modules ��507

The Application Logic ��508

The Splash Screen ���511

The Home Screen ��513

Adding More Screens ��517

Conclusion ��518

Chapter 11: Adding Native Code ���519

Installing the Host ���520

Generating Random Integers ��521

Creating a Native Function ��521

Implementing a Native Function ��522

Using the Hardware Random Number Generator ��523

Table of ConTenTsTable of ConTenTs

xv

Restricting Random Numbers to a Range ���526

Comparing Random Number Approaches ���528

The BitArray Class ���529

Using Memory Allocated by ArrayBuffer ���530

Using Memory Allocated by calloc ���533

Wi-Fi Signal Notifications ��542

The Test Code ��542

The WiFiRSSINotify Class ���544

The Native RSSINotifyRecord Structure ���544

The Constructor ���545

The Destructor ���550

The close Function ��550

The Callback ��551

Additional Techniques ���554

Debugging Native Code ���554

Accessing Global Variables ��555

Getting a Function’s Return Value ���556

Getting Values ��556

Setting Values ��557

Determining a Value’s Type��559

Working with Strings ���560

Ensuring Your Buffer Pointers Are Valid ���561

Integrating with C++ ���562

Using Threads ��562

Conclusion ��563

Glossary ��565

Index ���583

Table of ConTenTsTable of ConTenTs

xvii

About the Authors

Peter Hoddie is an engineer and entrepreneur focused on client software.

He is recognized for crafting compact and efficient code that pushes the

boundaries of user experience on consumer hardware. The software he and

his teams have built has powered mass-market consumer products from

companies including Apple, Palm, Sling, HP, Sony, and Whirlpool. Peter

recognizes that the first users of any product are the developers creating

it, and that those developers cannot build compelling consumer products

on a foundation that’s unstable, complex, or confusing. He therefore

champions investments in great tools and a simple runtime architecture.

Peter has founded several companies, including Kinoma, which merged

into Marvell Semiconductor. He led QuickTime development at Apple

during the 1990s as a Distinguished Engineer. He contributed to the

development of the QuickTime file format and its adoption by ISO into the

MPEG-4 standard. He is currently a member of the JavaScript language

standards committee (ECMA TC39) and chair of ECMA TC53 for “Smart

wearable systems and sensor-based devices.” Peter is particularly proud

of his work putting both the KinomaJS framework and Darwin Streaming

Server into open source. He continues to come to terms with the ten

patents that bear his name.

Lizzie Prader is a software engineer at Moddable in the San Francisco

Bay Area. She is an IoT skeptic working in the IoT space, hoping to make

consumer IoT products and other embedded systems more open and

customizable for the end user. She specializes in developing touch screen

user interfaces for embedded systems and creating developer resources.

xviii

Before Moddable, Lizzie worked as a developer relations engineer for the

Kinoma team at Marvell Semiconductor, helping customers get the most

out of Kinoma’s JavaScript-powered prototyping products. She earned

her bachelor’s degree in Computer Science from UC Berkeley. When

not sitting behind a computer, she enjoys being outdoors (in particular

running, hiking, and swimming), reading, and playing the piano.

abouT The auThorsabouT The auThors

xix

About the Technical Reviewers

Mark Wharton was born in England, was raised in Papua New Guinea

and Australia, and worked as a software engineer for startups and large

corporations in Australia, Japan, and the United States. He currently

works at Amazon on the Alexa Automotive initiative. Since his early days

programming the 6502 assembly language on Apple IIe and Commodore

64 computers, Mark excels at making the most of limited resources in

constrained environments. Now in his spare time, Mark enjoys applying

those skills to a new generation of low-cost, low-power devices using the

Moddable SDK.

Masahiro Shioji is a product creator who likes to bring technologies into

easy-to-use products and release them to the world. He started in product

development in the digital camera industry, at Sanyo Electric in Japan,

and produced a QuickTime/MPEG-4 direct encoding video camera in

collaboration with Peter Hoddie when Peter worked at Apple. Masahiro

went on to spread the joy of creating something to university students,

including operating a lab toward that end while continuing his own work

in product development and new business development.

xxi

Caroline Rose is a freelance technical writer and editor based in

Palo Alto, California. With a career that has included 7 years working

as a programmer, her focus has been on producing highly technical

documentation, most notably as lead writer and editor of the original

Inside Macintosh. Caroline was also Manager of Publications at NeXT and

the editor of Apple’s quarterly technical journal, develop. Her subsequent

freelance work began with coauthoring updated versions of Adobe’s

PostScript and PDF reference manuals and went on to include clients such

as AMD, Apple, Apress, Kinoma, Logitech, Nokia, and Sony. In her free

time, Caroline enjoys playing guitar, singing, swimming, hiking, traveling,

and working on her memoir.

About the Editor

xxiii

Acknowledgments

This book is better because of the generous assistance of many talented

individuals we’re fortunate to call friends.

• Caroline Rose, editor – Caroline brought her

legendary precision and clarity to this book. Everything

about this book is better thanks to her patient work.

• Mark Wharton, technical reviewer – Mark carefully

reviewed the entire text, and then ran and reviewed

every single example.

• Masahiro Shioji, technical reviewer, Chapter 2 –

Shioji-san brought the perspective of an embedded

C developer to his thoughtful review.

• Brian Friedkin, BLE advisor – Creator of the BLE

implementation in the Moddable SDK, Brian made

sure the explanations and examples in Chapter 4 are

just right.

• Patrick Soquet, advisor – As the inventor of the XS

JavaScript engine, Patrick is the starting point for

everything we know about embedded JavaScript.

• Chris Krueger, illustrator – Chris turned our rough

ideas and rougher sketches into the simple, clear

images you see throughout the book.

• Team Moddable – Our colleagues at Moddable have

been incredibly supportive and patient over the many

months it took to create this book.

xxv

Foreword

Those of you who have read Wikipedia cover to cover will remember the

definition of hybrid vigor. For the rest of you:

Heterosis, hybrid vigor, or outbreeding enhancement is the
improved or increased function of any biological quality in a hybrid
offspring. An offspring is heterotic if its traits are enhanced as a
result of mixing the genetic contributions of its parents.

— Wikipedia, page 69105

The practical upshot of this is that if you take separate, inbred strains

of, say, corn and breed them together, you get a great big vigorous plant,

hence the name hybrid vigor.

The Moddable SDK, as described in this book, represents the hybrid

vigor between embedded and JavaScript development. Using Moddable is

a short path to very large amounts of corn.

If you’re an embedded developer, you delight in the ability to get

close to the metal, to program on tiny, inexpensive devices without the

affordances offered by development on large systems. Writing in C/C++

and/or assembly language gives you a great deal of control, but you often

struggle with shoehorning functionality into these small devices, wrestle

brittle development and debugging environments, and build ad hoc

device-specific ways of updating code and managing resources. If the

embedded device has a display or is capable of wireless communications,

you need to track down the right tools to build, simulate, and test a wide

variety of functionality in the absence of a rich underlying OS. A great deal

of your energy goes into managing the constraints of these small systems

rather than into the applications themselves.

xxvi

If you’re a JavaScript developer, you delight in its productivity,

versatility, and ubiquity. The language is forgiving to a novice yet extremely

powerful in the hands of a master. It’s versatile enough to be used in front-

end development as well as back-end infrastructure. Its huge community

continually enriches the language and libraries and makes it arguably the

most popular language ever. All this versatility and power comes with a

price; until now a robust version of JavaScript has not scaled down to the

point where it will fit on a small embedded device.

Moddable takes the best of these two strains and blends them together

on an emerging class of powerful new microcontrollers. Embedded

developers no longer have to regard JavaScript with envious eyes. They

now have access to a versatile high-level language that still allows them to

stay close to the metal and maintain tight control. JavaScript developers

can reach ridiculously inexpensive devices with none of the friction of

traditional embedded development, yet still work with affordances present

on much larger systems.

It’s embarrassingly easy to be productive in the Moddable

environment, with its rich SDK for managing secure web connectivity,

Wi-Fi, Bluetooth, sound, graphics, user interfaces, and more; its elegant,

full-featured debugging; and a wide variety of target hardware that ranges

from inexpensive to nearly free.

My day job is investing in technology startups, and as such it pains me

to see companies attempting embedded development with blunt tools.

Moddable can save developers time and money and produce beautifully

polished embedded applications. As an investor, I love tools that reduce

risk and make companies more capital-efficient. As an avid maker, I love

tools that make making even more fun.

If you develop embedded products, or if you’re a hobbyist or even just

someone who loves writing code, Moddable’s hybrid vigor changes the

game. Go grow some corn.

— Peter Barrett

forewordforeword

xxvii

Introduction

This book is a hands-on guide to writing the software for IoT products.

Each chapter is filled with compact, focused examples for you to learn

from, study, run, and modify. When you finish this book, you’ll know the

fundamentals of building sophisticated IoT products on low-cost hardware

using modern JavaScript.

IoT products differ from traditional products in two ways: they have

the ability to run software and they have the ability to communicate. Their

communication is often over the internet, but it may be more local—for

example, between products on your home Wi-Fi network or with your

phone over a Bluetooth connection.

IoT products are often created by adding a microcontroller with Wi-Fi

or Bluetooth capabilities to a traditional product. The cost of adding a

microcontroller with communication capabilities is about one dollar today

and continues to fall. At that price, nearly every product is going to be an

IoT product—not just televisions and thermostats but also light bulbs,

light switches, electric wall plugs, door locks, window shades, garage door

openers, ceiling fans, rice cookers, refrigerators, and more.

The code in this book runs on the ESP32 and ESP8266 microcontrollers

from Espressif, which offer remarkable power at an unprecedented cost.

Unsurprisingly, they’re widely deployed in IoT products and extremely

popular with makers and hobbyists. What you’ll learn in this book isn’t

limited to these microcontrollers, however; it can be applied to a growing

number of microcontrollers from manufacturers including Nordic,

Qualcomm, and Silicon Labs.

Adding IoT hardware to a traditional product is the easy part; the hard

part is the software. Software defines the product’s features and behavior.

xxviii

It determines whether the product is reliable and easy to use and whether

it’s secure from external attacks and respects the privacy of users. Software

decides what other products the product can communicate with, its energy

use, the ease of adding new features over time, and much more.

Software is fundamental to IoT products, yet most of the industry

continues to write the software for them using the same tools and

techniques embedded software developers have used for decades. While

the hardware has advanced by orders of magnitude, the software has not.

That’s a problem, because much more is expected of the software in an IoT

product today than the software in a digital thermostat from 1999.

 JavaScript: A New Tool
This book introduces a new way of building the software for IoT

products—a way that doesn’t try to reinvent the wheel by starting over. It

adds one new tool to the many that embedded software developers have

used for years: the JavaScript programming language. It may sound like a

stretch to suggest that a programming language can transform the software

of an IoT product, but it can. A modern high-level language is the perfect

antidote to decades-old, low-level development methods.

JavaScript may seem an unlikely starting point for future generations

of IoT products. After all, JavaScript began as a simple programming

language to add a little interactivity to web pages at the dawn of the web.

But as the web has evolved, JavaScript has evolved with it; it’s now a

formally defined programming language standardized by an international

committee with representatives from major companies, including Apple,

Facebook, Google, Microsoft, Mozilla, and PayPal. The language has been

made secure by two decades of attacks in the web browser. It’s been made

powerful by the demands of increasingly sophisticated web pages. And it’s

been made reliable and easy to use to meet the needs of millions of web

developers around the world.

InTroduCTIonInTroduCTIon

xxix

Developers working in JavaScript are incredibly productive and

nimble. Within hours of a natural disaster, new websites appear with

impressive features implemented in JavaScript. Major websites like

Facebook and LinkedIn aren’t just built in JavaScript but deploy new

features daily using JavaScript. Server-side JavaScript with Node.js now

powers entire businesses, and many mobile apps are built in JavaScript.

JavaScript is ready for IoT developers to use. This book gets IoT

developers ready to use JavaScript.

 Recent Technical Advances
JavaScript wasn’t always a good fit for IoT. While the JavaScript engines

built into web browsers are breathtakingly fast, that speed comes at a

cost. Those engines are far too big to store in a low-cost microcontroller,

and they require orders of magnitude more memory than is built into

the hardware. The XS JavaScript engine is different: created by Kinoma

and maintained by Moddable, it’s optimized for the constraints of the

microcontrollers that power low-cost IoT products. XS is very small and

still plenty fast.

To keep the engine small, you might expect XS to support only a

subset of the JavaScript programming language, but that’s not the case.

XS implements over 99% of the 2020 version of the JavaScript language

specification; that’s more than any web browser. As an optimization, XS

allows you to omit many features of the language to make the engine even

smaller—but that’s your choice. All the features are there if you want to use

them.

Having a small, efficient, and compatible JavaScript engine isn’t

enough. The JavaScript language only performs computations; it needs a

runtime to interact with the outside world. For a web page, the runtime is

the web browser; for a web server, the runtime is Node.js. For IoT products,

this book uses the Moddable SDK as the runtime.

InTroduCTIonInTroduCTIon

xxx

The Moddable SDK includes a large collection of efficient modules

for common tasks like communicating over the internet, controlling IoT

hardware, managing security, and storing data. The Moddable SDK also

has something unusual for an IoT runtime: deep support for high-quality,

rich user interfaces on low-cost touch screens. While you may not yet be

considering a screen for your IoT product, your future customers probably

wish you would, because a screen makes your product easier to set up and

use and enables it to provide more features.

 For Embedded Programmers and Web
Developers
There are no veteran IoT software developers, because the field is too

new. We’re all still learning. Most IoT developers come from one of two

backgrounds: there are developers building software for embedded

systems, who are now being called on to create IoT products with

connectivity, complex behaviors, and countless features; and there are

developers working on the web, who are being called on to build IoT

products on hardware that comes with resource and performance limits

that are unimaginable on the web.

JavaScript is at the intersection of developers coming from the

embedded and web software worlds. The JavaScript language itself

embodies this intersection, arriving from the web with a syntax that

looks a lot like the C and C++ languages long favored by embedded

developers. JavaScript and C/C++ code can call each other, making it

natural to combine both in a product. JavaScript has long been used for

communication on the web, even giving rise to the JSON data interchange

format commonly by IoT products to communicate.

This book is for developers with a background in either embedded

software or web development. For experienced embedded developers

unfamiliar with JavaScript, an early chapter introduces C and C++

InTroduCTIonInTroduCTIon

xxxi

programmers to JavaScript. For experienced web developers getting

started in embedded systems, the book provides tips on memory and

performance optimization unique to IoT product development.

 Organization of This Book
Here’s how this book is organized:

• Chapter 1 takes you through gathering all the hardware

and software required for this book and running your

first JavaScript application on a microcontroller. Along

the way, it shows how to use the helpful features of

xsbug, the JavaScript source-level debugger.

• Chapter 2 is a fast-paced, practical introduction to

JavaScript for developers who are already familiar with

C or C++. The JavaScript language introduced here is

the same language that’s used on the web, but since

this book focuses on embedded systems, the chapter

addresses some aspects of JavaScript that are seldom

used by web developers.

• Chapter 3 is all about your IoT device’s connection

to the network, including different ways to connect,

how to communicate using various network protocols,

how to make secure connections, and the advanced

topics of how to turn your device into a private Wi-Fi

base station and how to use JavaScript promises with

networking APIs.

• Chapter 4 focuses on Bluetooth Low Energy (BLE),

a wireless communication widely used between two

devices in close proximity to each other. Products

choose to use BLE instead of Wi-Fi if minimizing

InTroduCTIonInTroduCTIon

xxxii

energy use is particularly important and when direct

communication with another device, such as a mobile

phone, is an acceptable alternative to internet access.

• Chapter 5 explains how to work with stored data on

embedded systems, given their code size limitations,

constrained RAM, and performance constraints. It

explains the three primary ways to store data—files,

preferences, and resources—and introduces direct

access to flash memory, an advanced technique that

offers the greatest flexibility.

• Chapter 6 gets you started on writing your own

JavaScript code to interact with hardware. It includes

examples that require just a few widely available,

inexpensive sensors and actuators and shows you how

to communicate with them directly using different

hardware protocols.

• Chapter 7 explains how to play sounds using an

inexpensive speaker that’s easy to attach directly

to an ESP32 or ESP8266. You’ll also learn how you

can achieve higher-quality audio playback using an

external I2S audio driver and how to choose the optimal

audio format for your project.

• Chapter 8 covers first the benefits and cost-

effectiveness of adding a display to your IoT

product and then the fundamentals of graphics

on microcontrollers, including background on

optimizations and constraints, information about how

to add graphics assets to projects, and an introduction

to various drawing methods. The next two chapters

provide more details.

InTroduCTIonInTroduCTIon

xxxiii

• Chapter 9 discusses the Poco renderer through

examples showing how to deliver high-quality, high-

performance graphics on inexpensive microcontrollers.

Poco is part of the Commodetto graphics library, which

adds features including offscreen graphics buffers,

bitmaps, and instantiation of graphics assets from

resources, as demonstrated in some of the examples.

• Chapter 10 elaborates on Piu, the object-oriented

user interface framework that uses the Poco renderer

to draw and simplifies the process of creating

sophisticated user interfaces. The chapter provides

an overview of how Piu works and introduces its key

capabilities through a series of examples.

• Chapter 11 presents the advanced topic of XS in C, the

low-level C API provided by the XS JavaScript engine

so that you can integrate C code into your JavaScript

projects (or JavaScript code into your C projects). Using

XS in C enables you to optimize memory use, improve

performance, reuse existing C and C++ code libraries,

and access unique hardware capabilities.

Finally, there’s a Glossary to remind you of the meanings of terms

defined in this book.

 What’s Next
As you work your way through the chapters of this book, you’ll acquire new

knowledge and skills. There are many paths ahead:

• If you’re a professional product developer, you can

apply what you’ve learned to your IoT products.

InTroduCTIonInTroduCTIon

xxxiv

• If you operate a cloud service, you can build modules to

help IoT product developers connect more easily with

your service.

• If you’re a sensor manufacturer, you can create

modules to gather data from your sensors, streamlining

the process of using those sensors in IoT products.

• If you’re a maker or hobbyist, you can use your new

knowledge and skills in your next project.

As you become proficient in using JavaScript to create IoT products,

you may find that you spend less time and energy trying to make the

product work at all and more time making it work better, do more, and be

easier to use. That’s the real power of building IoT products in JavaScript.

One reason the JavaScript language has evolved so quickly for so

long is that JavaScript developers have always shared their knowledge

and experience in online communities. This sharing has resulted in a

huge body of JavaScript source code being published under free and

open source software licenses. This code is available to you to learn

from, improve, and build on. As you create your own IoT projects using

JavaScript, consider sharing them with others, so that other developers can

learn from you and build on your work.

When you’re ready to explore more, there are many resources on the

web to help:

• The GitHub repository for this book contains all the

examples in the book, updates, and errata to correct

any errors. You can open an issue to report a problem

or ask a question.

 https://github.com/Moddable-OpenSource/iot-

product- dev-book

InTroduCTIonInTroduCTIon

https://github.com/Moddable-OpenSource/iot-product-dev-book
https://github.com/Moddable-OpenSource/iot-product-dev-book

xxxv

• The Moddable SDK includes reference documentation

and examples for all the capabilities introduced in this

book. It also includes the source code for the modules,

so you can learn from how they work and enhance

them to meet your needs. If you have questions or find

a problem, you can open an issue.

https://github.com/Moddable-OpenSource/

moddable

• The Moddable blog has in-depth articles about

building IoT products using JavaScript. You can learn

about the latest language capabilities supported by the

XS JavaScript engine, security capabilities, and new

features of the Moddable SDK.

https://blog.moddable.com/blog/

• Twitter is a great way to keep up with the latest

developments. You can follow the authors of this book

on Twitter at @lizzieprader and @phoddie and follow

@moddabletech for the latest on the Moddable SDK,

events, meetups, and new projects that developers have

created.

InTroduCTIonInTroduCTIon

https://github.com/Moddable-OpenSource/moddable
https://github.com/Moddable-OpenSource/moddable
https://blog.moddable.com/blog/

1© Peter Hoddie and Lizzie Prader 2020
P. Hoddie and L. Prader, IoT Development for ESP32 and ESP8266 with JavaScript,
https://doi.org/10.1007/978-1-4842-5070-9_1

CHAPTER 1

Getting Started
This chapter takes you through gathering all the hardware and software

required for this book and running your first JavaScript application on

a microcontroller. Along the way, the chapter also shows how to use the

helpful features of xsbug, the JavaScript source-level debugger.

Installing all the software tools and setting up your development

environment takes a little time, but once you can run one example you’ll

be ready to run any example in this book. You’ll also have everything you

need to begin writing your own applications using the Moddable SDK.

 Hardware Requirements
The majority of the examples in this book require very little hardware, but

you at least need the following:

• A computer with a USB port (macOS Sierra version

10.12 or later, Windows 7 Pro SP1 or later, or Linux)

• A Micro USB cable (high-speed, data sync–capable)

• An ESP32 NodeMCU module or ESP8266 NodeMCU

module

https://doi.org/10.1007/978-1-4842-5070-9_1#ESM

2

Note All the examples run on the ESP32 or the ESP8266, with the
exception that the examples using Bluetooth Low Energy (BLE), as
discussed in Chapter 4, run only on the ESP32, because the ESP8266
doesn’t support BLE. If you’re interested in experimenting with the
BLE examples in this book, you’ll need to use an ESP32.

The examples were tested with the ESP32 and ESP8266 modules,

shown in Figure 1-1.

The examples using sensors and actuators (Chapters 6 and 7) require a

few additional components:

• Tactile button

• Tri-color LED (common anode)

• Three 330 Ohm resistors

• Micro servo

• TMP36 temperature sensor

• TMP102 temperature sensor

• Mini metal speaker (8 Ohm, 0.5W)

• Jumper wires

Figure 1-1. ESP32 (left) and ESP8266 (right)

ChAPtEr 1 GEttInG StArtEd

3

These hardware components are shown in Figure 1-2. More

information on where you can purchase them is provided in the chapters

where they’re discussed.

The examples that use the Poco renderer (Chapter 9) or the Piu user

interface framework (Chapter 10) can be run on the hardware simulator on

your computer, but it’s highly recommended that you use an actual display

and run them on your ESP32 or ESP8266. If you’re comfortable wiring

together components on a breadboard, here’s what you need:

• An ILI9341 QVGA touch display (Figure 1-3), which

is available on eBay and elsewhere online; search for

“spi display 2.4 touch” and you should find several

inexpensive options. Note that although this display

works well, there are many other choices. The

Moddable SDK includes built-in support for several

other displays of varying cost and quality; see the

documentation/displays directory of the Moddable

SDK for more information.

Figure 1-2. Hardware components for Chapters 6 and 7

ChAPtEr 1 GEttInG StArtEd

4

• A breadboard.

• Male-to-female jumper wires.

Figure 1-3. ILI9341 QVGA touch display

If you’d rather not do the wiring yourself, you can purchase a Moddable

One or Moddable Two from the Moddable website. Moddable One is an

ESP8266 wired to a capacitive touch screen; Moddable Two is an ESP32

wired to the same touch screen. Both come as ready-to-use development

kits in a compact form factor. Figure 1-4 shows a Moddable One.

ChAPtEr 1 GEttInG StArtEd

5

The Moddable SDK also supports ESP32-based development kits

with built-in screens. A popular choice is the M5Stack FIRE, shown

in Figure 1- 5. See the Moddable SDK repository on GitHub for more

information about supported development kits.

Figure 1-4. Moddable One

Figure 1-5. M5Stack FIRE

ChAPtEr 1 GEttInG StArtEd

6

 Software Requirements
You need the following software:

• Code editor

• Example code files

• Moddable SDK

• Build tools for the ESP32 and/or ESP8266

You can choose whichever code editor you prefer. There are many

JavaScript-friendly editors, including Visual Studio Code, Sublime Text 3,

and Atom.

The next sections explain how to download the example code files and

set up the Moddable SDK and build tools for your device.

 Downloading the Example Code
All the examples are available at https://github.com/Moddable-

OpenSource/iot-product-dev-book. You can download the example code

using the git command line tool.

Note In this book, commands that you enter on the command line
are preceded by a > symbol. this symbol is not part of the command;
it’s included only to clarify where each separate command begins.

• On macOS/Linux, use the terminal:

> cd ~/Projects

> git clone https://github.com/Moddable-OpenSource/

 iot-product- dev-book

ChAPtEr 1 GEttInG StArtEd

https://github.com/Moddable-OpenSource/iot-product-dev-book
https://github.com/Moddable-OpenSource/iot-product-dev-book

7

• On Windows, use the Command Prompt (changing

<username> to your username):

> cd C:\Users\<username>\Projects

> git clone https://github.com/Moddable-OpenSource/

 iot-product- dev-book

You also need to set the EXAMPLES environment variable to point at

your local copy of the examples repository, as follows:

• On macOS/Linux:

> export EXAMPLES=~/Projects/iot-product-dev-book

• On Windows:

> set EXAMPLES=C:\Users\<username>\Projects\

 iot-product-dev- book

 Setting Up Your Build Environment
Before building and running the examples, follow the instructions in

the “Moddable SDK – Getting Started” document in the documentation

directory of the Moddable SDK. This document provides step-by-step

instructions for installing, configuring, and building the Moddable SDK for

macOS, Linux, and Windows, as well as instructions for installing tools you

need in order to work with the ESP32 and ESP8266.

 Using xsbug
The xsbug debugger provides source-level debugging of JavaScript code

running on the XS JavaScript engine. It connects to devices via USB and

has a graphical user interface (shown in Figure 1-6) to make it easy to use.

ChAPtEr 1 GEttInG StArtEd

8

Similar to other debuggers, xsbug supports setting breakpoints and

browsing source code, the call stack, and variables. It also provides real-

time instrumentation to track memory usage and to profile application

and resource consumption.

When you’re developing for a microcontroller, the build system

automatically opens xsbug before launching your application on the target

device.

When developing for the desktop simulator, you need to open xsbug

yourself, by either double-clicking its application icon or opening it from

the command line as follows:

• On macOS:

> open $MODDABLE/build/bin/mac/release/xsbug.app

• On Windows/Linux:

> xsbug

Figure 1-6. xsbug debugger

ChAPtEr 1 GEttInG StArtEd

9

 Important Features for Examples in This Book
This book doesn’t refer to xsbug often because the examples have already

been debugged. However, xsbug is an invaluable tool as you create your

own applications. The most important xsbug features used in this book

are as follows:

• Machine tabs – Each XS virtual machine connected to

xsbug gets its own tab in the upper left of the window

(as highlighted by the dashed border in Figure 1-7).

Clicking a tab changes the left pane to the machine tab

view, where you can view instrumentation, use control

buttons, and more.

• Control buttons – These graphically labeled buttons

(highlighted by the dotted border in the figure) at

the top of the machine tab view control the virtual

machine. From left to right, they are Kill, Break, Run,

Step, Step In, and Step Out.

• Console – It’s often useful to be able to view diagnostic

messages during execution of an application. The

trace function writes messages to the debug console in

the bottom right of xsbug.

See the xsbug document in the documentation/xs directory of the

Moddable SDK for full documentation of all the features of xsbug.

Figure 1-7. xsbug machine tabs and control buttons

ChAPtEr 1 GEttInG StArtEd

10

 Running Examples
The examples in the repository for this book are organized by chapter,

each one having several examples. To make it faster to build and launch

the examples, each chapter has its own host, which contains the software

environment needed to run the examples for that chapter; the host is

the collection of JavaScript modules, configuration variables, and other

software available for your application to use. Because space is very limited

in microcontrollers, it isn’t possible to have a single host that contains all

the modules used in the examples in this book.

You can think of the host as essentially the base application. The web

browser is the host when you run JavaScript in a web browser; Node.js is

the host when you run JavaScript on a web server.

Installing the host separately, rather than installing the host and example

together, significantly speeds up development, by minimizing the amount

of software that needs to be downloaded. Installing a host on your device

typically takes between 30 and 90 seconds. Once that’s done, you can install

most examples in just a few seconds, because the host already contains the

device firmware and JavaScript modules required by the examples.

The next sections walk you through the entire process of installing

a host and then an example, starting with helloworld. Note that in the

context of this book, installing an application causes the application to

then run on the device.

 Installing the Host
The first step is to flash the device to install the host. The source code

for each chapter’s host is available to read in the host directory, if you’re

curious. To use the host, all you really need to know is that it includes all

the modules necessary for the corresponding examples.

You use the mcconfig command line tool to flash the device.

ChAPtEr 1 GEttInG StArtEd

11

 mcconfig
The mcconfig command line tool builds and installs applications on

microcontrollers or in the simulator. The commands to use to install this

chapter’s host on each supported platform are provided here.

 On the ESP32, use these commands:

• On macOS/Linux:

> cd $EXAMPLES/ch1-gettingstarted/host

> mcconfig -d -m -p esp32

• On Windows:

> cd %EXAMPLES%\ch1-gettingstarted\host

> mcconfig -d -m -p esp32

 On the ESP8266, use these commands:

• On macOS/Linux:

> cd $EXAMPLES/ch1-gettingstarted/host

> mcconfig -d -m -p esp

• On Windows:

> cd %EXAMPLES%\ch1-gettingstarted\host

> mcconfig -d -m -p esp

 Confirming the Host Was Installed
Once the host is installed, it writes the message shown in Figure 1-8 to the

debug console.

ChAPtEr 1 GEttInG StArtEd

12

 Installing helloworld
The helloworld example consists of just three lines of JavaScript:

debugger;

let message = "Hello, World";

trace(message + "\n");

This example uses two important features:

• The debugger statement, which halts execution and

breaks into xsbug.

• The trace function, which writes messages to the

debug console. Note that trace doesn’t automatically

add a newline character (\n) at the end of the message.

This enables you to use several trace statements to

Figure 1-8. Message from host in xsbug

ChAPtEr 1 GEttInG StArtEd

13

generate the output of a single line. Be sure to include

the newline character at the end of the line so that the

text displays properly in xsbug.

You use mcrun to install examples.

 mcrun
The mcrun command line tool builds and installs additional JavaScript

modules and resources that change the behavior or appearance of

Moddable applications on microcontrollers or in the simulator. Both

mcconfig and mcrun build scripts and resources. Unlike mcrun, mcconfig

also builds native code. In JavaScript terms, mcconfig builds the host.

After you install an example using mcrun, the device reboots. This

relaunches the host, which in turn runs the example you installed.

Use the following commands to install the helloworld example. Make

sure you change <platform> to the correct platform for your device, either

esp32 or esp.

• On macOS/Linux:

> cd $EXAMPLES/ch1-gettingstarted/helloworld

> mcrun -d -m -p <platform>

• On Windows:

> cd %EXAMPLES%\ch1-gettingstarted\helloworld

> mcrun -d -m -p <platform>

 Finishing Up
You should immediately break into xsbug once the application is installed.

Click the Run button to see the message Hello, World written to the

debug console, as shown in Figure 1-9.

ChAPtEr 1 GEttInG StArtEd

14

If everything goes well, you can move on to the “Conclusion” section of

this chapter if you’re working with a bare NodeMCU board. If you want to

add a display—which is highly recommended—continue with the “Adding

a Display” section instead.

If you ran into issues, see the next section.

 Troubleshooting
When you’re trying to install an application, you may experience

roadblocks in the form of errors or warnings; this section explains some

common issues and how to solve them.

 Device Not Connected/Recognized
The error message

error: cannot access /dev/cu.SLAB_USBtoUART

Figure 1-9. Hello, World written to console in xsbug

ChAPtEr 1 GEttInG StArtEd

15

means that the device is not connected to your computer or the computer

doesn’t recognize the device. There are a few reasons this can happen:

• Your device is not plugged into your computer. Make

sure it’s plugged in when you run the build commands.

• You have a USB cable that is power only. Make sure

you’re using a data sync–capable USB cable.

• The computer does not recognize your device. To fix

this problem, see the instructions that follow for your

operating system.

 macOS/Linux

To test whether your computer recognizes your device, unplug the device

and enter the following command:

> ls /dev/cu*

Then plug in the device and repeat the same command. If nothing new

appears, the device isn’t being seen. Make sure you have the correct VCP

driver installed.

If it is seen, you now have the device name and you need to edit

the UPLOAD_PORT environment variable. Enter the following command,

replacing /dev/cu.SLAB_USBtoUART with the name of the device on your

system:

> export UPLOAD_PORT=/dev/cu.SLAB_USBtoUART

 Windows

Check the list of USB devices in Device Manager. If your device shows

up as an unknown device, make sure you have the correct VCP driver

installed.

ChAPtEr 1 GEttInG StArtEd

16

If your device shows up on a COM port other than COM3, you need to

edit the UPLOAD_PORT environment variable. Enter the following command,

replacing COM3 with the appropriate device COM port for your system:

> set UPLOAD_PORT=COM3

 Incompatible Baud Rate
The following warning message is normal and is no cause for concern:

warning: serialport_set_baudrate: baud rate 921600 may not work

However, sometimes the upload starts but does not complete. You can

tell an upload is complete after the progress bar traced to the console goes

to 100%. For example:

.. [16%]

.. [33%]

.. [49%]

.. [66%]

.. [82%]

.. [99%]

.. [100%]

There are a few reasons the upload may fail partway through:

• You have a faulty USB cable.

• You have a USB cable that does not support higher

baud rates.

• You’re using a board that requires a lower baud rate

than the default baud rate that the Moddable SDK uses.

ChAPtEr 1 GEttInG StArtEd

17

To solve the last two problems, you can change to a slower baud rate as

follows:

 1. If you’re working with an ESP32, open moddable/

tools/mcconfig/make.esp32.mk; if an ESP8266,

open moddable/tools/mcconfig/make.esp.mk.

 2. Find this line, which sets the upload speed to

921,600:

UPLOAD_SPEED ?= 921600

 3. Set the speed to a smaller number. For example:

UPLOAD_SPEED ?= 115200

 Device Not in Bootloader Mode
This issue is not uncommon if you’re using certain ESP32-based boards.

Status messages stop being traced briefly when you attempt to flash the

device, and after several seconds you receive this error message:

A fatal error occurred: Failed to connect to ESP32: Timed out

waiting for packet header

If the device is not in bootloader mode, you cannot flash the device. If

you’re using a NodeMCU module, follow these steps every time you flash:

 1. Unplug the device.

 2. Hold down the BOOT button (circled in

Figure 1-10).

 3. Plug the device into your computer.

 4. Enter the mcconfig command.

 5. Wait a few seconds and release the BOOT button.

ChAPtEr 1 GEttInG StArtEd

18

 Adding a Display
Although most of the examples in this book don’t require a display, adding

a display to the ESP32 or ESP8266 greatly improves the user experience. It

enables you to do the following:

• Show more information than a few blinking lights

• Create modern user interfaces

• Add functionality

The examples in this book are designed for a display with 240 x 320

or 320 x 240 resolution (for example, QVGA). These displays are typically

between 2.2" and 3.5" in size and were common in early smart phones.

Displays of other sizes may be connected to these microcontrollers, but

this size is a good match for the capabilities of these microcontrollers.

The following sections show how to connect the ILI9341 QVGA touch

display to the ESP32 or ESP8266. If you’re using a development board

like the Moddable One or Moddable Two, you can skip to the “Installing

helloworld-gui” section.

Figure 1-10. BOOT button on ESP32

ChAPtEr 1 GEttInG StArtEd

19

 Connecting a Display to the ESP32
Table 1-1 and Figure 1-11 show how to connect a display to the ESP32.

Table 1-1. Wiring to connect display to ESP32

ILI9341 Display ESP32

SdO/MISO GPIO12

LEd 3.3V

SCK GPIO14

SdI/MOSI GPIO13

CS GPIO15

dC GPIO2

rESEt 3.3V

Gnd Gnd

VCC 3.3V

t_dO GPIO12

t_dIn GPIO13

t_CLK GPIO14

t_IrQ GPIO23

t_CS GPIO18

ChAPtEr 1 GEttInG StArtEd

20

 Connecting a Display to the ESP8266
Table 1-2 and Figure 1-12 show how to connect a display to the ESP8266.

Figure 1-11. Wiring diagram for connecting display to ESP32

ChAPtEr 1 GEttInG StArtEd

21

Table 1-2. Wiring to connect display to ESP8266

ILI9341 Display ESP8266

SdO/MISO GPIO12

LEd 3.3V

SCK GPIO14

SdI/MOSI GPIO13

CS GPIO15

dC GPIO2

rESEt 3.3V

Gnd Gnd

VCC 3.3V

t_dO GPIO12

t_dIn GPIO13

t_CLK GPIO14

t_IrQ GPIO16

t_CS GPIO0

ChAPtEr 1 GEttInG StArtEd

22

 Installing helloworld-gui
The helloworld-gui example is a version of helloworld that displays text

on the screen. If you wired a display to a device yourself, reflashing the

device with the helloworld-gui application is a good way to test whether

the wiring is correct.

The commands to use are very similar to the ones used to install

helloworld. The only difference is the platform identifier. The platform

identifier tells the build system to include the proper display and touch

drivers. If you’re using a Moddable One, the platform identifier is esp/

moddable_one; for a Moddable Two, it’s esp32/moddable_two. If you added

a display according to the instructions in the preceding sections, the

platform identifier is either esp32/moddable_zero or esp/moddable_zero.

Use the following commands to install the helloworld-gui example.

Make sure you change <platform> to the correct platform for your device.

Figure 1-12. Wiring diagram for connecting display to ESP8266

ChAPtEr 1 GEttInG StArtEd

23

• On macOS/Linux:

> cd $EXAMPLES/ch1-gettingstarted/helloworld-gui

> mcconfig -d -m -p <platform>

• On Windows:

> cd %EXAMPLES%\ch1-gettingstarted\helloworld-gui

> mcconfig -d -m -p <platform>

If you specify the correct platform and your wiring is correct, you will

see the screen shown in Figure 1-13.

Figure 1-13. Graphical helloworld application

ChAPtEr 1 GEttInG StArtEd

24

 Conclusion
Now that your development environment is set up and you’re familiar with

the process of installing this chapter’s examples on your device, you’re

ready to try some more examples!

At this point, you have all the materials and skills you need to follow

along with Chapters 2 through 10. These chapters are independent of

each other, so you can read them in any order. As you start working with

the examples in a chapter, be sure to install that chapter’s host or you’ll

encounter errors when launching the examples. Once you feel comfortable

with the APIs of the Moddable SDK, you can move on to Chapter 11, which

covers more advanced topics.

ChAPtEr 1 GEttInG StArtEd

25© Peter Hoddie and Lizzie Prader 2020
P. Hoddie and L. Prader, IoT Development for ESP32 and ESP8266 with JavaScript,
https://doi.org/10.1007/978-1-4842-5070-9_2

CHAPTER 2

JavaScript for
Embedded C and
C++ Programmers
This chapter is a fast-paced, practical introduction to JavaScript for

developers who are already familiar with C or C++. It assumes that you

already know how to program and, perhaps, have some development

experience with embedded systems. The JavaScript language introduced

here is exactly the same language that’s used on the web. But since the

focus here is on embedded systems rather than web browsers, this chapter

addresses some aspects of JavaScript that are seldom used by developers

working on the web. For example, consider that it’s almost impossible

to write embedded software without manipulating binary data (such as

an array of bytes); JavaScript supports binary data with built-in typed

array classes, yet most web developers never use that feature because it’s

unnecessary when building a web page. So even if you’re familiar with

JavaScript on the web, you may want to read this chapter to familiarize

yourself with language features more common on embedded systems than

on the web.

C and C++ programmers have a big advantage when getting started

with JavaScript, because the language looks quite similar to C. That’s no

accident: the JavaScript programming language was designed to be similar

https://doi.org/10.1007/978-1-4842-5070-9_2#ESM

26

to the Java programming language; Java was created as an evolution of

C++; and C++ was created to bring object-oriented programming to C. The

many similarities will help you quickly read and write JavaScript code. Still,

the languages are also different in many respects. This chapter uses the

similarities as a foundation to introduce you to some of the differences.

JavaScript is now more than 20 years old, and it’s constantly evolving.

This chapter introduces modern JavaScript, including the features in

the 2019 edition of JavaScript as well as some (like private fields) that

are on track for inclusion in a future edition. Only features of JavaScript

that are part of the standard language are described here. Because of

JavaScript’s long history, certain features are no longer recommended

for use; this chapter identifies some of them. In particular, JavaScript 5th

Edition, standardized in 2012, introduced strict mode, which eliminates

a handful of confusing and inefficient features. Those original behaviors

remain available in sloppy mode, which is primarily used for backward

compatibility for websites, but this book uses strict mode exclusively.

 Fundamental Syntax
This section introduces fundamentals such as how to use JavaScript to

make function calls, declare variables, and control the flow of execution

with if, switch, for, and while statements. All of these are very similar in

C and JavaScript, but you’ll learn about some important differences along

the way.

 “Hello, world”
The traditional starting point for learning C is the hello, world program

from Kernighan and Ritchie’s book The C Programming Language. In

JavaScript, it’s just one line:

trace("hello, world\n");

Chapter 2 JavaSCript for embedded C and C++ programmerS

27

Here, the C printf function is replaced by the trace function from

the Moddable SDK. (Developers working with JavaScript on the web use

console.log instead of trace.) As in C, the argument to the function

is passed inside parentheses and the statement is terminated with a

semicolon. The string literal passed to the function is identical, too—a string

surrounded by double quotes—and uses the familiar backslash (\) notation

as in C to escape special characters, such as the newline character here.

 Semicolons
One significant difference between C and C++ is that the semicolon at

the end of a statement is optional in JavaScript, thanks to the automatic

semicolon insertion (ASI) feature. The following code is allowed in

JavaScript but fails in C:

trace("hello, ")

trace("world")

trace("\n")

While this is convenient, since it saves a keystroke and silently fixes

the common mistake of leaving out the semicolon, it creates ambiguities

in certain obscure cases, which can result in bugs. Therefore, you

should always end statements with a semicolon rather than relying

on ASI. JavaScript linters, such as ESLint, include a check for missing

semicolons.

 Declaring Variables and Constants
Variables in JavaScript are declared with the let statement:

let a = 12;

let b = "hello";

let c = false;

Chapter 2 JavaSCript for embedded C and C++ programmerS

28

Unlike in C, the variable declaration doesn’t include any type

information (such as int, bool, or char *). That’s because any variable

may hold any type. This dynamic typing, which is further explained later in

this chapter, is one feature of JavaScript that takes C programmers a little

time to get used to.

Variable names in JavaScript generally follow C conventions: they’re

case-sensitive, so i and I are distinct names, and there’s no limit on the

length of variable names. JavaScript variable names may also include

Unicode characters, as in these examples:

let garçon = "boy";

let 東京都 = "Tokyo";

let $ = "dollar";

let under_score = "_";

You declare constant values with const:

const PRODUCT_NAME = "Light Sensor";

const LUMEN_REGISTER = 2;

const USE_OPTIMIZATIONS = true;

Any attempt to assign a value to a constant generates an error;

however, unlike in C, this error is generated at runtime rather than at build

time.

As shown in Listing 2-1, declarations made with let and const obey

the same scoping rules as declarations in C.

Listing 2-1.

let x = 1;

const y = 2;

let z = 3;

if (true) {

 const x = 2;

Chapter 2 JavaSCript for embedded C and C++ programmerS

29

 let y = 1;

 trace(x); // output: 2

 trace(y); // output: 1

 trace(z); // output: 3

 y = 4;

 z += y;

}

trace(x); // output: 1

trace(y); // output: 2

trace(z); // output: 7

JavaScript also lets you use var to declare variables and this is still

common, since let is a relatively new addition. However, this book

recommends using let exclusively, because var doesn’t obey the same

scoping rules as declarations in C.

 The if Statement
The if statement in JavaScript has the same structure as in C, as illustrated

in Listing 2-2.

Listing 2-2.

if (x) {

 trace("x is true\n");

}

else {

 trace("x is false\n");

}

Chapter 2 JavaSCript for embedded C and C++ programmerS

30

As in C, when the if or else block is a single statement you can omit

the braces that delimit the block:

if (!x)

 trace("x is false\n");

else

 trace("x is true\n");

The condition in the if statement in Listing 2-2 is simply x. In C, this

means that if x is 0, the condition is false; otherwise, it’s true. In JavaScript,

this is more complex, because the variable x may be of any type, not just

a number (or a pointer, but pointers don’t exist in JavaScript). JavaScript

has defined the following rules to evaluate whether a given value is true or

false:

• For a boolean value, this determination is simple: the

value is either true or false.

• For a number, JavaScript follows the rule of C, treating a

value of 0 as false and all other values as true.

• An empty string (a string with length 0) evaluates to

false, and all non-empty strings evaluate to true.

In JavaScript, a value that evaluates to true in a condition is called

“truthy,” and one that evaluates to false is called “falsy.”

A compact form of an if statement, the conditional (ternary) operator,

is available in JavaScript and has the same structure as in C:

let x = y ? 2 : 3;

 The switch Statement
As shown in Listing 2-3, the switch statement in JavaScript looks very

much as it does in C.

Chapter 2 JavaSCript for embedded C and C++ programmerS

31

Listing 2-3.

switch (x) {

 case 0:

 trace("zero\n");

 break;

 case 1:

 trace("one\n");

 break;

 default:

 trace("unexpected!\n");

 break;

}

There’s one important difference, however: the value following the

case keyword is not limited to integer values. For example, you can use a

floating-point number (see Listing 2-4).

Listing 2-4.

switch (x) {

 case 0.25:

 trace("one quarter\n");

 break;

 case 0.5:

 trace("one half\n");

 break;

}

You can also use strings (Listing 2-5).

Chapter 2 JavaSCript for embedded C and C++ programmerS

32

Listing 2-5.

switch (x) {

 case "zero":

 case "Zero":

 trace("0\n");

 break;

 case "one":

 case "One":

 trace("1\n");

 break;

 default:

 trace("unexpected!\n");

 break;

}

In addition, JavaScript lets you mix the types of values in the case

statements, though that’s seldom necessary.

 Loops
JavaScript has both for and while loops that look similar to their C

language counterparts (see Listing 2-6).

Listing 2-6.

for (i = 0; i < 10; i++)

 trace(i);

let j = 12;

while (j--)

 trace(j);

Chapter 2 JavaSCript for embedded C and C++ programmerS

33

JavaScript loops support both continue and break (Listing 2-7).

Listing 2-7.

for (i = 0; i < 10; i++) {

 if (i & 1)

 continue; // Skip odd numbers

 trace(i);

}

let j = 0;

do {

 let jSquared = j * j;

 if (jSquared > 100)

 break;

 trace(jSquared);

 j++;

} while (true);

 Types
JavaScript has just a handful of built-in types, from which all other types

are created. Many of these types are familiar to C and C++ programmers,

such as Boolean, Number, and String, though there are differences in the

JavaScript versions of these that you need to understand. Other types, such

as undefined, do not have an equivalent in C or C++.

Note that this section doesn’t introduce all the types. It omits RegExp,

BigInt, and Symbol, for example, because they’re not commonly used

when developing in JavaScript for embedded systems; they are available,

however, should your project require them.

Chapter 2 JavaSCript for embedded C and C++ programmerS

34

 undefined
In C and C++, an operation can have a result that’s not defined by the

language. For example, if you forget to initialize x in the following code, the

value of y is unknown:

int x;

int y = x + 1; // ??

Also, the result of a function is unknown if you forget to include a

return statement:

int add(int a, int b) {

 int result = a + b;

}

int z = add(1, 2); // ??

Your C or C++ compiler usually detects these kinds of mistakes and

issues warnings so you can fix the problem. Still, there are many ways

to make mistakes in C and C++ that result in code with results that are

unpredictable.

In JavaScript, there’s never a situation in which the result is

unpredictable. One part of how this is achieved is with the special

value undefined, which indicates that no value has been assigned. In

C, 0 is sometimes used as an invalid value for a similar purpose, but it’s

ambiguous in situations where 0 is a valid value.

When you define a new local variable, it has the value of undefined

until you assign another value to it. If your function exits without a return

statement, its return value is undefined. You’ll see other uses of undefined

throughout this chapter.

Strictly speaking, JavaScript has an undefined type, which always has

the value undefined.

Chapter 2 JavaSCript for embedded C and C++ programmerS

35

 Boolean Values
The boolean values in JavaScript are true and false. These are not the

same as 1 and 0 in C; they’re distinct values defined by the language.

let x = 42;

let y = x == 42; // true

let z = x == "dog"; // false

 Numbers
Every number value in JavaScript is defined to be a double-precision

(64-bit) IEEE 754 floating-point value. Before you gasp in horror at the

performance implications of this on a microcontroller, know that the XS

JavaScript engine used in the Moddable SDK internally stores numbers as

integers and performs integer math operations on them when possible.

This ensures that the implementation is efficient on microcontrollers

without an FPU while maintaining full compatibility with standard

JavaScript.

let x = 1;

let y = -2.3;

let z = 5E2; // 500

There are some benefits to having every number defined to be 64-bit

floating-point. For one thing, integer overflow is much less likely. If the

result of an integer operation overflows a 32-bit integer, it’s automatically

promoted to a floating-point value. A 64-bit floating-point value can store

integers up to 53 bits before losing precision. If you do happen to perform

a math operation that generates a fractional result—for example, dividing

an odd integer by 2—JavaScript returns the accurate fractional result as a

floating-point value.

Chapter 2 JavaSCript for embedded C and C++ programmerS

36

 Infinity and NaN

JavaScript has some special values for numbers:

• Dividing by 0 doesn’t generate an error but instead

returns Infinity.

• Attempting to perform a nonsense operation

returns NaN, meaning “not a number.” For example,

5 / "a string" and 5 + undefined return NaN

because it doesn’t make sense to divide an integer

by a string value or add undefined to an integer.

 Bases

JavaScript has special notation for hexadecimal and binary constants:

• A 0x prefix on a number means it’s in hexadecimal

notation, just as it does in C.

• A 0b prefix on a number means it’s in binary notation,

as supported in C++14.

These prefixes are useful when working with binary data, as in the

following examples:

let hexMask = 0x0F;

let bitMask = 0b00001111;

Unlike C, JavaScript doesn’t support octal numbers with a leading 0,

as in 0557; if you try to use one, it generates an error when building. Octal

numeric literals are supported in the form 0o557.

 Numeric Separators

JavaScript lets you use the underscore character (_) as a numeric separator,

to separate digits in a number. The separator doesn’t change the value

of the number but can make it easier to read. C++14 also has a numeric

separator, but it uses the single quote character (') instead.

Chapter 2 JavaSCript for embedded C and C++ programmerS

37

let mask = 0b0101101011110000;

let maskWithSeparators = 0b0101_1010_1111_0000;

 Bitwise Operators

JavaScript provides bitwise operators for numbers, including the following:

• ~ – bitwise NOT

• & – bitwise AND

• | – bitwise OR

• ^ – bitwise XOR

It also provides these bitwise operators, for shifting bits:

• >> – signed shift right

• >>> – unsigned shift right

• << – shift left

There’s no unsigned shift left because shifting left by a nonzero value

always discards the sign bit. When performing any bitwise operation,

JavaScript always first converts the value to a 32-bit integer; any fractional

component or additional bits are discarded.

 The Math Object

The Math object provides many of the functions C programmers use

from the math.h header file. In addition to common constants such as

 Math.PI, Math.SQRT2, and Math.E, it includes common functions such as

those shown in Listing 2-8.

Listing 2-8.

let x = Math.min(1, 2, 3); // minimum = 1

let y = Math.max(2, 3); // maximum = 3

let r = Math.random(); // random number between 0 and 1

Chapter 2 JavaSCript for embedded C and C++ programmerS

38

let z = Math.abs(-3.2); // absolute value = 3.2

let a = Math.sqrt(100); // square root = 10

let b = Math.round(3.9); // rounded value = 4

let c = Math.trunc(3.9); // truncated value = 3

let z = Math.cos(Math.PI); // cosine of pi = -1

Consult a JavaScript reference for a complete listing of the constant

values and functions provided by the Math object.

 Converting Numbers to Strings

In C, a common way to convert a number to a string is to use sprintf to

print the number to a string buffer. In JavaScript, you convert a number to

a string by calling the number’s toString method (yes, in JavaScript even a

number is an object!):

let a = 1;

let b = a.toString(); // "1"

The default base for toString is 10; to convert to a non-decimal value,

such as hexadecimal or binary, pass the base as the argument to toString:

let a = 240;

let b = a.toString(16); // "f0"

let c = a.toString(2); // "11110000"

To convert to floating-point notation, use toFixed instead of toString

and specify the number of digits after the decimal point:

let a = 24.328;

let b = a.toFixed(1); // "24.3"

let c = a.toFixed(2); // "24.33"

let d = a.toFixed(4); // "24.3280"

The functions toExponential and toPrecision provide additional

formatting options for converting numbers to strings.

Chapter 2 JavaSCript for embedded C and C++ programmerS

39

 Converting Strings to Numbers

In C, a common way to convert a string to a number is to use sscanf. In

JavaScript, use either parseInt or parseFloat depending on whether you

want the result as an integer or a floating-point value:

let a = parseInt("12.3"); // 12

let b = parseFloat("12.30"); // 12.3

The default base for parseInt is 10, except when the string begins with

0x, in which case the default is 16. The parseInt function takes an optional

second argument indicating the base. The following example parses a

hexadecimal value:

let a = parseInt("F0", 16); // 240

You can also access the functionality of parseInt and parseFloat as

Number.parseInt and Number.parseFloat; however, this is less common.

 Strings
In C, strings are not a distinct type but just an array of 8-bit characters.

Because strings are so common, the C standard library provides many

functions for working with them. Still, working with strings isn’t easy in C

and can easily lead to security errors, like buffer overflows. C++ addresses

some of the issues, though working with strings is still not easy or safe.

JavaScript, by contrast, has a built-in String type that was designed to be

easy for programmers to use and to use safely; this reflects JavaScript’s

origin as the language of the web, where string manipulations are common

in building web pages.

In JavaScript, strings differ from common C strings in many ways.

A string is a sequence of 16-bit Unicode characters (UTF-16), not an array

of 8-bit characters. Using Unicode to represent strings ensures that all

Chapter 2 JavaSCript for embedded C and C++ programmerS

40

applications can work reliably with string values in any language. Although

the characters are conceptually 16-bit Unicode, the JavaScript engine may

store them internally in any representation. The XS engine stores strings in

UTF-8, so there’s no additional memory overhead for characters from the

common 7-bit ASCII character set.

 Accessing Individual Characters

JavaScript strings are not arrays; however, they do support C’s array syntax

for accessing individual characters. Unlike in C, though, the result is not

the Unicode (numeric) value of the character but a one-character string

containing the character at that index.

let a = "garçon";

let b = a[3]; // "ç"

let c = a[4]; // "o"

In C, accessing an invalid index—for example, past the end of the

string—returns an undefined value. For a declared as shown in the

preceding code, a[100] will access whatever happens to be in memory

100 bytes after the start of the string. The access might even cause a

memory fault by accessing unmapped memory. In JavaScript, attempting

to read a character outside the valid range of a string returns the value

undefined.

To get the Unicode value of a character at a given index, use the

charCodeAt function:

let a = "garçon";

let b = a.charCodeAt(3); // 231

let c = a.charCodeAt(4); // 111

let d = a.charCodeAt(100); // NaN

Chapter 2 JavaSCript for embedded C and C++ programmerS

41

 Modifying Strings

C lets you both read from and write to the characters in a string. JavaScript

strings are read-only, also called immutable; you cannot modify a string

“in place.” For example, the assignment to a[0] in the following code does

nothing in JavaScript:

let a = "a string";

a[0] = "A";

This restriction can be a little difficult to get used to coming from C,

but it becomes familiar with some experience using the many methods

provided to operate on a string.

 Determining the Length of Strings

To determine the length of a string in C, you use the strlen function,

which returns the number of bytes in the string. It determines the length by

scanning for a byte with the value 0, because strings in C are defined to end

on a 0 byte. In JavaScript, strings are a sequence of Unicode characters,

with no terminating null character; the number of characters in the

sequence is known to the JavaScript engine and is available through the

length property.

let a = "hello";

let b = a.length; // 5

One problem with strlen is that number of bytes in a string is only

equal to the string’s length when the characters are 8-bit ASCII characters.

For Unicode characters, strlen doesn’t provide the character count. Of

course, there are other functions that do, but it’s a common mistake for C

programmers to use strlen incorrectly with strings to get the character

count, leading to bugs. The JavaScript length property avoids this problem

because it always returns a character count.

Chapter 2 JavaSCript for embedded C and C++ programmerS

42

The example in Listing 2-9 uses the length property to count the

spaces in a string.

Listing 2-9.

let a = "zéro un deux";

let spaces = 0;

for (let i = 0; i < a.length; i++) {

 if (a[i] == " ")

 spaces += 1;

}

trace(spaces);

 Embedding Quotes and Control Characters

The string literal values in this chapter up to this point have all used double

quote marks (") to define the beginning and end of the string. Strings

delimited by double quotes may contain single quotes (').

let a = "Let's eat!";

As in C, such strings cannot contain a double quote. Unlike in C, you

can delimit a string with single quotes instead of double quotes, which is

convenient for strings that contain double quotes.

let a = '"This is a test," she said.';

Strings delimited by single or double quotes must be entirely

contained on a single line. You can include line breaks in the string by

using \n to specify the newline character; the backslash (\) lets you escape

characters just as in C.

let a = 'line 1\nline 2\nline 3\n';

Chapter 2 JavaSCript for embedded C and C++ programmerS

43

Another way to delineate a string in JavaScript is to use the backtick

character (`). Strings defined in this way are called template literals and

have several useful properties, including that they can span multiple lines

(potentially making your strings more readable; compare Listing 2-10 to

the preceding example).

Listing 2-10.

let a =

`line 1

line 2

line 3

`;

 String Substitution

Template literals provide a substitution mechanism that’s useful for

composing a string from several parts. The functionality this provides

is very similar to using printf in C with a formatting string. However,

whereas C separates the formatting string from the values to be formatted,

JavaScript merges them. This may feel unfamiliar at first, but putting the

values to be formatted directly into the string is less error-prone.

let a = "one";

let b = "two";

let c = `${a}, ${b}, three`; // "one, two, three"

Inside a template literal, the characters between ${ and } are evaluated

as a JavaScript expression, which enables you to perform calculations and

apply formatting to the result:

let a = `2 + 2 = ${2 + 2}`; // "2 + 2 = 4"

let b = `Pi to three decimals is ${Math.PI.toFixed(3)}`;

 // "Pi to three decimals is 3.142"

Chapter 2 JavaSCript for embedded C and C++ programmerS

44

A special feature, called tags, enables a function to modify the default

behavior of template literals. For example (as Chapter 4 will demonstrate),

you can use this feature to convert the string representation of a UUID to

binary data. The details of how tagged template literals work are beyond

the scope of this chapter, but using them is easy: just put the tag before the

template literal.

let a = uuid`1805`;

let b = uuid`9CF53570-DDD9-47F3-BA63-09ACEFC60415`;

 Adding Strings

You can combine strings in JavaScript by using the addition operator (+):

let a = "one";

let b = "two";

let c = a + ", " + b + ", three"; // "one, two, three"

JavaScript lets you add strings to non-string values, such as numbers.

Its rules for how this works usually give you the expected result, but not

always:

let a = "2 + 2 = " + 4; // "2 + 2 = 4"

let b = 2 + 2 + " = 2 + 2"; // "4 = 2 + 2"

let c = "2 + 2 = " + 2 + 2; // "2 + 2 = 22"

Because remembering all the rules about type conversion during string

addition can be difficult, it’s recommended that you instead use template

literals, which are more predictable and often more readable.

 Converting String Case

Converting strings to uppercase or lowercase in C is challenging, especially

when you’re working with the complete set of Unicode characters.

JavaScript has built-in functions for doing these conversions.

Chapter 2 JavaSCript for embedded C and C++ programmerS

45

let a = "Garçon";

let b = a.toUpperCase(); // "GARÇON"

let c = a.toLowerCase(); // "garçon"

Notice that the toUpperCase and toLowerCase functions do not modify

the original string, stored in the variable a in the preceding example, but

rather return a new string with the modified value. All JavaScript functions

that operate on strings behave this way, because all strings are immutable.

 Extracting Parts of Strings

To extract part of a string into another string, use the slice function. Its

arguments are the starting and ending indices, where the ending index is

the index before which to end extraction. If the ending index is omitted, the

string’s length is used.

let a = "hello, world!";

let b = a.slice(0, 5); // "hello"

let c = a.slice(7, 12); // "world"

let d = a.slice(7); // "world!"

JavaScript also has a substr function, which provides similar

functionality to slice but with slightly different arguments. However,

slice is preferred over substr, which is maintained primarily for legacy

code on the web.

 Repeating Strings

To create a string that repeats a particular value several times, use the

repeat function:

let a = "-";

let b = a.repeat(3); // "---"

let c = ".-";

let d = c.repeat(2); // ".-.-"

Chapter 2 JavaSCript for embedded C and C++ programmerS

46

 Trimming Strings

When parsing strings, you often want to remove white space

(space character, tab, carriage return, line feed, and so on) at the

start or end. The trim functions remove white space in a single step:

let a = " JS ";

let b = a.trim(); // "JS"

let c = a.trimStart(); // "JS "

let d = a.trimEnd(); // " JS"

The trim functions could be implemented entirely in JavaScript

(as could most of the string functions), but building them into the language

means their implementation is considerably faster and their behavior is

consistent across all applications.

 Searching Strings

The strstr function in C finds one string inside another. The indexOf

function in JavaScript is similar to strstr. As shown in Listing 2-11, the

first argument to indexOf is the substring to search for, the optional second

argument is the character index at which to begin searching, and the result

of the function is the index where the substring is found, or –1 if not found.

Listing 2-11.

let string = "the cat and the dog";

let a = string.indexOf("cat"); // 4

let b = string.indexOf("frog"); // –1

let c = string.indexOf("the"); // 0

let d = string.indexOf("the", 2); // 12

Sometimes you want to find the last occurrence of a substring. In C,

this requires calling strstr several times until no further matches are

found. JavaScript provides the lastIndexOf function for this situation.

Chapter 2 JavaSCript for embedded C and C++ programmerS

47

let string = "the cat and the dog";

let a = string.lastIndexOf("the"); // 12

let b = string.lastIndexOf("the", a - 1); // 0

When evaluating strings, it’s useful to check whether the string begins

or ends with a particular string. You use strcmp and strncmp to do this in

C. This situation is common enough that JavaScript provides dedicated

startsWith and endsWith functions.

if (string.startsWith("And "))

 trace(`Don't start sentence with "and"`);

if (string.endsWith("..."))

 trace(`Don't end sentence with ellipsis`);

 Functions
JavaScript has functions, of course, as does C. Some functions are very

similar in both languages.

function add(a, b) {

 return a + b;

}

 Function Arguments

Because JavaScript variables may hold any type of value, the type of

arguments is not given, just their name. Also unlike in C and C++, there

are no function declarations; you just write the source code to the function

and then any code that can access the function can call it. This ad hoc

approach allows for faster coding.

In C and C++, you can pass an argument value by reference, using

a pointer, but in JavaScript you must always pass arguments by value.

Consequently, a JavaScript function never changes the value of a variable

passed to it. For example, the add function in Listing 2-12 doesn’t change

the value of x.

Chapter 2 JavaSCript for embedded C and C++ programmerS

48

Listing 2-12.

function add(a, b) {

 a += b;

 return a;

}

let x = 1;

let y = 2;

let z = add(x, y);

When you pass an object to a function, the function can modify the

properties of the object but not the call’s local variable holding the object.

This is similar to passing a pointer to a data structure in C. In Listing 2-13,

the setName function adds the name property to the object passed to it. The

assignment it makes, of a new empty object to its parameter a, doesn’t

change the value of b.

Listing 2-13.

function setName(a, name) {

 a.name = name;

 a = {};

}

let b = {};

setName(b, "thermostat");

// b.name is "thermostat"

In C and C++, the implementation of a function can determine

the number of arguments passed to it and can access each one using

va_start, va_end, and va_arg. These are powerful tools but can be

complicated to use. JavaScript also provides tools for working with the

arguments to a function. Any arguments not passed by the caller are set

to undefined, so (as done for b in Listing 2-14), you can check whether an

argument has not been passed.

Chapter 2 JavaSCript for embedded C and C++ programmerS

49

Listing 2-14.

function add(a, b) {

 if (b == undefined)

 return NaN;

 return a + b;

}

add(1);

Another way to access the parameters passed to the function is

by using the special arguments variable, which behaves like an array

containing the arguments. This approach is similar to using va_arg with

the added benefit of knowing the number of arguments. In Listing 2-15,

the add function accepts any number of arguments and returns their sum.

Listing 2-15.

function add() {

 let result = 0;

 for (let i = 0; i < arguments.length; i++)

 result += arguments[i];

 return result;

}

let c = add(1, 2);

let d = add(1, 2, 3);

The use of arguments is common in JavaScript, but it’s not available in

all situations. It’s introduced here because you’re likely to see it in code.

Modern JavaScript has an additional feature, called rest parameters, which

provides similar functionality, is always available, and is more flexible (see

Listing 2-16).

Chapter 2 JavaSCript for embedded C and C++ programmerS

50

Listing 2-16.

function add(...values) {

 let result = 0;

 for (let i = 0; i < values.length; i++)

 result += values[i];

 return result;

}

Here ...values indicates that all remaining arguments (all arguments,

in this example) are to be placed in an array named values. The code in

Listing 2-17 adds a round parameter to control whether the values should

be rounded before being summed.

Listing 2-17.

function addR(round, ...values) {

 let result = 0;

 for (let i = 0; i < values.length; i++)

 result += round ? Math.round(values[i]) : values[i];

 return result;

}

let c = addR(false, 1.1, 2.9, 3.5); // c = 7.5

let d = addR(true, 1.1, 2.9, 3.5); // d = 8

Just as rest parameters combine several arguments into an array,

spread syntax separates the content of an array into individual arguments.

Spread syntax uses the same three-dot syntax as rest parameters. The

function in Listing 2-18 sums the absolute value of its arguments; it first

takes the absolute value of the arguments and then calls the add function

using spread syntax to compute the sum.

Chapter 2 JavaSCript for embedded C and C++ programmerS

51

Listing 2-18.

function addAbs(...values) {

 for (let i = 0; i < values.length; i++)

 values[i] = Math.abs(values[i]);

 return add(...values);

}

let c = addAbs(-1, -2, 3); // c = 6

There are many other uses of spread syntax—for example, to clone an

array:

let a = [1, 2, 3, 4];

let b = [...a]; // b = [1, 2, 3, 4]

You can also use spread syntax to concatenate two arrays:

let a = [1, 2];

let b = [3, 4];

let c = [...a, ...b]; // c = [1, 2, 3, 4]

In some situations, it’s useful to provide a default value for an

argument. This isn’t possible in C but it is done in C++, using the same

syntax as in JavaScript. In JavaScript, since arguments not passed by

the caller are set to undefined, you can provide a default value for any

parameter that has that value. The function in Listing 2-19 accepts a

temperature value; if the units aren’t specified, a default of Celsius is used.

Listing 2-19.

function setCelsiusTemperature(temperature) {

 trace(`setCelsiusTemperature ${temperature}\n`);

}

Chapter 2 JavaSCript for embedded C and C++ programmerS

52

function setTemperature(temperature, units = "Celsius") {

 switch (units) {

 case "Fahrenheit":

 temperature -= 32;

 temperature /= 1.8;

 break;

 case "Kelvin":

 temperature -= 273.15;

 break;

 case "Celsius":

 // no conversion needed

 break;

 }

 setCelsiusTemperature(temperature);

}

setTemperature(14); // units argument defaults to Celsius

setTemperature(14, "Celsius");

setTemperature(57, "Fahrenheit");

Unlike in C, every function in JavaScript has a return value; there’s no

way for a function to exit without a well-defined return value. Consider the

three functions shown in Listing 2-20.

Listing 2-20.

function a() {

 return undefined;

}

function b() {

 return;

}

function c() {

}

Chapter 2 JavaSCript for embedded C and C++ programmerS

53

Function a explicitly returns the value undefined. Function b provides

no value to the return statement and so returns undefined. Function c has

no return statement but returns undefined just like function b because

undefined is the default value that all functions return. You’ll find all three

of these forms in JavaScript code, depending on the preference of the

code’s author. They’re indistinguishable by the caller of the function.

By contrast, the following code is allowed in C. The result of function c

is whatever value happens to be in the memory or register reserved for the

return value.

int c(void) {

}

int b = c(); // b is unknown

 Passing Functions As Arguments

In C, it’s common to pass a function a pointer to another function,

enabling you to customize the behavior of the function being passed—for

example, to provide a comparison function to use when sorting. Similarly,

JavaScript functions may be passed as arguments to another function, as

shown in Listing 2-21.

Listing 2-21.

function square(a) {

 return a * a;

}

function circleArea(r) {

 return Math.PI * r * r;

}

function sum(filter, ...values) {

 let result = 0;

Chapter 2 JavaSCript for embedded C and C++ programmerS

54

 for (let i = 0; i < values.length; i++)

 result += filter(values[i]);

 return result;

}

let a = sum(square, 1, 2, 3); // 14

let b = sum(circleArea, 1); // 3.14...

You can also pass built-in functions as arguments. For example, the

following code calculates the sum of the square roots of the remaining

arguments:

let c = sum(Math.sqrt, 1, 4, 9); // 6

Often when a function is passed, that function is used in only that one

place. In C, the function implementation is often not located near where

it’s called, which hurts readability. Unlike C, JavaScript allows anonymous

(unnamed) inline functions. The following example calls the sum function

defined in Listing 2-21 to calculate the sum of areas of equilateral triangles

using an anonymous inline function as the filter:

let a = sum(function(a) {

 return a * (a / 2);

}, 1, 2, 3); // 7

Anonymous functions are widely used in JavaScript code for various

kinds of callbacks. Seeing the source code to a function as the argument

to a function call is a little unusual, but you do get used to it. If you prefer

to keep function implementations separate from function calls, you can

use nested functions instead. In Listing 2-22, the function triangleArea

is visible only inside the function main. Using a nested function keeps the

implementation of the filter function near the place where it’s used, often

improving the maintainability of the code.

Chapter 2 JavaSCript for embedded C and C++ programmerS

55

Listing 2-22.

function main() {

 function triangleArea(a) {

 return a * (a / 2);

 }

 let a = sum(triangleArea, 1, 2, 3); // 7

}

 Declaring Functions

As noted earlier, there are no function declarations in JavaScript, unlike

in C and C++: when you declare a function in JavaScript, you’re actually

declaring a variable. The following line of code, using the common syntax

for declaring a function, creates a local variable named example:

function example() {}

The following line also creates a local variable named example,

assigning an anonymous function to it:

let example = function() {};

These two lines of code are equivalent, and both functions can be

called in the same way. But because both forms create a local variable, you

can’t have a function and a local variable with the same name. You can,

however, change the function that a local variable references, as shown in

Listing 2-23.

Listing 2-23.

function log(a) {

 trace(a);

}

log("one");

Chapter 2 JavaSCript for embedded C and C++ programmerS

56

// Disable logging

let originalLog = log;

log = function(a) {}

log("two");

// Reenable logging

log = originalLog;

log("three");

 Closures

One of the most powerful features of JavaScript functions is closures.

They’re commonly used for callback functions. A closure binds together

a function with a group of variables outside the function. The references

to outside variables persist for the lifetime of the closure. Closures don’t

exist in C and were only added to in C++ in 2011, as lambda expressions;

consequently, many developers working in C and C++ are unfamiliar with

them. Despite the obscure name, closures are so easy to use that it’s easy to

forget you’re using them.

Listing 2-24 uses a closure to implement a counter. The makeCounter

function returns a function. You can have one function return a pointer

to another function in C, but there’s a difference here: the anonymous

function that’s returned references a variable named value, and that

variable is not local to the anonymous function; instead it’s a local variable

in the makeCounter function that the anonymous function is contained in.

Listing 2-24.

function makeCounter() {

 let value = 0;

 return function() {

 value += 1;

Chapter 2 JavaSCript for embedded C and C++ programmerS

57

 return value;

 }

}

Each time the function returned by makeCounter is called, it

increments value and returns that value. Here’s how it works: When a

function references variables outside its own local scope, it’s said to “close”

over those variables, automatically creating a closure. In this example,

using the variable value in the anonymous function creates a closure that

lets it access the local variable value from makeCounter. JavaScript makes

it safe to use that local variable even after makeCounter returns and the

stack frame of makeCounter has been deallocated (see Listing 2-25).

Listing 2-25.

let counter = makeCounter();

let a = counter(); // 1

let b = counter(); // 2

let c = counter(); // 3

The example in Listing 2-25 does what you expect: the makeCounter

function returns a counter function; each time the counter function is

called, it increments the counter and returns the new value. But what

happens if you call makeCounter twice? Does the second call return a

separate counter or a reference to the first counter? For the answer, see

Listing 2-26.

Listing 2-26.

let counterOne = makeCounter();

let counterTwo = makeCounter();

let a = counterOne(); // 1

let b = counterOne(); // 2

Chapter 2 JavaSCript for embedded C and C++ programmerS

58

let c = counterTwo(); // 1

let d = counterTwo(); // 2

let e = counterOne(); // 3

let f = counterTwo(); // 3

As you can see, each time makeCounter is called, the function it returns

has a new closure with a separate copy of value.

If it’s difficult right now to imagine how you might use closures in

your own code, don’t worry; many programmers use them without even

realizing it. Closures are common in APIs that use callback functions;

when the callback function is installed, it often closes over variables that it

uses when the callback is invoked.

If you have experience with object-oriented programming, you may

recognize closures used this way as being similar to object instances,

and in fact they can be used for that. However, JavaScript has better

alternatives, using classes (introduced later in this chapter).

 Objects
JavaScript is an object-oriented programming language; C is not. There

are few practical ways to use JavaScript without using objects. In the

earlier sections of this chapter, even common operations on numbers

and strings required calling methods of the number and string objects.

C++ is an object-oriented language, but C++ and JavaScript take very

different approaches to objects. For example, C++ has class templates,

operator overloading, and multiple inheritance—none of which are part of

JavaScript. If you’re coming from C, you’ll need to learn a bit about objects.

If you’re coming from C++, you’ll need to learn about JavaScript’s more

compact approach to objects. The good news is that millions of developers

have successfully used objects in JavaScript to build web pages, web

services, mobile apps, and embedded firmware.

Chapter 2 JavaSCript for embedded C and C++ programmerS

59

To create objects in JavaScript, you use the new keyword, as in C++. All

objects in JavaScript descend from Object, a built-in object. The following

lines create an instance of Object:

let a = new Object();

let b = new Object;

Object is a special kind of function called a constructor. When the

Object constructor is invoked with new, an instance of Object is created

and the constructor function is executed to initialize the instance. If the

constructor function is passed no arguments, the parentheses for the

argument list are optional. Therefore, the preceding two lines are identical;

which form you use is a matter of personal coding style.

There are many other objects that are built into JavaScript. Listing 2-27

shows examples of how the constructor is called for some of them. Details

about these and other built-in objects are provided in later sections of this

chapter.

Listing 2-27.

let a = new Array(10); // array of length 10

let b = new Date("September 6, 2019");

let c = new Date; // current date and time

let d = new ArrayBuffer(128); // 128-byte buffer

let e = new Error("bad value");

The base object, Object, doesn’t do much by itself. Still, it’s common in

JavaScript code because it can be used as an ad hoc record. In C, you use a

structure (struct) to hold a set of values; in C++, you use either a structure

or a class (struct or class). A JavaScript object, unlike a structure in C

or C++, is not a fixed set of fields. What C calls fields are called properties

in JavaScript. As illustrated in Listing 2-28, you can add properties to an

object whenever you want; they don’t have to be declared in advance.

Chapter 2 JavaSCript for embedded C and C++ programmerS

60

Listing 2-28.

let a = new Object;

a.one = 1;

a.two = "two";

a.object = new Object;

a.add = function(a, b) {

 return a + b;

};

Because creating these ad hoc objects is so common, JavaScript

provides a shortcut: you can use {} in place of new Object. The result is

identical, but the code is more compact. You can initialize properties of an

object by enumerating the properties within the braces. The following is

equivalent to the preceding example:

let a = {one: 1, two: "two", object: {},

 add: function(a, b) {return a + b;}};

JavaScript developers tend to prefer the braces style (and this book

uses it almost exclusively) because it’s more compact and more readable.

 Object Shorthand

It’s common to store the result of several calculations in local variables

and then put those into an object. When the local variables have the same

name as the properties of the object, the code looks redundant, as in the

example in Listing 2-29.

Listing 2-29.

let one = 1;

let two = "two";

let object = {};

Chapter 2 JavaSCript for embedded C and C++ programmerS

61

let add = function(a, b) {return a + b;};

let result = {one: one, two: two, object: object, add: add};

Because this situation happens frequently, JavaScript provides a

shortcut for it. The code in Listing 2-30 is equivalent to the preceding

example.

Listing 2-30.

let one = 1;

let two = "two";

let object = {};

let add = function(a, b) {return a + b;};

let result = {one, two, object, add};

Another shortcut is available for defining properties that have a

function as their value. Listing 2-31 shows the straightforward approach.

Listing 2-31.

let object = {

 add: function(a, b) {

 return a + b;

 },

 subtract: function(a, b) {

 return a - b;

 }

};

Listing 2-32 shows the shortcut version, which eliminates the colon (:)

and the function keyword.

Chapter 2 JavaSCript for embedded C and C++ programmerS

62

Listing 2-32.

let object = {

 add(a, b) {

 return a + b;

 },

 subtract(a, b) {

 return a - b;

 }

};

In addition to being more compact and readable, this same syntax is

used for defining classes in JavaScript, as you’ll soon see.

 Deleting Properties

Not only can you add properties to a JavaScript object at any time, but you

can also remove them. Properties are removed using the delete keyword:

delete a.one;

delete a.missing;

Once a property is deleted, getting it from the object gives the value

undefined. You may recall that this is the same value that’s returned when

you try to access a character of a string beyond the string’s length. It’s

not an error to use delete on a property that the object doesn’t have. For

example, no error is generated when (given object a with properties one,

two, and object) a.missing is deleted as shown previously.

C++ programmers are familiar with delete as the way to destroy

an object and so might expect that deleting a property would destroy

the object referenced by the property; however, the delete keyword in

JavaScript is different, as discussed later in the “Memory Management”

section.

Chapter 2 JavaSCript for embedded C and C++ programmerS

63

 Checking for Properties

Because properties can come and go at any time, sometimes you need to

check whether a particular property is present on an object. There are two

ways to do this. Since any missing property has the value undefined, you

could check whether getting a property gives the value undefined.

if (a.missing == undefined)

 trace("a does not have property 'missing'");

But don’t do that! There are several subtle problems that can arise. For

example, consider this code:

let a = {missing: undefined};

if (a.missing == undefined)

 trace("a does not have property 'missing'");

Here, the object has a missing property that happens to have a value

of undefined. There are other ways this check can fail, but for now this

example is enough to demonstrate the need for a better solution. Using

the keyword in is a better way to check for the existence of a property. The

following example works in all situations:

if (!("missing" in a))

 trace("a does not have property 'missing'");

 Adding Properties to Functions

Functions in JavaScript are objects, which means you can add and remove

properties of a function just as you would with any other object. Listing 2-33

defines a function named calculate that supports three operations, each

corresponding to a property of the function that’s assigned a constant:

add is 1, subtract is 2, and multiply is 3. The operations defined here

are similar to an enumeration in C or C++. However, instead of being

defined separately from the calculate function as an enum in C or C++,

Chapter 2 JavaSCript for embedded C and C++ programmerS

64

the operation values are attached directly to the function that uses them.

This way of providing names for constants is used in some parts of the

Moddable SDK.

Listing 2-33.

function calculate(operation, a, b) {

 if (calculate.add == operation)

 return a + b;

 if (calculate.subtract == operation)

 return a - b;

 if (calculate.multiply == operation)

 return a * b;

}

calculate.add = 1;

calculate.subtract = 2;

calculate.multiply = 3;

let a = calculate(calculate.add, 1, 2); // 3

let b = calculate(calculate.subtract, 1, 2); // -1

 Freezing Objects

There are situations in which you want to ensure that the properties of an

object cannot be changed. You might be tempted to use const to achieve that:

const a = {

 b: 1

};

However, that doesn’t work. Using const doesn’t make the object

on the right side of the = in the constant declaration read-only; in

this example, it makes only a read-only. Consider these subsequent

assignments:

Chapter 2 JavaSCript for embedded C and C++ programmerS

65

a = 3; // generates an error

a.b = 2; // OK - can change existing property

a.c = 3; // OK - can add new property

To prevent modifications to the object that is the value of the constant,

you can use Object.freeze, a built-in function that makes all existing

properties of the object read-only and prevents new properties from being

added. As you can see in Listing 2-34, attempts to change the value of a

property in the frozen object or add a new property to the object generate

errors.

Listing 2-34.

const a = Object.freeze({

 b: 1

});

a = 3; // generates an error

a.b = 2; // error - can't change existing property

a.c = 3; // error - can't add new property

Note that Object.freeze returns the object passed to it, which is

convenient in this example because it avoids adding a line of code.

Object.freeze is rarely used in JavaScript for the web today, but the

Moddable SDK uses it extensively because it enables objects to be stored

efficiently in ROM or flash memory on embedded devices, saving limited

RAM.

Object.freeze is a shallow operation, which means it doesn’t freeze

nested objects. In Listing 2-35, for example, the nested object assigned to

the property c is not frozen.

Chapter 2 JavaSCript for embedded C and C++ programmerS

66

Listing 2-35.

const a = Object.freeze({

 b: 1,

 c: {

 d: 2

 }

});

a.c.d = 3; // OK

a.c.e = 4; // OK

a.b = 2; // error - can't change existing property

a.e = 3; // error - can't add new property

You could explicitly freeze c, but that begins to get verbose and

error- prone, as shown in Listing 2-36.

Listing 2-36.

const a = Object.freeze({

 b: 1,

 c: Object.freeze({

 d: 2

 })

});

Because freezing objects helps optimize memory use on embedded

devices, the XS JavaScript engine used in the Moddable SDK extends

Object.freeze with an optional second argument which enables a deep

freeze—that is, recursively freezing all nested objects (see Listing 2-37).

Chapter 2 JavaSCript for embedded C and C++ programmerS

67

Listing 2-37.

const a = Object.freeze({

 b: 1,

 c: {

 d: 2

 }

}, true);

a.c.d = 3; // error - can't change existing property

a.c.e = 4; // error - can't add new property

Note that this extension to Object.freeze isn’t part of the JavaScript

language standard, so it doesn’t work in most environments. It does,

however, address a common need in embedded development. Perhaps a

future edition of the JavaScript language will support this capability.

If your code needs to know whether an object is frozen, you can use

Object.isFrozen. Like Object.freeze, this is a shallow operation, so it

doesn’t tell you whether any nested objects are frozen.

if (!Object.isFrozen(a)) {

 a.b = 2;

 a.c = 3;

}

Freezing an object is a one-way operation: there is no Object.unfreeze.

This is because Object.freeze is sometimes used as a security measure

to prevent untrusted client code from tampering with the object. If the

untrusted code could unfreeze the object, it would enable the security

measure to be breached.

Chapter 2 JavaSCript for embedded C and C++ programmerS

68

 null
Like C and C++, JavaScript code uses the value null. In C and C++, this is

written as NULL to indicate that it’s defined using a macro; in JavaScript,

null is a built-in value.

C uses NULL as the value for pointers that don’t currently reference

anything. JavaScript has no pointers, so this meaning doesn’t make

sense. In JavaScript, null is a value indicating that there’s no reference

to an object. The value null is considered as a special null object and

consequently has a type of Object.

It’s easy to get null and undefined confused. They’re similar, but not

identical: undefined means no value has been given; null explicitly states

that there’s no object reference, which implies that the variable or property

will hold an object at some point during its execution. As a rule, when a

local variable or object property is intended to reference an object, assign

the value null when there’s no object.

 Comparisons
Comparing two values in C is straightforward, for the most part, because

you’re usually comparing two values of the same type. In a few cases, the C

language applies type conversion before comparing. This enables you to,

for example, compare a uint8_t value to a uint32_t value without having

to explicitly convert the type of either value. C++ makes comparisons

considerably more powerful by providing operator overloading, enabling

programmers to provide their own implementations of the comparison

operators for types they define. JavaScript is much more like C than C++

in this regard; it doesn’t support operator overloading, so the behavior of

comparisons is fully defined by the JavaScript language.

Chapter 2 JavaSCript for embedded C and C++ programmerS

69

Like C, JavaScript implicitly converts certain types when performing

a comparison with the equality operator (==). Listing 2-38 shows a few

examples.

Listing 2-38.

let a = 1 == "1"; // true

let b = 0 == ""; // true

let c = 0 == false; // true

let d = "0" == false; // true

let e = 1 == true; // true

let f = 2 == true; // false

let g = Infinity == "Infinity"; // true

As you can see, the rules for how types are converted in a comparison

aren’t always what you might expect. For this reason, JavaScript

programmers often avoid implicit conversions by using the strict equality

operator (===) instead, as shown in Listing 2-39. The strict equality

operator never performs type conversion; if the two values are of different

types, they’re always unequal.

Listing 2-39.

let a = 1 === "1"; // false

let b = 0 === ""; // false

let c = 0 === false; // false

let d = "0" === false; // false

let e = 1 === true; // false

let f = 2 === true; // false

let g = Infinity === "Infinity"; // false

Chapter 2 JavaSCript for embedded C and C++ programmerS

70

JavaScript also provides a strict inequality operator (!==), which can be

used in place of the inequality operator (!=) to avoid type conversion:

let a = 1 !== "1"; // true

let b = 0 !== ""; // true

let c = 0 !== false; // true

In many cases, there’s no harm in using == and != instead of the strict

versions. However, the edge cases in which the behaviors are different can

introduce bugs that are difficult to track down. Therefore, the current best

practice in JavaScript programming is to always use the strict versions of

the operators.

Some of the examples in this chapter that precede the introduction

of the strict comparison operators use == and !=. Now that you know

about the strict versions of these operators and why they’re preferred, the

examples in the remainder of this book will use only the strict operators.

 Comparing Objects
When two objects are compared in JavaScript, they’re equal only if they

reference the same instance. This is usually what you expect, though

sometimes developers incorrectly expect that if all the properties of two

different instances are equal, the result of the equality comparison is

true. This kind of deep comparison is not provided directly by JavaScript,

though it may be implemented in your application if needed.

let a = {b: 1};

let b = a === {b: 1}; // false

let c = a;

let d = a === c; // true

In C++, the default behavior for comparing objects is the same as in

JavaScript. Using operator overloading, C++ programmers can perform

deep comparisons if the class implements support.

Chapter 2 JavaSCript for embedded C and C++ programmerS

71

 Errors and Exceptions
JavaScript includes a built-in Error type which is used to report problems

that occur during execution. Errors are almost exclusively used together

with JavaScript’s exception mechanism, which is similar in many ways

to C++ exceptions. The C language doesn’t include exceptions, though

similar functionality is often built using setjmp and longjmp in the C

standard library.

To create an error, invoke the Error constructor. To help with

debugging, you can provide an optional error message.

let a = new Error;

let b = new Error("invalid value");

There are other kinds of errors, which are used to indicate a specific

problem. These include RangeError, TypeError, and ReferenceError. You

use them in the same way as Error. It’s most common to simply use Error,

but you can use the others if they fit your situation.

Once you have an error, you report it using a throw statement

(Listing 2-40).

Listing 2-40.

function setTemperature(value) {

 if (value < 0)

 throw new RangeError("too cold");

 ...

}

You can specify any value following the throw statement, though by

convention the value is usually an instance of an error.

When an exception is thrown, the current execution path ends.

Execution resumes at the first catch block on the stack. If there are no

catch blocks on the stack, the exception is considered an unhandled

Chapter 2 JavaSCript for embedded C and C++ programmerS

72

exception. Unhandled exceptions are ignored, meaning the host doesn’t

attempt to handle the exception. To catch an exception, you write try

and catch blocks just as in C++; Listing 2-41 follows from the preceding

example to illustrate this.

Listing 2-41.

try {

 setTemperature(-1); // throws an exception

 // Execution never reaches here

 displayMessage("Temperature set to -1\n");

}

catch (e) {

 trace(`setTemperature failed: ${e}\n`);

}

When setTemperature generates an exception in this example, execution

jumps to the catch block, skipping over the call to displayMessage.

The argument to the throw statement as shown in Listing 2-40—the

RangeError instance created by the setTemperature function—is provided

here in the local variable named e that’s specified in parentheses following

the catch keyword. If your catch block doesn’t use that value, you can

omit the parentheses following catch, as shown in Listing 2-42.

Listing 2-42.

try {

 setTemperature(-1); // throws an exception

 // Execution never reaches here

 displayMessage("Temperature set to -1\n");

}

catch {

 trace("setTemperature failed\n");

}

Chapter 2 JavaSCript for embedded C and C++ programmerS

73

After catching the error, you have the option to propagate it, as if it

hadn’t been caught. This is useful if you want to perform cleanup when the

error occurs and the error also needs to be handled by code farther up the

call stack. To propagate the exception, use the throw statement inside the

catch block (Listing 2-43).

Listing 2-43.

try {

 setTemperature(-1); // throws an exception

 // Execution never reaches here

 displayMessage("Temperature set to -1");

}

catch (e) {

 trace(`setTemperature failed: ${e}\n`);

 throw e;

}

Your exception handling may also include a finally block, as shown

in Listing 2-44. (Standard C++ doesn’t provide finally, but it’s part of

Microsoft’s dialect of C++.) The finally block is always called, no matter

how the exception is handled, or even if it isn’t caught by a catch block.

Listing 2-44.

try {

 setTemperature(-1);

}

catch (e) {

 trace(`setTemperature failed: ${e}\n`);

 throw e;

}

Chapter 2 JavaSCript for embedded C and C++ programmerS

74

finally {

 displayMessage(`Temperature set to ${getTemperature()}\n`);

// always executes

}

In Listing 2-44, the call to displayMessage happens regardless of

whether setTemperature throws an exception. When using finally, you

can omit the catch block (Listing 2-45), in which case the exception will

continue to propagate up the stack after the finally block executes.

Listing 2-45.

try {

 setTemperature(-1);

}

finally {

 displayMessage(`Temperature set to ${getTemperature()}`);

}

When an exception is not handled—for example, when

setTemperature throws an exception in Listings 2-44 and 2-45—a

warning is traced to the debug console. It isn’t necessarily a mistake to

leave an exception caught, but it can be an indication of a problem. The

warning may include the name of the function that detected the uncaught

exception; this is a native function, often part of the Moddable SDK

runtime, so the name may be unfamiliar.

While these examples have just a few lines of code in the try blocks,

real-world code often has large blocks of code within a single try block.

This enables you to keep the code for handling errors small and isolated,

rather than having it be part of each function call as can be the case in C.

Chapter 2 JavaSCript for embedded C and C++ programmerS

75

The combination of try, catch, and finally blocks gives you a

great deal of flexibility in how your code responds or doesn’t respond to

exceptions. Don’t worry too much about using them as you get started. It’s

common to write code without exception handling and then add it later

when you address the failure cases.

 Classes
Like C++, JavaScript lets you create your own kinds of objects by defining

classes. In JavaScript, you use the class keyword to define and implement

your classes. Classes in JavaScript are quite a bit simpler than in C++. Even

if you don’t expect to create your own classes, you should become familiar

with JavaScript classes so that you’ll be able to understand code written by

others.

Earlier versions of JavaScript didn’t have the class keyword, making

it more difficult to create classes. The keyword was introduced in the

6th Edition of the language standard (often referred to as “ES6”) in 2015.

Before that, JavaScript developers created classes using lower-level

approaches, including Object.create, or directly manipulated the object’s

prototype property. While these techniques still work and are common in

legacy code in the web, this section focuses on modern JavaScript, where

class enables code to be more readable and has no impact on runtime

performance.

 Class Constructor and Methods
Listing 2-46 shows a simple class, Bulb, representing a light bulb that can

be either on or off.

Chapter 2 JavaSCript for embedded C and C++ programmerS

76

Listing 2-46.

class Bulb {

 constructor(name) {

 this.name = name;

 this.on = false;

 }

 turnOn() {

 this.on = true;

 }

 turnOff() {

 this.on = false;

 }

 toString() {

 return `"${this.name}" is ${this.on ? "on" : "off"}`;

 }

}

Unlike in C++, there’s no declaration of the class; there’s only an

implementation. The syntax used to define the functions in the class is the

same as you’ve already seen for functions outside a class (in the “Object

Shorthand” section). However, unlike when functions are defined as

properties in an ordinary object, in a class there are no commas between

the functions.

As you can see in Listing 2-46, the Bulb class is a collection of

functions. The function named constructor in a class is special; it’s called

automatically when the object is created. The constructor performs any

necessary initialization before the new instance is returned to the creator.

The following code creates an instance of Bulb:

let wallLight = new Bulb("wall light");

wallLight.turnOn();

Chapter 2 JavaSCript for embedded C and C++ programmerS

77

Another special function in JavaScript classes is toString. This

function is called automatically in situations where JavaScript wants the

string representation of the object. The toString method of Bulb provides

a summary of the current state, which is useful for debugging.

let wallLight = new Bulb("wall light");

wallLight.turnOn();

trace(wallLight);

// output: "wall light" is on

Because the trace function outputs strings, it converts its argument to

a string, which invokes the toString method. You can also call toString

directly, as in wallLight.toString().

The toString method is a special case in JavaScript; there are no other

conversion functions, such as toNumber.

Note the invocation of a class constructor must occur after the
class is defined. this means that you can only call new Bulb after
the definition of the class in Listing 2-46, not before. invoking it
before that throws a runtime exception with the message get
Bulb: not initialized yet!.

 Static Methods
As in C++, a JavaScript class may include static methods, meaning

functions that are accessed through the class rather than the instance.

A simple example of a static method is one that returns the version of the

implementation (Listing 2-47).

Chapter 2 JavaSCript for embedded C and C++ programmerS

78

Listing 2-47.

class Bulb {

 ... // as earlier

 static getVersion() {

 return 1.2;

 }

}

Static methods are attached to the class and therefore can be called

even before an instance is created.

if (Bulb.getVersion() < 1.5)

 throw new Error("incompatible version");

 Subclasses
Much of the power of classes comes from the ability to create subclasses.

In JavaScript, you use the extends keyword to create a subclass. The code

in Listing 2-48 implements DimmableBulb as a subclass of the Bulb class

defined in Listing 2-46.

Listing 2-48.

class DimmableBulb extends Bulb {

 constructor(name) {

 super(name);

 this.dimming = 100;

 }

 setDimming(value) {

 if ((value < 0) || (value > 100))

 throw new RangeError("bad dimming value");

 this.dimming = value;

 }

}

Chapter 2 JavaSCript for embedded C and C++ programmerS

79

As you’d expect from a subclass, the DimmableBulb class inherits

the turnOff and turnOn methods from Bulb. The constructor function

requires some explanation. It immediately calls super with the same

argument as was passed to it. In a JavaScript class, super is a reference to

the constructor of the superclass—here, the constructor of Bulb. Therefore,

the first task performed by the DimmableBulb constructor is to construct its

superclass, Bulb.

While the constructor of a subclass may perform calculations before

calling the constructor of its superclass, it must eventually call it. Until

it does, this is undefined, so any attempt to get or set properties on the

instance will fail. For example, modifying the DimmableBulb constructor as

shown in Listing 2-49 generates an exception when it attempts to set the

dimming property, because this is not yet available.

Listing 2-49.

class DimmableBulb extends Bulb {

 constructor(name) {

 this.dimming = 100; // throws an exception

 super(name);

 }

 ...

}

The DimmableBulb implementation also inherits the toString

method from Bulb. The implementation of toString for Bulb

doesn’t print the dimming level; the implementation of toString for

DimmableBulb (Listing 2-50) adds the dimming level, by first calling the

toString method in Bulb (as specified by super) and then appending the

dimming level to that result.

Chapter 2 JavaSCript for embedded C and C++ programmerS

80

Listing 2-50.

class DimmableBulb extends Bulb {

 ...

 toString() {

 return super.toString() +

 ` with dimming ${this.dimming}`;

 }

}

The built-in Object class is the ultimate superclass of all JavaScript

classes. The Bulb class inherits directly from Object. This is implied by

the absence of an extends clause in its implementation, but it can also be

stated explicitly, as shown in Listing 2-51.

Listing 2-51.

class Bulb extends Object {

 constructor(name) {

 super();

 this.name = name;

 this.on = false;

 }

 ...

}

Note that because Bulb now explicitly extends Object, the Bulb

constructor must invoke the constructor of the class it extends by calling

super. If the call to super is omitted, accessing this throws an exception

with the message Bulb: this is not initialized yet!.

Classes that descend directly from Object aren’t usually written

this way, to keep the source code concise. But this example does hint at

another feature of JavaScript classes: the ability to subclass built-in objects.

The example in Listing 2-52 subclasses the built-in Array class (which

Chapter 2 JavaSCript for embedded C and C++ programmerS

81

you’ll learn more about soon) to add methods for finding the total and

average of the values in the array.

Listing 2-52.

class MyArray extends Array {

 sum() {

 let total = 0;

 for (let i = 0; i < this.length; i++)

 total += this[i];

 return total;

 }

 average() {

 return this.sum() / this.length;

 }

}

let a = new MyArray;

a[0] = 1;

a[1] = 2;

let b = a.sum(); // 3

let c = a.average(); // 1.5

When building a product, you may have more than a single instance of

Bulb. For example, you might be making a light switch that controls several

light bulbs, and you might keep that list of lights in an array. You could

create a subclass of Array for this purpose, with the subclass (Bulbs in the

example in Listing 2-53) providing batch operations on the bulbs.

Chapter 2 JavaSCript for embedded C and C++ programmerS

82

Listing 2-53.

class Bulbs extends Array {

 allOn() {

 for (let i = 0; i < this.length; i++)

 this[i].turnOn();

 }

 allOff() {

 for (let i = 0; i < this.length; i++)

 this[i].turnOff();

 }

}

let bulbs = new Bulbs;

bulbs[0] = new Bulb("hall light");

bulbs[1] = new DimmableBulb("wall light");

bulbs[2] = new DimmableBulb("floor light");

bulbs.allOn();

It would be nice to have a dimAll method in Bulbs, but that would only

work for instances of DimmableBulb; calling setDimming on an instance of

Bulb throws an exception because the method doesn’t exist. The JavaScript

instanceof operator helps here, by enabling you to determine whether an

instance corresponds to a particular class (Listing 2-54).

Listing 2-54.

let a = new Bulb("hall light");

let b = new DimmableBulb("wall light");

let c = a instanceof Bulb; // true

let d = b instanceof Bulb; // true

let e = a instanceof DimmableBulb; // false

let f = b instanceof DimmableBulb; // true

Chapter 2 JavaSCript for embedded C and C++ programmerS

83

As you can see, instanceof checks the specified class, including

its superclasses. In the example in Listing 2-54, this means that b is an

instance of both DimmableBulb and Bulb, since Bulb is the superclass of

DimmableBulb. With this knowledge, the implementation of dimAll is now

possible (Listing 2-55).

Listing 2-55.

class Bulbs extends Array {

 ...

 dimAll(value) {

 for (let i = 0; i < this.length; i++) {

 if (this[i] instanceof DimmableBulb)

 this[i].setDimming(value);

 }

 }

}

The properties of the Bulb instance are ordinary JavaScript properties,

making them available both to the class implementation and to code using

the class:

let wallLight = new Bulb("wall light");

wallLight.turnOn();

trace(`Light on: ${wallLight.on}\n`);

That’s useful, but sometimes you want to use a different representation

for the value inside the implementation than what you use in the API. For

example, the setDimming method accepts values from 0 to 100, because

percentages are a natural way to describe a dimming level; however, the

implementation may prefer to store a value from 0 to 1.0 because that’s

more efficient for its internal calculations. JavaScript classes support

getters and setters that are useful for these kinds of transformations. The

implementation in Listing 2-56 replaces the setDimming method with a

getter and setter for the dimming property.

Chapter 2 JavaSCript for embedded C and C++ programmerS

84

Listing 2-56.

class DimmableBulb extends Bulb {

 constructor(name) {

 super(name);

 this._dimming = 1.0;

 }

 set dimming(value) {

 if ((value < 0) || (value > 100))

 throw new RangeError("bad dimming value");

 this._dimming = value / 100;

 }

 get dimming() {

 return this._dimming * 100;

 }

}

let a = new DimmableBulb("hall light");

a.dimming = 50;

a.dimming = a.dimming / 2;

Users of the class access the dimming property as an ordinary JavaScript

property. However, when the property is set, the set dimming setter

method of the class is invoked, and when the property is read, the get

dimming getter method is invoked.

 Private Fields
The getter and setter in Listing 2-56 store the value in a property named

dimming. JavaScript code has long used an underscore () at the start

of property names to indicate that they’re only for internal use. Unlike

C++, JavaScript has not provided private fields in classes. Work on adding

private fields to the JavaScript standard is nearly complete; this section

Chapter 2 JavaSCript for embedded C and C++ programmerS

85

introduces private fields as they’re expected to be in the JavaScript

standard. Private fields are supported by the XS JavaScript engine for use

in your embedded development.

Private fields in JavaScript are indicated by prefixing the field name

with a hash character (#). The private field must be declared in the class

body. Listing 2-57 shows the version of DimmableBulb in Listing 2-56

rewritten to use a private field named #dimming in place of _dimming.

Listing 2-57.

class DimmableBulb extends Bulb {

 #dimming = 1.0;

 set dimming(value) {

 if ((value < 0) || (value > 100))

 throw new RangeError("bad dimming value");

 this.#dimming = value / 100;

 }

 get dimming() {

 return this.#dimming * 100;

 }

}

let a = new DimmableBulb("hall light");

a.dimming = 50;

a.dimming = a.dimming / 2;

a.#dimming = 100; // error

Notice that the private field #dimming is initialized to 1.0 in its

declaration in the class body. This is optional; it can instead be initialized

in the constructor. Until it’s initialized, it has a value of undefined.

Notice also that the example in Listing 2-57 eliminates the constructor

entirely. That’s possible here because #dimming is already initialized.

Since DimmableBulb inherits from Bulb, when there’s no constructor on

Chapter 2 JavaSCript for embedded C and C++ programmerS

86

DimmableBulb the constructor of Bulb is automatically called when an

instance is created. As you’d expect from C++, the code outside the class

has no access to private fields; consequently, the final line of the example,

which attempts to assign a value to #dimming, generates an error.

JavaScript doesn’t support the C++ friends or protected class

features. The private properties of a class are only directly accessible

to code inside the class body. Private fields are truly private, remaining

invisible even to subclasses and superclasses.

 Private Methods
Together with private fields, the JavaScript language standard is adding

private methods—functions that can only be called from within a class’s

implementation. For example, the DimmableBulb class in Listing 2-58 has a

private #log method.

Listing 2-58.

class DimmableBulb extends Bulb {

 #dimming = 1.0;

 set dimming(value) {

 if ((value < 0) || (value > 100))

 throw new RangeError("bad dimming value");

 this.#dimming = value / 100;

 this.#log(`set dimming ${this.#dimming}`);

 }

 get dimming() {

 this.#log("get dimming");

 return this.#dimming * 100;

 }

Chapter 2 JavaSCript for embedded C and C++ programmerS

87

 #log(msg) {

 trace(msg);

 }

}

let a = new DimmableBulb("hall light");

a.#log("test"); // error

 Using Callback Functions in Classes
There are times when a class implementation passes a function to an

API as a callback. A common example is when an API uses a timer to

delay an action into the future. JavaScript web developers commonly use

setTimeout for this purpose; in embedded JavaScript, the equivalent is

Timer.set. The example in Listing 2-59 adds a method to the Bulb class to

turn the light on or off after a specified time interval elapses.

Listing 2-59.

class Bulb {

 ...

 setOnAfter(value, delayInMS) {

 let bulb = this;

 Timer.set(function() {

 if (value)

 bulb.turnOn();

 else

 bulb.turnOff();

 }, delayInMS);

 }

}

Chapter 2 JavaSCript for embedded C and C++ programmerS

88

The setOnAfter method calls Timer.set with two arguments: an

anonymous function to execute after the timer expires and the time to wait

in milliseconds. The callback function uses a closure to access bulb; this

is necessary because the value of this in the callback is not the instance

of bulb that setOnAfter was called with, but rather is the global object

(that is, globalThis). This code works, but JavaScript has better tools to

implement this functionality.

Like modern C++, modern JavaScript has lambda functions—

commonly called arrow functions because of the => syntax used to declare

them. Like closures, arrow functions are a little difficult to understand but

easy to use. When an arrow function is called, its this value is the same as

the this value of the function in which the arrow function is defined. This

feature of arrow functions is referred to as lexical this because the value of

this inside the arrow function is taken from the enclosing function.

Arrow functions are popular because they maintain the value of this

and they’re more concise in source code. The examples in Listing 2-60 show

the same functions using the function keyword and arrow function syntax.

Listing 2-60.

function randomTo100() {

 return Math.random() * 100;

}

let randomTo100 = () => Math.random() * 100;

function cube(a) {

 return a * a * a;

}

let cube = a => a * a * a;

function add(a, b) {

 return a + b;

}

let add = (a, b) => a + b;

Chapter 2 JavaSCript for embedded C and C++ programmerS

89

function upperFirst(str) {

 let first = str[0].toUpperCase();

 return first + str.slice(1);

}

let upperFirst = str => {

 let first = str[0].toUpperCase();

 return first + str.slice(1);

};

All of the pairs of examples in Listing 2-60 are functionally equivalent,

apart from the value of this in the functions; however, the examples don’t

use this. The code in Listing 2-61 uses an arrow function to improve the

implementation of setOnAfter (in Listing 2-59) by taking advantage of the

lexical this to eliminate the bulb local variable. Using this approach, the code

of the callback is able to use this in the same way that class methods can.

Listing 2-61.

class Bulb {

 ...

 setOnAfter(value, delayInMS) {

 Timer.set(

 () => value ? this.turnOn() : this.turnOff(),

 delayInMS

);

 }

}

It’s important to be familiar with arrow functions because they’re very

common in JavaScript. You’ll encounter them in some of the examples in

this book. Keep in mind that arrow functions aren’t just an alternative way

of writing the source code of functions; they also change the value of this

inside the function.

Chapter 2 JavaSCript for embedded C and C++ programmerS

90

 Modules
Modules are the mechanism in JavaScript for packaging a library of

code. There are some similarities between JavaScript modules and

shared or dynamic libraries in C and C++: both specify exports to share

a limited number of classes, functions, and values; and both can import

classes, functions, and values from other libraries. Like dynamic libraries

in C, JavaScript modules are loaded at runtime. There are also many

differences, including that there’s no JavaScript equivalent to a statically

linked C library.

 Importing from Modules
To use the capabilities provided by a module, you must first import the

corresponding classes, functions, or values. There are many different ways

to import from a module, with a flexibility that gives you control over what

you import and how you name those imports.

Examples in the preceding section used the Timer class without

showing where it came from. The Timer class is contained in the timer

module. To import from a module, you use the import statement.

import Timer from "timer";

Timer.set(() => trace("done"), 1000);

The import statement is special in JavaScript in that it’s executed

before all other code. It’s customary to put the import statement at the top

of the source code, like include statements in C, but even if they’re not

first, they still execute first.

Chapter 2 JavaSCript for embedded C and C++ programmerS

91

The preceding form of the import statement consists of two parts:

• The name of the variable in which to store the import.

Here it’s Timer, but you can use any name you like.

The ability to select the name can help avoid name

conflicts, especially when you’re working with many

modules.

• After the from keyword, the module specifier. Here it’s

"timer".

A module specifier that, like "timer", is not a path is called a bare

module specifier. For embedded JavaScript, these are more common; in

fact, this book uses only bare module specifiers. One reason for this is that

there’s often no file system in an embedded device to resolve the path.

By contrast, JavaScript on the web currently only uses paths for module

specifiers, so there you’ll see import statements with a from clause, like

from "./modules/timer.js".

The form of the import statement illustrated previously imports the

default export of the timer module. Every module has a default export.

Some modules have additional exports; for example, the http module used

in Chapter 3 exports both a Request class and a Server class. Listing 2-62

shows different ways to import these non-default exports from http.

Listing 2-62.

import {Server} from "http"; // server only

new Server;

import {Request} from "http"; // client only

new Request;

import {Server, Request} from "http";

new Server;

new Request;

Chapter 2 JavaSCript for embedded C and C++ programmerS

92

You can use the as keyword to rename non-default exports that

you import. Listing 2-63 renames Server to HTTPServer and Request to

HTTPClient.

Listing 2-63.

import {Server as HTTPServer, Request as HTTPClient} from "http";

new HTTPServer;

new HTTPClient;

new Request; // fails, Request is undefined

new Server; // fails, Server is undefined

If you prefer for readability, you may use the same module specifier in

multiple import statements:

import {Server as HTTPServer} from "http";

import {Request as HTTPClient} from "http";

You can also import all the exports from a module. When you do

this, you assign the imports to an object. By avoiding name conflicts, this

feature of JavaScript serves a similar purpose to namespaces in C++.

import * as HTTP from "http";

new HTTP.Server;

new HTTP.Request;

Once you import a class from a module, you can use it like a class

declared in the same source file or a JavaScript built-in class. As you’ve

seen, you can instantiate the class with the new operator. You can also

create subclasses of an imported class:

import {Request} from "http";

class MyRequest extends Request {

 ...

}

Chapter 2 JavaSCript for embedded C and C++ programmerS

93

 Exporting from Modules
When you start writing your own classes, you’ll want to package them into

your own modules; those modules need to export their classes so that

they can be used by other code (and functions and values may likewise

be exported). The following line uses the export statement to provide the

Bulb class as the module’s default export:

export default Bulb;

You can optionally put the export statement before the declaration of

a class, which here means you could combine export default with the

definition of the Bulb class, as follows:

export default class Bulb {

 ...

}

This approach is valid but less common. Current JavaScript best

practices recommend putting all your import statements together at

the start of the source file and all export statements together at the end,

making your code easier to read and maintain.

The following example shows two ways to provide non-default exports

of Bulb and DimmableBulb:

export {Bulb};

export {DimmableBulb};

export {Bulb, DimmableBulb};

Like the import statement, an export statement can perform renaming

using as. This is useful when you want to export a different name from that

used in your implementation.

export {Bulb as BULB, DimmableBulb as DIMMABLEBULB};

Chapter 2 JavaSCript for embedded C and C++ programmerS

94

The only way a module can access the contents of another module is

through its exports. Classes, functions, and values that are not exported

cannot be accessed directly; they’re equivalent to classes, functions, and

values defined using the static keyword in C and C++, but with this

important difference: by default in C and C++, everything is exported

unless declared static, whereas in JavaScript nothing is exported

except as indicated by an export statement. The JavaScript approach—a

whitelist instead of a blacklist of exports as in C—helps with security and

maintainability by avoiding unintended exports.

 ECMAScript Modules vs. CommonJS Modules
The modules used in this book are part of the JavaScript language

specification. They’re sometimes referred to as ECMAScript modules, or

ESMs. Before modules were added to the official specification, a module

system named CommonJS was used in some environments, particularly

in Node.js. Because of that history, you may still see CommonJS

documentation and modules. However, they don’t work in the hosts used

in this book, and most environments (including Node.js) are migrating to

standard JavaScript modules.

 Globals
Like C and C++, JavaScript has global variables. You’ve used some of them

already, such as Object, Array, and ArrayBuffer. These built-in classes

are assigned to global variables that have the same name as the class. You

access these globals simply by using their name. If that name isn’t in the

current scope, the global variable is used. If no global variable is available

with that name, an error is generated. This is similar to the link error

generated when you access a nonexistent global in C.

Chapter 2 JavaSCript for embedded C and C++ programmerS

95

function example() {

 let a = Date; // OK, Date is built in

 let b = DateTime; // error, DateTime is not defined

}

In C and C++, you create a global variable by declaring a variable at

the top-level scope of a source code file. Unless it’s marked as static, the

variable is visible to all code statically linked to that file. In JavaScript, you

must be explicit about creating a global variable. To define a new global

variable in JavaScript, you add it to an object named globalThis. The

following line creates a global variable named AppName and sets its initial

value:

globalThis.AppName = "light bulb";

Once the global variable is defined, you can access it either implicitly

by stating only its name or explicitly by reading the property from

globalThis:

AppName = "Light Bulb";

globalThis.AppName += " App";

If you want to know whether a particular global variable is already

defined, use the in keyword introduced in the “Objects” section of this

chapter.

if ("AppName" in globalThis)

 trace(`AppName is ${AppName}\n`);

else

 trace("AppName not available");

In the same way that you remove properties from an object with the

delete operator, you can remove global variables:

delete globalThis.AppName;

Chapter 2 JavaSCript for embedded C and C++ programmerS

96

Note that the original name of the globalThis object was global,

which is easier to remember and type; it was changed for compatibility

reasons. Some environments support global as an alias for globalThis.

When you work with modules, they can seem to have global variables.

Consider the module example in Listing 2-64.

Listing 2-64.

let counter = 0;

function count() {

 return ++counter;

}

export default count;

The way the counter variable is declared at the top-level scope, it

appears to be like a global variable declaration in C or C++, but it’s not. The

counter variable is private to the module, since it isn’t explicitly exported.

Such variables are local to the module. In C or C++, the equivalent result

is achieved by preceding the variable declaration with static to limit its

visibility to the current source code file.

 Arrays
In C and C++, any pointer to a type (such as char *) or to a structure (such

as struct DataRecord *) may access a single element (as in *ptr) or an

array (as in ptr[0], ptr[1]). These uses of a pointer can lead to errors—for

example, writing to an index beyond the end of the memory reserved for

an array. To help avoid some of the dangers of working with arrays, C++

provides an std:array class template, which also provides iterators and

other common helper functions. JavaScript’s built-in Array object is more

like std:array in C++ in that it’s designed to be safe and it provides many

helper functions to perform common operations.

Chapter 2 JavaSCript for embedded C and C++ programmerS

97

Unlike C and C++, JavaScript doesn’t permanently set the number

of elements when an array is instantiated; arrays may contain a variable

number of elements. You can optionally indicate the number of elements

when calling the constructor.

let a = new Array; // empty array

let b = new Array(10); // 10-element array

As you might have guessed, all array entries are initialized to

undefined. Notice that when an array is created, there’s no indication of

the type of data it will hold. That’s because each array element may contain

any value; the values don’t need to be of the same type.

 Array Shorthand
Because creating arrays is so common, JavaScript provides a shortcut:

let a = []; // empty array

Using this shortcut syntax, you can provide the initial values of the

array:

let a = [0, 1, 2];

let b = [undefined, 1, "two", {three: 3}, [4]];

 Accessing Elements of an Array
Accessing elements of an array uses the same syntax as in C and C++.

Elements are numbered starting at 0.

let a = [0, 1, 2];

a[0] += 1;

trace(a[0]);

a[1] = a[2];

Chapter 2 JavaSCript for embedded C and C++ programmerS

98

Reading the value of an array beyond the end of the array returns

undefined. Writing a value beyond the end of an array creates the value,

extending the length of the array.

let sparse = [0, 1, 2];

sparse[3] = 3;

sparse[1_000_000] = "big array";

You might expect that this assignment to the millionth element of the

array will fail on a microcontroller with limited memory: the ESP8266

has only about 64 KB of RAM, so how can it hold an array with a million

elements? Yet the assignment succeeds, and accessing sparse[1_000_000]

returns "big array". How does that work?

An array in JavaScript may be sparse, meaning that not all elements

must be present. Any elements that aren’t present have a value of

undefined. In the case here of the array sparse, there are only five

elements, which just happen to be at indices 0, 1, 2, 3, and 1,000,000.

Arrays have a length property, which indicates the number of

elements in the array. The length is used, for example, to iterate over

the elements in the array. For a sparse array, length is not the number

of elements with an assigned value, but 1 more than the highest index

that has an assigned value. In the case here of the array sparse, length is

1,000,001 even though there are only five elements with assigned values.

Setting the length property changes the array. Setting it to a smaller

value truncates the array. The following truncates the preceding sparse

array to four elements:

sparse.length = 4; // [0, 1, 2, 3]

Setting an array’s length property to a larger value doesn’t change the

array’s contents.

Chapter 2 JavaSCript for embedded C and C++ programmerS

99

 Iterating over Arrays
As shown in Listing 2-65, you can use the length property to iterate over

the elements in an array using a for loop, as in C and C++.

Listing 2-65.

let a = [0, 1, 2, 3, 4, 5];

let total = 0;

for (let i = 0; i < a.length; i++)

 total += a[i];

Instead of using the C-style for loop, you can use the JavaScript

for-of loop.

for (let value of a)

 total += value;

The for-of loop approach is more compact, eliminating the code to

manage the value i and the lookup of the value in the array a[i]. Both

the C-style for loop and the for-in loop iterate through all the values

from index 0 to the length of the array, even for sparse arrays where there

are unassigned values. Because the unassigned values have a value of

undefined, total has a value of NaN at the end of the code in Listing 2-66.

Listing 2-66.

let a = [0, 1, 2, 3, 4, 5];

a[1_000_000] = 6;

let total = 0;

for (let i in a)

 total += a[i];

Chapter 2 JavaSCript for embedded C and C++ programmerS

100

You can modify this code to ignore array elements with the value

undefined, as follows:

for (let i in a)

 total += (undefined === a[i]) ? 0 : a[i];

An alternative solution is to iterate over the values in the array using a

for-of loop that includes only array elements that have an assigned value,

as shown in Listing 2-67; the value of total at the end of this code is 21

rather than NaN as in Listing 2-66.

Listing 2-67.

let a = [0, 1, 2, 3, 4, 5];

a[1_000_000] = 6;

let total = 0;

for (let value of a)

 total += value;

The Array object also has methods for iterating over an array in

many different ways, each of which uses a callback function. The forEach

method is similar to the for-in loop (see Listing 2-68). Like the for-of

loop, this method skips array elements that don’t have a value assigned.

Listing 2-68.

let a = [0, 1, 2, 3, 4, 5];

let total = 0;

a.forEach(function(value) {

 total += value;

});

Chapter 2 JavaSCript for embedded C and C++ programmerS

101

Using arrow functions reduces the iteration code to a single line:

let a = [0, 1, 2, 3, 4, 5];

let total = 0;

a.forEach(value => total += value);

As you might guess, not all of the many ways to iterate over an array

in JavaScript are equally efficient. The forEach approach, for example,

is the most compact code but requires a function call on every element,

which can add overhead. For small arrays, use whichever approach is most

convenient; for large arrays, it can be worth measuring the performance of

different approaches to find the fastest one.

The map method is helpful when you need to perform an operation

on each element of an array. It invokes a callback on each element and

returns a new array containing the results. The following example creates

an array containing the square of the values in the original array. The

arrow function invoked for each element uses the exponentiation operator

(**) to calculate the square.

let a = [-2, -1, 0, 1, 2];

let b = a.map(value => value ** 2); // [4, 1, 0, 1, 4]

 Adding and Removing Elements of an Array
Because JavaScript arrays aren’t a fixed length, they have uses beyond a

simple ordered list. The push and pop functions enable you to use an array

as a stack (last in, first out), as shown in Listing 2-69.

Listing 2-69.

let stack = [];

stack.push("a");

stack.push("b");

stack.push("c");

Chapter 2 JavaSCript for embedded C and C++ programmerS

102

let c = stack.pop(); // "c"

stack.push("d");

let d = stack.pop(); // "d"

let b = stack.pop(); // "b"

With the unshift and pop functions, you can use an array as a queue

(first in, first out). The unshift function adds values to the start of an array;

see Listing 2-70. (There’s also shift, which removes the first item from an

array.)

Listing 2-70.

let queue = [];

queue.unshift("first");

queue.unshift("second");

let a = queue.pop(); // "first"

queue.unshift("third");

let b = queue.pop(); // "second"

Using unshift and pop to add and remove elements of a queue is

useful but not entirely intuitive. These functions would be easier to use

if they had names that make more sense for a queue; you can do this by

creating a subclass of Array, as shown in Listing 2-71.

Listing 2-71.

class Queue extends Array {

 add(element) {

 this.unshift(element);

 }

 remove(element) {

 return this.pop();

 }

}

Chapter 2 JavaSCript for embedded C and C++ programmerS

103

let queue = new Queue;

queue.add("first");

queue.add("second");

let a = queue.remove(); // "first"

queue.add("third");

let b = queue.remove(); // "second"

To extract part of an array into another array, use the slice function.

As when you use slice to extract parts of strings, it takes two arguments:

the starting and ending indices (where the ending index is the index before

which to end extraction). If the ending index is omitted, the string’s length

is used. The slice function never changes the content of the array it’s

operating on.

let a = [0, 1, 2, 3, 4, 5];

let b = a.slice(0, 2); // [0, 1]

let c = a.slice(2, 4); // [2, 3]

To remove part of an array, use splice. The name splice is very

similar to slice, and the two operate similarly: they take the same

arguments, and both functions return an array containing the section of

the array identified by the arguments. However, splice also deletes the

elements from the original array.

let a = [0, 1, 2, 3, 4, 5];

let b = a.splice(0, 2); // [0, 1]

let c = a.splice(0, 2); // [2, 3]

// a = [4, 5] here

 Searching Arrays
Searching for a particular value within an array is common, and there are

several functions to help with that. As shown in Listing 2-72, you can use

indexOf to search from the start of an array or lastIndexOf to search from

Chapter 2 JavaSCript for embedded C and C++ programmerS

104

the end. The first parameter is the value to search for; an optional second

parameter indicates the index at which to begin searching in the array. If

the value isn’t found, both functions return –1.

Listing 2-72.

let a = [0, 1, 2, 3, 2, 1, 0];

let b = a.indexOf(1); // 1

let c = a.lastIndexOf(1); // 5

let d = a.indexOf(1, 3); // 5

let e = a.lastIndexOf(1, 3); // 1

let f = a.indexOf("one"); // –1

The indexOf and lastIndexOf functions use the strict equality

operator to test whether a match is found. If you want to apply a different

test, use the findIndex function, which invokes a callback function to test

for a match. The following example performs a case-insensitive match:

let a = ["Zero", "One", "Two"];

let search = "one";

let b = a.findIndex(value =>

 value.toLowerCase() === search); // 1

 Sorting Arrays
Sorting is another common operation on arrays. The sort function on

arrays is similar to the qsort function in C and C++, though it may be

implemented using a different sorting algorithm. Like qsort, JavaScript’s

sort operates in place, so no new array is created. The built-in sort

function’s default behavior is to compare the array values as strings.

let a = ["Zero", "One", "Two"];

a.sort();

// ["One", "Two", "Zero"]

Chapter 2 JavaSCript for embedded C and C++ programmerS

105

To implement other behaviors, you provide a callback function to

perform the comparison. The comparison is similar to that of the callback

function in the C and C++ qsort function, receiving two values to compare

and returning a negative number, 0, or a positive number depending on

the result of the comparison. For example, the following code sorts an

array of numbers:

let a = [0, 1, 2, 3, 2, 1, 0];

a.sort((x, y) => x - y);

// [0, 0, 1, 1, 2, 2, 3]

The example in Listing 2-73 uses a more complex comparison function

to perform a case-insensitive sort of strings.

Listing 2-73.

let a = ["Zero", "zero", "two", "Two"];

a.sort();

// ["Two", "Zero", "two", "zero"]

a.sort((x, y) => {

 x = x.toLowerCase();

 y = y.toLowerCase();

 if (x > y)

 return +1;

 if (x < y)

 return -1;

 return 0;

});

// ["Two", "two", "Zero", "zero"]

Chapter 2 JavaSCript for embedded C and C++ programmerS

106

 Binary Data
JavaScript didn’t always support binary data, unlike C, which has

supported memory buffers containing native integer types from the start.

In C, one of the first things you learn is how to allocate memory with

malloc and how to fill that memory with arrays and other data structures.

The ability to operate on memory buffers directly is essential for many

kinds of embedded development—for example, when working with binary

messages in various network and hardware protocols. JavaScript supports

the same kinds of operations as you’re accustomed to when coding in C

and C++, though the way you perform those operations is quite different.

Another benefit to using binary data in JavaScript is that it can reduce

your project’s memory use. One of the fundamental characteristics of

JavaScript is that any value may hold any type, but this powerful feature

comes with a cost: additional memory is required on each value to store the

value’s type. While a boolean value in C is just one byte (or a bit, using bit

fields), a boolean value in JavaScript can be much more—for example, 8 or

16 bytes. Using binary data in JavaScript, you can store a boolean value in

a byte (or even a bit) with just a little work. If your project maintains a large

amount of data in memory, consider using JavaScript’s binary data features,

as the memory savings can be significant. Creating a 1,000-element array

of JavaScript booleans using a standard Array object may require 16 KB

of RAM, more than may be free on an ESP8266, but creating it using a

Uint8Array object requires just 1 KB of RAM—exactly the same as in C.

 ArrayBuffer
The JavaScript equivalent of calloc is the ArrayBuffer class. An

ArrayBuffer is a block of memory of a fixed number of bytes. The memory

is initially set to 0, to avoid any surprises with uninitialized memory.

let a = new ArrayBuffer(10); // 10 bytes

Chapter 2 JavaSCript for embedded C and C++ programmerS

107

If the buffer can’t be allocated because not enough free memory is

available, the ArrayBuffer constructor throws an exception.

To retrieve the number of bytes in an ArrayBuffer, get the byteLength

property. The number of bytes contained in an ArrayBuffer instance is

fixed at the time it’s created. There’s no equivalent to realloc; you cannot

set the byteLength property of an ArrayBuffer.

let a = new ArrayBuffer(16);

let b = a.byteLength; // 16

a.byteLength = 20; // exception thrown

As with an array, you use the slice method to extract a section of the

buffer into a new ArrayBuffer instance:

let a = new ArrayBuffer(16);

let b = a.slice(0, 8); // copy first half

let c = a.slice(8, 16); // copy second half

let d = a.slice(0); // clone entire buffer

You might expect to be able to access the content of an ArrayBuffer

using array syntax (for example, a[0]), but this is not the case. An

ArrayBuffer is only a buffer of bytes. Because there’s no type associated

with the data, JavaScript doesn’t know how to interpret the bytes—for

example, whether the byte values are signed or unsigned. To access the

data in an ArrayBuffer, you wrap it in a view. The following sections

introduce two kinds of view: typed array and data view.

 Typed Arrays
JavaScript typed arrays are a collection of classes that let you work with

arrays of integers and floating-point values stored in an ArrayBuffer. You

don’t work with the TypedArray class directly but with its subclasses for

specific types, such as Int8Array, Uint16Array, and Float32Array. Using

a typed array is similar to creating a memory buffer in C with calloc and

assigning the result to a pointer to an integer or floating-point type.

Chapter 2 JavaSCript for embedded C and C++ programmerS

108

You can create a typed array that wraps an existing ArrayBuffer. The

following example wraps an ArrayBuffer into a Uint8Array:

let a = new ArrayBuffer(16);

let b = new Uint8Array(a);

Now that you have a view on the buffer, you can access the content

using array bracket syntax as you’d expect:

b[0] = 12;

b[1] += b[0];

Typed arrays, such as the Uint8Array in the earlier example, have a

byteLength property, as does ArrayBuffer, but they also have a length

property indicating the number of elements in the array. When the

elements are bytes, these two values are equal, but for larger types, they

differ (see Listing 2-74).

Listing 2-74.

let a = new ArrayBuffer(24);

let b = new Uint8Array(a);

let c = new Uint16Array(a);

let d = new Uint32Array(a);

let e = b.length; // 24

let f = c.length; // 12

let g = d.length; // 6

Here a single ArrayBuffer is wrapped by several views; this is allowed.

In C, it’s called “aliasing,” and it’s dangerous because it interferes with

certain compiler optimizations. In JavaScript, it’s safe, though you should

use it with care to avoid unexpected surprises when reading and writing to

overlapping views.

Chapter 2 JavaSCript for embedded C and C++ programmerS

109

You can create a typed array view that references a subset of a buffer,

by including an offset in bytes to the start of the view and the number

of elements in the view. This is like assigning an integer pointer a value

in the middle of a memory buffer. In JavaScript, however, there’s no

unpredictable result when you read past the end of the buffer; that always

returns undefined (see Listing 2-75).

Listing 2-75.

let a = new ArrayBuffer(18)

let b = new Int16Array(a);

b[0] = 0;

b[1] = 1;

b[2] = 2;

b[3] = 3;

let c = new Int16Array(a, 6, 1);

 // c begins 6 bytes into a and has one element

let d = c[0]; // 3

let e = c[1]; // undefined (read past end of view)

The Int16Array view created in Listing 2-75 for variable c begins at

offset 6, but it could begin at any offset, including an odd-numbered one.

Accessing the 16-bit values in that array requires misaligned reads. Not

all microcontrollers support misaligned reads and writes; the ESP8266

is one microcontroller that doesn’t support misaligned memory access.

When C code performs a misaligned read or write, a hardware exception

is generated, causing the microcontroller to reset. JavaScript code doesn’t

have this problem because the language guarantees that misaligned

operations give the same result as aligned operations—another way

JavaScript makes coding on embedded products a little easier.

Chapter 2 JavaSCript for embedded C and C++ programmerS

110

 Typed Array Shorthand

It’s common to create small integer arrays. In C and C++, you can easily

declare static arrays on the stack.

static uint16_t values[] = {0, 1, 2, 3};

In JavaScript, you can achieve the same result using the static of

method on typed arrays:

let a = Uint16Array.of(0, 1, 2, 3);

let b = a.byteLength; // 8

let c = a.length; // 4

The of function automatically creates an ArrayBuffer of the size

needed to store the values. You can access the ArrayBuffer created by of

by getting the buffer property of the typed array. This buffer may be used

with other views, such as data views.

let a = Uint16Array.of(0, 1, 2, 3);

let b = a.buffer;

let c = b.byteLength; // 8

 Copying Typed Arrays

In C and C++, you use memcpy and memmove to copy data values within a

single buffer or between two buffers. You’ve already seen how to use slice

on an ArrayBuffer in JavaScript to copy part or all of the buffer to a new

buffer; you can use copyWithin to copy values within a single buffer and

set to copy values from one buffer to another. In C, you need to take special

care when copying within a single buffer when the source and destination

overlap, whereas JavaScript’s copyWithin method guarantees the results are

predictable and correct. The first argument to copyWithin is the destination

index, and the second and third arguments are the starting and ending source

indices to copy (where the ending index is the index before which to end).

Chapter 2 JavaSCript for embedded C and C++ programmerS

111

let a = Uint16Array.of(0, 1, 2, 3, 4, 5, 6);

a.copyWithin(4, 1, 3);

// [0, 1, 2, 3, 1, 2, 6]

The set method writes one typed array into another. The first

argument is the source data to write, and the second argument is the index

at which to begin writing the data.

let a = Int16Array.of(0, 1, 2, 3, 4, 5, 6);

let b = Int16Array.of(-2, -3);

a.set(b, 2);

// [0, 1, -2, -3, 4, 5, 6]

To write only a subset of the source data, you need to create another

view. The subarray method is convenient for that, as shown in Listing 2-76.

Given the starting and ending indices of a typed array, subarray returns

a new typed array that references only those indices. Note that subarray

doesn’t allocate a new ArrayBuffer; it just references the same ArrayBuffer.

Listing 2-76.

let a = Int16Array.of(0, 1, 2, 3, 4, 5, 6);

let b = Int16Array.of(0, -1, -2, -3, -4, -5, -6);

let c = b.subarray(2, 4);

a.set(c, 2);

// [0, 1, -2, -3, 4, 5, 6]

You could use slice in place of subarray to copy the subset in a new

Int16Array, but that temporarily uses additional memory, so subarray is

preferred in this case.

The TypedArray classes are not subclasses of Array; they’re entirely

independent classes, but they’re designed to share common APIs. For

example, the copyWithin method you learned about for typed arrays is

available with Array. Similarly, many of the Array methods, including map,

forEach, indexOf, lastIndexOf, findIndex, and sort, are also available

for typed arrays.

Chapter 2 JavaSCript for embedded C and C++ programmerS

112

 Filling Typed Arrays

Another useful method available for both Array and TypedArray is fill,

which is similar to memset in C and C++. But while memset operates only

on byte values, fill operates on values of the type of the typed array. As

shown in Listing 2-77, the first argument to fill is the value to assign, and

the optional second and third arguments are the beginning and ending

indices to fill (where the ending index is the index before which to end the

fill). If the optional arguments are not provided, the entire array is filled.

Listing 2-77.

let a = new Uint16Array(4);

a.fill(0x1234);

// [0x1234, 0x1234, 0x1234, 0x1234]

a.fill(0, 1, 3);

// [0x1234, 0, 0, 0x1234]

let b = new Uint32Array(2);

b.fill(0x12345678);

// [0x12345678, 0x12345678]

 Writing Typed Array Values

Writing values into a typed array usually behaves as in C. For example, if

you write a 16-bit value into an 8-bit typed array, the least significant 8 bits

are used (see Listing 2-78).

Listing 2-78.

let a = new Uint32Array(1);

a[0] = 0x12345678; // 0x12345678

let b = new Uint16Array(1);

b[0] = 0x12345678; // 0x5678

Chapter 2 JavaSCript for embedded C and C++ programmerS

113

let c = new Uint8Array(1);

c[0] = 0x12345678; // 0x78

JavaScript also has a Uint8ClampedArray, which implements a

different behavior: rather than taking the least significant bits, it pins the

input value to a value between 0 and the maximum value that the typed

array instance can store.

let a = new Uint8ClampedArray(1);

a[0] = 5; // 5

a[0] = 256; // 255

a[0] = -1; // 0

 Floating-Point Typed Arrays

There are two floating-point typed arrays: Float32Array and

Float64Array. Since number values in JavaScript are 64-bit IEEE 754

floating-point, Float64Array is able to store these values without any loss

of precision. Float32Array reduces the precision and range of the values

that may be stored but is sufficient for some situations.

Note the typed array classes make no guarantee about the
order of bytes when storing values (that is, whether big-endian or
little- endian). the JavaScript engine implementation is free to store
values in any way it chooses, as long as the accuracy of the value
is preserved. it usually stores them in the same order as the host
microcontroller, for maximum efficiency. to control the byte order of
values, use a data view (discussed next).

Chapter 2 JavaSCript for embedded C and C++ programmerS

114

 Data Views
The DataView class provides another kind of view onto an ArrayBuffer.

Unlike typed arrays, in which all the values are of the same type, data

views are used to read and write different-sized integers and floating-

point values into a buffer. You can use DataView to access binary data that

corresponds to a C or C++ struct containing values of different types.

You instantiate a data view by passing the DataView constructor an

ArrayBuffer for the view to wrap, just as you can pass an ArrayBuffer to a

typed array constructor:

let a = new ArrayBuffer(16);

let b = new DataView(a);

Also as with typed arrays, you can pass an offset and size to the

DataView constructor to restrict the view to a subset of the total buffer.

This capability is useful for accessing data structures embedded in a larger

memory buffer.

let a = new ArrayBuffer(16);

let b = new DataView(a, 4, 12);

// b may only access bytes 4 through 12 of a

 Accessing Values of a Data View

A DataView instance is able to get and set all the same types as a typed

array, as shown in Listing 2-79. The getter and setter methods all have the

offset into the view as their first argument. The second argument of the

setter methods specifies the value to set.

Listing 2-79.

let a = new DataView(new ArrayBuffer(8));

a.setUint8(0, 0);

a.setUint8(1, 1);

Chapter 2 JavaSCript for embedded C and C++ programmerS

115

a.setUint16(2, 0x1234);

a.setUint32(4, 0x01020304);

Because the DataView methods write multi-byte values in big-endian

byte order by default, the buffer a contains the following hexadecimal

bytes after the example in Listing 2-79 executes:

00 01 12 34 01 02 03 04

You read the values back using the corresponding getter methods. The

following example assumes the DataView instance a shown previously:

let b = a.getUint8(0); // 0

let c = a.getUint8(1); // 1

let d = a.getUint16(2); // 0x1234

let e = a.getUint32(4); // 0x01020304

The DataView methods have an optional final parameter to control

the byte order. If the parameter is omitted or false, the byte order is big-

endian; if true, it’s little-endian (see Listing 2-80).

Listing 2-80.

let a = new DataView(new ArrayBuffer(8));

a.setUint8(0, 0);

a.setUint8(1, 1);

a.setUint16(2, 0x1234, true);

a.setUint32(4, 0x01020304, true);

Because setUint8 writes a single-byte value, there’s no byte order, so

the third parameter is unnecessary. The calls to setUint16 and setUint32

in Listing 2-80 set the byte order parameter to true, so the output is little-

endian.

00 01 34 12 04 03 02 01

Chapter 2 JavaSCript for embedded C and C++ programmerS

116

To read values stored in little-endian order, pass true as the final

parameter to the getter methods:

let b = a.getUint16(2, true); // 0x1234 (little-endian get)

let c = a.getUint16(2); // 0x3412 (big-endian get)

The DataView class includes getter and setter methods that correspond

to all the types available in TypedArray: Int8, Int16, Int32, Uint8, Uint16,

Uint32, Float32, and Float64.

The DataView class is a very flexible way to manipulate binary data

structures, but the code isn’t particularly readable. Instead of writing

a.value to access a field as you would in C, you have to write something

like a.getUint16(6, true). One way to improve the readability and

reduce the possibility of errors is to create a subclass of DataView for

the data structure. Imagine that you have the C data structure shown

in Listing 2-81 for a network packet header that you want to use from

JavaScript. For simplicity, assume there’s no padding between the fields.

Listing 2-81.

typedef struct Header {

 uint8_t kind;

 uint8_t priority;

 uint16_t sequenceNumber;

 uint32_t value;

}

The JavaScript Header class in Listing 2-82 subclasses DataView to

implement easy access to the C Header structure. Because network packets

typically use big-endian byte ordering, the multi-byte values are written in

big-endian order.

Chapter 2 JavaSCript for embedded C and C++ programmerS

117

Listing 2-82.

class Header extends DataView {

 constructor(buffer = new ArrayBuffer(8)) {

 super(buffer);

 }

 get kind() {return this.getUint8(0);}

 set kind(value) {this.setUint8(0, value);}

 get priority() {return this.getUint8(1);}

 set priority(value) {this.setUint8(1, value);}

 get sequenceNumber() {return this.getUint16(2);}

 set sequenceNumber(value) {this.setUint16(2, value);}

 get value() {return this.getUint32(4);}

 set value(value) {this.setUint32(4, value);}

}

Because the class uses getters and setters, the resulting code for users

of the class is similar to C. The example in Listing 2-83 uses the Header

class to read values from a packet received in the variable p.

Listing 2-83.

let a = new Header(p);

let b = a.kind;

let c = a.priority;

let d = a.sequenceNumber;

let e = a.value;

Listing 2-84 creates a new packet, initializes the values, and calls a

send function to transmit the ArrayBuffer a.buffer used by the Header

instance for storage.

Chapter 2 JavaSCript for embedded C and C++ programmerS

118

Listing 2-84.

let a = new Header;

a.kind = 1;

a.priority = 2;

a.sequenceNumber = 3;

a.value = 4;

send(a.buffer);

As you can see, defining a class representing the binary data structure

makes the code that works with that data structure much clearer. Working

with binary data is one area where C has an advantage in the compactness

of the code; still, it’s possible to achieve the same result with readable code

in JavaScript. JavaScript has benefits here, too: Consider that code that reads

from data received over the network is often fragile. In this example, if the

packet received has only four bytes instead of the needed eight bytes, the read

of the value field has an undefined result, which could leak private data or

even cause a crash. If that situation occurs in JavaScript, the attempt to read

value using getUint32 fails with an exception because the read is out of range.

 Memory Management
Memory management is one place where JavaScript differs significantly

from C and C++. In C and C++, you explicitly allocate memory with malloc,

calloc, and realloc and deallocate it with free. These memory allocation

and deallocation functions are not in the language itself but in the

standard library. In C++, you also allocate memory when you instantiate a

class using new, and you deallocate that memory when you use delete to

invoke the class’s destructor.

JavaScript builds memory management into the language. When you

create an object, string, ArrayBuffer, or any other built-in object that

requires memory, that memory is transparently allocated by the JavaScript

Chapter 2 JavaSCript for embedded C and C++ programmerS

119

engine. As you’d expect, the language also deallocates the memory;

however, rather than requiring your code to make a call like free or use

the C++ delete operator, JavaScript automatically frees the memory when

it determines it’s safe to do so. This approach to memory management

is implemented using a garbage collector. At certain points in time, the

JavaScript engine runs the garbage collector, which scans all memory

allocated by the engine, identifies any allocations that are no longer

referenced, and deallocates any unreferenced memory blocks.

Consider this code:

let a = "this is a test";

a = {};

a = new ArrayBuffer(16);

This example does the following:

 1. The first line allocates a string and assigns it to a.

Because the string is referenced by a, it cannot be

garbage-collected.

 2. The second line assigns an empty object to a,

deleting the reference to the string. Since no other

variable or properties refer to the string, it’s eligible

to be garbage collected.

 3. After the ArrayBuffer assignment on the third

line, the empty object becomes eligible for garbage

collection.

The JavaScript language doesn’t define when the garbage collector

runs. The garbage collector in the XS engine used in the Moddable SDK

runs whenever it’s out of memory; that may be never, once an hour, or

many times a second, depending on the code running.

Chapter 2 JavaSCript for embedded C and C++ programmerS

120

The garbage collector works well for managing memory. It reduces

the amount of code you need to write, because both allocations and

deallocations happen automatically. It eliminates the bug of forgetting to

deallocate memory, which causes memory leaks; this is a major concern in

embedded systems, many of which must run for months or years at a time,

because a small memory leak that occurs periodically eventually leads to

a system failure. The garbage collector also eliminates the bug of reading

memory that has been deallocated, since memory isn’t deallocated if code

is still able to reference.

For all its benefits, the garbage collector is not a general-purpose

solution for resource management. Consider Listing 2-85, which opens a

file twice, first in write mode and then in read-only mode.

Listing 2-85.

let f = new File("/foo.txt", 1); // 1 for write

f.write("this is a test");

f = undefined;

...

let g = new File("/foo.txt"); // read-only

At the time undefined is assigned to f in this example, the instance of

the File class corresponding to the file opened for write access is eligible

for garbage collection. In most file systems, when a file is opened for write

access the access is exclusive, meaning the file cannot be opened a second

time. Because the garbage collector may run at any time, the call to open

the file in read-only mode may or may not succeed, depending on whether

the write-access file object has been collected yet. For this reason, objects

used to represent non-memory resources, such as an open file, usually

provide a way to explicitly release the resource. In the Moddable SDK, the

close method is used to release the resources, similar to using the delete

operator in C++.

Chapter 2 JavaSCript for embedded C and C++ programmerS

121

let f = new File("/foo.txt", 1); // 1 for write

f.write("this is a test");

f.close();

The call to close closes the file immediately. Any further attempt to

write to the instance in f will fail. The file may now be opened again, in

read or write mode.

 The Date Class
The C standard library provides the gettimeofday and localtime

functions to determine the current date, time, time zone, and daylight

saving time offset. The strftime function in the same library converts

the date and time to text format using format strings. JavaScript provides

equivalent functionality in the built-in Date class.

The following code creates an instance of the Date class. The instance

contains a time value, which is initialized to the current time when the

Date constructor is called with no arguments.

let now = new Date;

trace(now.toString());

// Tue Sep 24 2019 11:18:26 GMT-0700 (PDT)

The Date constructor accepts arguments to initialize the value to

something other than the current time. You can initialize it from a string,

though this is not recommended because of the ease of making mistakes in

the string format.

let d = new Date("Tue Sep 24 2019 11:18:26 GMT-0700 (PDT)");

Chapter 2 JavaSCript for embedded C and C++ programmerS

122

Instead, you can pass the components of the time (hours, minutes,

year, and so on) as arguments to the constructor:

let d = new Date(2019, 8, 24);

 // September 24 2019 midnight

let e = new Date(2019, 8, 24, 11, 18, 26);

 // September 24 2019 11:18:26

Note here that the value for the month of September is 8, rather than 9

as you might expect. That’s because month numbers in the JavaScript Date

API start from 0 instead of 1; this was decided early in the development of

JavaScript to match the Java language’s java.util.Date object. Also note

that the time specified in the second declaration is local time, not UTC

(Coordinated Universal Time). To specify UTC time, use the Date.UTC

function together with the Date constructor.

let d = new Date(Date.UTC(2019, 8, 24));

 // September 24 2019 midnight UTC

A Date instance stores a time value in milliseconds and always in UTC

time. To retrieve that value, call the getTime method.

let now = new Date;

let utcTimeInMS = now.getTime();

If your code needs to retrieve the time frequently, the preceding

example is inefficient, as it creates a new instance of Date every time the

current time is needed. For such situations, the static method now returns

the current UTC time in milliseconds as a number.

let utcTimeInMS = Date.now();

The Date class provides access to all the parts that make up a date and

time (see Listing 2-86).

Chapter 2 JavaSCript for embedded C and C++ programmerS

123

Listing 2-86.

let now = new Date;

let ms = now.getMilliseconds(); // 0 to 999

let seconds = now.getSeconds(); // 0 to 59

let minutes = now.getMinutes(); // 0 to 59

let hours = now.getHours(); // 0 to 23

let day = now.getDay(); // 0 (Sunday) to 6 (Saturday)

let date = now.getDate(); // 1 to 31

let month = now.getMonth(); // 0 (January) to 11 (December)

let year = now.getFullYear();

The values returned in Listing 2-86 are local time, with the time zone

and daylight saving time offsets applied. Versions of the same functions

for the UTC values are also available; they begin with getUTC, as in

getUTCMilliseconds, getUTCSeconds, and so on.

There are also setter methods corresponding to all the getter methods.

Listing 2-87 creates a date object and modifies it to be midnight of the

following New Year’s Day.

Listing 2-87.

let d = new Date;

d.setMilliseconds(0);

d.setSeconds(0);

d.setMinutes(0);

d.setHours(0);

d.setDate(1);

d.setMonth(0);

d.setFullYear(d.getFullYear() + 1);

Chapter 2 JavaSCript for embedded C and C++ programmerS

124

The setHours and setFullYear methods support additional

parameters, enabling the example in Listing 2-87 to be written more

compactly:

let d = new Date;

d.setHours(0, 0, 0, 0);

d.setFullYear(d.getFullYear() + 1, 0, 1);

To retrieve the current time zone offset from UTC time, call the

getTimezoneOffset method. The value returned is in minutes and has the

current daylight saving time offset applied.

let timeZoneOffset = d.getTimezoneOffset();

// timeZoneOffset = 420 (offset in minutes from UTC)

As shown earlier in this section, the toString method of the Date object

provides a string representing the local time with the time zone and daylight

saving time offsets applied. For some situations—for example, networking—

it’s helpful to have a text representation of the string in UTC time. Use the

toUTCString method to create a string representing the UTC time.

let d = new Date;

trace(d.toUTCString());

// "Tue, 24 Sep 2019 18:18:26 GMT"

Another time and date format used by many standards is ISO 8601.

The toISOString method provides an ISO 8601–compatible version of the

date as a string.

let d = new Date;

trace(d.toISOString());

// "2019-09-24T18:18:26.000Z"

While toUTCString and toISOString are convenient, you can use your

knowledge of JavaScript dates and strings to generate strings in any format

your project needs.

Chapter 2 JavaSCript for embedded C and C++ programmerS

125

 Event-Driven Programming
Embedded programs, particularly those running on less powerful devices,

are often organized around a single loop that executes continuously.

Listing 2-88 shows a trivial example.

Listing 2-88.

while (true) {

 if (readButton())

 lightOn();

 else

 lightOff();

}

This style of programming works for very simple embedded devices.

However, it doesn’t work well for larger systems with many different inputs

and outputs; for such systems, event-driven programming is preferred.

Event-driven programs wait for events to occur, such as a button press.

When the event occurs, a callback is invoked to respond to it. JavaScript

is designed for use with event-driven programs because that’s how web

browsers work.

Listing 2-89 is an event-driven version of the infinite loop in the

preceding example. Here, the onRead callback is invoked when the button

changes so that the code doesn’t need to continuously poll the button

state.

Listing 2-89.

let button = new Button;

button.onRead = function(value) {

 if (value)

 lightOn();

Chapter 2 JavaSCript for embedded C and C++ programmerS

126

 else

 lightOff();

}

As a rule, callbacks that deliver events are invoked only when the

microcontroller is idle. When JavaScript code is executing, callbacks are

deferred until the code completes. In Listing 2-88, since the loop is infinite,

no callbacks can be invoked. Therefore, it’s generally impossible to use a

single loop as the basis for your JavaScript application; you must adopt the

event-driven programming style.

If you haven’t done much event-driven programming before, don’t

worry. The examples in this book are all written to show you how to use

embedded JavaScript APIs in an event-driven programming style. With a

little practice, it should become second nature.

 Conclusion
With this introduction to JavaScript under your belt, you’re ready to move

on in this book. The remaining chapters are about how to use JavaScript on

embedded systems to create IoT products using features provided by the

Moddable SDK.

The JavaScript language specification is huge—over 750 pages. This

book can’t possibly explain every feature and nuance of the language, but

many excellent resources are available to help you learn more. Mozilla’s

MDN Web Docs (developer.mozilla.org) is the de facto reference for the

JavaScript language. It’s up to date with the latest standard, provides plenty

of examples, and is extremely detailed. It’s a great resource for embedded

developers because many of the examples it presents can be understood

even if you’re not a web developer.

Chapter 2 JavaSCript for embedded C and C++ programmerS

http://developer.mozilla.org

127© Peter Hoddie and Lizzie Prader 2020
P. Hoddie and L. Prader, IoT Development for ESP32 and ESP8266 with JavaScript,
https://doi.org/10.1007/978-1-4842-5070-9_3

CHAPTER 3

Networking
There are so many different kinds of IoT devices—from thermostats

to door locks, from smart watches to smart light bulbs, from washing

machines to security cameras—that it’s easy to forget they all have

something in common: the network. What separates an IoT device from

an ordinary everyday device is its connection to the network. This chapter

is all about that connection, starting with different ways to connect to the

network.

Once your device is connected to the network, it can communicate in

many different ways. This chapter shows you how to communicate using

the same HTTP networking protocol used by the web browser on your

computer and phone. It also shows how to use the WebSocket protocol

for interactive two-way communication and the MQTT protocol used for

publish-and-subscribe.

Securing communication is essential for many products, so you’ll

also learn how to make secure connections using TLS (Transport Layer

Security) in combination with protocols like HTTP, WebSocket, and MQTT.

The chapter closes with two advanced topics. The first is how to

turn your device into a Wi-Fi base station, a technique used by many

commercial IoT products for easy configuration. You can connect your

computer, phone, and other devices to this private Wi-Fi base station

without installing any special software. The second advanced topic is how

to use JavaScript promises with networking APIs.

https://doi.org/10.1007/978-1-4842-5070-9_3#ESM

128

 About Networking
This book focuses on hardware that connects to the network using Wi-Fi.

Your Wi-Fi access point, also called a base station or router, connects your

Wi-Fi network to the internet. The access point also creates a local network

which allows devices connected to it to communicate with each other. The

HTTP, MQTT, and WebSocket protocols are used to communicate with

servers on the internet, but they can also be used to communicate between

devices on your local Wi-Fi network. Communicating directly between

devices is faster and can be more private because your data never leaves

your Wi-Fi network. It eliminates the cost of a cloud service. Using the

mDNS network protocol makes it easy for devices on your local network to

communicate directly with each other.

All the networking examples in this chapter are non-blocking (or

asynchronous). This means, for example, that when you request data from

the network using the HTTP protocol, your application continues running

while the request is made. This is the same way networking works when

you use JavaScript on the web but different from much of the networking

implementations in embedded environments. For various reasons, many

embedded development environments use blocking networking instead;

this leaves the device unresponsive to user input during the network

operation unless a more complex and memory-intensive technique, such

as threads, is also used.

The classes in the Moddable SDK that implement networking

capabilities use callback functions to provide status and deliver network

data. Callbacks are simple to implement, and they operate efficiently even

on hardware with relatively little processing power and memory. On the

web, developers have long used callbacks for network operations. More

recently, a feature of JavaScript called promises has become a popular

alternative to callbacks for some situations. Because promises require

more resources, they’re used sparingly here. Promises are supported in

Chapter 3 NetworkiNg

129

the XS engine that powers the Moddable SDK. The networking capabilities

introduced in this chapter may be adapted to use promises; an example is

included in the section on promises at the end of this chapter.

 Connecting to Wi-Fi
You already know how to connect your computer and phone (and

probably even your television!) to the internet, and that experience will

help you when writing the code to connect your device. You’ll need to

learn a few new things too, because IoT devices don’t always have a screen,

and without a screen the user can’t simply tap the name of the Wi-Fi

network to connect to.

This section describes three different ways to connect to Wi-Fi:

• From the command line

• With simple code to connect to a known Wi-Fi access

point

• By scanning for an open Wi-Fi access point

Each of these is useful for different situations; you’ll choose the best

one for your projects. Using the command line is great for development,

but the other two approaches are needed when you move beyond

experimenting to building sophisticated prototypes and real products.

Note this section uses a different installation pattern from the
one you learned in Chapter 1: rather than installing the host with
mcconfig and then installing examples using mcrun, you install the
examples using mcconfig.

Chapter 3 NetworkiNg

130

 Connecting from the Command Line
In Chapter 1, you learned to use the mcconfig command line tool to build

and install the host. The mcconfig command can define variables. As

shown in the following command, you can connect to a Wi-Fi access point

by defining the variable ssid with the value of the name of the Wi-Fi access

point. SSID stands for service set identifier and is the technical term for

the human-readable name of a Wi-Fi network provided by a Wi-Fi base

station.

> mcconfig -d -m -p esp ssid="my wi-fi"

Defining ssid in this way causes a configuration variable to be added

to your application which is used by the device’s base networking firmware

to connect automatically to Wi-Fi when the device powers up. After the

Wi-Fi connection is established, your application is run. This is convenient

because it means your application can assume that the network is always

available.

If your Wi-Fi access point requires a password, include that on the

command line as the value of the password variable:

> mcconfig -d -m -p esp ssid="my wi-fi" password="secret"

During the Wi-Fi connection process, diagnostic trace messages are

displayed in the debug console. Watch the messages to help diagnose

connection troubles. Here’s an example of a successful connection:

Wi-Fi connected to "Moddable"

IP address 10.0.1.79

If the Wi-Fi password is rejected by the Wi-Fi access point, the

following message is displayed:

Wi-Fi password rejected

Chapter 3 NetworkiNg

131

All other unsuccessful connection attempts display the following

message:

Wi-Fi disconnected

Install the $EXAMPLES/ch3-network/wifi-command-line example on

your device to test this connection method.

 Connecting with Code
Using command line options to define your Wi-Fi credentials is convenient

for development, but for projects you share with others you’ll often want

to store the Wi-Fi credentials in a preference instead. This section looks

at the code to connect to a Wi-Fi access point defined in your application.

(Managing preferences is described in Chapter 5.)

The wifi module contains the JavaScript class used to manage Wi-Fi

network connections. To use the wifi module in your code, first import the

WiFi class from it:

import WiFi from "wifi";

Use the static connect method of the WiFi class to connect to a Wi-Fi

network. In the $EXAMPLES/ch3-network/wifi-code example, the SSID

and password are passed to the constructor as properties in a dictionary

(Listing 3-1).

Listing 3-1.

WiFi.connect({

 ssid: "my wi-fi",

 password: "secret"

 }

);

Chapter 3 NetworkiNg

132

This call begins the process of establishing a connection. The call is

asynchronous, which means that the actual work of connecting takes place

in the background; the application keeps running while the connection is

being established. This is just like on your phone, where you can continue

using apps while a Wi-Fi connection is being established. In an IoT device,

you often want to know when the network connection is available so that

you’ll know when your application can make connections to other devices

and the internet.

To monitor the connection status, create an instance of the WiFi class

and provide a monitoring callback function (Listing 3-2) to be called

whenever the connection status changes.

Listing 3-2.

let wifiMonitor = new WiFi({

 ssid: "my wi-fi",

 password: "secret"

 },

 function(msg) {

 switch (msg) {

 case WiFi.gotIP:

 trace("network ready\n");

 break;

 case WiFi.connected:

 trace("connected\n");

 break;

 case WiFi.disconnected:

 trace("connection lost\n");

 break;

 }

 }

);

Chapter 3 NetworkiNg

133

The callback function is called with one of these three messages,

depending on the connection status:

• connected – Your device has connected to the Wi-Fi

access point. It’s not yet ready to use, however, because

it hasn’t yet received its IP address. When you see this

message, you know that the SSID and password are valid.

• gotIP – Your device has received its IP address and is

now ready to communicate with other devices on the

local network and the internet.

• disconnected – Your device has lost its network

connection. On some devices, you receive this message

before receiving a connect message.

Some projects keep the WiFi object active all the time to monitor for

network disconnections. If you don’t need to monitor for a dropped network

connection, you should close the WiFi object to free the memory it’s using.

wifiMonitor.close();

Closing the WiFi object does not disconnect from the Wi-Fi network.

It simply means your callback function will no longer be called with

notifications about the callback status.

To disconnect from the Wi-Fi network, call the WiFi class’s static

disconnect method:

WiFi.disconnect();

To test this connection method, take these steps:

 1. Open $EXAMPLES/ch3-network/wifi-code/main.js

in your text editor.

 2. Change lines 4 and 5 so that ssid and password

match your network credentials.

Chapter 3 NetworkiNg

134

 3. Install the $EXAMPLES/ch3-network/wifi-code example

on your device from the command line using mcconfig.

If the connection is successful, you’ll see the following messages traced

to the debug console:

connected

network ready

If the connection is unsuccessful, you’ll instead see connection lost

displayed repeatedly.

 Connecting to Any Open Access Point
Sometimes you’ll want your IoT device to connect to any available open

Wi-Fi access point (for example, one that doesn’t require a password).

Connecting to an unknown network isn’t a good idea from a security

perspective, but in some situations the convenience is more important.

To connect to an open access point, the first step is to find one. The

WiFi class provides the static scan method to look for access points. The

code in Listing 3-3 performs a single scan for access points, logging the

results to the debug console. It gets the signal strength from the rssi

property of accessPoint. RSSI stands for received signal strength indication

and is a measure of the strength of the signal received from the Wi-Fi

access point. Its values are negative numbers, and stronger signals have an

RSSI value closer to 0.

Listing 3-3.

WiFi.scan({}, accessPoint => {

 if (!accessPoint) {

 trace("scan complete\n");

 return;

 }

Chapter 3 NetworkiNg

135

 let name = accessPoint.ssid;

 let open = "none" === accessPoint.authentication;

 let signal = accessPoint.rssi;

 trace(`${name}: open=${open}, signal=${signal}\n`);

});

Here’s an example of this code’s output:

ESP_E5C7AF: open=true, signal=-62

Large Conf.: open=false, signal=-85

Expo 2.4: open=false, signal=-74

PAB: open=true, signal=-77

Kanpai: open=false, signal=-66

Moddable: open=false, signal=-70

scan complete

The duration of a scan is typically less than 5 seconds, varying

somewhat by device. During the scan, the example traces the name of

the access point, whether it’s open, and its signal strength. When the scan

is complete, the scan callback function is called with the accessPoint

argument set to undefined and the message scan complete is traced.

If you’re in a location with many access points, a single scan

may not discover every available access point. To build a complete

list, your application can merge the results of several scans. See

wifiscancontinuous in the Moddable SDK for an example.

A user choosing a Wi-Fi access point to connect to usually selects the

one with the strongest strength. The $EXAMPLES/ch3-network/wifi-open- ap

example performs the same selection process using the code in Listing 3-4.

Chapter 3 NetworkiNg

136

Listing 3-4.

let best;

WiFi.scan({}, accessPoint => {

 if (!accessPoint) {

 if (!best) {

 trace("no open access points found\n");

 return;

 }

 trace(`connecting to ${best.ssid}\n`);

 WiFi.connect({ssid: best.ssid});

 return;

 }

 if ("none" !== accessPoint.authentication)

 return; // not open

 if (!best) {

 best = accessPoint; // first open access point found

 return;

 }

 if (best.rssi < accessPoint.rssi)

 best = accessPoint; // new best

});

This code uses the variable best to keep track of the open access

point with the strongest signal strength during scanning. After the scan

completes, the code connects to that access point.

To test this method, install the wifi-open- ap example on your device.

Chapter 3 NetworkiNg

137

 Installing the Network Host
The host is in the $EXAMPLES/ch3-network/host directory. Navigate to this

directory from the command line and install it with mcconfig.

 Installing Examples
The examples in this chapter only work properly if the device is connected

to a Wi-Fi access point. Earlier in this chapter, you learned how to specify

the SSID and password of an access point by defining variables in the

mcconfig command. You can use these same variables in the mcrun

command to connect your device to Wi-Fi before the example runs.

> mcrun -d -m -p esp ssid="my wi-fi"

> mcrun -d -m -p esp ssid="my wi-fi" password="secret"

 Getting Network Information
When working with the network, you may need information about the

network interface or network connection, for debugging purposes or to

implement features. This information is available from the net module.

import Net from "net";

Information is retrieved from the Net object using its static get

method. This example retrieves the name of the Wi-Fi access point that the

device is connected to:

let ssid = Net.get("SSID");

Chapter 3 NetworkiNg

138

Here are some other pieces of information you can retrieve:

• IP – the IP address of the network connection; for

example, 10.0.1.4

• MAC – the MAC address of the network interface; for

example, A4:D1:8C:DB:C0:20

• SSID – the name of the Wi-Fi access point

• BSSID – the MAC address of the Wi-Fi access point; for

example, 18:64:72:47:d4:32

• RSSI – the Wi-Fi signal strength

 Making HTTP Requests
The most commonly used protocol on the internet is HTTP, and there

are many good reasons for its popularity: it’s relatively simple, it’s widely

supported, it works well for small and large amounts of data, it has

proven to be extremely flexible, and it can be supported on a wide range

of devices, including the relatively inexpensive ones found in many

IoT products. This section shows how to make different kinds of HTTP

requests to an HTTP server. (The next section will show how to secure

those connections.)

 Fundamentals
The http module contains support for making HTTP requests and creating

an HTTP server. To make an HTTP request, first import the Request class

from the module:

import {Request} from "http";

Chapter 3 NetworkiNg

139

The Request class uses a dictionary to configure the request. There are

just two required properties in the dictionary:

• Either a host property or an address property to

define the server to connect with, where host specifies

the server by name (for example, www.example.com)

and address defines the server by IP address

(for example, 10.0.1.23)

• A path property to specify the path to the HTTP resource to

access (for example, /index.html or /data/lights.json)

All other properties are optional; the kind of HTTP request you’re

making determines whether they’re present and what their values are.

Many of the optional properties are introduced in the following sections.

In addition to the configuration dictionary, each HTTP request has

a callback function that’s invoked throughout the various stages of the

request. The callback receives a message corresponding to the current

stage. Here’s the complete list of the stages of an HTTP request:

• requestFragment – The callback is being asked to

provide the next part of the request body.

• status – The status line of the HTTP response

has been received. The HTTP status code

(for example, 200, 404, or 301) is available.

The status code indicates the success or failure

of the request.

• header – An HTTP response header has been received.

This message is repeated for each HTTP header

received.

• headersComplete – This message is received between

receipt of the final HTTP response header and receipt

of the response body.

Chapter 3 NetworkiNg

140

• responseFragment – This message provides a fragment

of the HTTP response and may be received multiple

times.

• responseComplete – This message is received after all

HTTP response fragments.

• error – A failure occurred while processing the HTTP

request.

If this looks overwhelming, don’t worry; many HTTP requests use only

one or two of these messages. Two of the messages, requestFragment and

responseFragment, are only used to work with HTTP data that’s too big to

fit in the memory of the device. The sections that follow show how to use

many of the available messages.

 GET
The most common HTTP request is GET, which retrieves a piece of data.

The code in Listing 3-5 from the $EXAMPLES/ch3-network/http-get

example performs an HTTP GET to get the home page from the web server

www.example.com.

Listing 3-5.

let request = new Request({

 host: "www.example.com",

 path: "/",

 response: String

});

request.callback = function(msg, value) {

 if (Request.responseComplete === msg)

 trace(value, "\n");

}

Chapter 3 NetworkiNg

141

The response property in the call to the Request constructor specifies

how you would like the body of the response to be returned. In this case,

you’re specifying that it should be returned as a JavaScript string. The

callback receives the responseComplete message when the response—

the entire web page—is received. The web page is stored in the value

parameter. The call to trace displays the source HTML in the debug

console.

You can use this approach in your projects to retrieve text data. If

you want to retrieve binary data, you can do that by passing a value of

ArrayBuffer instead of String for the response property, as in Listing 3-6.

Listing 3-6.

let request = new Request({

 host: "httpbin.org",

 path: "/bytes/1024",

 response: ArrayBuffer

});

Getting the entire HTTP response at once works perfectly well as long

as there’s enough memory on the device to hold it. If there’s not enough

memory, the request fails with an error message. The next section

explains how to retrieve sources that are bigger than available memory.

 Streaming GET
In situations where the response to an HTTP request may not fit into

available memory, you can make a streaming HTTP GET request instead.

This is just a little more complicated, as shown in Listing 3-7 from the

$EXAMPLES/ch3-network/http-streaming-get example.

Chapter 3 NetworkiNg

142

Listing 3-7.

let request = new Request({

 host: "www.bing.com",

 path: "/"

});

request.callback = function(msg, value, etc) {

 if (Request.responseFragment === msg)

 trace(this.read(String), "\n");

 else if (Request.responseComplete === msg)

 trace(`\n\nTransfer complete.\n\n`);

}

Notice that in the call to the constructor, the response property is

not present. The absence of that property tells the HTTP Request class to

deliver each fragment of the response body to the callback as it’s received,

with the responseFragment message. In this example, the callback then

reads the data as a string to trace to the debug console, but it could also

read the data as an ArrayBuffer. Instead of tracing to the debug console,

the callback might write the data to a file; you’ll learn how to do this in

Chapter 5.

When you stream an HTTP request, the body of the response is not

provided in the value argument with the responseComplete message.

The Request class supports the chunked transfer encoding feature of

the HTTP protocol. This feature is often used to deliver large responses.

The HTTP Request class decodes the chunks before invoking the callback

function. Therefore, your callback function doesn’t need to parse the

chunk headers, simplifying your code.

Chapter 3 NetworkiNg

143

 GET JSON
IoT products don’t usually request web pages unless they’re scraping a

page to extract data; instead, they use REST APIs, which very often respond

with JSON. Since JSON is a very small data-only subset of JavaScript, it’s

extremely convenient to use in JavaScript code. Listing 3-8 is an example

of a request to a REST weather service. The application ID used in

$EXAMPLES/ch3-network/http-get-json is only an example; you should

sign up for your own application ID (APPID) at openweathermap.org and

use it instead.

Listing 3-8.

const APPID = "94de4cda19a2ba07d3fa6450eb80f091";

const zip = "94303";

const country = "us";

let request = new Request({

 host: "api.openweathermap.org",

 path: `/data/2.5/weather?appid=${APPID}&` +

 `zip=${zip},${country}&units=imperial`

 response: String

});

request.callback = function(msg, value) {

 if (Request.responseComplete === msg) {

 value = JSON.parse(value);

 trace(`Location: ${value.name}\n`);

 trace(`Temperature: ${value.main.temp} F\n`);

 trace(`Weather: ${value.weather[0].main}.\n`);

 }

}

Chapter 3 NetworkiNg

https://openweathermap.org

144

Notice that in the dictionary passed to the Request constructor,

response is set to String, just as in the GET example earlier. The response

is requested as String because JSON is a text format. Once the response is

available, the callback receives the responseComplete message, and then

it uses JSON.parse to convert the string it received to a JavaScript object.

Finally, it traces three values from the response to the debug console.

If you want to know all the available values returned by the weather

service, you can either read their documentation or look at the response

directly in the debug console. To look in the debugger, set a breakpoint

on the first trace call; when stopped at the breakpoint, expand the value

property to see the values, as shown in Figure 3-1.

Figure 3-1. Expanded JSON weather response shown in xsbug

Chapter 3 NetworkiNg

145

As you can see in this figure, the JSON returned by the server contains

many properties that the JavaScript code doesn’t use, such as clouds and

visibility. In some situations there’s enough memory on the device to

hold the entire JSON text but not enough memory to hold the JavaScript

object created by calling JSON.parse. The object may use more memory

than the text because of the way JavaScript objects are stored in memory.

To help solve this problem, the XS JavaScript engine supports an optional

second parameter to the JSON.parse call. If the second parameter is an

array, only the property names in the array are parsed from the JSON. This

can significantly reduce the memory used, and the parsing runs faster too.

Here’s how to change the call to JSON.parse in the preceding example to

decode only the properties the example uses:

value = JSON.parse(value, ["main", "name", "temp", "weather"]);

 Subclassing an HTTP Request
The HTTP Request class is a low-level class that provides a great deal

of functionality with a high degree of efficiency, giving it the power and

flexibility necessary for a broad range of IoT scenarios. Still, for any given

situation, the functional purpose of the code can be obscured by details

related to the HTTP protocol. Consider the code in Listing 3-8 from the

preceding section: the inputs are the ZIP code and country, and the

outputs are the current weather conditions, but everything else is an

implementation detail.

A good way to simplify the code is to create a subclass. A well-designed

subclass provides a focused, easy-to-use API that takes only the relevant

inputs (for example, the ZIP code) and provides only the desired outputs

(for example, the weather conditions). The $EXAMPLES/ch3-network/

http-get-subclass example (Listing 3-9) shows a subclass design for the

weather request in the preceding section.

Chapter 3 NetworkiNg

146

Listing 3-9.

const APPID = "94de4cda19a2ba07d3fa6450eb80f091";

class WeatherRequest extends Request {

 constructor(zip, country) {

 super({

 host: "api.openweathermap.org",

 path: `/data/2.5/weather?appid=${APPID}&` +

 `zip=${zip},${country}&units=imperial`,

 response: String

 });

 }

 callback(msg, value) {

 if (Request.responseComplete === msg) {

 value = JSON.parse(value,

 ["main", "name", "temp", "weather"]);

 this.onReceived({

 temperature: value.main.temp,

 condition: value.weather[0].main}

);

 }

 }

}

Using this WeatherRequest subclass is easy (Listing 3-10), as all the

details of the HTTP protocol, the openweathermap.org API, and JSON

parsing are hidden in the implementation of the subclass.

Chapter 3 NetworkiNg

https://openweathermap.org

147

Listing 3-10.

let weather = new WeatherRequest(94025, "us");

weather.onReceived = function(result) {

 trace(`Temperature is ${result.temperature}\n`);

 trace(`Condition is ${result.condition}\n`);

}

 Setting Request Headers
The HTTP protocol uses headers to communicate additional information

about the request to the server. For example, it’s common to include

the name and version of the product making the HTTP request in the

User- Agent header, one of the standard HTTP headers. You may also

include nonstandard HTTP headers with the request to communicate

information to a particular cloud service.

Listing 3-11 shows how to add headers to an HTTP request. It adds the

standard User-Agent header and a custom X-Custom header. The headers

are provided in an array, with the name of each header followed by its value.

Listing 3-11.

let request = new Request({

 host: "api.example.com",

 path: "/api/status",

 response: String,

 headers: [

 "User-Agent", "my_iot_device/0.1 example/1.0",

 "X-Custom", "my value"

]

});

Chapter 3 NetworkiNg

148

Specifying the headers in an array rather than in a dictionary or a Map

object is somewhat unusual. It’s done here because it’s more efficient and

reduces the resources needed on the IoT device.

 Getting Response Headers
The HTTP protocol uses headers to communicate additional information

about the response to the client. A common header is Content-Type,

which indicates the data type of the response (such as text/plain,

application/json, or image/png). The response headers are delivered to

the callback function with the header message. One header is delivered

at a time, to reduce memory use by avoiding the need to store all received

headers in memory at once. When all response headers have been

received, the callback is invoked with the headersComplete message.

Listing 3-12 checks all headers received for a Content-Type header.

If one is found, its value is stored in the variable contentType. After all

headers are received, the code checks to see that a Content-Type header

was received (that is, contentType is not undefined) and that the content

type is text/plain.

Listing 3-12.

let contentType;

request.callback = function(msg, value, etc) {

 if (Request.header === msg) {

 if ("content-type" === value)

 contentType = etc;

 }

 else if (Request.headersComplete === msg) {

 trace("all headers received\n");

Chapter 3 NetworkiNg

149

 if ((undefined === contentType) ||

 !contentType.toLowerCase().startsWith("text/plain"))

 this.close();

 }

}

The names of HTTP headers are case-insensitive by definition, so

Content-Type, content-type, and CONTENT-TYPE all refer to the same header.

The HTTP Request class converts the name of the header to lowercase, so the

callback can always use lowercase letters in header name comparisons.

 POST
All the examples of HTTP requests so far have used the default HTTP

request method of GET and have had an empty request body. The HTTP

Request class supports setting the request method to any value, such as

POST, and providing a request body.

The $EXAMPLES/ch3-network/http-post example (Listing 3-13) makes

a POST call to a web server with a JSON request body. The method property

of the dictionary defines the HTTP request method, and the body property

defines the contents of the request body. The request body may be either

a string or an ArrayBuffer. The request is posted to a server that echoes

back the JSON response. The callback function traces the echoed JSON

values to the debug console.

Listing 3-13.

let request = new Request({

 host: "httpbin.org",

 path: "/post",

 method: "POST",

 body: JSON.stringify({string: "test", number: 123}),

 response: String

});

Chapter 3 NetworkiNg

150

request.callback = function(msg, value) {

 if (Request.responseComplete === msg) {

 value = JSON.parse(value);

 trace(`string: ${value.json.string}\n`);

 trace(`number: ${value.json.number}\n`);

 }

}

This example stores the entire request body in memory. In some

situations, there’s not enough free memory available to store the request

body, such as when uploading a large file. The HTTP Request class

supports streaming of the request body; for an example of this, see the

examples/network/http/httppoststreaming example in the Moddable SDK.

 Handling Errors
Sometimes an HTTP request fails, possibly due to a network failure or

a problem with the request. In all cases, the failure is nonrecoverable.

Therefore, you need to decide how to handle the error in a way that’s

appropriate for your IoT product, such as reporting it to the user, retrying

immediately, retrying later, or just ignoring the error. If you’re not yet ready

to add error handling to your project, adding a diagnostic trace on error is

a good start, as it helps you see failures during development.

When the failure is due to a network error—network failure, DNS

failure, or server fault—your callback is invoked with the error message.

The following example shows a callback that traces the failure to the debug

console:

request.callback = function(msg, value) {

 if (Request.error === msg)

 trace(`http request failed: ${value}\n`);

}

Chapter 3 NetworkiNg

151

If the failure is due to a problem with the request—it was badly formed,

the path is invalid, or you’re not properly authorized—the server responds

with an error in the HTTP status code. The HTTP Request class provides

the status code to the callback in the status message. For many web

services, a status code from 200 to 299 means the request succeeded, while

others indicate a failure. Listing 3-14 demonstrates handling HTTP status

codes.

Listing 3-14.

request.callback = function(msg, value) {

 if (Request.status === msg) {

 if ((value < 200) || (value > 299))

 trace(`http status error: ${value}\n`);

 }

}

 Securing Connections with TLS
Secure communication is an important part of most IoT products. It helps

maintain the privacy of the data generated by the product and prevents

tampering with the data while it’s moving from the device to the server.

On the web, most communication is secured using Transport Layer Security,

or TLS, which replaces Secure Sockets Layer (SSL). TLS is a low-level tool

for securing communication that works with many different protocols.

This section explains how to use TLS with the HTTP protocol. The same

approach applies to the WebSocket and MQTT protocols, described later.

Working with TLS on an embedded device is a bit more challenging

than on a computer, server, or mobile device because of the reduced

memory, processing power, and storage. In fact, establishing a secure

TLS connection is the most computationally demanding task many IoT

products perform.

Chapter 3 NetworkiNg

152

 Using TLS with the SecureSocket Class
The SecureSocket class implements TLS in a way that can be used with

various network protocols. To use SecureSocket, you must first import it:

import SecureSocket from "securesocket";

To make a secure HTTP request (HTTPS), add a Socket property with

the value of SecureSocket, which tells the HTTP Request class to use the

secure socket instead of the default standard socket. Listing 3-15 is an

excerpt from the $EXAMPLES/ch3-network/https-get example that shows

the dictionary from the earlier HTTP GET example (Listing 3-5) modified to

make an HTTPS request.

Listing 3-15.

let request = new Request({

 host: "www.example.com",

 path: "/",

 response: String,

 Socket: SecureSocket

});

The callback does not change from the original example.

 Public Certificates
Certificates are an important part of how TLS provides security: they

enable the client to verify the identity of the server. Certificates are built

into the software of the IoT product just as they’re built into a web browser,

with one difference: whereas a web browser can store hundreds of

certificates—enough to verify the identity of all publicly available servers

on the internet—an IoT product doesn’t have enough storage to hold so

Chapter 3 NetworkiNg

153

many certificates. Fortunately, an IoT product typically communicates

with only a few servers, so you can include only the certificates you need.

Certificates are data, so they’re stored in resources that applications

can access rather than in code. The manifest for the HTTPS GET example

includes the certificate needed to verify the identity of www.example.com

(Listing 3-16).

Listing 3-16.

"resources": {

 "*": [

 "$(MODULES)/crypt/data/ca107"

]

}

If you try to access a website and the certificate’s resource is not

available, the TLS implementation throws an error like the one shown in

Figure 3-2.

The error shows the number of the missing resource, so you can

modify the manifest to include that resource (Listing 3-17).

Figure 3-2. TLS certificate error message in xsbug

Chapter 3 NetworkiNg

154

Listing 3-17.

"resources": {

 "*": [

 "$(MODULES)/crypt/data/ca106"

]

}

This works because the Moddable SDK includes the certificates for

most public websites. The next section describes how to connect to a

server that uses a private certificate.

 Private Certificates
Private certificates provide additional security by ensuring that only IoT

products that have the private certificate are able to connect to the server.

The private certificate is usually provided in a file with a .der extension.

To use a private certificate in your project, first put the certificate in the same

directory as your manifest and modify the manifest to include it (Listing 3- 18).

Note that the manifest does not include the .der file name extension.

Listing 3-18.

"resources": {

 "*": [

 "./private_certificate"

]

}

Next, as shown in Listing 3-19, your application loads the certificate

from the resource and passes it to the HTTP request in the secure property

of the constructor’s dictionary.

Chapter 3 NetworkiNg

155

Listing 3-19.

import Resource from "resource";

let cert = new Resource("private_certificate.der");

let request = new Request({

 host: "iot.privateserver.net",

 path: "/",

 response: String,

 Socket: SecureSocket,

 secure: {

 certificate: cert

 }

});

 Creating an HTTP Server
Including an HTTP server in your IoT product opens up many possibilities,

such as enabling your product to do the following:

• Provide web pages to users on the same network, which

is a great way to provide a user interface for products

without a display

• Provide a REST API for applications and other devices

to communicate with

 Fundamentals
To create an HTTP server, first import the Server class from the http

module:

import {Server} from "http";

Chapter 3 NetworkiNg

156

Like the HTTP Request class, the HTTP Server class is configured with

a dictionary object. There are no required properties in the dictionary.

Also like HTTP Request, HTTP Server uses a callback function to deliver

messages at the various stages of responding to an HTTP request. Here’s

the complete list of the stages of an HTTP request:

• connection – The server has accepted a new

connection.

• status – The status line of the HTTP request has been

received. The request path and request method are

available.

• header – An HTTP request header has been received.

This message is repeated for each HTTP header

received.

• headersComplete – This message is received between

receipt of the final HTTP request header and receipt of

the request body.

• requestFragment – (For streaming request bodies only)

A fragment of the request body is available.

• requestComplete – The entire request body has been

received.

• prepareResponse – The server is ready to begin

delivering the response. The callback returns a

dictionary describing the response.

• responseFragment – (For streaming responses only)

The callback responds to this message by providing the

next fragment of the response.

• responseComplete – The entire response has been

delivered successfully.

Chapter 3 NetworkiNg

157

• error – A failure occurred before the HTTP response

was completely delivered.

The examples that follow show how to use many of these messages.

Most applications working with the HTTP Server class use only a few of

them.

 Responding to a Request
An HTTP server responds to all kinds of different requests. Listing 3-20 is

an excerpt from the $EXAMPLES/ch3-network/http-server-get example

that responds to each request with plain text that indicates the HTTP

method used for the response (usually GET) and the path of the HTTP

resource requested. Both the method and the path are provided to the

callback with the status message. The callback stores these values to

return them in the text when it receives the prepareResponse message.

Listing 3-20.

let server = new Server({port: 80});

server.callback = function(msg, value, etc) {

 if (Server.status === msg) {

 this.path = value;

 this.method = etc;

 }

 else if (Server.prepareResponse === msg) {

 return {

 headers: ["Content-Type", "text/plain"],

 body: `hello. path "${this.path}".

 method "${this.method}".`

 };

 }

}

Chapter 3 NetworkiNg

158

When you run this example, the IP address of the device is displayed in

the debug console as follows:

Wi-Fi connected to "Moddable"

IP address 10.0.1.5

After the IP address is displayed, you can use a web browser

on the same network to connect to the web server. When you enter

http://10.0.1.5/test.html in the address bar of the browser, you receive

the following response:

hello. path "/test.html". method "GET".

Notice that the callback does not set the Content-Length field.

When you use the body property, the server implementation adds the

Content- Length header automatically.

The body property in this example is a string, but it may also be an

ArrayBuffer to respond with binary data.

 Responding to JSON PUT
Often a REST API receives its input as JSON in the request body and provides

its output as JSON in the response body. The $EXAMPLES/ch3- network/

http-server-put example is a JSON echo server which replies to every

message it receives by sending back that message. The example expects the

client to use the PUT method to send a JSON object. The response embeds

that JSON object into a larger JSON object that also includes an error

property.

When the status message is received, the server verifies that it’s a PUT

method; otherwise, the server closes the connection to reject the request.

The callback returns String when it receives the status message, to

indicate that it wants the entire request body at one time as a string. To

receive the request body as binary data instead, it may return ArrayBuffer.

Chapter 3 NetworkiNg

159

In response to the requestComplete message, the server parses the

JSON input and embeds it into the object used to generate the response.

When the prepareResponse message is received, the server in Listing 3-21

returns the response body JSON as a string and sets the Content-Type

header to application/json.

Listing 3-21.

let server = new Server;

server.callback = function(msg, value, etc) {

 switch (msg) {

 case Server.status:

 if ("PUT" !== etc)

 this.close();

 return String;

 case Server.requestComplete:

 this.json = {

 error: "none",

 request: JSON.parse(value)

 };

 break;

 case Server.prepareResponse:

 return {

 headers: ["Content-Type", "application/json"],

 body: JSON.stringify(this.json)

 };

 }

}

Since this example doesn’t pass a dictionary to the Server constructor,

the default of port 80 is used.

Chapter 3 NetworkiNg

160

You can use the following command to try the http-server-put example

using the curl command line tool. You’ll need to change <IP_address> to

match the IP address of your development board (for example, 192.168.1.45).

The command posts the simple JSON message in the --data argument to the

server and displays the result to the debug console.

> curl http://<IP_address>/json

 --request PUT

 --header "Content-Type: application/json"

 --data '{"example": "data", "value": 101}'

 Receiving a Streaming Request
When a large request body is sent to the HTTP server, it may be too large

to fit in memory. This can happen, for example, when you upload data

to store in a file. The solution is to receive the request body in fragments

rather than all at once. Listing 3-22 from the $EXAMPLES/ch3-network/

http-server-streaming-put example logs an arbitrarily large text request

to the debug console. To ask the HTTP Server class to deliver the request

body in fragments, the callback returns true to the prepareRequest

message. The fragments are delivered with the requestFragment message

and traced to the debug console. The requestComplete message indicates

that all request body fragments have been delivered.

Listing 3-22.

let server = new Server;

server.callback = function(msg, value) {

 switch (msg) {

 case Server.status:

 trace("\n ** begin upload to ${value} **\n");

 break;

Chapter 3 NetworkiNg

161

 case Server.prepareRequest:

 return true;

 case Server.requestFragment:

 trace(this.read(String));

 break;

 case Server.requestComplete:

 trace("\n ** end of file **\n");

 break;

 }

}

You can adapt this example to write the received data where your

application needs it rather than to the debug console. For example, in

Chapter 5 you’ll learn the APIs to write the data to a file.

To try this example, use the curl command line tool as shown in the

following. You’ll need to change <directory_path> and <IP_address> for

your configuration.

> curl --data-binary "@/users/<directory_path>/test.txt"

 http://<IP_address>/test.txt -v

 Sending a Streaming Response
If the response to an HTTP request is too large to fit into memory, the

response can be streamed instead. This approach is appropriate for file

downloads. As shown in Listing 3-23, the $EXAMPLES/ch3-network/http-

server-streaming-get example generates a response of random length

containing random integers from 1 to 100. To indicate that the response

body is to be streamed, the callback sets the body property to true in

the dictionary returned from the prepareResponse message. The server

invokes the callback repeatedly with the responseFragment message to get

the next part of the response. The callback returns undefined to indicate

the end of the response.

Chapter 3 NetworkiNg

162

Listing 3-23.

let server = new Server;

server.callback = function(msg, value) {

 if (Server.prepareResponse === msg) {

 return {

 headers: ["Content-Type", "text/plain"],

 body: true

 };

 }

 else if (Server.responseFragment === msg) {

 let i = Math.round(Math.random() * 100);

 if (0 === i)

 return;

 return i + "\n";

 }

}

This example returns string values for the response body, but it

may also return ArrayBuffer values to provide binary data. When the

responseFragment message is received, the value argument to the

callback indicates the maximum number of bytes that the server is

prepared to accept for this fragment. When you stream a file, this can be

used as the number of bytes to read from the file for the fragment.

The HTTP Server class sends streaming response bodies using

chunked transfer encoding. For response bodies where the length is

known, the server uses the default identity encoding to send the body

without a transfer encoding header and includes a Content-Length

header.

Chapter 3 NetworkiNg

163

 mDNS
Multicast DNS, or mDNS, is a collection of capabilities that make it easier

for devices to work together on a local network. You probably know the

DNS (Domain Name System) protocol because it’s how your web browser

finds the network address for the website you enter in the address bar (for

example, it’s how the browser converts www.example.com to 93.184.216.34).

DNS is designed to be used by the entire internet. In contrast, mDNS is

designed to work only on your local network—for example, for all the

devices connected to your Wi-Fi access point. DNS is a centralized design

that depends on authoritative servers to map names to IP addresses,

whereas mDNS is entirely decentralized, with each individual device

answering requests to map its name to an IP address.

In this section, you’ll learn how to use mDNS to give your IoT device a

name, like porch-light.local, so that other devices can find it by name

rather than have to know its IP address. You’ll also learn to use another

part of mDNS, DNS-SD (DNS Service Discovery), to find services provided

by devices (such as finding all printers or all web servers) and to advertise

your device’s services on the local network.

The mdns module contains the JavaScript classes you use to work with

mDNS and DNS-SD from your application. To use the mdns module in your

code, first import it as follows:

import MDNS from "mdns";

Note mDNS is well supported on macoS, android, ioS, and Linux.
windows 10 does not fully support mDNS yet, so you may need to
install additional software to use it there.

Chapter 3 NetworkiNg

164

 Claiming a Name
mDNS is commonly used to assign a name to a device for use on the

local network. mDNS names are always in the .local domain, as in

thermostat.local. You can pick any name you like for a device. The

device must check to see whether the name is already in use, because it

won’t work to have multiple devices responding to the same name. The

process of checking is called claiming. The claiming process lasts a few

seconds. If a conflict is found, mDNS defines a negotiation process. At the

end of the negotiation, only one device has the requested name and the

other selects an unused name. For example, if you try to claim iotdevice

unsuccessfully, you may end up with iotdevice-2.

The $EXAMPLES/ch3-network/mdns-claim-name example shows the

process of claiming a name (see Listing 3- 24). The MDNS constructor is

invoked with a dictionary that contains the hostName property with the

value of the desired name. There’s a callback function that receives progress

messages during the claiming process. When the name message is received

with a non-null value, the claimed name is traced to the debug console.

Listing 3-24.

let mdns = new MDNS({

 hostName: "iotdevice"

 },

 function(msg, value) {

 if ((MDNS.hostName === msg) && value)

 trace(`Claimed name ${value}.\n`);

 }

);

Chapter 3 NetworkiNg

165

Once a device has claimed a name, you can use the name to access the

device. For example, you can use the ping command line tool to confirm

that the device is online.

> ping iotdevice.local

 Finding a Service
By claiming a name, your device becomes easier to communicate with,

but at best the name gives only a small hint about what the device does.

It would be helpful to know that the device is a light, thermostat, speaker,

or web server so that you could write code that works with it without

any configuration. That’s the problem that DNS-SD solves: it’s a way to

advertise the capabilities of your IoT product on the local network.

Each kind of DNS-SD service has a unique name. For example, a web

server service has the name http and a network file system has the name

nfs. The $EXAMPLES/ch3-network/mdns-discover example shows how to

search for all the web servers advertising on your local network. There may

be web servers on your network that you aren’t aware of, because many

printers have a built-in web server for configuration and management.

As shown in Listing 3-25, the mdns-discover example creates an

MDNS instance without claiming a name. It installs a monitoring callback

function to be notified when an http service is found. For each service

found, it makes an HTTP request for the home page of the device and

traces its HTTP headers to the debug console.

Listing 3-25.

let mdns = new MDNS;

mdns.monitor("_http._tcp", function(service, instance) {

 trace(`Found ${service}: "${instance.name}" @ ` +

 `${instance.target} ` +

 `(${instance.address}:${instance.port})\n`);

Chapter 3 NetworkiNg

166

 let request = new Request({

 host: instance.address,

 port: instance.port,

 path: "/"

 });

 request.callback = function(msg, value, etc) {

 if (Request.header === msg)

 trace(` ${value}: ${etc}\n`);

 else if (Request.responseComplete === msg)

 trace("\n\n");

 else if (Request.error === msg)

 trace("error \n\n");

 };

});

The instance argument to the callback function has several properties

for working with the device:

• name – the human-readable name of the device

• target – the mDNS name of the device

(for example, lightbulb.local)

• address – the IP address of the device

• port – the port used to connect to the service

Here’s the output from the example when it finds an HP printer with an

http service:

Found _http._tcp: "HP ENVY 7640 series"

 @hpprinter.local (192.168.1.223:80)

 server: HP HTTP Server; HP ENVY 7640 series - E4W44A;

 content-type: text/html

Chapter 3 NetworkiNg

167

 last-modified: Mon, 23 Jul 2018 10:53:51 GMT

 content-language: en

 content-length: 658

 Advertising a Service
Your device can use DNS-SD to advertise the services it provides, which

enables other devices on the same network to find and use those services.

The $EXAMPLES/ch3-network/mdns-advertise example defines

the service it provides in a JavaScript object stored in the variable

httpService. The service description says that the example supports the

http service and makes it available on port 80. Listing 3-26 defines the

HTTP service for DNS-SD.

Listing 3-26.

let httpService = {

 name: "http",

 protocol: "tcp",

 port: 80

};

The example then creates an MDNS instance to claim the name server.

Once the name has been claimed, the script in Listing 3-27 adds the http

service. The service cannot be added before the name is claimed because

DNS-SD requires each service to be associated with an mDNS name.

Listing 3-27.

let mdns = new MDNS({

 hostName: "server"

 },

Chapter 3 NetworkiNg

168

 function(msg, value) {

 if ((MDNS.hostName === msg) && value)

 mdns.add(httpService);

 }

);

After the service is added, other devices may find it, as shown earlier in

the section “Finding a Service.”

The full mdns-advertise example also contains a simple web server that

listens on port 80. When you run the example, you can type server.local

into your web browser to view the response from the web server.

 WebSocket
The WebSocket protocol is a good alternative to HTTP when you need

frequent two-way communication between devices. When two devices

communicate using WebSocket, a network connection is kept open

between them, enabling efficient communication of brief messages such

as sending a sensor reading or a command to turn on a light. In HTTP, one

device is the client and the other is the server; only the client can make a

request, and the server always responds. WebSocket, on the other hand,

is a peer-to-peer protocol, enabling both devices to send and receive

messages. It’s often a good choice for IoT products that need to send many

small messages. However, because it keeps a connection open at all times

between two devices, it usually requires more memory than HTTP.

The WebSocket protocol is implemented by the websocket module,

which contains both WebSocket client and WebSocket server support.

Your project can import one or both, as needed.

import {Client} from "websocket";

import {Server} from "websocket";

import {Client, Server} from "websocket";

Chapter 3 NetworkiNg

169

Because WebSocket is a peer-to-peer protocol, the code for a client and

a server is very similar. The primary difference is in the initial setup.

 Connecting to a WebSocket Server
The $EXAMPLES/ch3-network/websocket-client example uses a WebSocket

echo server, which replies to every message it receives by sending back that

message. The WebSocket Client class constructor takes a configuration

dictionary. The only required property is host, the name of the server. If no

port property is specified, the WebSocket default of 80 is assumed.

let ws = new Client({

 host: "echo.websocket.org"

});

You can establish a secure connection using TLS by passing

SecureSocket for the Socket property, as explained earlier in the section

“Using TLS with the SecureSocket Class.”

You provide a callback function to receive messages from the

WebSocket Client class. The WebSocket protocol is simpler than HTTP,

so the callback is also simpler. In the websocket-client example, the

connect and close messages just trace a message. The WebSocket

protocol’s connection process consists of two steps: the connect message

is received when the network connection is established between the

client and server, and the handshake message is received when the client

and server agree to communicate using WebSocket, indicating that the

connection is ready for use.

When the example receives the handshake message, it sends the first

message, a JSON string with count and toggle properties. When the echo

server sends that JSON back, the callback in Listing 3-28 is invoked with

the receive message. It parses the string back to JSON, modifies the count

and toggle values, and sends the modified JSON back to the echo server.

This process repeats indefinitely, with count increasing each time.

Chapter 3 NetworkiNg

170

Listing 3-28.

ws.callback = function(msg, value) {

 switch (msg) {

 case Client.connect:

 trace("connected\n");

 break;

 case Client.handshake:

 trace("handshake success\n");

 this.write(JSON.stringify({

 count: 1,

 toggle: true

 }));

 break;

 case Client.receive:

 trace(`received: ${value}\n`);

 value = JSON.parse(value);

 value.count += 1;

 value.toggle = !value.toggle;

 this.write(JSON.stringify(value));

 break;

 case Client.disconnect:

 trace("disconnected\n");

 break;

 }

}

Here’s the output of this code:

connected

handshake success

received: {"count":1,"toggle":true}

Chapter 3 NetworkiNg

171

received: {"count":2,"toggle":false}

received: {"count":3,"toggle":true}

received: {"count":4,"toggle":false}

...

Each call to write sends one WebSocket message. You can send a

message at any time after receiving the handshake message, not just from

inside the callback:

ws.write("hello");

ws.write(Uint8Array.of(1, 2, 3).buffer);

Messages are either a string or an ArrayBuffer. When you receive

a WebSocket message, it’s either a string or an ArrayBuffer depending

on what was sent. Listing 3-29 shows how to check the type of value, the

received message.

Listing 3-29.

if (typeof value === "string")

 ...; // a string

if (value instanceof ArrayBuffer)

 ...; // an ArrayBuffer, binary data

 Creating a WebSocket Server
The $EXAMPLES/ch3-network/websocket-server example implements a

WebSocket echo server (again, meaning that whenever the server receives

a message, it sends back the same message). The WebSocket Server

class is configured with a dictionary that has no required properties. The

optional port property indicates the port to listen on for new connections;

it defaults to 80.

let server = new Server;

Chapter 3 NetworkiNg

172

The server callback function in Listing 3-30 receives the same

messages as the client. In this example, all messages just trace status to

the debug console, except for receive, which echoes back the received

message.

Listing 3-30.

server.callback = function(msg, value) {

 switch (msg) {

 case Server.connect:

 trace("connected\n");

 break;

 case Server.handshake:

 trace("handshake success\n");

 break;

 case Server.receive:

 trace(`received: ${value}\n`);

 this.write(value);

 break;

 case Server.disconnect:

 trace("closed\n");

 break;

 }

}

This server supports multiple simultaneous connections, each of

which has a unique this value when the callback is invoked. If your

application needs to maintain state across a connection, it can add

properties to this. When a new connection is established, the connect

message is received; when the connection ends, the disconnect message

is received.

Chapter 3 NetworkiNg

173

 MQTT
The Message Queuing Telemetry Transport protocol, or MQTT, is a

publish- and- subscribe protocol designed for use by lightweight IoT client

devices. The server (sometimes called the “broker” in MQTT) is more

complex, and consequently isn’t typically implemented on resource-

constrained devices. Messages to and from an MQTT server are organized

into topics. A particular server may support many topics, but a client

receives only the messages for the topics it subscribes to.

The client for the MQTT protocol is implemented by the mqtt module:

import MQTT from "mqtt";

 Connecting to an MQTT Server
The MQTT constructor is configured by a dictionary with three required

parameters: the host property indicates the MQTT server to connect

to, port is the port number to connect to, and id is a unique ID for this

device. It’s an error for two devices with the same ID to connect to an

MQTT server, so take care to ensure that these are truly unique. The

$EXAMPLES/ch3-network/mqtt example excerpt in Listing 3-31 uses the

device’s MAC address for the unique ID.

Listing 3-31.

let mqtt = new MQTT({

 host: "test.mosquitto.org",

 port: 1883,

 id: "iot_" + Net.get("MAC")

});

Chapter 3 NetworkiNg

174

If the MQTT server requires authentication, the user and password

properties are added to the configuration dictionary. The password is

always binary data, so Listing 3-32 uses the ArrayBuffer.fromString

static method to convert a string to an ArrayBuffer.

Listing 3-32.

let mqtt = new MQTT({

 host: "test.mosquitto.org",

 port: 1883,

 id: "iot_" + Net.get("MAC"),

 user: "user name",

 password: ArrayBuffer.fromString("secret")

});

To use an encrypted MQTT connection, use TLS as described earlier in

the section “Securing Connections with TLS,” by adding a Socket property

and optional secure property to the dictionary.

Some servers use the WebSocket protocol to transport MQTT data. If

you’re using a server that does this, you need to specify the path property

to tell the MQTT class the endpoint to connect to, as shown in Listing 3-33.

Transporting MQTT over a WebSocket connection has no benefit and uses

more memory and network bandwidth, so it should be used only if the

remote server requires it.

Listing 3-33.

let mqtt = new MQTT({

 host: "test.mosquitto.org",

 port: 8080,

 id: "iot_" + Net.get("MAC"),

 path: "/"

});

Chapter 3 NetworkiNg

175

The MQTT client has three callback functions (Listing 3-34). The

onReady callback is invoked when a connection is successfully established

to the server, onMessage when a message is received, and onClose when

the connection is lost.

Listing 3-34.

mqtt.onReady = function() {

 trace("connection established\n");

}

mqtt.onMessage = function(topic, data) {

 trace("message received\n");

}

mqtt.onClose = function() {

 trace("connection lost\n");

}

Once the onReady callback has been invoked, your MQTT client is

ready to subscribe to message topics and publish messages.

 Subscribing to a Topic
To subscribe to a topic, send the server the name of the topic to subscribe

to. Your client can subscribe to multiple clients by calling subscribe more

than once.

mqtt.subscribe("test/string");

mqtt.subscribe("test/binary");

mqtt.subscribe("test/json");

Chapter 3 NetworkiNg

176

Messages are delivered to the onMessage callback function for all topics

that your client has subscribed to. The topic argument is the name of the

topic and the data argument is the complete message.

mqtt.onMessage = function(topic, data) {

 trace(`received message on topic "${topic}"\n`);

}

The data argument is always provided in binary form, as an

ArrayBuffer. If you know the message is a string, you can convert it to a

string; if you know the string is JSON, you can convert it to a JavaScript

object.

data = String.fromArrayBuffer(data);

data = JSON.parse(data);

String.fromArrayBuffer is a feature of XS to make it easier

for applications to work with binary data. There is a parallel

ArrayBuffer.fromString function. These are not part of the JavaScript

language standard.

 Publishing to a Topic
To send a message to a topic, call publish with either a string or an

ArrayBuffer:

mqtt.publish("test/string", "hello");

mqtt.publish("test/binary", Uint8Array.of(1, 2, 3).buffer);

To publish JSON, first convert it to a string:

mqtt.publish("test/json", JSON.stringify({

 message: "hello",

 version: 1

}));

Chapter 3 NetworkiNg

177

 SNTP
Simple Network Time Protocol, or SNTP, is a lightweight way to retrieve the

current time. Your computer probably uses SNTP (or its parent, NTP) to

set its time behind the scenes. Unlike your IoT device, your computer also

has a real-time clock backed up by a battery, so it always knows the current

time. If you need the current time on an IoT device, you need to retrieve

it. If you’re using the command line method of connecting to Wi-Fi, the

current time is retrieved once the Wi-Fi connection is established if you

specify a time server on the command line.

> mcconfig -d -m -p esp ssid="my wi-fi" sntp="pool.ntp.org"

When connecting to Wi-Fi with code, you also need to write some

code to set your IoT device’s clock. You get the current time with the SNTP

protocol, which is implemented in the sntp module, and you set the

device’s time using the time module.

import SNTP from "sntp";

import Time from "time";

Listing 3-35 shows the $EXAMPLES/ch3-network/sntp example

requesting the current time from the time server at pool.ntp.org.

When the time is received, the device’s time is set and displayed in UTC

(Coordinated Universal Time) in the debug console. The SNTP instance

closes itself to free the resources it’s using, since it’s no longer needed.

Listing 3-35.

new SNTP({

 host: "pool.ntp.org"

 },

 function(msg, value) {

 if (SNTP.time !== msg)

 return;

Chapter 3 NetworkiNg

https://pool.ntp.org

178

 Time.set(value);

 trace("UTC time now: ",

 (new Date).toUTCString(), "\n");

 }

);

Most IoT products keep a list of several SNTP servers for situations

where one is unavailable. The SNTP class supports this scenario without

needing to create additional instances of the SNTP class. See the

examples/network/sntp example in the Moddable SDK to learn how to

use this fail- over feature.

 Advanced Topics
This section introduces two advanced topics: how to turn your device

into a private Wi-Fi base station and how to use JavaScript promises with

networking APIs.

 Creating a Wi-Fi Access Point
Sometimes you don’t want to connect your IoT product to the entire

internet but you do want to let people connect to your device to configure

it or check its status. At other times, you do want to connect your device

to the internet but you don’t have the name and password for the Wi-Fi

access point yet. In both these situations, creating a private Wi-Fi access

point may be a solution. In addition to being a Wi-Fi client that connects to

other access points, many IoT microcontrollers (including the ESP32 and

ESP8266) can be an access point.

Chapter 3 NetworkiNg

179

You can turn your IoT device into an access point with a call to the

static accessPoint method of the WiFi class:

WiFi.accessPoint({

 ssid: "South Village"

});

The ssid property defines the name of the access point and is the only

required property. As shown in Listing 3-36, optional properties enable

you to set a password, select the Wi-Fi channel to use, and hide the access

point from appearing in Wi-Fi scans.

Listing 3-36.

WiFi.accessPoint({

 ssid: "South Village",

 password: "12345678",

 channel: 8,

 hidden: false

});

A device is either an access point or the client of an access point. It

cannot be both at the same time, so once you’ve entered access point

mode, you cannot access the internet.

You can provide a web server on your access point, as shown earlier

in the section “Responding to a Request.” In Listing 3-37, from the

$EXAMPLES/ch3-network/accesspoint example, the import of the HTTP

Server class is a little different because it renames, or aliases, the class to

HTTPServer to avoid a name collision with the DNS server (introduced

following this example).

Chapter 3 NetworkiNg

180

Listing 3-37.

import {Server as HTTPServer} from "http";

(new HTTPServer).callback = function(msg, value) {

 if (HTTPServer.prepareResponse === msg) {

 return {

 headers: ["Content-Type", "text/plain"],

 body: "hello"

 };

 }

}

How will other devices know the address of your web server so that

they can connect to it? You could claim a local name with mDNS. But

since your IoT product is the access point, it’s also now the router for the

network, so it can resolve DNS requests. This means that whenever a

device on the network looks up a name, such as www.example.com, your

application can direct the request to your HTTP server. Listing 3-38 is a

simple DNS server that does exactly that.

Listing 3-38.

import {Server as DNSServer} from "dns/server";

new DNSServer(function(msg, value) {

 if (DNSServer.resolve === msg)

 return Net.get("IP");

});

The DNS Server class constructor takes a callback function as its sole

parameter. The callback function is invoked with the resolve message

whenever any device connected to the access point tries to resolve a

DNS name. In response, the callback provides its own IP address. When

most computers or phones connect to a new Wi-Fi point, they perform a

Chapter 3 NetworkiNg

181

check to see if they’re connected to the internet or if a login is required.

When this check is performed on your access point, it will cause your

web server’s access point to be called to get the web page to show. In this

example, it will simply show hello, but you can change this to show device

status, configure Wi-Fi, or anything else you like.

 Promises and Asynchronous Functions
Promises are a feature of JavaScript to simplify programming with callback

functions. Callback functions are simple and efficient, which is why they’re

used in so many places. Promises can improve the readability of code that

performs a sequence of steps using callback functions.

This section is not intended as a complete introduction to promises and

asynchronous functions. If you aren’t familiar with these JavaScript features,

read through this section to see if they look useful to your projects; if they do,

many excellent resources are available on the Web to help you learn more.

The $EXAMPLES/ch3-network/http-get-with-promise example

excerpt in Listing 3-39 builds on the HTTP Request class to implement a

fetch function that returns a complete HTTP request as a string.

Listing 3-39.

function fetch(host, path = "/") {

 return new Promise((resolve, reject) => {

 let request = new Request({host, path, response: String});

 request.callback = function(msg, value) {

 if (Request.responseComplete === msg)

 resolve(value);

 else if (Request.error === msg)

 reject(-1);

 }

 });

}

Chapter 3 NetworkiNg

182

The implementation of the fetch function is tricky, requiring an

in- depth understanding of how promises work in JavaScript. But using

the fetch function is easy (Listing 3-40).

Listing 3-40.

function httpTrace(host, path) {

 fetch(host, path)

 .then(body => trace(body, "\n"))

 .catch(error => trace("http get failed\n"));

}

Reading the code for httpTrace, you might imagine that the HTTP

request happens synchronously, but that’s not the case, as all network

operations are non-blocking. The arrow functions passed to the .then and

.catch calls are executed when the request completes—.then if the call

succeeds or .catch if it fails.

The recent versions of JavaScript provide another way to write this

code: as an asynchronous function. Listing 3-41 shows the call to fetch

rewritten in an asynchronous function. The code looks like ordinary

JavaScript apart from the keywords async and await.

Listing 3-41.

async function httpTrace(host, path) {

 try {

 let body = await fetch(host, path);

 trace(body, "\n");

 }

 catch {

 trace("http get failed\n");

 }

}

Chapter 3 NetworkiNg

183

The httpTrace function is asynchronous, so it returns immediately

when called. The keyword await before the call to fetch tells the JavaScript

language that when fetch returns a promise, execution of httpTrace

should be suspended until the promise is ready (resolved or rejected).

Promises and asynchronous functions are powerful tools, and they’re

used in JavaScript code for much more powerful systems, including web

servers and computers. They’re available for your IoT projects, even on

resource-constrained devices, because you’re using the XS JavaScript

engine. Still, callback functions are preferred in most situations, because

they require less code, execute faster, and use less memory. When building

your project, you’ll need to decide whether the convenience of using them

outweighs the additional resources used.

 Conclusion
In this chapter you’ve learned various ways for your IoT device to

communicate over a network. The different protocols described in this

chapter all follow the same basic API pattern:

• The protocol’s class provides a constructor that accepts

a dictionary to configure the connection.

• Callback functions deliver information from the

network to your application.

• Communication is always asynchronous to avoid

blocking, an important consideration on IoT products

that don’t always have the luxury of multiple threads of

execution.

• Callbacks can be turned into promises using small

helper functions so that applications can use

asynchronous functions in modern JavaScript.

Chapter 3 NetworkiNg

184

You, as the developer of an IoT product, need to decide the

communication methods it supports. There are many factors to

consider. If you want your device to communicate with the cloud, HTTP,

WebSocket, and MQTT are all possible choices, and they all support secure

communication using TLS. For direct device-to-device communication,

mDNS is a good starting point to enable devices to advertise their services,

and HTTP is a lightweight way to exchange messages between devices.

Of course, your product doesn’t have to choose just one network

protocol for communication. Starting from the examples in this chapter,

you’re ready to try different protools to find what works best for the needs

of your device.

Chapter 3 NetworkiNg

185© Peter Hoddie and Lizzie Prader 2020
P. Hoddie and L. Prader, IoT Development for ESP32 and ESP8266 with JavaScript,
https://doi.org/10.1007/978-1-4842-5070-9_4

CHAPTER 4

Bluetooth Low
Energy (BLE)
There are many ways to enable wireless communication between devices.

Chapter 3 introduced many protocols that operate over a Wi-Fi connection

to communicate with devices anywhere in the world. This chapter

focuses on Bluetooth Low Energy, or BLE, a wireless communication

widely used between two devices in close proximity to each other.

Products choose to use BLE instead of Wi-Fi if minimizing energy use is

particularly important, such as in battery-powered products, and when

direct communication with another device, such as a mobile phone,

is an acceptable alternative to internet access. Many IoT products use

BLE, from heart rate monitors to electric toothbrushes to ovens. Product

manufacturers often offer a mobile app or desktop companion application

to monitor or control these products.

BLE is version 4 of the Bluetooth standard and was first introduced

in 2010. The original Bluetooth was standardized in 2000 to send streams

of data over short distances. BLE significantly reduces the energy use of

the original Bluetooth, enabling it to operate much longer on a single

battery charge. BLE achieves this, in part, by reducing the amount of data

transmitted. Transmitting over shorter distances also uses less energy; BLE

devices typically have a range of no more than 100 meters, whereas Wi-Fi

has a much larger range. BLE’s lower power consumption and cost make it

well suited for many IoT products.

https://doi.org/10.1007/978-1-4842-5070-9_4#ESM

186

Using the information in this chapter, you can build your own BLE

devices that run on a microcontroller.

Note The examples in this chapter are for the ESP32. If you attempt
to build them for the ESP8266, the build will fail because the ESP8266
doesn’t have BLE hardware. The examples do, however, run on
other devices with integrated BLE supported by the Moddable SDK,
including Qualcomm’s QCA4020 and the Blue Gecko by Silicon Labs.

 BLE Basics
If you’re new to working with BLE, the information in this section is

essential, as it explains concepts used throughout the rest of this chapter.

If you’re familiar with BLE, still consider giving this section a quick scan

to familiarize yourself with the terminology used in this book and how it

relates to the BLE API of the Moddable SDK.

 GAP Centrals and Peripherals
The Generic Access Profile, or GAP, defines how devices advertise

themselves, how they establish connections with each other, and security.

The two main roles defined by GAP are Central and Peripheral.

A Central scans for devices acting as Peripherals and initiates

requests to establish a new connection with a Peripheral. A device acting

as a Central usually has relatively high processing power and plenty of

memory—for example, a smart phone, tablet, or computer—whereas

Peripherals are often small and battery-powered. Peripherals advertise

themselves and accept requests to establish a connection.

ChAPTEr 4 BLuETooTh Low EnErGy (BLE)

187

The BLE specification enables a Central to be connected to multiple

Peripherals, and a Peripheral to be connected to multiple Centrals. It’s

common for a Central to connect to several Peripherals at the same time.

For example, you may use your smart phone to connect to your heart

rate monitor, smart watch, and lights. It’s uncommon for a Peripheral to

connect to more than one Central at a time; most Peripherals do not allow

for multiple concurrent connections. The BLE API of the Moddable SDK

enables a Peripheral to connect with a single Central at a time.

 GATT Clients and Servers
The Generic Attribute Profile, or GATT, defines the way BLE devices

transfer data back and forth after a connection is established between

them—a client-server relationship.

A GATT Client is a device that accesses data from a remote GATT Server

by sending read/write requests. A GATT Server is a device that stores data

locally, receives read/write requests, and notifies the remote GATT Client

of changes to the values of its characteristics. In this chapter, the term

Server is used to mean a GATT Server, and Client means a GATT Client.

 GAP vs. GATT
Many BLE tutorials incorrectly use the terms Central and Client

interchangeably and the terms Peripheral and Server interchangeably. This

is because Centrals usually take on the Client role and Peripherals usually

take on the Server role. However, the BLE specification says that either

Centrals or Peripherals may take on the role of Client, Server, or both.

Central and Peripheral are terms defined by GAP, telling you how the

BLE connection is managed. Client and Server are terms defined by GATT,

telling you about the storage and flow of data after a connection has been

established. GATT comes into the picture only after the advertising and

connection process defined by GAP is complete.

ChAPTEr 4 BLuETooTh Low EnErGy (BLE)

188

 Profiles, Services, and Characteristics
GATT also defines the format of data, with a hierarchy of profiles, services,

and characteristics. As illustrated in Figure 4-1, the top level of the

hierarchy is a profile.

 Profiles

A profile defines a specific use of BLE for communication between multiple

devices, including the roles of the devices involved and their general

behaviors. For example, the standard Health Thermometer profile defines

the roles of a Thermometer device (a sensor) and a Collector device; the

Thermometer device measures the temperature, and the Collector device

receives the temperature measurement and other data from the Thermometer.

The profile specifies the services that the Thermometer must instantiate (the

Health Thermometer service and the Device Information service) and states

that the intended use of the profile is in healthcare applications.

Profiles don’t exist on a BLE device; rather, they are specifications

implemented by a BLE device. The list of officially adopted BLE profiles

is available at bluetooth.com/specifications/gatt. When you’re

implementing your own BLE device, it’s a good idea to check whether a

standard profile is available that meets the needs of your product. If there

is, you’ll benefit from interoperability with other products that support the

standard, saving you the time of designing a new profile.

Profile

Service

Characteristic

Service

Characteristic

Characteristic

Figure 4-1. GATT profile hierarchy

ChAPTEr 4 BLuETooTh Low EnErGy (BLE)

https://bluetooth.com/specifications/gatt

189

 Services

A service is a collection of characteristics that describe the behavior of part

of a BLE device. For example, the Health Thermometer service provides

temperature data from a Thermometer device. A service may have one or

more characteristics and is distinguished by a UUID. Officially adopted

BLE services have 16-bit UUIDs. The Health Thermometer service is

assigned the number 0x1809. You can create your own custom services by

giving them a 128-bit UUID.

Services are advertised by a BLE device. The list of officially adopted BLE

services is available at bluetooth.com/specifications/gatt/services.

 Characteristics

A characteristic is a single value or data point that provides information

about a GATT service. The format of the data depends on the

characteristic; for example, the Heart Rate Measurement characteristic

used by the Heart Rate service provides a heart rate measurement as an

integer, and the Device Name characteristic provides the name of a device

as a string.

The list of officially adopted BLE characteristics is available at

bluetooth.com/specifications/gatt/characteristics. As with

services, officially adopted BLE characteristics have 16-bit UUIDs and you

can create your own with a 128-bit UUID.

 The BLE API of the Moddable SDK
The Moddable SDK does not have distinct classes in its BLE API for the

roles defined by GAP and for GATT. Instead, it provides functions for

Centrals and GATT Clients in a single BLEClient class, and functions

for Peripherals and GATT Servers in a single BLEServer class. This class

ChAPTEr 4 BLuETooTh Low EnErGy (BLE)

https://bluetooth.com/specifications/gatt/services
https://bluetooth.com/specifications/gatt/characteristics

190

organization reflects the two most common configurations of BLE devices:

devices that act as Centrals and take on the Client role and devices that act

as Peripherals and take on the Server role.

 The BLEClient Class
The BLEClient class provides functions you use to create Centrals and

GATT Clients. The functions for Centrals perform the following operations:

 1. Scan for Peripherals.

 2. Initiate requests to establish a connection with

Peripherals.

The functions for GATT Clients perform these operations:

 1. Find the GATT services of interest.

 2. Find characteristics of interest in each service.

 3. Read, write, and enable notifications for

characteristics within each service.

You subclass the BLEClient class to implement a specific BLE

device that supports the operations your device requires. Subclasses

call methods of the BLEClient class to initiate the preceding operations.

All BLE operations performed by BLEClient are asynchronous to avoid

blocking execution for an indeterminate period of time. Consequently,

instances of the BLEClient class receive results through callbacks. For

example, the BLEClient class has a startScanning method that you call

to start scanning for Peripherals, and an onDiscovered callback that’s

automatically invoked when a Peripheral is discovered.

You only need to implement the callbacks required to work with the

Peripherals, services, and characteristics your device requires.

ChAPTEr 4 BLuETooTh Low EnErGy (BLE)

191

 The BLEServer Class
The BLEServer class provides functions you use to create Peripherals and

GATT Servers. The functions for Peripherals perform the following operations:

 1. Advertise so that Centrals can discover the Peripheral.

 2. Accept connection requests from a Central.

The functions for GATT Servers perform these operations:

 1. Deploy services.

 2. Respond to characteristic read and write requests

from a Client.

 3. Accept characteristic value change notification

requests from a Client.

 4. Notify a Client of characteristic value changes.

You can implement standard BLE profiles like Heart Rate or your own

custom-defined profile to support your product’s unique capabilities. In

both cases, you first define GATT services in JSON files and then subclass

the BLEServer class to implement specific BLE devices. Subclasses call

methods of the BLEServer class to initiate the preceding operations.

All BLE operations performed by BLEServer are asynchronous to avoid

blocking execution for an indeterminate period of time. Consequently,

instances of the BLEServer class receive results through callbacks.

 Installing the BLE Host
The examples in this chapter are installed using the pattern described in

Chapter 1: you install the host on your device using mcconfig, then install

example applications using mcrun.

The host is in the $EXAMPLES/ch4-ble/host directory. Navigate to this

directory from the command line and install it with mcconfig.

ChAPTEr 4 BLuETooTh Low EnErGy (BLE)

192

 Creating a BLE Scanner
The $EXAMPLES/ch4-ble/scanner example implements a Central that

scans for nearby Peripherals and traces their names to the console. It’s

implemented using the BLEClient class. Listing 4-1 shows most of the

source code for this example.

Listing 4-1.

class Scanner extends BLEClient {

 onReady() {

 this.startScanning();

 }

 onDiscovered(device) {

 let scanResponse = device.scanResponse;

 let completeName = scanResponse.completeName;

 if (completeName)

 trace(`${completeName}\n`);

 }

}

The Scanner class implements two BLEClient callbacks:

• The onReady callback is invoked when the BLE stack

is ready to use. In this example, the onReady callback

calls startScanning to enable scanning for nearby

Peripherals.

• The onDiscovered callback is invoked one or more

times for each Peripheral discovered. In this example,

the onDiscovered callback traces the discovered

Peripheral’s name to the console.

ChAPTEr 4 BLuETooTh Low EnErGy (BLE)

193

With this simple example, your Central discovers Peripherals around

you and tells you their names. Now you’re ready to go a step further: the

next example demonstrates how to use other features of the BLEClient

class to create a BLE device that communicates with a virtual Peripheral.

 Creating Two-Way Communication
The $EXAMPLES/ch4-ble/text-client example implements a Central

that connects to a Peripheral and receives text data via characteristic value

change notifications.

To see the example working, you’ll need a Peripheral that provides the

text data characteristic. You can create one using Bluefruit, a mobile app

available for free on iOS and Android devices. To create the Peripheral,

take the following steps, illustrated in Figures 4-2 and 4-3:

 1. Download and open Bluefruit and enter Peripheral

mode. In the ADVERTISING INFO section, change

the Local Name field to esp.

Figure 4-2. Peripheral mode in Bluefruit

ChAPTEr 4 BLuETooTh Low EnErGy (BLE)

194

 2. Make sure the UART service is turned on.

Figure 4-3. UART service enabled

The next sections explain the code that runs on the ESP32 to

implement the Central device.

ChAPTEr 4 BLuETooTh Low EnErGy (BLE)

195

 Connecting to the Peripheral
The constants at the top of the application correspond to the device name

you set in Bluefruit and the service and characteristic UUID used by the

UART service:

const PERIPHERAL_NAME = 'esp';

const SERVICE_UUID = uuid`6E400001B5A3F393E0A9E50E24DCCA9E`;

const CHARACTERISTIC_UUID = uuid`6E400003B5A3F393E0A9E50E24DCCA9E`;

Like the scanner example, this example implements the onReady and

onDiscovered callbacks, as shown in Listing 4-2. But instead of just tracing

the names of devices to the console, this example checks the name of each

discovered Peripheral to see if it matches the PERIPHERAL_NAME constant.

If it does, it stops scanning for Peripherals and calls the connect method,

which initiates a connection request between the BLEClient and a target

Peripheral device.

Listing 4-2.

class TextClient extends BLEClient {

 onReady() {

 this.startScanning();

 }

 onDiscovered(device) {

 if (PERIPHERAL_NAME ===

 device.scanResponse.completeName) {

 this.stopScanning();

 this.connect(device);

 }

 }

 ...

ChAPTEr 4 BLuETooTh Low EnErGy (BLE)

196

The argument to connect is an instance of the Device class,

representing a single Peripheral. BLEClient automatically creates

instances of the Device class when a Peripheral is discovered; applications

do not instantiate them directly. Applications do, however, interact with

instances of the Device class directly—for example, by calling methods to

perform GATT service and characteristic discovery.

 The onConnected Callback

The onConnected method is a callback that’s invoked when the Central

connects to a Peripheral. This example calls the device object’s

discoverPrimaryService method to obtain the primary GATT service

from the Peripheral. The argument to discoverPrimaryService is the

UUID of the service to discover.

onConnected(device) {

 device.discoverPrimaryService(SERVICE_UUID);

}

You can discover all of the primary services of a Peripheral using the

discoverAllPrimaryServices method. For example, the onConnected

callback could instead be written as follows:

onConnected(device) {

 device.discoverAllPrimaryServices();

}

 The onServices Callback

The onServices method is a callback that’s invoked when service

discovery is complete. The services argument is an array of service

objects—instances of the Service class—each of which provides access

to a single service. If discoverPrimaryService was called to find a single

service, the services array contains only the one service found.

ChAPTEr 4 BLuETooTh Low EnErGy (BLE)

197

As shown in Listing 4-3, this example checks to see if the Peripheral

provides a service with the UUID that matches the one defined by

the SERVICE_UUID constant. If it does, it calls the service object’s

discoverCharacteristic method to look for the service characteristic

with the UUID that matches the one defined by the CHARACTERISTIC_UUID

constant.

Listing 4-3.

onServices(services) {

 let service = services.find(service =>

 service.uuid.equals(SERVICE_UUID));

 if (service) {

 trace(`Found service\n`);

 service.discoverCharacteristic(CHARACTERISTIC_UUID);

 }

 else

 trace(`Service not found\n`);

}

You can discover all of the service characteristics using the

discoverAllCharacteristics method. For example, the onServices

callback could replace the line that calls discoverCharacteristic with the

following line:

service.discoverAllCharacteristics();

 The onCharacteristics Callback

The onCharacteristics method is a callback that’s invoked when

characteristic discovery is complete. The characteristics argument is

an array of characteristic objects—instances of the Characteristic

class—each of which provides access to a single service characteristic.

ChAPTEr 4 BLuETooTh Low EnErGy (BLE)

198

If discoverCharacteristic was called to find a single characteristic, the

characteristics array contains the single characteristic found.

When the desired characteristic is found, the example calls the

characteristic object’s enableNotifications method to enable

notifications when the characteristic’s value changes, as shown in Listing 4-4.

Listing 4-4.

onCharacteristics(characteristics) {

 let characteristic = characteristics.find(characteristic =>

 characteristic.uuid.equals(CHARACTERISTIC_UUID));

 if (characteristic) {

 trace(`Enabling notifications\n`);

 characteristic.enableNotifications();

 }

 else

 trace(`Characteristic not found\n`);

}

If you set up your Peripheral correctly, you’ll see the following

messages in the debug console when you run the text-client application:

Found service

Enabling notifications

 Receiving Notifications
After notifications are enabled, you can send notifications to the Client

by changing the value of the Peripheral’s characteristic from your smart

phone. To change the value, tap the UART button. This will take you to the

screen shown in Figure 4-4. Enter text in the input field at the bottom of the

screen and tap Send to update the characteristic value.

ChAPTEr 4 BLuETooTh Low EnErGy (BLE)

199

The characteristic value is delivered to the Client through the

onCharacteristicNotification callback in an ArrayBuffer. This example

assumes the value is a string, so it converts the ArrayBuffer to a string using

String.fromArrayBuffer (a feature of XS to make it easier for applications

to work with binary data). There is a parallel ArrayBuffer.fromString.

These are not part of the JavaScript language standard.

Figure 4-4. UART screen in Bluefruit

ChAPTEr 4 BLuETooTh Low EnErGy (BLE)

200

onCharacteristicNotification(characteristic, buffer) {

 trace(String.fromArrayBuffer(buffer)+"\n");

}

 Creating a Heart Rate Monitor
Now that you know the basics of implementing a Client that receives

notifications from a Server, this example will show you how to use features

of the BLEServer class to implement a Peripheral that takes on the Server

role after connecting to a Central.

The $EXAMPLES/ch4-ble/hrm example advertises the standard Heart

Rate and Battery services, accepts connection requests from Centrals,

sends notifications for simulated heart rate values, and responds to read

requests from a Client for a simulated battery level. The next few sections

explain how it’s implemented using the BLEServer class.

 Defining and Deploying Services
GATT services are defined in JSON files located in the host’s bleservices

directory. The JSON is automatically converted to platform-specific

native code at build time, and the compiled object code is linked to the

application.

Each GATT service is defined in its own JSON file. Listing 4-5 shows the

standard Heart Rate service.

Listing 4-5.

{

 "service": {

 "uuid": "180D",

 "characteristics": {

 "bpm": {

ChAPTEr 4 BLuETooTh Low EnErGy (BLE)

201

 "uuid": "2A37",

 "maxBytes": 2,

 "type": "Array",

 "permissions": "read",

 "properties": "notify"

 }

 }

 }

}

Here are explanations of some of the important properties:

• The uuid property of the service object is the number

assigned to the service by the GATT specification. The

Heart Rate service has the UUID 180F.

• The characteristics object describes each

characteristic supported by the service. Each

immediate property is the name of a characteristic. In

this example there is just one characteristic: bpm, which

stands for beats per minute.

• The uuid property of a characteristic object is the

unique number assigned to the characteristic by the

GATT specification. The bpm characteristic of the Heart

Rate service has the UUID 2A37.

• The type property specifies the type of the

characteristic value used in your JavaScript code. The

BLEServer class uses the value of the type property

to convert the binary data transferred by the Client to

JavaScript types. This saves your Server code the work

of converting back and forth between different types of

data (ArrayBuffer, String, Number, and so on).

ChAPTEr 4 BLuETooTh Low EnErGy (BLE)

202

• The permissions property defines whether the

characteristic is read-only, write-only, or read/write

and whether accessing the characteristic requires an

encrypted connection. The bpm property is read-only

because in a heart rate monitor, the beats per minute

is determined by sensor readings and consequently

cannot be written by a Client. The read permission

indicates that a Client can read the characteristic

over a nonencrypted or encrypted connection; use

readEncrypted when the value is only accessible

over an encrypted connection. Similarly, use write

or writeEncrypted for write permissions. To indicate

that a characteristic supports both reading and

writing, include both a read and a write value in

the permissions string, separated by a comma—for

example, "readEncrypted,writeEncrypted".

• The properties property defines the characteristic’s

properties. It may be read, write, notify, indicate,

or a combination of those (comma-separated). The

read and write values permit reads and writes of the

characteristic value, notify permits the Server to notify

the Client of changes to the characteristic value without

its being requested and without acknowledgment that

the notification was received, and indicate is the same

as notify except that it requires acknowledgment that

the notification was received before another indication

can be sent.

Once the BLE stack completes its initialization, it invokes the

onReady callback. The hrm example implementation of onReady initiates

advertising, enabling its services to be discovered by Clients. The following

section explains how the subclass manages when advertising is active.

ChAPTEr 4 BLuETooTh Low EnErGy (BLE)

203

 Advertising
Peripherals broadcast advertisement data to announce themselves. The

BLEServer class has a startAdvertising method to begin broadcasting

advertisement packets and a stopAdvertising method to stop.

The hrm example calls startAdvertising when the BLE stack is

ready to use and also when the connection to a Central is lost. When

startAdvertising is called, the Peripheral broadcasts its advertising data

type flags value, its name, and its services (Heart Rate and Battery), as

shown in Listing 4-6. The UUIDs for the Heart Rate and Battery services

come from the GATT specification.

Listing 4-6.

this.startAdvertising({

 advertisingData: {

 flags: 6,

 completeName: this.deviceName,

 completeUUID16List: [uuid`180D`, uuid`180F`]

 }

});

When a connection is successfully established to a Central, the

Peripheral stops sending advertising packets, as it supports only a single

connection at a time:

onConnected() {

 this.stopAdvertising();

}

When the connection is lost, the Peripheral again starts advertising.

A BLE advertisement may contain additional data—for example, to

implement a BLE beacon. BLE beacons advertise data for many Centrals to

see without connecting to them. The code in Listing 4-7 is from the

ChAPTEr 4 BLuETooTh Low EnErGy (BLE)

204

examples/network/ble/uri- beacon example in the Moddable SDK, which

implements a UriBeacon that advertises the Moddable website. The UUID

here comes from the Assigned Numbers specification (see

bluetooth.com/specifications/assigned-numbers/16-bit-uuids-for-

members). The encodeData method encodes the URI in the format specified

by the UriBeacon spec. See the uri-beacon example for the source code.

Listing 4-7.

this.startAdvertising({

 advertisingData: {

 completeUUID16List: [uuid`FED8`],

 serviceDataUUID16: {

 uuid: uuid`FED8`,

 data: this.encodeData("http://www.moddable.com")

 }

 }

});

Advertising data only transmits data; there is no way to reply.

Bidirectional communication requires one device to take on the GATT

Client role and one device to take on the GATT Server role. Before this can

happen, the connection process defined by GAP must be complete.

 Establishing a Connection
Once the heart rate Peripheral starts advertising, it waits for a Central

to request to connect to it. You can use any of a variety of mobile apps

to create a Central that does this. In this section, you’ll use LightBlue,

which is available for free on iOS and Android devices. LightBlue has a

Central mode that enables you to scan for, connect to, and send read/write

requests to Peripherals. You can use it as the Client for your Peripheral by

taking the following steps:

ChAPTEr 4 BLuETooTh Low EnErGy (BLE)

https://bluetooth.com/specifications/assigned-numbers/16-bit-uuids-for-members
https://bluetooth.com/specifications/assigned-numbers/16-bit-uuids-for-members

205

 1. Run the example on your ESP32.

 2. Download and open LightBlue and wait for the

Heart Rate Monitor Peripheral to appear, as shown

in Figure 4-5.

Figure 4-5. Heart Rate Monitor Peripheral in LightBlue
Peripherals list

ChAPTEr 4 BLuETooTh Low EnErGy (BLE)

206

 3. Tap the Heart Rate Monitor Peripheral to establish

a connection to it.

The onConnected callback is invoked when a Central connects to the

heart rate Peripheral. In this example, it stops broadcasting advertisement

and responding to scan response packets, as shown in Listing 4-8.

Listing 4-8.

class HeartRateService extends BLEServer {

 ...

 onConnected() {

 this.stopAdvertising();

 }

 ...

}

 Sending Notifications
BLE Clients may request notifications for characteristics that have the

notify property, such as the bpm characteristic in this example. When

notifications are enabled, Servers notify the Client of changes to the

characteristic’s value without the Server’s having to request the value.

Notifications save energy, a key feature of the design of BLE, by eliminating

the need for the Client to poll the Server for changes in characteristics.

To receive notifications for the simulated heart rate in LightBlue, take

the following steps (as illustrated in Figures 4-6, 4-7, and 4-8):

 1. Tap the Heart Rate Measurement characteristic.

ChAPTEr 4 BLuETooTh Low EnErGy (BLE)

207

Figure 4-6. Heart Rate Monitor characteristics screen with Heart
Rate Measurement button

ChAPTEr 4 BLuETooTh Low EnErGy (BLE)

208

 2. Tap Listen for notifications to enable notifications.

Figure 4-7. Heart Rate Measurement screen with Listen for
notifications button

ChAPTEr 4 BLuETooTh Low EnErGy (BLE)

209

 3. Watch the simulated heart rate values appear.

Now let’s take a look at the code that implements notifications for the

Heart Rate service on the Server side. The onCharacteristicNotifyEnabled

method is a callback that’s invoked when a Client enables notifications on a

characteristic. The onCharacteristicNotifyDisabled method is a callback

Figure 4-8. Heart rate values appearing in NOTIFIED VALUES
section

ChAPTEr 4 BLuETooTh Low EnErGy (BLE)

210

that’s invoked when a Client disables notifications on a characteristic. The

characteristic argument for both is an instance of the Characteristic

class, which provides access to a single service characteristic.

The onCharacteristicNotifyEnabled method (shown in Listing 4-9)

calls the notifyValue method, which sends a characteristic value change

notification to the connected Client, at 1,000-millisecond (1-second)

intervals. This simulates a heart rate sensor, although a real heart rate

monitor would not send periodic updates; rather, it would send a

notification when the value actually changes.

Listing 4-9.

onCharacteristicNotifyEnabled(characteristic) {

 this.bump = +1;

 this.timer = Timer.repeat(id => {

 this.notifyValue(characteristic, this.bpm);

 this.bpm[1] += this.bump;

 if (this.bpm[1] === 65) {

 this.bump = -1;

 this.bpm[1] = 64;

 }

 else if (this.bpm[1] === 55) {

 this.bump = +1;

 this.bpm[1] = 56;

 }

 }, 1000);

}

The onCharacteristicNotifyDisabled method (Listing 4-10) ends

the sending of notifications by calling the stopMeasurements method.

ChAPTEr 4 BLuETooTh Low EnErGy (BLE)

211

Listing 4-10.

onCharacteristicNotifyDisabled(characteristic) {

 this.stopMeasurements();

}

...

stopMeasurements() {

 if (this.timer) {

 Timer.clear(this.timer);

 delete this.timer;

 }

 this.bpm = [0, 60]; // flags, beats per minute

}

 Responding to Read Requests
Clients may request the value of characteristics that support the read

property, like the Battery service in this example. To send requests to read

the value of the simulated battery level in LightBlue, take the following

steps (as illustrated in Figures 4-9, 4-10, and 4-11):

 1. Tap the Battery Level characteristic.

ChAPTEr 4 BLuETooTh Low EnErGy (BLE)

212

Figure 4-9. Heart Rate Monitor characteristics screen with Battery
Level button

ChAPTEr 4 BLuETooTh Low EnErGy (BLE)

213

 2. Tap Read again.

Figure 4-10. Battery Level screen with Read again button

ChAPTEr 4 BLuETooTh Low EnErGy (BLE)

214

 3. Watch the simulated battery level appear.

Now let’s take a look at the code that handles the battery level service

notifications. The onCharacteristicRead method (Listing 4-11) is a

callback that’s invoked when a Client reads a service characteristic value

on demand. The BLEServer instance is responsible for handling the read

Figure 4-11. Battery level value appearing in READ VALUES section

ChAPTEr 4 BLuETooTh Low EnErGy (BLE)

215

request. In this example, the battery level starts at 100; each time it’s read,

the callback returns the value and decrements it by 1.

Listing 4-11.

onCharacteristicRead(params) {

 if (params.name === "battery") {

 if (this.battery === 0)

 this.battery = 100;

 return this.battery--;

 }

}

 Establishing Secure Communication
The Moddable SDK supports enhanced security features introduced in

version 4.2 of the Bluetooth Core Specification: LE Secure Connections

with Numeric Comparison, Passkey Entry, and Just Works pairing

methods. Both the BLEClient and BLEServer classes have an optional

securityParameters property that requests that devices establish an LE

Secure Connection. The pairing method used depends on the devices’

capabilities and options set in the securityParameters property. Security

callback functions are hosted by the BLEClient and BLEServer classes. The

next section walks through a simple example.

 Secure Heart Rate Monitor
The $EXAMPLES/ch4-ble/hrm-secure example is a secure version of the

$EXAMPLES/ch4-ble/hrm example that requires passkey entry for pairing.

Again, you can use LightBlue as the Client. Follow the same steps as

before, and when you’re prompted to enter the code from the heart rate

monitor (as shown in Figure 4-12), enter the passkey traced to the console

in xsbug (Figure 4-13).

ChAPTEr 4 BLuETooTh Low EnErGy (BLE)

216

Figure 4-12. Prompt to enter code in LightBlue

ChAPTEr 4 BLuETooTh Low EnErGy (BLE)

217

Now you can enable notifications for the heart rate value and read the

battery value on demand as before, but the connection between the Server

and Client is secure.

The code has just a few differences from the $EXAMPLES/ch4-ble/hrm

example. As shown in Listing 4-12, the onReady callback includes

additional code to configure the device security requirements and I/O

capabilities of the Peripheral.

Listing 4-12.

this.securityParameters = {

 bonding: true,

 mitm: true,

 ioCapability: IOCapability.DisplayOnly

};

Figure 4-13. Passkey in debug console

ChAPTEr 4 BLuETooTh Low EnErGy (BLE)

218

The properties in this code specify the following:

• The bonding property enables bonding, which means

that both devices will store and use the keys they

exchange the next time they connect. Without bonding

enabled, the devices will have to go through pairing

every time they connect.

• The mitm property requests man-in-the-middle

protection, meaning that data exchanged between two

paired devices is encrypted to prevent an untrusted

device from eavesdropping.

• The ioCapability property indicates the user interface

capabilities for the device related to confirming the

passkey. This device doesn’t have a display, but it has

display capability because it can trace to the debug

console. Other Peripherals may have more input/

output capabilities (for example, a device with a

keyboard) or fewer input/output capabilities (such as a

device with no way to display text). The ioCapability

properties of both devices are used to determine the

pairing method. For example, if neither device has a

keyboard or display, the Just Works pairing method is

used.

Two additional callbacks of the BLEServer class are implemented

(see Listing 4-13):

• The onPasskeyDisplay callback is invoked when

you try to establish a connection to the Peripheral.

In this case, it’s called when you tap the name of

the Peripheral in LightBlue. As you saw before, this

example traces the passkey to the debug console.

ChAPTEr 4 BLuETooTh Low EnErGy (BLE)

219

• The onAuthenticated callback is invoked after

successful device pairing. This example simply changes

the authenticated property to indicate that a secure

connection was established.

Listing 4-13.

onPasskeyDisplay(params) {

 let passkey = this.passkeyToString(params.passkey);

 trace(`server display passkey: ${passkey}\n`);

}

onAuthenticated() {

 this.authenticated = true;

}

The Server checks that the authenticated property is set when the

Client enables notifications. The code inside the if block looks the same as

the onCharacteristicNotifyEnabled method of the hrm example.

onCharacteristicNotifyEnabled(characteristic) {

 if (this.authenticated) {

 ...

}

The Server also defines an additional helper method, named

passkeyToString. Passkey values are integers and must always include

six digits when displayed to the user. This method pads the passkey with

leading zeros, when necessary, for display.

passkeyToString(passkey) {

 return passkey.toString().padStart(6, "0");

}

ChAPTEr 4 BLuETooTh Low EnErGy (BLE)

220

 Conclusion
Now that you understand the essentials of these examples, there’s a lot

you can do with BLE on your ESP32. Instead of connecting to virtual

Peripherals that you create in LightBlue, you can connect to BLE products

in your home. Instead of sending simulated data like the heart rate

monitor example, you can send actual sensor data from your favorite

off- the- shelf sensors.

If you want to try more BLE examples, see the examples/network/ble

directory in the Moddable SDK on GitHub. Examples that enable your

device to become a URI-transmitting beacon, pair your device with the

iPhone Music app, and more are available. If you want to learn more about

the BLE API of the Moddable SDK, see the documentation/network/ble

directory.

ChAPTEr 4 BLuETooTh Low EnErGy (BLE)

221© Peter Hoddie and Lizzie Prader 2020
P. Hoddie and L. Prader, IoT Development for ESP32 and ESP8266 with JavaScript,
https://doi.org/10.1007/978-1-4842-5070-9_5

CHAPTER 5

Files and Data
Nearly every product has some data that it needs to ensure is available

across restarts of the device, even if power is lost. On microcontrollers,

flash memory is typically used for this non-volatile storage (NVS) memory.

The same flash memory that holds the code of your application also stores

the data your application uses and the data it creates. Here are some kinds

of data your application might store:

• Read-only data, such as the images that make up the

user interface of your product or files containing static

web pages served from an embedded web server

• Small pieces of data that are both read and written—for

example, user preferences and other long-term state

• Large collections of data that are created as your

product monitors operations—for example, while

gathering data from its sensors

On computers and mobile devices, it’s common to use the file system

for most, if not all, data storage needs. However, because of the constraints

of embedded systems—code size limitations, highly constrained RAM, and

severe performance constraints—the firmware often doesn’t even include

a file system.

https://doi.org/10.1007/978-1-4842-5070-9_5#ESM

222

This chapter explains three different ways to work with stored data

on embedded systems: files, preferences, and resources. The final section

introduces direct access to flash memory, an advanced technique that

provides the greatest flexibility.

When building your product, choose the data storage methods that

best match your needs. Before assuming that files are the right choice,

consider preferences and resources, which are lighter-weight ways to work

with stored data.

 Installing the Files and Data Host
You can run all of the examples referred to in this chapter by following

the pattern described in Chapter 1: install the host on your device using

mcconfig, then install example applications using mcrun.

The host is in the $EXAMPLES/ch5-files/host directory. Navigate to

this directory from the command line and install it with mcconfig.

 Files
The ESP32 and ESP8266 use SPIFFS (Serial Peripheral Interface Flash File

System) for their file system in flash memory. SPIFFS is designed specifically

for working with the NOR (NOT OR) flash memory used with many

microcontrollers. While SPIFFS is nowhere near as fully featured as the file

systems on a computer, it provides all the fundamental features you’ll need.

When using files on an embedded device, it’s important to keep in

mind these limitations of the file system implementation:

• SPIFFS is a flat file system, meaning that there are no

real directories. All files are together in the SPIFFS root

directory.

• File names are limited to 32 bytes.

Chapter 5 Files and data

223

• There are no file permissions or locks. All files may be

read, written, and deleted.

• The length of time for a write is unpredictable. It’s often

fast, but when the file system needs to consolidate

blocks it may block for some time.

This section focuses on accessing files using SPIFFS, which is available

without adding any hardware and has a relatively small code size. On the

ESP32, these same APIs may also be used to access an SD memory card

formatted using the FAT32 file system.

 File Classes
All access to the file system is done using classes in the file module:

import {File, Iterator, System} from "file";

The file module exports these three classes, as explained in detail in

the following sections:

• The File class performs operations on individual files,

including read, write, delete, and rename.

• The Iterator class returns the contents of a directory.

On a flat file system like SPIFFS, Iterator is only

available for the root directory.

• The System class provides information about the file

system storage, including total amount of storage and

free space available.

 File Paths
File paths are the strings you use to identify files and directories. The file

module uses the slash character (/) to separate the parts of a path, as in

 /spiffs/data.txt.

Chapter 5 Files and data

224

Although SPIFFS is a flat file system with no subdirectories, it’s

accessed with a root of /spiffs/ instead of / to support embedded devices

that have more than one file system—for example, a built-in flash file

system and an external SD card.

On the desktop simulator, the root varies based on the host platform.

For example, on macOS, the default file system root is /Users/Shared/.

When you write code intended to work in more than one environment, you

can use the predefined value in the mc/config module to find the root for

your host platform.

import config from "mc/config";

const root = config.file.root;

Because there may be multiple file systems, this root is just a

convenient default place for files, not necessarily the sole file system

available.

Each file system may have a different limit for the length of a file or

directory name. Use the System.config static method to retrieve the

maximum length for names in a specified root.

const spiffsConfig = System.config("/spiffs/");

let name = "this is a very long file name.txt";

if (name.length > spiffsConfig.maxPathLength)

 throw new Error("file name too long");

 File Operations
This section describes methods that perform operations on a file,

including deleting, creating, and opening. There are no methods to read

or write the full content of a file, as that would often fail due to memory

limitations; later sections introduce techniques for reading and writing.

Chapter 5 Files and data

225

 Determining Whether a File Exists

Use the static exists method of the File class to determine whether a file

exists:

if (File.exists(root + "test.txt"))

 trace("file exists\n");

else

 trace("files does not exist\n");

 Deleting a File

To delete a file, use the static delete method of the File class:

File.delete(root + "goaway.txt");

The delete method returns true if successful and false otherwise.

If the file doesn’t exist, delete returns true rather than throw an error, so

there’s no need to surround its invocation with a try/catch block. The

method does throw an error if the delete operation fails, but this happens

only in rare circumstances, such as when the flash memory is worn out or

the file system data structures are corrupt.

 Renaming a File

To rename a file, use the static rename method of the File class. The

first argument is the full path of the file to rename, whereas the second

argument is only the new name.

File.rename(root + "oldname.txt", "newname.txt");

Note the rename method is only for renaming a file. On file
systems that support subdirectories, rename cannot be used to move
a file from one directory to another.

Chapter 5 Files and data

226

 Opening a File

To open a file, create an instance of the File class. The File constructor’s

first parameter is the full path of the file to open. The optional second

parameter is true to open in write mode (creating the file if it doesn’t exist)

and either absent or false to open in read mode. Here’s an example of

opening a file in read mode:

let file = new File(root + "test.txt");

The following example opens a file in write mode, creating the file if it

doesn’t exist:

let file = new File(root + "test.txt", true);

The File constructor throws an error if there’s an error in opening a

file, such as trying to open a nonexistent file in read mode.

When you’re done accessing a file, close the file instance to free the

system resources it’s using:

file.close();

 Writing to a File
This section introduces techniques for writing data to a file. You can use

the File class to write both text and binary data. A file must be opened in

write mode, or write operations will throw an error. To open in write mode,

pass true as the second argument to the File constructor.

The file system automatically grows the file when you write data

beyond the current size. There’s no support for truncating a file. To reduce

a file’s size, create another file and copy the needed data into it from the

original file.

Chapter 5 Files and data

227

 Writing Text

The write method of the File class determines the kind of data you want to

write from the type of the JavaScript object you pass to the call. To write text,

pass a string. The following code from the $EXAMPLES/ch5-files/files

example writes a single string to a file:

let file = new File(root + "test.txt", true);

file.write("this is a test");

file.close();

Strings are always written as UTF-8 data.

 Writing Binary Data

To write binary data to a file, pass an ArrayBuffer to write. The following

code from the $EXAMPLES/ch5-files/files example writes five 32-bit

unsigned integers to a file. The values are in a Uint32Array, which uses an

ArrayBuffer for its storage. The call to write gets the ArrayBuffer from

the buffer property of the bytes array.

let bytes = Uint32Array.of(0, 1, 2, 3, 4);

let file = new File(root + "test.bin", true);

file.write(bytes.buffer);

file.close();

To write bytes (8-bit unsigned values), pass an integer value as the

argument (see Listing 5-1).

Listing 5-1.

let file = new File(root + "test.bin", true);

file.write(1);

file.write(2);

file.write(3);

file.close();

Chapter 5 Files and data

228

 Getting File Size

To determine the size of a file in bytes, you first open the file and then

check its length property:

let file = new File(root + "test.txt");

let length = file.length;

trace(`test.txt is ${length} bytes\n`);

file.close();

The length property is read-only. It cannot be set to change the size of

the file.

 Writing Mixed Types

The write method lets you pass multiple arguments to write several pieces

of data in a single call. This executes a little faster and keeps your code a

little smaller. The following example writes an ArrayBuffer, four bytes,

and one string in a single call to write:

let bytes = Uint32Array.of(0x01020304, 0x05060708);

let file = new File(root + "test.bin", true);

file.write(bytes.buffer, 9, 10, 11 12, "ONE TWO!");

file.close();

A hex dump of the file after the write looks like this:

04 03 02 01 08 07 06 05

09 0A 0B 0C 79 78 69 32 ONE

84 87 79 33 TWO!

You might expect the first four bytes to be 01 02 03 04, but

remember that instances of TypedArray, which includes Uint32Array,

are stored in the host platform’s byte order, and the ESP32 and ESP8266

microcontrollers are both little-endian devices.

Chapter 5 Files and data

229

 Reading from a File
This section introduces techniques for retrieving data from a file. You can

use the File class to read both text and binary data. Most files are one or

the other—all binary or all text data—though this is not required.

The File class supports reading a file in pieces, which enables you to

control the maximum memory used when reading from the file.

 Reading Text

Sometimes it’s useful to retrieve the entire contents of a file as a single text

string. You do this by calling the read method with a single argument of

String, which tells the file instance to read from the current position to

the end of the file and put the result in a string. The following code from

the $EXAMPLES/ch5-files/files example reads the contents from the

test.txt file created earlier:

let file = new File(root + "test.txt");

let string = file.read(String);

trace(string + "\n");

file.close();

The read method always starts reading from the current position. In

this case, since the file has just been opened, the current position is 0, the

start of the file.

 Reading Text in Pieces

You may also use the read method to retrieve parts of a file, to minimize

peak memory use. The optional second argument to read indicates the

maximum number of bytes to read. This is the number of bytes that are

read, with one exception: if reading the requested number of bytes would

pass the end of the file, the text from the current position to the end of the

file is read.

Chapter 5 Files and data

230

The example in Listing 5-2 reads a file in ten-byte pieces and traces

them to the console. It compares the position property to the length

property to determine when it has read all data from the file.

Listing 5-2.

let file = new File(root + "test.txt");

while (file.position < file.length) {

 let string = file.read(String, 10);

 trace(string + "\n");

}

file.close();

On a computer, you might memory-map the file to simplify access

to the data; however, that approach is not generally available on

microcontrollers, as they typically lack an MMU (memory management

unit) to perform the mapping. If you want to memory-map read-only data,

resources are a good alternative, as explained later in this chapter.

 Reading Binary Data

To read the entire file as binary data, call read with the single argument

ArrayBuffer. The following code from the $EXAMPLES/ch5-files/files

example reads the contents from the test.bin file created earlier:

let file = new File(root + "test.bin");

let buffer = file.read(ArrayBuffer);

file.close();

As when reading text, the binary read starts from the current position,

which is 0 when the file opened, and continues to the end of the file. The

data is returned in an ArrayBuffer. The following example wraps the

returned buffer in a Uint8Array and displays the hexadecimal byte values

on the console:

Chapter 5 Files and data

231

let bytes = new Uint8Array(buffer);

for (let i = 0; i < bytes.length; i++)

 trace(bytes[i].toString(16).padStart(2, "0"), "\n");

 Reading Binary Data in Pieces

The read method may also be used to retrieve binary data from arbitrary

locations in a file. The example in Listing 5-3 reads the last four bytes

of the file and displays the result as a 32-bit unsigned integer. The read

location is specified by setting the position property to four bytes from

the end of the file.

Listing 5-3.

let file = new File(root + "test.bin");

file.position = file.length - 4;

let buffer = file.read(ArrayBuffer, 4);

file.close();

let value = (new Uint32(buffer))[0];

 Directories
The SPIFFS file system implements only a single directory, the root

directory. Other file systems, such as FAT32, support an arbitrary number

of subdirectories. In all cases, you use the Iterator class of the file

module to list the files and subdirectories contained in a directory.

 Iterating over Directories

Retrieving a list of the items in a directory is a two-step process. First

you create an instance of the Iterator class for the directory over which

to iterate; then you call the next method of the iterator to retrieve each

Chapter 5 Files and data

232

item. When all items have been returned, the iterator returns undefined.

Listing 5-4 from the $EXAMPLES/ch5-files/files example traces the files

and directories contained in the root directory to the console.

Listing 5-4.

let iterator = new Iterator(root);

let item;

while (item = iterator.next()) {

 if (undefined === item.length)

 trace(`${item.name.padEnd(32)} directory\n`);

 else

 trace(`${item.name.padEnd(32)} file ${item.length}` +

 "bytes\n");

}

The next method returns an object with properties that describe the

item. The name property is always present. The length property is present

only for files and indicates the number of bytes in the file. There’s no

separate property to indicate whether the item is a file or directory, as the

presence of the length property is sufficient for this purpose.

The iterator instance has a close method, which may be called to free

the system resources used by the iterator. This is not usually necessary,

however, because the iterator implementation automatically frees any

system resources when it reaches the end of the items.

The Iterator class returns one item at a time, rather than a list of all

items, to keep memory use to a minimum. The order in which items are

returned depends on the underlying file system implementation. In the

general case, you cannot assume, for example, that the items are returned

in alphabetical order or that directories are returned before files.

Chapter 5 Files and data

233

 Iterating with JavaScript Iterators

The JavaScript language provides an iterator feature that makes it easier

to write code that uses iterators. For example, you can use the for-of loop

syntax to iterate through the items. This language feature works with any

instance that implements the iterator protocol, which the file module’s

Iterator class does. This approach is a little more concise for you to code,

at the expense of using a little more memory and CPU time. Listing 5-5

adapts Listing 5-4 to use the JavaScript iterator.

Listing 5-5.

for (let item of new Iterator(root)) {

 if (undefined === item.length)

 trace(`${item.name.padEnd(32)} directory\n`);

 else

 trace(`${item.name.padEnd(32)} file ${item.length}` +

 "bytes\n");

}

Where iterators really shine is as inputs to functions that operate on

iterators. For example, if you need an array containing all the items contained

in a directory, you can simply pass the iterator instance to Array.from.

let items = Array.from(new Iterator(root));

 Getting File System Information
The file module’s System object contains an info method to provide

information about each file system root. You use this method to determine

the total number of bytes of storage available and the number of bytes

currently in use.

let info = System.info(root);

trace(`Used ${info.used} of ${info.total}\n`);

Chapter 5 Files and data

234

 Preferences
Preferences are another tool for storing data on a microcontroller in your

IoT product. They’re much more efficient than files but also much more

limited. A file is well suited to storing a lot of information, whereas a

preference stores only small pieces of information. Often in your product,

you only need to keep track of a handful of user settings, and preferences

are all you need for those situations; you may even exclude the file system

entirely from your product.

Another advantage of using preferences is their reliability. The

implementations of preferences for ESP32 and ESP8266 take steps to

ensure that the preference data is not corrupted even if power is lost while

the preferences are being updated. That level of reliability is more difficult

to achieve in a file system, because the data structures are more complex.

 The Preference Class
The preference module provides access to preferences. To use preferences

in your code, import the Preference class from the preference module.

import Preference from "preference";

The JavaScript Preferences API introduced in this chapter is the same

between microcontrollers; however, the underlying implementation

is different. For example, on the ESP32, preferences are implemented

using the NVS library in the ESP32 IDF SDK, whereas on the ESP8266,

preferences are implemented by the Moddable SDK because there’s no

system-provided equivalent. Since the implementations are different, there

also are differences in behavior. The following sections note the differences

you need to keep in mind.

Chapter 5 Files and data

235

 Preference Names
Each preference is identified by two values, a domain and a name. These

are similar to a simple file system path: the domain is like the directory

name, and the name is like the file name. For example, consider a Wi-Fi

light, where you want to save the user settings to restore when the power is

turned on. You could use a light domain for all the light state preferences,

with on, brightness, and color for names. The light might keep statistics

data (such as the number of times the light has been turned on) in another

domain, such as stats.

The domain and name values of a preference are always strings.

Names are limited to 15 bytes on the ESP32 and 31 bytes on the ESP8266.

 Preference Data
Preferences are not intended to replace a file system; it’s a common

mistake to try to use them that way. Because the size of each individual

preference is limited, as is the total storage available for all preferences,

they’re far less general than a file system.

Each preference has a data type: a boolean, a 32-bit signed integer,

a string, or an ArrayBuffer. Floating-point numeric values are not

supported. The string type is often the most convenient to use but is also

often the least efficient use of storage space. It you need to combine several

values in a single preference, consider using an ArrayBuffer.

When you write a value, the type of the value is established based on

the data provided. To change the type, write the value again. When you

read a value, the value returned has the same type as the value that was

written.

Chapter 5 Files and data

236

Note these differences between preference data on the ESP32 and on

the ESP8266:

• On the ESP32, the preference data space is configurable

and is set to 16 KB in the hosts used in this book. On the

ESP8266, the space for preference data is 4 KB.

• On the ESP32, each preference may be up to 4,000 bytes

of data; on the ESP8266, this value is limited to 64 bytes.

If you’re writing code that you expect to run on several

different microcontroller platforms, you need to design

your preference values for the 64-byte data size.

 Reading and Writing Preferences
Because preferences are just small pieces of data with a type,

they’re much easier to read and write than a file. Listing 5-6 from the

$EXAMPLES/ch5-files/preferences example writes four preferences

to the example domain. The type of each value is used as the preference

name. The set implementation determines the type of the preference

based on the value passed in the third argument.

Listing 5-6.

Preference.set("example", "boolean", true);

Preference.set("example", "integer", 1);

Preference.set("example", "string", "my value");

Preference.set("example", "arraybuffer",

 Uint8Array.of(1, 2, 3).buffer);

Use the static get call to retrieve preference values, as shown in

Listing 5-7. The type of the value returned matches the type of the value

used in the set call.

Chapter 5 Files and data

237

Listing 5-7.

let a = Preference.get("example", "boolean"); // true

let b = Preference.get("example", "integer"); // 1

let c = Preference.get("example", "string"); // "my value"

let d = Preference.get("example", "arraybuffer");

 // ArrayBuffer of [1, 2, 3]

If no preference is found with the specified domain and name, the get

call returns undefined:

let on = Preference.get("light", "on");

if (undefined === on)

 on = false;

 Deleting Preferences
Use the delete method to remove a preference:

Preference.delete("example", "integer");

No error is thrown if a preference cannot be found with the specified

domain and name. If there’s an error while updating flash memory to

remove the preference, delete throws an error.

 Don’t Use JSON
When building products in JavaScript for the web or computers, it’s

common to store preferences using JSON—an approach that’s extremely

easy to code and is flexible. It’s tempting to do the same when creating an

embedded product using JavaScript; however, although it works in some

Chapter 5 Files and data

238

products, it isn’t recommended, because it’s more likely to lead to failures

later in the development process. Consider the following:

• Storing preferences in a JSON file requires that your

project include a file system—a large body of code

that takes up some of the limited space in your flash

memory.

• A JSON object must be loaded into memory all at once,

which means that accessing one preference value

requires enough memory to hold all preference values.

• Loading the JSON string data from a file and then

parsing it to JavaScript objects takes considerably more

time than just loading one value from a preference.

• File systems are generally less error-resilient to power

failures than preferences. Consequently, there’s a

higher chance that user settings will be lost.

Using JSON may also seem like a good way to store several values in a

single preference. This does work, but it has two limitations that make it an

inadvisable choice in many cases. First, because preference data is limited

to just 64 bytes on some devices, you cannot combine many values this

way. Second, the overhead of the JSON format almost certainly means the

preference data uses more storage than other methods. For example, the

following code uses 24 bytes of storage to store three small integer values

as JSON:

Preference.set("example", "json",

 JSON.stringify({a: 1, b: 2, c: 3}));

In contrast, this example requires just three bytes by using Uint8Array:

Preference.set("example", "bytes",

 Uint8Array.of(1, 2, 3).buffer);

Chapter 5 Files and data

239

Reading the values from the JSON version is easier:

let pref = JSON.parse(Preference.get("example", "json"));

Reading the values from the more storage-efficient version requires an

additional line of code:

let pref = new Uint8Array(Preference.get("example", "bytes"));

pref = {a: pref[0], b: pref[1], c: pref[2]};

 Security
The preference module provides no guarantees about the security of

preference data. The domain, name, and value may be stored “in the clear”

without any encryption or obfuscation. As with user data in files, you

should take appropriate steps in your product to ensure that user data is

adequately protected. Examples of sensitive user data that are commonly

stored in IoT products are Wi-Fi passwords and cloud service account

identifiers. At a minimum, you should consider applying some form of

encryption to these values so that they cannot be read by an attacker

scanning the flash memory of the device.

Some hosts do provide encrypted storage for preference data. With

additional configuration, this is available on the ESP32, for example.

 Resources
Resources are a tool for working with read-only data. They’re the most

efficient way to embed large pieces of data in your project. Resources

are usually accessed in place in flash memory, where they’re stored,

and therefore use no RAM no matter how large the resource data is. The

Moddable SDK uses resources for many different purposes, including TLS

certificates, images, and audio, but there’s no restriction on the kind of

data you can store in a resource.

Chapter 5 Files and data

240

The $EXAMPLES/ch5-files/resources example hosts a simple web

page defined by mydata.dat, which is included as a resource. After you run

the example, open a web browser and enter the IP address of your device,

and you’ll see a web page that says “Hello, world”.

 Adding Resources to a Project
Including a resource in your project requires two steps:

 1. You add a file containing the resource data to your

project. Often the resource files are placed in a

subdirectory such as assets, data, or resources,

but you can store them anywhere you like.

 2. You add the file to the resources section of your

manifest to tell the build tools to copy the file’s data

to a resource.

Listing 5-8 is from the resources example’s manifest. It includes just

one resource, mydata.dat, from the directory containing the manifest.

Listing 5-8.

"resources": {

 "*": [

 "./mydata"

],

},

The data file must have a .dat extension. However, the file name in the

manifest must not include the extension; the build tools automatically locate

your file with the .dat extension. It’s important that you do not include several

files with the same name but different extensions (for example, mydata.dat

and mydata.bin), as the tools may not find the one you expect first.

Chapter 5 Files and data

241

This chapter describes resource data that’s copied directly from your

input file to the output binary without any changes. The build tools also

have the ability to apply transformations to the data, such as converting

images to a format optimized for your target microcontroller; Chapter 8

explains how to use resource transformations.

 Accessing Resources
To access a resource, import the Resource class from the resource

module:

import Resource from "resource";

You call the Resource class constructor with the path of the resource

from the manifest. Note that the path always includes the file extension—

.dat in this case.

let data = new Resource("mydata.dat");

The Resource constructor throws an error if it cannot find the

requested resource. If you want to check whether a resource exists before

calling the constructor, use the static exists method:

if (Resource.exists("mydata.dat")) {

 let data = new Resource("mydata.dat");

 ...

}

 Using Resources
The Resource constructor returns the binary data as a HostBuffer.

A HostBuffer is similar to an ArrayBuffer but, unlike an ArrayBuffer, the

data of a HostBuffer may be read-only and consequently may be located

in flash memory.

Chapter 5 Files and data

242

To get the number of bytes in a resource, use the byteLength property,

just as with an ArrayBuffer:

let r1 = new Resource("mydata.dat");

let length = r1.byteLength;

Also as with an ArrayBuffer, you cannot access the data of a

HostBuffer directly but must wrap it in a typed array or data view. The

following example wraps a resource in a Uint8Array and traces the values

to the console:

let r1 = new Resource("mydata.dat");

let bytes = new Uint8Array(r1);

for (let i = 0; i < bytes.length; i++)

 trace(bytes[i], "\n");

This example wraps the resource in a DataView object to access its

content as big-endian 32-bit unsigned integers:

let r1 = new Resource("mydata.dat");

let view = new DataView(r1);

for (let i = 0; i < view.byteLength; i += 4)

 trace(view.getUint32(i, false), "\n");

Sometimes you want to modify the data in a resource. Because the

data is read-only, you need to make a copy. The HostBuffer returned

by the Resource constructor has a slice method that may be used to

copy the resource data, in the same way as the slice method on an

ArrayBuffer instance. For example, you could copy the entire resource to

an ArrayBuffer in RAM as follows:

let r1 = new Resource("mydata.dat");

let clone = r1.slice(0);

The first argument to slice is the starting offset of the data to copy.

The optional second argument is the ending offset to copy; if omitted, data

Chapter 5 Files and data

243

is copied to the end of the resource. The following example extracts ten

bytes of resource data starting at byte 20:

let r1 = new Resource("mydata.dat");

let fragment = r1.slice(20, 30);

The slice method supports an optional third argument, which is not

provided by ArrayBuffer. This argument controls whether the data is

copied into RAM. If it’s set to false, slice returns a HostBuffer referring to

a fragment of the resource data, which is useful when you want to associate

just part of a resource with an object without copying its data into RAM. For

example, if there’s an array of five unsigned 16-bit data at offset 32 of the

resource, you can create a Uint16Array that references it, as follows:

let r1 = new Resource("mydata.dat");

let values = new Uint16Array(r1.slice(32, 10, false));

You could achieve a similar result by using the optional byteOffset

and length parameters of the Uint16Array constructor:

let r1 = new Resource("mydata.dat");

let values = new Uint16Array(r1, 32, 10);

The advantage of using slice is that it ensures that the full resource is

unavailable to untrusted code with access to the values array. In the first

of the preceding two examples, values.buffer has access to the entire

resource, whereas in the second example it may be used only to access the

five values in the Uint16Array.

 Accessing Flash Memory Directly
All of the modules described in this chapter for storing and retrieving

data—files, preferences, and resources—use the flash memory attached

to the controller for data storage. Each approach for working with data in

Chapter 5 Files and data

244

flash memory has its own benefits and limitations. In most cases, one of

these approaches is a good fit for your product’s needs; in some situations,

a more specialized approach may be more efficient. The flash module

gives you direct access to flash storage. Using it well requires more work,

but it’s worth the effort in some cases.

Warning this is an advanced topic. accessing flash memory
directly is dangerous. You may crash your device or corrupt your
data. You may even damage the flash memory, leaving your device
unusable. proceed with caution!

 Flash Hardware Fundamentals
To be able to use the API provided by the flash module, it’s important to

understand the fundamentals of the flash hardware.

The flash memory used with the ESP32 and ESP8266 microcontrollers

is connected using an SPI (Serial Peripheral Interface) bus. Although

reasonably fast to access, it’s still many times slower than accessing data in

RAM.

Flash memory is organized into blocks (also called “sectors”). The

size of a block varies depending on the flash memory component used.

A common value is 4,096 bytes. When you’re reading and writing flash

memory, you don’t usually need to be aware of the block size. However,

the block size is important when you’re initializing flash memory.

The flash memory uses NOR technology to store data. This has the

curious implication that an erased byte of flash memory has all bits set to

1, whereas it’s common to think of erased storage as being set to 0. You

might think that you could simply set the freshly erased bytes to all zeros

but, as you’ll see, that’s not a good idea with NOR flash memory.

Chapter 5 Files and data

245

When you write to NOR flash memory, you’re only writing 0 bits.

Because the flash memory is erased to all 1 bits, this doesn’t matter on the

first write. Consider two bytes (16 bits) of flash memory. They start out

erased to all 1 bits.

11111111 11111111

Write two bytes to that, 1 and 2, and the result is straightforward:

00000001 00000010

The next step is where the result is unexpected. Here’s what happens

when you then write the two bytes 2 and 1 to the same location:

00000000 00000000

The result is that both bytes are set to 0. Why? Remember that with

NOR flash memory, a write sets only the 0 bits. Any bits in flash memory

that are already set to 0 cannot be changed back to 1 with a write.

• Flash 0. Write 0 => Flash 0.

• Flash 0. Write 1 => Flash 0.

• Flash 1. Write 0 => Flash 0.

• Flash 1. Write 1 => Flash 1.

If a write can only change bits from 1 to 0, how are bits changed from

0 to 1? You use the flash erase method to do that. Unlike read and write,

which may access any byte in the flash memory directly, erase is a bulk

operation that sets all the bits in a block of flash memory to 1. You erase

blocks aligned to the block size boundary, which means bytes 0 to 4,095 or

bytes 4,096 to 8,191—not 1 to 4,096 because that’s not aligned to the start

of a block, and not bytes 1 to 2 because that’s not a full block.

If you want to change one bit, you can read the entire block into RAM,

erase the block, change the bit in RAM, and then write the block back. That

works, but it’s slow, because erase is a relatively slow operation—many

Chapter 5 Files and data

246

times slower than read and write. This approach also requires enough

RAM to hold a full block, and there’s not always that much memory on

a resource-constrained microcontroller. The biggest problem, however,

is that flash memory wears out. Each block may be erased only a certain

number of times, after which that block no longer stores data reliably; to

preserve the device, you need to minimize the number of times you erase

each block.

The good news is that the flash memory in your ESP32 or ESP8266

supports thousands, if not tens of thousands, of erase operations. The

preference and file module implementations are aware of the limits and

characteristics of NOR flash memory and take steps to minimize erases. If

you’re accessing flash memory directly in a product that’s intended to be

used for years, you need to do the same.

One commonly used strategy is incremental writes. In this approach,

the current values are zeroed out and the new values written after the zeros

in the block. This enables a single value to be updated many times without

an erase. This approach is used by the preference module. The Frequently

Updated Integer example later in this section explores the details of

incremental writes.

Another common strategy is wear leveling. This approach attempts to

erase each flash storage block the same number of times over the lifetime

of the product, to ensure that no block (for example, the first block) wears

out much sooner than the others due to more frequent access. The SPIFFS

file system underlying the file module uses this technique.

 Accessing Flash Partitions
The flash memory available to your microcontroller is accessed using the

Flash class from the flash module:

import Flash from "flash";

Chapter 5 Files and data

247

Flash memory is divided into segments called partitions. For example,

one partition contains your project’s code, another the preference data,

and another the storage for the SPIFFS file system. Each partition is

identified by a name.

To access the bytes in a partition, instantiate the Flash class with the

name of the partition. When you install example applications using mcrun

as introduced in Chapter 1, the byte code for the application is stored in

the xs partition. The following line instantiates the Flash class to access it:

let xsPartition = new Flash("xs");

The partitions available to your code vary depending on the

microcontroller and the host implementation. The xs partition that

contains applications installed with mcrun is always available. The area

used for the SPIFFS file system, named storage, is also generally always

available; if you’re not using the SPIFFS file system in your project, you can

use it for other purposes. Although these partitions are both present, their

sizes vary by device.

On the ESP32, the ESP32 IDF from Espressif defines the partitions. The

IDF provides a flexible partition mechanism that makes it possible for you

to define your own partitions. On the ESP8266, the Moddable SDK defines

the partitions, and they cannot easily be reconfigured.

On the ESP32, the Flash constructor searches the IDF partition map

to match the partition name requested. Consequently, you can access the

partition that contains the ESP32 preferences—which are implemented in

the NVS library—with the name nvs, as declared in the partition map (the

partitions.csv file in an IDF project).

let nvsPartition = new Flash("nvs");

Chapter 5 Files and data

248

 Getting Partition Information

An instance of the Flash class has two read-only properties that provide

important information about the partition: blockSize and byteLength.

The blockSize property indicates the number of bytes in a single block

of the flash hardware. This value is often 4,096, but for robustness you

should use the blockSize property rather than hardcode a constant value

in your code. That way, your code can work unchanged on hardware that

incorporates a different flash hardware component.

let storagePartition = new Flash("storage");

let blockSize = storagePartition.blockSize;

The blockSize property is important because it tells you both the

alignment and the size of erase operations on the partition.

The byteLength property provides the total number of bytes available

in the partition. The following example calculates the number of blocks in

the partition:

let blocks = storagePartition.byteLength / blockSize;

The value of the byteLength property is always an integer multiple

of the value of blockSize property, so the number of blocks is always an

integer.

 Reading from a Flash Partition

Use the read method to retrieve bytes from the flash storage partition.

The read method takes two arguments: the offset into the partition and the

number of bytes to read. The result of the read call is an ArrayBuffer.

The following is an excerpt from the $EXAMPLES/ch5-files/flash-readwrite

example:

let buffer = partition.read(0, 10);

let bytes = new Uint8Array(buffer);

Chapter 5 Files and data

249

for (let i = 0; i < bytes.byteLength; i++)

 trace(bytes[i] + "\n");

This code retrieves the first ten bytes from the partition. It wraps the

returned ArrayBuffer in a Uint8Array to trace the byte values to the

console.

There are no restrictions on the offset and number of bytes to read,

beyond the requirement that they’re within the partition. Specifically, a

single call to read may cross a block boundary.

The read call copies the requested data from the partition into a new

ArrayBuffer. Consequently, you should read flash memory in small

fragments to use as little RAM as practical.

 Erasing a Flash Partition

Use the erase method to reset all the bits in a flash partition to 1. The method

takes a single argument, the number of the blocks to reset. This line erases

the first block of the partition:

partition.erase(0);

The following code resets the entire partition. The erase operation is

relatively slow; for a large partition—for example, the storage partition on

the ESP8266—this operation takes several seconds.

let blocks = partition.byteLength / partition.blockSize;

for (let block = 0; block < blocks; block++)

 partition.erase(block);

 Writing to a Flash Partition

Use the write method to change the values stored in the flash partition.

This method takes three arguments: the offset at which to write the data

into the partition, the number of bytes to write, and an ArrayBuffer

containing the data. When the number of bytes to write is less than the size

Chapter 5 Files and data

250

of the ArrayBuffer, only that number of bytes are written. The following

example sets the first ten bytes of the partition to integers from 1 to 10:

let buffer = Uint8Array.of(1, 2, 3, 4, 5, 6, 7, 8, 9, 10).buffer;

partition.write(0, 10, buffer);

Keep in mind that writing sets only the 0 bits, as explained earlier

in the “Flash Hardware Fundamentals” section. Therefore, it may be

necessary to perform an erase before calling write.

 Mapping a Flash Partition

On the ESP32, you have the option of memory-mapping the partition, which

gives you read-only access to the contents of the partition using a typed array

or data view constructor. To memory-map a partition, call the map method.

The following code is taken from the $EXAMPLES/ch5-files/flash-map

example:

let partition = new Flash("storage");

let buffer = partition.map();

let bytes = new Uint8Array(buffer);

The map property returns a HostBuffer that may be passed to a typed

array or data view constructor to access the data. Memory-mapped

partitions are a more convenient way to access data than the read call

in some situations. Furthermore, because the data in the partition is not

copied to RAM by the map method, RAM use is minimized.

The map method is unavailable on ES8266 due to hardware limitations

that allow only memory mapping of the first megabyte of flash memory,

the area reserved to store the firmware.

Chapter 5 Files and data

251

 Example: Frequently Updated Integer
This section presents an example of directly accessing flash memory to

maintain a 32-bit value more efficiently than is possible using a file or a

preference. The example is for the situation where your product needs to

update a value frequently in flash storage to ensure that it’s maintained

reliably across reboots of the product.

The example uses a single block of flash memory. That’s typically 4,096

bytes, which is 1,024 times bigger than the 32-bit (four-byte) value being

stored. The example takes advantage of the additional storage to reduce

the number of erase operations, thereby prolonging the lifetime of the flash

memory. For convenience, the block used is the first block of the storage

partition, which prevents this example from being used with the SPIFFS

file system.

The complete Frequently Updated Integer example is available at

$EXAMPLES/ch5-files/flash-frequentupdate.

 Initializing the Block

The first step is to open the storage partition:

let partition = new Flash("storage");

As shown in Listing 5-9, the next step is to check whether the block

has been initialized. This is done by looking for a unique signature at the

start of the block. If the signature is not found, the block is erased and the

signature is written.

Listing 5-9.

const SIGNATURE = 0xa82aa82a;

let signature = partition.read(0, 4);

signature = (new Uint32Array(signature))[0];

Chapter 5 Files and data

252

if (signature !== SIGNATURE)

 initialize(partition);

function initialize(partition) {

 let signature = Uint32Array.of(SIGNATURE);

 partition.erase(0);

 partition.write(0, 4, signature.buffer);

}

 Updating the Value

After the signature, the block has space to store 1023 copies of the counter.

Listing 5-10 shows a write function that updates the value of the counter.

It searches for the first unused 32-bit integer in the block and writes the

value there. Recall that when a block is erased, all the bits are set to 1. That

means any unused entries contain the value 0xFFFFFFFF (a 32-bit integer

with all bits set to 1). If the block is full, it reinitializes the block and writes

the value in the first free position.

Listing 5-10.

function write(partition, newValue) {

 for (let i = 1; i < 1024; i++) {

 let currentValue = partition.read(i * 4, 4);

 currentValue = (new Uint32Array(currentValue))[0];

 if (0xFFFFFFFF === currentValue) {

 partition.write(i * 4, 4,

 Uint32Array.of(newValue).buffer);

 return;

 }

 }

 initialize(partition);

 partition.write(4, 4, Uint32Array.of(newValue).buffer);

}

Chapter 5 Files and data

253

 Reading the Value

The final part is the read function, shown in Listing 5-11. Like the write

function, it searches for the first free entry. Once that’s found, read returns

the value of the previous entry. If the search reaches the end of the block,

the last value in the block is returned.

Listing 5-11.

function read(partition) {

 let i;

 for (i = 1; i < 1024; i++) {

 let currentValue = partition.read(i * 4, 4);

 currentValue = (new Uint32Array(currentValue))[0];

 if (0xFFFFFFFF === currentValue)

 break;

 }

 let result = partition.read((i - 1) * 4, 4);

 return (new Uint32Array(result))[0];

}

 Benefits and Future Work

This example efficiently stores an integer value in flash memory. The

value may be updated 1,023 times before the block needs to be erased.

To understand the impact of this, consider a product that updates that

value once a minute. That works out to 514 erase operations per year

(60 * 24 * 365, which is 525,600 minutes per year, divided by 1,023 updates

per erase rounds up to 514). Using a flash chip with support for 10,000 erase

operations (a conservative estimate), the product has about a 19.5-year

lifetime. If each write operation required an erase, the same product would

wear out in only 7 days (60 * 24 * 7 is 10,080 writes per week).

Chapter 5 Files and data

254

The careful reader has noticed two limitations of this example: if power

is lost in the write function after the erase and before the write, the current

value will be lost; and the value cannot be set to 0xffffffff because that

value is used to identify unused entries in the block. Solutions to these

shortcomings are possible and are left as exercises for the reader.

 Conclusion
In this chapter, you learned several different ways to store information

in an embedded product. Files, preferences, and resources are the three

primary ways to store data, and each is optimized for a different use of

storage. You can use any combination of these approaches in your product.

When designing your product, consider your storage needs to determine

which approaches to use to make optimal use of available storage.

Some situations are so specialized that none of these standard storage

techniques are optimal; to address those cases, this chapter showed how

flash memory works so that you can create your own storage methods.

Chapter 5 Files and data

255© Peter Hoddie and Lizzie Prader 2020
P. Hoddie and L. Prader, IoT Development for ESP32 and ESP8266 with JavaScript,
https://doi.org/10.1007/978-1-4842-5070-9_6

CHAPTER 6

Hardware
Sensors and actuators are integral parts of nearly every IoT product.

Sensors gather data from the environment, such as the temperature,

humidity, and light levels, and translate it into electrical signals that a

microcontroller or other system can react to. Actuators do the opposite:

they take electrical signals and translate them into physical actions, such

as turning a motor or a light on or playing a sound.

Just as there are different networking protocols that define how data

is shared over the network, there are different hardware protocols that

define how sensors and actuators communicate with the microcontroller

they’re connected to. The Moddable SDK includes JavaScript APIs for a

variety of hardware protocols, including digital, analog, PWM, servo, and

I2C. These APIs enable you to interact with off-the-shelf hardware or your

own circuits from your ESP32 or ESP8266.

In this chapter, you’ll learn how to get started writing your own

JavaScript code to interact with hardware. The chapter includes many

examples that require just a few simple, widely available, inexpensive

sensors and actuators.

The code in this chapter communicates with hardware directly using

different hardware protocols. Once you learn how to work with a few

common hardware protocols, you’ll have the knowledge you need to

incorporate the many hardware components that use those protocols into

your own projects. When attaching new hardware to a computer, it’s often

necessary to install a software driver—that is, software that knows how

https://doi.org/10.1007/978-1-4842-5070-9_6#ESM

256

to interact with the hardware through the low-level hardware protocols;

in effect, this chapter teaches you how to write the software drivers for

various hardware components. IoT products that control the hardware

directly in this way have many benefits, including more precise control,

smaller code, and lower latency. Of course, software drivers are also

available for many components; in the Moddable SDK, you’ll find them in

modules/drivers.

 Installing the Hardware Host
The examples in this chapter are installed using the pattern described in

Chapter 1: you install the host on your device using mcconfig, then install

example applications using mcrun.

The host is in the $EXAMPLES/ch6-hardware/host directory. Navigate

to this directory from the command line and install it with mcconfig.

 Notes on Wiring
This chapter, unlike most other chapters in this book, requires you to do

additional setup of your device before running most examples: you need

to wire various sensors and actuators to your device. If you’re new to this,

it may be confusing as you get started. If you’ve done this before, you know

that it’s easy to make mistakes and that troubleshooting can sometimes

take time. This section provides important information on wiring that you

should know before running the examples.

 Following the Wiring Instructions
This chapter provides wiring tables and diagrams for most sensors and

actuators used in the examples. The wiring diagrams show the wiring for

NodeMCU boards and therefore NodeMCU pin numbers, such as D6 or

Chapter 6 hardware

257

D7. These labels don’t necessarily match the GPIO number used in code.

If you’re using a different development board, make sure you look at the

wiring tables, which provide the GPIO number—for example, GPIO12

or GPIO13—along with the NodeMCU pin numbers in parentheses. All

development boards label pins differently, so you have to map the pins

accordingly. The Moddable development boards are labeled with “GP”

followed by the GPIO number used in code—for example, GP12 or GP13—

so if the wiring table says a pin should be wired to GPIO12, plug it into the

pin labeled GP12 on the Moddable boards.

 Troubleshooting Wiring Issues
It’s important to follow the wiring instructions carefully. If you make a

mistake in your wiring, a few things might happen:

• An error is thrown. This is common and is generally the

easiest issue to fix. For example, if you swap the SDA

and SCL pins of an I2C sensor, you’ll get errors when

reading and writing. Take advantage of xsbug and use

the error messages to diagnose your issue. Sometimes

you just have to fix your wiring; other times you may

have a faulty sensor or actuator.

• The application works but gives unexpected results.

This is also common, but it can be hard to catch. For

example, if you plug the digital pin of a sensor into the

wrong pin on your development board, the application

reads from a pin that’s not connected to anything; it

doesn’t throw an error but it does give unexpected

results. If you’re pressing a button and the application

isn’t responding as expected, or you’re writing to a pin

of a tri-color LED and the color isn’t updated, double-

check your wiring.

Chapter 6 hardware

258

• You destroy your sensor or actuator. This is less

common than the first two issues, but it can happen.

For example, powering a sensor with 5V when it’s

designed to accept 3.3V can damage the electronics on

the sensor.

 Blinking an LED
The simplest physical output you can create with your ESP32 or ESP8266

is to turn the on-board LED (Figure 6-1) on and off. Both the ESP32 and

ESP8266 NodeMCU boards have an on-board LED connected to pin 2.

Figure 6-1. On-board LED on ESP8266 (top) and ESP32 (bottom)

Chapter 6 hardware

259

The Digital class provides access to the GPIO pins on your device:

import Digital from "pins/digital";

You can configure a digital pin for input or output. Once configured,

the pin can take on a value of 1, meaning the voltage is high, or 0, meaning

the voltage is low. The $EXAMPLES/ch6-hardware/blink example uses

the Digital class and a timer to blink the on-board LED. As shown in

Listing 6-1, the example uses the static write method of the Digital class,

which sets the pin (specified by the first argument) to Digital.Output

mode and sets its value to 0 or 1 (the second argument).

Listing 6-1.

let blink = 1;

Timer.repeat(() => {

 blink = blink ^ 1;

 Digital.write(2, blink);

}, 200);

Alternatively, you can construct an instance of the Digital class and

call the instance’s write method. Using the constructor allows for full

configuration of the pin. When you call the constructor, you pass in a

dictionary with pin and mode properties. The following mode values are

available for digital output pins:

Digital.Output

Digital.OutputOpenDrain

Listing 6-2 shows another way to write the blink example, using the

Digital constructor.

Chapter 6 hardware

260

Listing 6-2.

let led = new Digital({

 pin: 2,

 mode: Digital.Output

});

let blink = 1;

Timer.repeat(() => {

 blink = blink ^ 1;

 led.write(blink);

}, 200);

Using an instance of Digital is more efficient for writing than using

the static Digital.write method; the constructor initializes the pin once,

whereas Digital.write must initialize it on each write. Digital.write

is convenient for infrequent writes, but if your project writes to a digital

output frequently, create an instance once and write to it instead.

 Reading a Button
Buttons are a simple way to add physical input to projects. The ESP32 and

ESP8266 NodeMCU modules have two buttons built in. One of the buttons

is wired to digital pin 0 and may be used as a digital input in your projects;

this button is labeled FLASH, BOOT, or IO0, depending on which module

you have.

The $EXAMPLES/ch6-hardware/button example uses the Digital

class and a timer to read the on-board button. As shown in Listing 6-3, the

example uses the static read method of the Digital class, which sets the

pin (specified by the first argument) to Digital.Input mode and reads its

value, returning 0 or 1. The example traces to the debug console each time

the button is pressed. It also maintains a count of the number of button

presses and includes it in the output.

Chapter 6 hardware

261

Listing 6-3.

let previous = 1;

let count = 0;

Timer.repeat(id => {

 let value = Digital.read(0);

 if (value !== previous) {

 if (value)

 trace(`button pressed: ${++count}\n`);

 previous = value;

 }

}, 100);

Alternatively, you can construct an instance of the Digital class and

call the instance’s read method. Using the constructor allows for full

configuration of the pin. When you call the constructor, you pass in a

dictionary with pin and mode properties. The following mode values are

available for digital input pins:

Digital.Input

Digital.InputPullUp

Digital.InputPullDown

Digital.InputPullUpDown

Listing 6-4 shows how the button example could be rewritten to use

the Digital constructor.

Listing 6-4.

let button = new Digital({

 pin: 0,

 mode: Digital.Input

});

let previous = 1;

Chapter 6 hardware

262

let count = 0;

Timer.repeat(id => {

 let value = button.read();

 if (value !== previous) {

 if (value)

 trace(`button pressed: ${++count}\n`);

 previous = value;

 }

}, 100);

 Other Digital Input Modes
The modes Digital.InputPullUp, Digital.InputPullDown, and

Digital.InputPullUpDown are used to enable pull-up and pull-down

resistors that are built into some of the GPIO pins on the ESP32 and ESP8266.

This isn’t always necessary, but it’s useful for buttons like the one shown in

Figure 6-2, which requires a pull-down resistor to prevent it from receiving

random noise when it’s in an unpressed sate. You can get buttons like this

from SparkFun (product ID COM-10302) and Adafruit (product ID 1009).

The $EXAMPLES/ch6-hardware/external-button example has the

same functionality as the button example, but it works with a button like

the one in Figure 6-2 rather than the built-in button. If you want to run this

example, first follow the wiring instructions given here to connect it to your

ESP32 or ESP8266.

Figure 6-2. Tactile button

Chapter 6 hardware

263

 ESP32 Wiring Instructions

Table 6-1 and Figure 6-3 show how to connect the button to the ESP32.

Table 6-1. Wiring to connect the button to ESP32

Button ESP32

pwr 3V3

dIN GpIO16 (rX2)

Figure 6-3. Wiring diagram for connecting the button to ESP32

Chapter 6 hardware

264

 ESP8266 Wiring Instructions

Table 6-2 and Figure 6-4 show how to connect the button to the ESP8266.

Table 6-2. Wiring to connect the button to ESP8266

Button ESP8266

pwr 3V3

dIN GpIO16 (d0)

Figure 6-4. Wiring diagram for connecting the button to ESP8266

Chapter 6 hardware

265

 Understanding the external-button Code

The external-button example uses the Digital constructor as shown

in the following code. It configures pin 16 with the mode Digital.

InputPullDown, which enables the built-in pull-down resistor on pin 16.

let button = new Digital({

 pin: 16,

 mode: Digital.InputPullDown

});

The rest of the code is very similar to the rewritten button example

(Listing 6-4), except for a few small changes to account for the use of the

pull-down resistor.

 More About Pull-Up and Pull-Down Resistors

Both the ESP32 and the ESP8266 have a built-in pull-down resistor on pin

16, which is why the external-button example runs on either one without

any changes to the code. That said, you can modify it to use any pin with

a built-in pull-down resistor, and other applications you build can use the

other pins as well. The ESP32 has built-in pull-down resistors on all GPIO

pins except pins 34–39, whereas the ESP8266 only has a built-in pull-down

resistor on pin 16.

Other sensors may require a pull-up resistor. The ESP32 has built-in

pull-up resistors on all GPIO pins except pins 34–39; the ESP8266 has built-

in pull-up resistors on GPIO pins 1–15.

Instead of using the built-in resistors, you can also add pull-up or pull-

down resistors directly to sensors. If you do this, you can use any GPIO

pin, not just pins with a built-in resistor. Also note that if you do this, you

should always use the mode Digital.Input. In other words, do not enable

a built-in pull-down resistor if you add a pull-down resistor to the sensor

itself, and likewise do not enable a built-in pull-up resistor if you add a

pull-up resistor to the sensor itself.

Chapter 6 hardware

266

 Monitoring for Changes
You can more efficiently detect changes on the value of a digital input by

using the digital Monitor class. Instead of periodic polling, it uses a feature

of the microcontroller to monitor for changes. An instance of Monitor is

configured to trigger on changes from 0 to 1 (that is, rising edge) and/or

changes from 1 to 0 (falling edge). When the hardware detects a trigger

event, the Monitor class invokes a callback function.

Listing 6-5 shows how the button example could use the Monitor class.

Notice that this version is quite a bit smaller.

Listing 6-5.

let monitor = new Monitor({

 pin: 0,

 mode: Digital.Input,

 edge: Monitor.Rising

});

let count = 0;

monitor.onChanged = function() {

 trace(`button pressed: ${++count}\n`);

}

The original button example uses the value and previous variables

to keep track of the button’s state; using the Monitor class simplifies the

code considerably because the class keeps track of the button’s state itself,

notifying the application only when the state has changed.

Like the Digital constructor, the Monitor constructor takes a dictionary

with pin and mode properties. It also includes an edge property specifying

the events that trigger the onChanged callback; edge may be Monitor.Rising,

Monitor.Falling, or Monitor.Rising | Monitor.Falling. An application

must install an onChanged callback on the instance, to be invoked when the

specified edge events occur.

Chapter 6 hardware

267

Using the Monitor class instead of polling has advantages beyond

simplifying your code. Because the class uses the microcontroller’s built-in

hardware to detect changes, there’s no need to run any code to watch for

changes, freeing up CPU cycles for other work. Additionally, the monitor

detects changes immediately, whereas the polling approach checks

for a change only every 100 milliseconds. Of course, you can poll more

frequently, but that requires even more CPU cycles. Further, the polling

approach misses very quick button presses that happen between reads,

whereas the monitor is always active and so doesn’t miss any button

presses.

 Controlling a Tri-color LED
Unlike the basic on/off single-color LED in the earlier blink example, a

tri-color LED (also called an RGB LED) combines three LEDs—red, green,

and blue—into a single package, enabling you to precisely control both

the color and the brightness. Controlling the three colors of a tri-color LED

requires four pins: one to control each of the three LEDs, plus a power pin

shared by all the colors.

The examples in this section assume you’re using a common anode

LED, like the one shown in Figure 6-5, which is available from SparkFun

(product ID COM-10821) and Adafruit (product ID 159).

Figure 6-5. Tri-color LED

Chapter 6 hardware

268

Before you run the examples, follow the instructions to set up your

tri-color LED and the wiring instructions to connect it to your ESP32 or

ESP8266.

 LED Setup
As shown in Figure 6-6, the LED requires that current limiting resistors

be added to all the pins except for the power pin, to prevent them from

drawing too much current. Use 330 Ohm resistors.

Table 6-3. Wiring to connect the LED to ESP32

LED ESP32

pwr 3V3

r GpIO12 (d12)

G GpIO13 (d13)

B GpIO14 (d14)

 ESP32 Wiring Instructions
Table 6-3 and Figure 6-7 show how to connect the LED to the ESP32.

Figure 6-6. Tri-color LED with current limiting resistors

Chapter 6 hardware

269

 ESP8266 Wiring Instructions
Table 6-4 and Figure 6-8 show how to connect the tri-color LED to the

ESP8266.

Table 6-4. Wiring to connect the LED to ESP8266

LED ESP8266

pwr 3V3

r GpIO12 (d6)

G GpIO13 (d7)

B GpIO14 (d5)

Figure 6-7. Wiring diagram for connecting the LED to ESP32

Chapter 6 hardware

270

 Using Digital with a Tri-color LED
The red, green, and blue pins of the tri-color LED are connected to

digital outputs. In the $EXAMPLES/ch6-hardware/tricolor-led-digital

example, they can be controlled individually using the same Digital class

you used in the blink example to control a simple single-color LED. As

shown in Listing 6-6, the difference is that you can display eight different

colors by mixing the three primary colors.

Listing 6-6.

let r = new Digital(12, Digital.Output);

let g = new Digital(13, Digital.Output);

let b = new Digital(14, Digital.Output);

Figure 6-8. Wiring diagram for connecting the LED to ESP8266

Chapter 6 hardware

271

Timer.repeat(() => {

 // black (all off)

 r.write(1);

 g.write(1);

 b.write(1);

 Timer.delay(100);

 // red (red on)

 r.write(0);

 Timer.delay(100);

 // magenta (red and blue on)

 b.write(0);

 Timer.delay(100);

 // white (all on)

 g.write(0);

 Timer.delay(100);

}, 1);

The tri-color LED can display more than just the primary and

secondary colors of black, white, red, green, blue, magenta, cyan, and

yellow. To achieve that, you need more control than simply turning the

red, green, and blue LEDs on and off; you need to be able to set them to

values between on and off—that is, between 0 and 1. A digital output can’t

do that, since its output is always either 0 or 1. In the next section, you’ll

learn how to overcome this limitation.

 Using PWM with a Tri-color LED
To display a greater range of color and brightness, a tri-color LED may

instead be controlled using pulse-width modulation, or PWM, a special type

of digital signal commonly used in motors and LEDs, including tri-color

LEDs. PWM is roughly equivalent to an analog output but is generated using

Chapter 6 hardware

272

a digital signal. More specifically, the digital pin outputs a square wave with

varied widths of high and low values. Taking the average of these high and

low pulses over time creates a power level between the high and low values,

proportional to the pulse widths. The result is that instead of being limited to

0 and 1 as output values, you can output any value in between.

The PWM class provides access to the PWM output pins. The $EXAMPLES/

ch6-hardware/tricolor-led-pwm example uses PWM and a timer to cycle

through different colors.

import PWM from "pins/pwm";

The example needs three instances of the PWM class, one for each wire

on the tri-color LED that controls the brightness of an individual color. The

PWM constructor takes a dictionary specifying the pin number.

let r = new PWM({pin: 12});

let g = new PWM({pin: 13});

let b = new PWM({pin: 14});

The write method sets the current value of the pin. The value you pass

is a number from 0 to 1023, the analog value to synthesize. Lower values

correspond to higher brightness. When the application runs, it makes the

LED turn green. A PWM value of 0 is equivalent to a digital output set to

0, and a PWM value of 1023 is equivalent to a digital output set to 1. The

following code sets the tri-color LED to green by setting the green LED to

full brightness and the red and blue LEDs to off:

r.write(1023);

g.write(0);

b.write(1023);

As shown in Listing 6-7, the code then cycles through colors by adjusting

the value of individual pins. First it changes the color from green to cyan

by decreasing the value of the blue pin. Between calls to write, the delay

method of the Timer class is used to delay execution for 50 milliseconds.

Chapter 6 hardware

273

Listing 6-7.

while (bVal >= 21) {

 bVal -= 20;

 b.write(bVal);

 Timer.delay(50);

}

b.write(1);

After fading from green to cyan, the LED fades from cyan to blue, blue

to magenta, and finally magenta to red (Listing 6-8).

Listing 6-8.

while (gVal <= 1003) {

 gVal += 20;

 g.write(gVal);

 Timer.delay(50);

}

g.write(1023);

while (rVal >= 21) {

 rVal -= 20;

 r.write(rVal);

 Timer.delay(50);

}

r.write(0);

while (bVal <= 1003) {

 bVal += 20;

 b.write(bVal);

 Timer.delay(50);

}

b.write(1023);

Chapter 6 hardware

274

 Rotating a Servo
Servos are motors that control a rotating output. The output may be

precisely turned to a specified position within an arc, typically 180 degrees.

Servos are commonly used in robotics to control movements of robots and

for rotating objects such as the lens of a camera to control focus and zoom.

Figure 6-9 shows a micro servo available from Adafruit (product ID 169).

Micro servos like this one can be powered using an ESP32 or ESP8266.

There are also larger, more powerful servos for moving larger objects;

these servos require more power to operate than the microcontroller can

provide and therefore require an external power supply.

Servos are configured with the Servo class, which uses digital pins to

control servo motors.

The $EXAMPLES/ch6-hardware/servo example rotates a servo from

0 degrees up to 180 degrees, 2.5 degrees at a time. Before you run the

example, follow the wiring instructions given here to connect it to your

ESP32 or ESP8266.

Figure 6-9. Micro servo from Adafruit

Chapter 6 hardware

275

 ESP32 Wiring Instructions
Table 6-5 and Figure 6-10 show how to connect the servo to the ESP32.

Table 6-5. Wiring to connect the servo to ESP32

Servo ESP32

pwr 3V3

GNd GNd

Servo (dOUt) GpIO14 (d14)

Table 6-6. Wiring to connect the servo to ESP8266

Servo ESP8266

pwr 3V3

GNd GNd

Servo (dOUt) GpIO14 (d5)

 ESP8266 Wiring Instructions
Table 6-6 and Figure 6-11 show how to connect the servo to the ESP8266.

Figure 6-10. Wiring diagram for connecting the servo to ESP32

Chapter 6 hardware

276

 Understanding the servo Code
The Servo class uses digital pins to control servo motors:

import Servo from "pins/servo";

The servo example creates an instance of the Servo class and changes

the position at a regular interval by calling the instance’s write method.

As shown in Listing 6-9, the argument to the write method is the angle to

rotate to; note that this may be a fractional number.

Listing 6-9.

let servo = new Servo({pin: 14});

let angle = 0;

Timer.repeat(() => {

 angle += 2.5;

Figure 6-11. Wiring diagram for connecting the servo to ESP8266

Chapter 6 hardware

277

 if (angle > 180)

 angle -= 180;

 servo.write(angle);

}, 250);

It takes time for the servo to rotate to a new position; the amount of

time depends on the servo you’re using. Depending on the servo, using

a shorter interval may not make the servo rotate faster but instead may

result in a confused behavior as the servo does its best to keep up with the

changes, which are coming in faster than it can operate.

The Servo class also has a writeMicroseconds method, which allows

for greater precision by letting you provide the number of microseconds

(instead of degrees) for the signal pulse. The range of acceptable values

varies from servo to servo; setting the pulse length to a value that’s too low

or too high can break the servo, so be sure to check your servo’s datasheet.

 Getting the Temperature
Measuring temperature is such a common task for IoT products that

sensor manufacturers have created many different temperature sensors.

These sensors use a variety of hardware protocols to communicate with

the microcontroller. This section explains two that are easy to use and

widely available:

• The TMP36 (Figure 6-12) uses an analog value to

communicate the temperature. The simpler of the two

sensors, it has only a single output—an analog output

that connects to the analog input of a microcontroller—

and has no configuration options. It’s available from

SparkFun (product ID SEN-10988) and Adafruit

(product ID 165).

Chapter 6 hardware

278

• The TMP102 (Figure 6-13) uses the I2C bus to

communicate the temperature. It connects using the I2C

hardware protocol, which is considerably more complex

to work with than an analog input but enables the sensor

to offer additional functionality and configuration options.

It’s available from SparkFun (product ID SEN-13314).

This section also explains how to use a sensor’s datasheet to

understand the data provided by the sensor and convert it to a human-

readable format.

 TMP36
The $EXAMPLES/ch6-hardware/tmp36 example reads the temperature

from a TMP36 sensor and traces the value in degrees Celsius to the debug

console. Before you run the example, follow the wiring instructions given

here to connect the TMP36 to your ESP32 or ESP8266.

Figure 6-12. TMP36 sensor

Figure 6-13. TMP102 sensor

Chapter 6 hardware

279

 ESP32 Wiring Instructions

Table 6-7 and Figure 6-14 show how to connect the TMP36 to the ESP32.

Table 6-7. Wiring to connect the TMP36 to ESP32

TMP36 ESP32

pwr 3V3

analog adC0 (Vp) on NodeMCU board

adC7 (Gp35) on Moddable two

GNd GNd

Figure 6-14. Wiring diagram for connecting the TMP36 to ESP32

Chapter 6 hardware

280

 ESP8266 Wiring Instructions

Table 6-8 and Figure 6-15 show how to connect the TMP36 to the ESP8266.

Table 6-8. Wiring to connect the TMP36 to ESP8266

TMP36 ESP8266

pwr 3V3

analog adC0 (a0)

GNd GNd

Figure 6-15. Wiring diagram for connecting the TMP36 to ESP8266

Chapter 6 hardware

281

 Understanding the tmp36 Code

The analog pin on the TMP36 outputs a voltage proportional to the

temperature. The Analog class provides access to the analog inputs on

your device:

import Analog from "pins/analog";

Unlike other hardware protocol classes, the Analog class is never

instantiated. It provides only one static method: a read method that

samples the value of the specified pin, returning a value from 0 to 1023.

The tmp36 example calls the read method and converts the returned

voltage to the temperature.

The excellent Adafruit tutorial for the TMP36 (learn.adafruit.com/

tmp36-temperature-sensor/overview) provides the following formula to

convert the voltage to the temperature:

Temp in °C = [(Vout in mV) – 500] / 10

The tmp36 example is based on this formula, as you can see here:

let value = (Analog.read(0) / 1023) * 330 - 50;

trace(`Celsius temperature: ${value}\n`);

Note If you’re running on Moddable two, you’ll need to change the
pin number from 0 to 7 due to the difference in wiring.

The TMP36 is designed to accurately measure temperatures between

–40°C and +125°C. For temperatures outside this range, it returns readings

but with less accuracy. The analog input has 10 bits of resolution, allowing

for readings with an accuracy of about 0.25°C. This accuracy is sufficient

for many purposes, but not all; as described next, the TMP102 temperature

sensor provides greater resolution for temperature measurements.

Chapter 6 hardware

https://learn.adafruit.com/tmp36-temperature-sensor/overview
https://learn.adafruit.com/tmp36-temperature-sensor/overview

282

 TMP102
The $EXAMPLES/ch6-hardware/tmp102 example reads the temperature

from a TMP102 sensor and traces the value in degrees Celsius to the debug

console. Before you run the example, follow the wiring instructions given

here to connect the TMP102 to your ESP32 or ESP8266.

This section refers to the TMP102 schematic and the TMP102

datasheet, both of which can be found on the TMP102 product page on

SparkFun’s website: sparkfun.com/products/13314.

 ESP32 Wiring Instructions

Table 6-9 and Figure 6-16 show how to connect the TMP102 to the ESP32.

Table 6-9. Wiring to connect the TMP102 to ESP32

TMP102 ESP32

GNd GNd

VCC 3V3

Sda GpIO21 (d21)

SCL GpIO22 (d22)

Chapter 6 hardware

https://sparkfun.com/products/13314

283

 ESP8266 Wiring Instructions

Table 6-10 and Figure 6-17 show how to connect the TMP102 to the

ESP8266.

Table 6-10. Wiring to connect the TMP102 to ESP8266

TMP102 ESP8266

GNd GNd

VCC 3V3

Sda GpIO5 (d1)

SCL GpIO4 (d2)

Figure 6-16. Wiring diagram for connecting the TMP102 to ESP32

Chapter 6 hardware

284

 Understanding the tmp102 Code

The tmp102 example retrieves temperature data from the TMP102 and

converts it to degrees Celsius for output to the debug console. This

particular example is worth a careful look because it introduces the I2C

hardware protocol, which is used in a vast number of sensors. I2C is a serial

protocol for connecting multiple devices to a single two-wire bus.

Once you learn the fundamentals of working with I2C in JavaScript,

you can often quickly write the code to communicate with a new sensor

based on a review of the hardware datasheet or a sample implementation,

such as an Arduino sketch. An alternative method, using the SMBus subset

of I2C, is discussed in the next section. Understanding how to use I2C and

SMBus will enable you to explore the many options of a huge array of

available sensors.

Figure 6-17. Wiring diagram for connecting the TMP102 to ESP8266

Chapter 6 hardware

285

Note that this chapter introduces many, but not all, of the capabilities

of the TMP102. The datasheet is the best way to learn about the capabilities

of any sensor. Further reading on the TMP102 shows that it includes

features designed for use in thermostats, for example.

One of the features that make I2C popular is that, because it’s a

bus, it allows several different sensors to be connected to the same two

microcontroller pins. Each sensor has a unique address, enabling them to

be accessed independently. Using a bus for this hardware protocol reduces

the total number of pins needed to connect multiple sensors, which is

valuable because often the number of available pins is limited.

The I2C class provides access to the I2C bus connected to a pair of pins:

import I2C from "pins/i2c";

The tmp102 example creates an instance of the I2C class. The

dictionary passed to the constructor contains the I2C address of the target

device. You can include pin numbers in the dictionary by specifying sda

and scl properties; this example uses the default pins for the target device

and therefore does not specify pin numbers in the dictionary. The default

pin numbers for the ESP32 or ESP8266 match the wiring in the preceding

diagrams. The address of the board, 0x48, is specified in the TMP102

schematic.

let sensor = new I2C({address: 0x48});

This instance of the I2C class can now access the sensor on the I2C

bus at address 0x48. The TMP102 maintains four 16-bit registers, which

are accessed over I2C using reads and writes. The registers are shown in

Table 6-11. (See also Tables 1 and 2 of the TMP102 datasheet.)

Chapter 6 hardware

286

To read or write to a register, you first write the target register number

to the device. Once that’s complete, you read or write the register value.

The example reads the temperature (register 0), so it first writes the value 0

to the sensor and then reads two bytes.

const TEMPERATURE_REG = 0;

sensor.write(TEMPERATURE_REG);

let value = sensor.read(2);

The read method returns the bytes in a Uint8Array instance named

value. It can read up to 40 bytes from the target device, although most I2C

reads are just a few bytes.

Of the two bytes read, the first is the most significant byte. The second

byte, the least significant, has the low 4 bits set to 0, giving a resolution of

12 bits. The following line of the code combines the two bytes in the value

array into a 12-bit integer value:

value = (value[0] << 4) | (value[1] >> 4);

This value is in the format described in Table 5 of the TMP102

datasheet. Negative values are represented in two’s complement format. If

the first bit of value is 1, the temperature is below 0°C, requiring additional

calculations (Listing 6-10) to generate the correct negative value.

Table 6-11. TMP102 registers

Register # Register Name Purpose

0 temperature read the most recent temperature

1 Configuration read or set options for temperature conversion

rate, power management, and so on

2 tLOw read or set the low temperature when using the

built-in comparator

3 thIGh read or set the high temperature when using the

built-in comparator

Chapter 6 hardware

287

Listing 6-10.

if (value & 0x800) {

 value -= 1;

 value = ~value & 0xFFF;

 value = -value;

}

The final step is to convert the value to degrees Celsius and trace it to

the debug console. Because there are 12 bits of total resolution and 4 of

those bits are used for the fractional part of the value, the TMP102 provides

temperature values accurate to within 0.0625°C. The accurate range of

temperature readings is from –55°C to +128°C.

value /= 16;

trace(`Celsius temperature: ${value}\n`);

 Using SMBus

The System Management Bus, or SMBus, protocol is built on top of I2C.

It uses a subset of the methods defined by I2C to formalize a convention

used by many register-based I2C devices, including the TMP102. As

mentioned previously, the TMP102 uses four registers to read and write

values between the sensor and the microcontroller. To read from or write

to a register, you first send the register number, then send the read or write

command.

You can use I2C to communicate with SMBus devices as you did earlier,

but since SMBus devices are quite common the Moddable SDK includes

an SMBus class for convenience:

import SMBus from "pins/smbus";

The SMBus class is a subclass of the I2C class, and its constructor

accepts the same dictionary arguments. SMBus adds additional calls to

I2C to read and write registers directly. In the tmp102 example, using I2C

Chapter 6 hardware

288

directly to read a register requires two calls: a write to set the register to

read and then the actual read. SMBus combines these two calls into a single

readWord call.

let sensor = new SMBus({address: 0x48});

let value = sensor.readWord(TEMPERATURE_REG, true) >> 4;

The readWord method takes two arguments: first the register to read

and then true if the two bytes are in big-endian order or false if little-

endian (the default). Because the first byte returned here is the most

significant byte, the value is big-endian, so the second argument is true.

Since the two bytes have already been combined into an integer, all that

remains is to shift right by 4 bits to generate the 12-bit value.

The SMBus class provides readByte to read a single byte and readBlock

to read a specified number of bytes. It also provides the corresponding

write methods writeByte, writeWord, and writeBlock.

 Configuring the TMP102

The TMP102 is able to support a variety of configuration options because it

communicates over I2C, a flexible and extensible hardware protocol. This

section discusses four such options.

Note that to simplify the code, the examples in this section use the

SMBus subclass of I2C instead of I2C directly.

Reading Higher Temperatures with Extended Mode

The TMP102 can measure temperatures up to 150°C, but to do so

requires increasing the resolution from the default of 12 bits to 13 bits,

which is done by enabling extended mode. This mode, like most of the

options of the TMP102, is controlled by the 16-bit configuration register,

which is register 1. To enable extended mode, you set the EM bit in the

configuration register to 1.

Chapter 6 hardware

289

Because the configuration register controls many options, to avoid

unintentionally changing an option the code (Listing 6-11) first reads the

current value of the configuration register, then sets the EM bit, and finally

writes the value back.

Listing 6-11.

const CONFIGURATION_REG = 1;

const EM_MASK = 0b0000_0000_0001_0000;

let configuration = sensor.readWord(CONFIGURATION_REG, true);

sensor.writeWord(CONFIGURATION_REG, configuration | EM_MASK,

 true);

In your own IoT product, you may already know the value of the

configuration register, without needing to read it. In that case, you can set

it directly, without the initial read.

With extended mode enabled, the temperature register returns 13-bit

values instead of 12-bit values, which requires a small adjustment in the

calculations of the Celsius degrees. In the SMBus version, the right shift

value changes from 4 to 3 and the calculations for negative numbers

change. Listing 6-12 shows the modified code.

Listing 6-12.

let sensor = new SMBus({address: 0x48});

let configuration = sensor.readWord(CONFIGURATION_REG, true);

sensor.writeWord(CONFIGURATION_REG, configuration | EM_MASK,

 true);

let value = sensor.readWord(TEMPERATURE_REG, true) >> 3;

if (value & 0x1000) {

 value -= 1;

Chapter 6 hardware

290

 value = ~value & 0x1FFF;

 value = -value;

}

value /= 16;

trace(`Celsius temperature: ${value}\n`);

Setting the Conversion Rate

The conversion rate is the number of times a second the TMP102

completes a temperature measurement and updates the value in the

temperature register. The TMP102 takes about 26 milliseconds to complete

a temperature measurement. By default, the conversion rate is four times

per second. During the 224 milliseconds between when a reading has

been taken and the next reading is begun, the TMP102 enters a low power

mode, reducing energy consumption by about 94%, from 40 μA to 2.2 μA.

Knowing the conversion rate is important to your application. If you

read the temperature from the sensor more frequently than it’s updated,

you receive the same value, using limited CPU cycles unnecessarily. On

the other hand, if the sensor is performing temperature readings more

frequently than your application requires, it’s using more energy than

needed, as it generates readings that go unused.

The conversion rate is controlled by 2 bits in the configuration

register, so it has four possible values, as shown here (and in Table 8 of the

datasheet):

• 00 – once every 4 seconds (0.25 Hz)

• 01 – once per second (1 Hz)

• 10 – four times per second (4 Hz, the default)

• 11 – eight times per second (8 Hz)

The code in Listing 6-13 sets the conversion rate to eight times per

second.

Chapter 6 hardware

291

Listing 6-13.

const CONVERSION_RATE_SHIFT = 6;

const CONVERSION_RATE_MASK = 0b0000_0000_1100_0000;

let configuration = sensor.readWord(CONFIGURATION_REG, true);

configuration &= ~CONVERSION_RATE_MASK;

sensor.writeWord(CONFIGURATION_REG,

 configuration | (0b11 << CONVERSION_RATE_SHIFT), true);

Saving Energy with Shutdown Mode

Reducing the frequency of temperature conversions saves energy.

However, the lowest frequency is still one conversion every 4 seconds,

which may be more often than your IoT product requires. The TMP102

provides shutdown mode, which completely disables the temperature

conversion hardware, reducing energy consumption to 0.5 μA. Your

application can enter shutdown mode in the interval between readings

and then reenable the conversion.

The code in Listing 6-14 enters shutdown mode by setting the

shutdown mode bit in the configuration register.

Listing 6-14.

const SHUTDOWN_MODE_MASK = 0b0000_0001_0000_0000;

let configuration = sensor.readWord(CONFIGURATION_REG, true);

sensor.writeWord(CONFIGURATION_REG,

 configuration | SHUTDOWN_MODE_MASK, true);

Exiting shutdown mode is similar to entering but clears the shutdown

mode bit instead of setting it:

let configuration = sensor.readWord(CONFIGURATION_REG, true);

sensor.writeWord(CONFIGURATION_REG,

 configuration & ~SHUTDOWN_MODE_MASK, true);

Chapter 6 hardware

292

One important detail to keep in mind when exiting shutdown mode

is that because conversions take about 26 milliseconds, reading the

temperature register immediately after exiting shutdown mode returns

a stale value. To wait for a fresh temperature reading to be completed

without blocking execution, use a timer, as shown in Listing 6-15.

Listing 6-15.

Timer.set(() => {

 let value = sensor.readWord(TEMPERATURE_REG);

 // Perform conversion to Celsius as before

 ...

}, 27);

Taking One-Shot Temperature Readings

Up to this point, you’ve configured the TMP102 sensor to continuously

take temperature readings at a regular interval. The TMP102 also supports

one-shot mode, for taking just one reading (see Listing 6-16). The one-shot

feature is available only when the device is in shutdown mode, and once

the reading is complete the TMP102 returns to the shutdown state. This

makes it the most energy-efficient way to take infrequent readings—for

example, if your product takes readings once an hour or only in response

to a button press by the user.

Listing 6-16.

const ONESHOT_MODE_MASK = 0b1000_0000_0000_0000;

let configuration = sensor.readWord(CONFIGURATION_REG, true);

sensor.writeWord(CONFIGURATION_REG,

 configuration | ONESHOT_MODE_MASK, true);

Chapter 6 hardware

293

After enabling one-shot mode, you need to wait for a reading to be

ready—about 26 milliseconds. Rather than wait a fixed interval, however,

you can use a special feature of one-shot mode that lets you know when

a reading is ready. This is important because the actual time needed to

take a reading varies depending on the current temperature. After you

set the one-shot bit to 1 in the configuration register, you poll that same

bit to know when a new reading is ready; the TMP102 returns 0 while the

temperature reading is taking place and 1 when the reading is available.

Listing 6-17 shows the code that waits for the reading to be ready.

Listing 6-17.

while (true) {

 let configuration = sensor.readWord(CONFIGURATION_REG, true);

 if (configuration & ONESHOT_MODE_MASK)

 break;

}

// new temperature reading now available

The preceding code blocks execution while waiting for the temperature

reading. This is acceptable for some products but not for others. To

perform non-blocking polling, use a timer (Listing 6-18).

Listing 6-18.

Timer.repeat(id => {

 let configuration = sensor.readWord(CONFIGURATION_REG, true);

 if (!(configuration & ONESHOT_MODE_MASK))

 return;

 Timer.clear(id);

 // new temperature reading now available

}, 1);

Chapter 6 hardware

294

One-shot mode has another interesting use. Since reading a temperature

takes about 26 milliseconds, in theory about 38 readings may be taken per

second. However, recall that the maximum conversion rate supported by the

configuration register is eight times per second. Using continuous, back-to-

back one-shot readings enables temperature readings to be taken as quickly

as the hardware supports, which is valuable for situations where you want to

precisely capture how the temperature changes over time.

 Conclusion
Now that you understand the basics of some hardware protocols and know

how to interact with some sensors and actuators, there’s a lot you can do

to make the simple examples provided more interesting. For example, you

could make actuators respond to the input from sensors, or take what you

learned in Chapter 3 about communicating with cloud services and use

it to stream data from your sensors to the cloud. In Chapters 8, 9, and 10,

you’ll learn how to work with a touch screen, which is great for displaying

sensor data and building user interfaces that work with hardware.

Countless other sensors and actuators are available online and in

electronics stores. This chapter used some from SparkFun and Adafruit,

both of which are excellent resources for beginners to electronics. In

addition to offering many sensors and actuators and their datasheets, they

also provide tutorials for many of their products, which are helpful starting

points for writing your own JavaScript modules to interact with them.

Chapter 6 hardware

295© Peter Hoddie and Lizzie Prader 2020
P. Hoddie and L. Prader, IoT Development for ESP32 and ESP8266 with JavaScript,
https://doi.org/10.1007/978-1-4842-5070-9_7

CHAPTER 7

Audio
Sound is a great way to communicate information to the user of a device.

You can use sound to provide feedback for user actions like tapping a

button, to alert the user when a background task such as a timer or a

download has finished, and much more.

Both the ESP32 and the ESP8266 support audio playback. Some

development boards, including the M5Stack FIRE, come with a speaker

built in. If your board doesn’t include a speaker, you can attach one

yourself. In this chapter, you’ll learn how to play sounds using an

inexpensive speaker that’s easy to attach directly to an ESP32 or ESP8266.

You’ll also learn how you can achieve higher-quality audio playback using

an external I2S audio driver, and how to choose the optimal audio format,

balancing quality and storage space, for your project.

 Speaker Options
If you’re not using a development board with a built-in speaker, you’ll need

to wire a speaker to your device before running the examples.

Figure 7-1 shows a mini metal speaker available from Adafruit (product

ID 1890) that works with the ESP32 and ESP8266. It’s a simple analog speaker

with 8 Ohm impedance that uses 0.5W of power. You can find many others like

it with different impedance and power use. An 8 Ohm, 0.5W speaker is a great

place to start because it can be used with the same power source as the ESP32

and ESP8266, whereas a larger speaker requires an external power supply.

https://doi.org/10.1007/978-1-4842-5070-9_7#ESM

296

The mini metal speaker can be wired directly to your device, and it’s an

easy way to get started quickly. However, you can get better sound quality

by adding an I2S chip. Figure 7-2 shows an I2S chip available from Adafruit

(product ID 3006). This chip also amplifies the sound.

An I2S chip does not play sound itself; you still have to attach a speaker

to it. The mini metal speaker does work with an I2S chip; however, the

quality will be compromised by the inexpensive speaker. For higher-

quality audio, use a higher-quality speaker such as the mono enclosed

speaker available from Adafruit (product ID 3351) shown in Figure 7-3.

Figure 7-1. Mini metal speaker from Adafruit

Figure 7-2. I2S chip from Adafruit

Chapter 7 audio

297

An I2S chip adds additional cost, but it may be necessary if your

product needs high-quality sound. In addition, using an I2S chip has lower

CPU overhead on the ESP8266, which may also make it worth the cost. You

can decide which option works best for you.

If you simply want to try out the audio playback capabilities of the

Moddable SDK, the fastest way to start is with the analog speaker. If you

later decide you want higher-quality audio, you can always switch to using

the I2S chip and mono enclosed speaker. The JavaScript APIs to play audio

are identical regardless of which setup you choose, so you will not have to

change your application code. You do, however, have to configure audio

settings differently for each option. The hosts for this chapter take care of

the audio configuration in their manifest.json files. They assume you’re

using the speaker shown in Figure 7-1 or the I2S chip and speaker shown in

Figures 7-2 and 7-3.

 Adding the Analog Speaker
This section explains how to connect the analog speaker to your ESP32 or

ESP8266.

Figure 7-3. Mono enclosed speaker from Adafruit

Chapter 7 audio

298

 ESP32 Wiring Instructions
Table 7-1 and Figure 7-4 show how to connect the speaker to the ESP32.

It doesn’t matter which wire of the speaker goes to GPIO25 and which

wire goes to GND on the ESP32.

Figure 7-4. Wiring diagram for connecting the speaker to ESP32

Table 7-1. Wiring to connect the speaker to ESP32

Speaker ESP32

Wire 1 Gpio25 (d25)

Wire 2 GNd

Chapter 7 audio

299

 ESP8266 Wiring Instructions
Table 7-2 and Figure 7-5 show how to connect the speaker to the ESP8266.

Table 7-2. Wiring to connect the speaker to ESP8266

Speaker ESP8266

Wire 1 Gpio3 (rX)

Wire 2 GNd

Figure 7-5. Wiring diagram for connecting the speaker to ESP8266

Chapter 7 audio

300

Note that GPIO3 on the ESP8266 is used for serial communication

with your computer, for both installing and debugging. This means that

you cannot use xsbug to debug audio examples and that installing audio

examples requires a few extra steps:

 1. Disconnect the speaker from GPIO3.

 2. Install an example as usual.

 3. Reconnect the speaker to GPIO3.

 4. Reset the ESP8266 to run the example.

If you’re using Moddable One, GPIO3 is on the small connector where

you attach the programming adaptor. After installing an audio example,

disconnect the programming adaptor, connect the speaker, and use a USB

cable to power Moddable One.

It doesn’t matter which wire of the speaker goes to GPIO3 and which

wire goes to GND on the ESP8266.

 Adding an I2S Chip and Digital Speaker
This section explains how to attach the I2S chip to your ESP32 or ESP8266

and the digital speaker to the I2S chip.

 ESP32 Wiring Instructions
Table 7-3 shows how to connect the I2S chip to the ESP32.

Chapter 7 audio

301

Table 7-4 shows how to connect the speaker to the I2S chip.

Figure 7-6 shows a wiring diagram of the full setup.

Table 7-3. Wiring to connect the I2S chip to ESP32

I2S Chip ESP32

LrC Gpio12 (d12)

BCLK Gpio13 (d13)

diN Gpio14 (d14)

GNd GNd

Vin 3V3

Table 7-4. Wiring to connect the speaker to the I2S chip

Speaker I2S Chip

Black wire –

red wire +

Chapter 7 audio

302

 ESP8266 Wiring Instructions
Table 7-5 shows how to connect the I2S chip to the ESP8266. Note that

GPIO2 and GPIO15 are not available on Moddable One, so you cannot use

I2S on Moddable One.

Table 7-6 shows how to connect the speaker to the I2S chip.

Figure 7-6. Wiring diagram for speaker, I2S chip, and ESP32

Table 7-5. Wiring to connect the I2S chip to ESP8266

I2S Chip ESP8266

LrC Gpio2 (d4)

BCLK Gpio15 (d8)

diN Gpio3 (rX)

GNd GNd

Vin 3V3

Chapter 7 audio

303

Figure 7-7 shows a wiring diagram of the full setup.

 Installing the Audio Host
The examples in this chapter are installed using the pattern described in

Chapter 1: you install the host on your device using mcconfig, then install

example applications using mcrun.

There are two host apps available in the $EXAMPLES/ch7-audio/host-

pdm and $EXAMPLES/ch7-audio/host-i2s directories. The difference

between the two is how they configure audio settings. Use host-i2s if

you’re using the I2S chip and speaker combination and host-pdm if you’re

using just the speaker. Navigate to the directory from the command line

and install it with mcconfig.

Figure 7-7. Wiring diagram for speaker, I2S chip, and ESP8266

Table 7-6. Wiring to connect the speaker to the I2S chip

Speaker I2S Chip

Black wire –

red wire +

Chapter 7 audio

304

 The AudioOut Class
Sound is delivered to speakers using the AudioOut class:

import AudioOut from "pins/audioout";

The AudioOut class supports playback of uncompressed mono or

stereo audio at 8 or 16 bits per sample and playback of mono audio

compressed using the IMA ADPCM algorithm. The built-in mixer can

combine up to four channels of audio for simultaneous playback. It can

generate callbacks at specified points during audio playback—for example,

to synchronize onscreen drawing with audio playback. AudioOut generates

output in either 8-bit or 16-bit audio and sends it to a pseudo-analog

output or a digital I2S digital-to-analog convertor.

With so many features, working with audio requires understanding the

tradeoffs of the options available to help you make a decision about the

best way to play audio in your product.

 AudioOut Configuration
This section describes the audio hardware protocols, data formats, and

other configuration options for the AudioOut class. For the examples in this

chapter, the settings are configured in the manifest of the host.

 Audio Hardware Protocols
The AudioOut class supports two different hardware protocols, PDM

and I2S, as described in this section.

Chapter 7 audio

305

 Pulse-Density Modulation (PDM)

Pulse-density modulation, or PDM, is a variation of PWM that rapidly

toggles a digital output pin to create energy levels that correspond to the

desired output signal. This way of playing audio is sometimes called an

analog audio output because the PDM conversion synthesizes a signal

that, when averaged over time, matches the energy levels output by an

analog signal.

The advantage of PDM is that it works with only the built-in digital

output hardware of your microcontroller. One disadvantage of PDM is that

the audio is of lower quality; for this reason, PDM audio is primarily useful

for sound effects in a user interface or game, not for music or spoken word.

The ESP32 has built-in hardware to convert audio data to PDM, so

there’s no CPU overhead when using this protocol. The ESP8266, however,

has no PDM conversion hardware; the conversion occurs in software,

thereby using some CPU cycles.

The defines section of the manifest configures the PDM output. For

the ESP32, it looks like Listing 7-1.

Listing 7-1.

"defines": {

 "audioOut": {

 "i2s": {

 "DAC": 1

 }

 }

}

When set to 1, the DAC property tells the AudioOut implementation to

use PDM output. No output pin is specified because only digital pin 25 on

the ESP32 supports PDM output.

For the ESP8266, the manifest section is a bit different (Listing 7-2).

Chapter 7 audio

306

Listing 7-2.

"defines": {

 "audioOut": {

 "i2s": {

 "pdm": 32

 }

 }

}

The pdm property with a nonzero value indicates to use PDM

output. The value must be 32, 64, or 128. The value 32 specifies that no

oversampling should be performed in the conversion; this requires less

time and memory but results in lower-quality output. The greater values

provide better quality.

 I2S

The other hardware protocol supported by the AudioOut class is I2S, a

protocol designed to connect digital audio devices. I2S transmits unmodified

audio samples over a digital connection from the microcontroller to a

dedicated audio output component that performs the digital-to-analog

conversion using specialized algorithms and hardware to generate a high-

quality result. Both the ESP32 and the ESP8266 have built- in hardware

support for transmitting audio data using I2S, so there’s very little CPU

overhead on the microcontroller for playing audio.

Using I2S requires an external component, which is an additional

cost, and uses at least two, and often three, digital pins, whereas PDM

output uses just a single digital pin. On the other hand, I2S audio hardware

generates a very high-quality audio output, so the limiting factor for

quality becomes the speaker used for output, not the way digital samples

are converted to an analog signal.

Chapter 7 audio

307

I2S parts vary widely. Some have no configuration options, while

others include an I2C connection to configure the part and do not operate

correctly until they’ve been configured. This section assumes you’re

using an I2S part that either requires no configuration or has already been

configured.

The defines section of the manifest configures the I2S output. For an

ESP32, this looks like Listing 7-3.

Listing 7-3.

"defines": {

 "audioOut": {

 "i2s": {

 "bck_pin": 13,

 "lr_pin": 12,

 "dataout_pin": 14,

 "bitsPerSample": 16

 }

 }

}

The bck_pin, lr_pin, and dataout_pin properties correspond to

the three pins of the I2S hardware protocol. The default values are 26,

25, and 22, respectively. The bitsPerSample property indicates the size

of the sample in bits to transmit over the I2S connection. For many I2S

components, this is 16, the default value, but for others 32 bits is required.

For the ESP8266, the manifest section is much simpler, as shown in

Listing 7-4, because the I2S pins are defined in the hardware and cannot be

changed. Setting the pdm property to 0 disables PDM output and uses the

I2S hardware protocol instead. The I2S pins are 15 (bck_pin), 2 (lr_pin),

and 3 (dataout_pin).

Chapter 7 audio

308

Listing 7-4.

"defines": {

 "audioOut": {

 "i2s": {

 "pdm": 0

 }

 }

}

The ESP8266 implementation supports 16-bit sample output only, so

there’s no bitsPerSample property.

 Audio Data Formats
The audio data your application plays must be stored in a format

compatible with the AudioOut class and the audio output hardware

connected to the microcontroller. For maximum efficiency and simplicity,

AudioOut uses a custom data format to store digital audio; this format is

called MAUD, short for Moddable Audio. It consists of a simple header

followed by the audio samples. The tools you use to build your application

know how to convert standard WAVE audio files (files with a .wav file

extension) containing uncompressed audio into MAUD resources,

eliminating the need for you to create MAUD files yourself. The conversion

tool is called wav2maud and is automatically invoked by mcconfig and

mcrun. If your audio is stored in another format—for example, MP3—you

must first convert it to a WAVE file; the free Audacity application is a good

tool for this task.

For simplicity, the AudioOut class requires that all audio samples

played have the same bits per sample, number of channels, and sample

rate as the audio output. This eliminates the need to perform format

conversion in software on the microcontroller. These AudioOut properties

are configured in the manifest as shown in Listing 7-5.

Chapter 7 audio

309

Listing 7-5.

"defines": {

 "audioOut": {

 "bitsPerSample": 16,

 "numChannels": 1,

 "sampleRate": 11025

 }

}

The bitsPerSample property may be either 8 or 16, although 16 is

more common. Similarly, the numChannels property may be 1 (mono)

or 2 (stereo); however, it’s rare to play stereo sounds for user interface

interactions on a microcontroller, so the value is usually 1.

To include audio data in your application, you add them as resources

to the manifest, as shown in Listing 7-6.

Listing 7-6.

"resources": {

 "*": [

 "./bflatmajor"

]

},

When mcconfig and mcrun process the manifest, they invoke wav2maud

to convert the file bflatmajor.wav to a resource in the MAUD format.

The audio is converted so that the bits per sample, number of channels,

and sample rate of the audio in the MAUD resource match those defined in

the audioOut section of the manifest. Based on the preceding example, the

audio samples are 16-bit mono at 11,025 Hz sample rate.

Chapter 7 audio

310

 Audio Compression
Audio data can take up a great deal of storage space. Ten seconds of 16-bit

mono audio at 8 KHz uses 160,000 bytes of storage, or about 15% of the

1 MB flash address space of an ESP8266, and is still only about the quality

of an analog telephone call. Audio compression is commonly used to

reduce the size of audio stored on digital devices and transmitted over the

internet. The algorithms used there, including MP3, AAC, and Ogg, just

barely run on most microcontrollers, so they aren’t practical here. A simpler

audio compression format, IMA ADPCM (adaptive differential pulse-code

modulation), provides 4:1 compression of 16-bit audio samples and is

significantly less complex than MP3, AAC, or Ogg, making it suitable for

real-time use on the ESP32 and ESP8266.

To use IMA ADPCM, add the format property to the audioOut section

of your manifest.json file:

"audioOut": {

 ... // other audioOut configuration

 "format": "ima"

}

Your audio is automatically compressed during the build. The 10

seconds of 16-bit mono 8 KHz audio mentioned previously shrinks from

160,000 to 40,000 bytes. There’s some reduction in quality, but for many

purposes—for example, user interface sound effects—the difference may

be unnoticeable.

 Setting the Audio Queue Length
The length of the audio queue is fixed at build time, to improve the

runtime efficiency of audio playback by eliminating the need for memory

allocations when the queue is modified. The default queue length is eight

entries, which is enough for most purposes, including all the examples in

Chapter 7 audio

311

this chapter. If you need more queue entries, you can change the queue

length by defining the queueLength property in the audioOut section of the

manifest.

"audioOut": {

 ... // other audioOut configuration

 "queueLength": 20

}

Each queue entry uses some memory (24 bytes as of this writing), so

you should not allocate more than you need. If your project makes simple

use of audio, you can reduce the default to recover that memory.

 Playing Audio with AudioOut
The AudioOut class provides a variety of different audio playback

capabilities to help you incorporate audio feedback into your project’s user

experience. The playback engine is able to seamlessly play back sequences

of samples. It provides a callback mechanism to synchronize audio with

other parts of the user experience. It even supports real-time mixing

together of multiple channels of audio, a capability that’s quite unusual

on microcontrollers. This section introduces these capabilities and many

others.

 Instantiating AudioOut
The AudioOut constructor accepts a dictionary to configure the audio

output. The $EXAMPLES/ch7-audio/sound example configures the

AudioOut instance as follows:

let speaker = new AudioOut({streams: 1});

Chapter 7 audio

312

The number of streams indicates the number of sounds that may be

played simultaneously, up to a maximum of four. Since each stream uses

some additional memory, it’s best to configure the AudioOut instance for

only as many as needed. The basic sound example plays a single sound, so

it needs only one stream.

The sample rate, number of bits per sample, and number of channels

are defined in the manifest, so they’re not passed as properties in the

dictionary to configure the AudioOut instance. The audio resources are

stored in that same format, because mcconfig, mcrun, and wav2maud

perform any needed format conversion.

 Playing a Single Sound
To play a sound, you first use the enqueue method to enqueue an audio

sample on a stream of the AudioOut instance. The $EXAMPLES/ch7-audio/

sound example enqueues the audio resource bflatmajor.maud on stream 0

as follows:

speaker.enqueue(0, AudioOut.Samples,

 new Resource("bflatmajor.maud"));

To begin playing the enqueued audio samples, call the start method:

speaker.start();

To stop all audio playback on the AudioOut instance, call the stop

method:

speaker.stop();

Chapter 7 audio

313

 Repeating a Sound
If you want to play a sound more than once, you can pass in an optional

repeat parameter to the enqueue method. Here’s how to play a sound four

times:

speaker.enqueue(0, AudioOut.Samples,

 new Resource("bflatmajor.maud"), 4);

To repeat the sound indefinitely, pass Infinity for the repeat value:

speaker.enqueue(0, AudioOut.Samples,

 new Resource("bflatmajor.maud"), Infinity);

 Using Callbacks to Synchronize Audio
The enqueue method can be used to enqueue more than just sounds; you

can, for example, enqueue callbacks to be invoked at a particular point in a

stream’s playback. Enqueuing callbacks is useful for triggering other events

in response to the completion of a sound, as in onscreen animations. In

Listing 7-7, the callback simply traces to the debug console and blinks the

on-board LED once when the sound finishes playing.

Listing 7-7.

speaker.enqueue(0, AudioOut.Samples,

 new Resource("bflatmajor.maud"));

speaker.callback = function() {

 trace("Sound finished\n");

 Digital.write(2, 1);

 Timer.delay(500);

 Digital.write(2, 0);

};

speaker.enqueue(0, AudioOut.Callback, 0);

Chapter 7 audio

314

 Using Commands to Change Volume
You can also enqueue a command to adjust the volume of individual sounds.

The command changes the volume of samples enqueued after it; it does not

change the volume of samples already enqueued. The code in Listing 7-8

plays the sound three times in a row: once at the lowest volume (1), once at

medium volume (128), and once at full volume (256).

Listing 7-8.

let bFlatMajor = new Resource("bflatmajor.maud");

speaker.enqueue(0, AudioOut.Volume, 1);

speaker.enqueue(0, AudioOut.Samples, bFlatMajor);

speaker.enqueue(0, AudioOut.Volume, 128);

speaker.enqueue(0, AudioOut.Samples, bFlatMajor);

speaker.enqueue(0, AudioOut.Volume, 256);

speaker.enqueue(0, AudioOut.Samples, bFlatMajor);

 Playing a Sequence of Sounds
The $EXAMPLES/ch7-audio/sound-sequence example plays a sequence

of sounds. Because it plays only a single sound at a time, it needs only

one stream and so is configured with the same settings as the AudioOut

instance in the basic sound example.

let speaker = new AudioOut({streams: 1});

Each sound is then enqueued using the AudioOut instance’s enqueue

method. As shown in Listing 7-9, all sounds in the sound-sequence

example are enqueued on the same stream, causing them to play

sequentially in the order in which they’re enqueued.

Chapter 7 audio

315

Listing 7-9.

speaker.callback = function() {

 speaker.enqueue(0, AudioOut.Samples,

 new Resource("ding.maud"));

 speaker.enqueue(0, AudioOut.Samples,

 new Resource("tick-tock.maud"));

 speaker.enqueue(0, AudioOut.Samples,

 new Resource("tada.maud"));

 speaker.enqueue(0, AudioOut.Callback, 0);

}

speaker.callback();

speaker.start();

A callback is enqueued after the samples; once all the samples have

played, the callback is invoked and enqueues the samples again, causing

the sequence to play repeatedly.

 Playing Sounds Simultaneously
The $EXAMPLES/ch7-audio/sound-simultaneous example plays two

sounds at the same time, so the AudioOut instance needs two streams.

let speaker = new AudioOut({streams: 2});

The AudioOut instance’s enqueue method is called once to enqueue a

ticking sound on stream 0. This sound repeats indefinitely.

speaker.enqueue(0, AudioOut.Samples,

 new Resource("tick.maud"), Infinity);

speaker.start();

Chapter 7 audio

316

Then the example sets a repeating timer whose callback enqueues a

dinging sound on stream 1. Because the sound is enqueued on a different

stream than the ticking sound, both sounds play at the same time.

Timer.repeat(() => {

 speaker.enqueue(1, AudioOut.Samples,

 new Resource("ding.maud"));

}, 5000);

 Playing Part of a Sound
The $EXAMPLES/ch7-audio/sound-clip example demonstrates how to

play parts of a sound. The AudioOut instance is configured with the same

settings as in the basic sound example.

let speaker = new AudioOut({streams: 1});

The tick-tock audio file is a recording of a clock. The full sound is

played first.

let tickTock = new Resource("tick-tock.maud");

speaker.enqueue(0, AudioOut.Samples, tickTock);

Then the first half-second is played twice. To play portions of sounds,

you specify the optional repeat, offset, and count arguments of the

enqueue method. In the following line, repeat is 2, so the sound plays

twice; offset is 0, so it starts at the beginning of the sound; and count is

11,025/2, so half a second plays:

speaker.enqueue(0, AudioOut.Samples, tickTock, 2, 0, 11025 / 2);

Chapter 7 audio

317

 Flushing the Audio Queue
In some situations, you want to stop playing audio on one channel while

continuing playback on others. The way to do this is to flush the audio

queue of the stream you want to stop.

speaker.enqueue(0, AudioOut.Flush);

One situation where this is useful is when you have one channel

playing a background sound effect on infinite repeat using channel 0

while using channel 1 for interactive audio sound effects. You can stop the

background sound effects by flushing channel 0, which allows channel 1 to

continue playing without interruption. This is in contrast to calling stop on

the AudioOut instance, which immediately ends playback on all channels.

 Conclusion
Now that you understand how to configure audio settings and use the

many features of the AudioOut class to play audio, you’re ready to get

started adding sounds to your projects. The information in this chapter is

most useful when combined with information from other chapters:

• In Chapter 5, you learned how to interface with sensors

and actuators. Now you can trigger sound effects in

response to sensor readings or to indicate when an

actuator is performing an action.

• In the next few chapters, you’ll learn how to work with a

touch screen. You can provide audio feedback for user

actions onscreen or add alert sounds to draw the user’s

attention back to the display. Pairing audio feedback

and visual feedback delivers a more complete user

experience.

Chapter 7 audio

319© Peter Hoddie and Lizzie Prader 2020
P. Hoddie and L. Prader, IoT Development for ESP32 and ESP8266 with JavaScript,
https://doi.org/10.1007/978-1-4842-5070-9_8

CHAPTER 8

Graphics
Fundamentals
This chapter and the two that follow show you how straightforward it is

to create modern user interfaces using only a low-cost microcontroller

and a small, inexpensive touch screen. This chapter first addresses

how adding a display to your IoT product can deliver a better user

experience and be much more cost-effective and practical now than in

the past. The sections after that cover the fundamentals of graphics on

microcontrollers, including important background on optimizations and

constraints, information about how to add graphics assets to projects, and

an introduction to various drawing methods. More detailed information

is provided in the next two chapters, which describe the following in the

Moddable SDK:

• Poco, a rendering engine for embedded systems that

you can use to draw to displays

• Piu, an object-oriented user interface framework that

uses Poco for drawing and simplifies the process of

creating complex user interactions

With this knowledge, you’ll be ready to begin building IoT products

with built-in displays—and to explain to your friends and colleagues that

this goal is in reach for your products.

https://doi.org/10.1007/978-1-4842-5070-9_8#ESM

320

 Why Add a Display?
Displays with beautifully rendered user interfaces are taken for granted

today on computers and mobile phones; however, they remain rare on IoT

products. You’re probably familiar with how difficult it is to set up and use

IoT products that have extremely limited user interfaces, such as devices

with just one button and a few blinking lights. It seems obvious that adding

a display to many of these products would deliver a better user experience

and make the product more valuable to the customer. Here are just some

of the benefits to consider:

• Far more information is conveyed by a display than by

a few pulsing status lights or alert sounds. A display

shows the user what the product is doing in detail, and

if there’s a problem it tells the user what went wrong.

• A display makes it possible to include complete

configuration options for all the capabilities of the

product. This level of precision for configuration is

generally not possible with a few buttons and knobs.

• A display enables the user to perform sophisticated

interactions directly, with no other device required.

Compare this to the user’s downloading and installing

a mobile app to interact with the product and pairing

the app to the product before being able to begin

configuring it.

• The graphical richness of a display lets you combine

images with animations to bring style and character to

the product, making it more enjoyable for the user and

reinforcing the brand image of the manufacturer.

Chapter 8 GraphiCs Fundamentals

321

With so many benefits to incorporating a display, why don’t more IoT

products include one? The main reason is cost. The IoT products that

do include displays tend to be high-end models, often so-called “hero”

products that are intended to showcase the brand but not expected to

sell many units. But is it really prohibitively expensive to add a screen to a

product? At one time, the answer was yes. Here are some of the common

reasons manufacturers cite for not adding displays to their products:

• The display itself is expensive. A small touch screen can

easily cost $20 before adding the microcontroller and

communication components.

• The software to interact with the display requires

adding more RAM, and the graphics assets (images and

fonts) for building a user interface require adding more

storage.

• A special microprocessor with hardware graphics

acceleration—that is, a GPU—is needed to achieve

acceptable frame rates for animations.

• Graphics programming for microcontrollers requires

highly specialized skills, making it more difficult to find

qualified engineers and more expensive to hire them.

• The licensing costs for graphics and user interface

SDKs for microcontrollers are too high.

• Preparing graphics assets for embedded systems is

time-consuming and error-prone.

These were all valid reasons in the past, but today the situation is quite

different. Unfortunately, most product planners, designers, and engineers

working on IoT products are not aware that it’s possible to get a touch

screen, microcontroller, RAM, and ROM to deliver a beautifully rendered

Chapter 8 GraphiCs Fundamentals

322

modern user interface for under $10, even for products in very low volume

(comfortably under 10,000 units). Further, that same microcontroller can

also provide Wi-Fi and Bluetooth support. The software and asset concerns

are addressed by Poco and Piu.

 Overcoming Hardware Limitations
The hardware in today’s computers and mobile phones is designed to

perform extremely complex graphical operations with amazing efficiency.

This remarkable performance is achieved through a combination of

sophisticated hardware and software. It should be no surprise that a typical

microcontroller does not have that same graphics hardware and lacks the

speed and memory to run the same complex graphics algorithms.

The natural consequence of these differences is that when IoT

products powered by microcontrollers do include a display, the user

interfaces they provide often appear quite primitive, like those of

computers and video games from the dawn of the personal computer era

in the 1980s and early 1990s. In some ways, that makes sense, because,

like early personal computers and video games, these microcontrollers

are considerably less powerful than modern computers. But an ESP32

today runs six times faster than the microprocessor in the top-of-the-

line 1992 Macintosh IIfx, so there’s enough performance in a modern

microcontroller to match or exceed the results of this early hardware.

The Moddable SDK achieves great graphics results on a

microcontroller by applying techniques used on early hardware, before

modern high-speed display buses, plentiful memory, and GPUs. The

implementations are inspired by classic techniques that have successfully

been used for computer animation, video games, fonts, and more. Modern

microcontrollers are still memory-constrained, but they’re faster, so more

calculations are possible. This makes some techniques possible that were

not on older hardware.

Chapter 8 GraphiCs Fundamentals

323

The details of how these techniques work are beyond the scope of

this book. All of the code that implements them is available to you in the

Moddable SDK if you’re interested in learning more. This book focuses

on how to use these capabilities to build a great user interface for your

product.

 Pixel Rate Impacts Frame Rate
In modern mobile apps and web pages, the frame rate is the fundamental

measure of graphics performance. Higher frame rates provide smoother

animation. The GPU in computers and mobile phones is so powerful that

it’s able to update every pixel of the display on every frame. For a variety of

reasons, a microcontroller just can’t do the same; however, it’s possible to

achieve animations at 30 or even 60 frames per second (fps).

Because a microcontroller cannot render a high frame rate when

updating the entire display, the solution is to update only a subset of the

display. You can design your user interface so that only relatively small

parts of the display are updated at any one time. This significantly reduces

the work required of the microcontroller, so the user sees a smooth, high

frame rate animation just as on a mobile app or web page.

To achieve a high frame rate using a microcontroller, it’s helpful to

think in terms of pixel rate—the number of pixels updated per second. The

ESP32 and ESP8266 use a SPI bus to communicate with the display, and

this connection runs at 40 MHz, providing a pixel rate of about 1,000,000

pixels per second, about 15 fps. Achieving the full theoretical pixel rate is

generally not possible because of other factors; still, if your application

updates only about 40% of the pixels in each frame—a pixel rate of about

30,000 pixels per frame—it can achieve a reliable frame rate of 30 fps.

 On the QVGA (320 x 240) displays used in this book, 30,000 pixels is about

40% of the total display area, which is more than enough motion to create

a smooth, compelling user interface. Updating only 10,000 pixels per frame

achieves 60 fps.

Chapter 8 GraphiCs Fundamentals

324

You might expect that the area of the screen updated on each frame

must be a single rectangle. That would limit the design possibilities by

limiting motion to one area of the display. Fortunately, though, this isn’t

the case. As you’ll soon learn, you can have several different areas updating

simultaneously, which can give the user the impression of motion on the

full screen even though only a fraction of the actual pixels are changing.

 Drawing Frames
Most graphics libraries used for microcontrollers are immediate mode

APIs, meaning that the renderer performs the requested drawing operation

when you call the drawing function. Poco, on the other hand, is a retained

mode renderer, which works like this:

 1. You tell Poco when you’re starting to draw.

 2. When you call drawing functions, they don’t draw

immediately but rather are added to a list of drawing

commands.

 3. When you tell Poco you’re done drawing, it executes

all the drawing commands.

Obviously retained mode rendering is more complex, and maintaining

a list of drawing commands requires additional memory. Usually on

microcontrollers, you try to keep software simple and memory use as small

as possible, but the following benefits of retained mode justify its costs:

• Retained mode rendering eliminates flicker. For

example, when you draw the background of the screen

in an immediate mode renderer, all the pixels of the

screen are drawn in the background color; when you

then draw the controls, text, and pictures that make up

the user interface, the user may first see the background

screen without these user interface elements, causing

Chapter 8 GraphiCs Fundamentals

325

a distracting momentary flicker. Because retained

mode rendering executes all drawing commands

before sending the result to the screen, it combines the

background erase with the drawing of the user interface

elements on the microcontroller before transmitting

them to the display, thus eliminating the flicker.

• Retained mode improves performance by reducing the

number of pixels transmitted from the microcontroller

to the display. Consider that in every user interface

there are some overlapping pixels—for example,

the background of a button and its text label. In an

immediate mode renderer, the overlapping pixels are

sent to the display twice, whereas in a retained mode

renderer each pixel is sent only once per frame. Because

it’s much faster to render a pixel than to transmit it to

the display, this increases the overall pixel rate.

• Retained mode improves rendering quality by enabling

efficient pixel blending. Modern computer graphics

make heavy use of blending to smooth the edges of

objects—for example, to anti-alias fonts to eliminate

sharp edges (“jaggies”). This is one reason that text on

today’s computers and mobile phones looks so much

crisper than screen text did in the 1980s. Blending is

computationally more complex, and there’s enough

performance to do it because the microcontrollers

are so much faster; however, blending also requires

access to the pixel behind the pixel you’re currently

drawing. In typical microcontroller hardware, the

previous pixel is stored in the display’s memory,

not the microcontroller’s memory, making it either

entirely unavailable or impractically slow to access.

Chapter 8 GraphiCs Fundamentals

326

The retained mode renderer, because it only transmits

pixels to the display when they’re fully rendered, always

has the current value of the pixel available in memory

and so is able to perform blends efficiently.

There are other advantages of retained mode renderers, but these

three should be enough to convince you that the memory and complexity

costs justify using a retained mode renderer like Poco instead of the more

common immediate mode renderer. The quality of the user interface

rendering is so much higher that users have the impression they’re using

a higher-quality product—one that belongs alongside their computer and

phone rather than in a computer history museum.

 Scanline Rendering
A QVGA display has 76,800 pixels, which means that a display with

16- bit pixels requires 153,600 bytes of memory to store one full frame.

The ESP8266 has about 80 KB of total memory—only enough for a half

frame, if your IoT product doesn’t use any other memory! The ESP32 has

much more, but still, holding an entire frame in memory uses 50% or

more of the total free memory at startup. The displays used in this book

include memory for a single frame, so the microcontroller doesn’t have

to store the entire frame, but it does need memory in which to render the

frame. To minimize the memory required, the Poco renderer implements

scanline rendering, a technique that divides the frame into horizontal

strips as small as a single row of pixels; after each strip is rendered, it’s

immediately transmitted to the display. This approach is more complex

than rendering the entire frame at once, but it reduces the rendering

memory requirements for a single 16-bit QVGA display from 153,600 bytes

to 480 bytes—one 240-pixel scanline at two bytes per pixel—a memory

savings of 99.68%!

Chapter 8 GraphiCs Fundamentals

327

There’s some performance overhead for each strip rendered, so there’s

a benefit to reducing the number of strips by increasing their size—but of

course this also increases the memory needed. The performance benefit

decreases somewhat with each line added to a strip, so increasing beyond

about eight scanlines isn’t usually worthwhile. If your project has some

free memory or requires the highest performance rendering, you may

want to have Poco render a few scanlines at a time; the upcoming chapters

explain how to configure this.

Many modern microcontrollers, including the ESP32 and ESP8266,

are able to use SPI asynchronously to transmit data to the display, which

means that the microcontroller can do other work while that data is being

transmitted. Poco uses asynchronous SPI transmission to render the next

section of the display while the previous section is being transmitted to

the display, and this simple parallel processing allows for a significant

performance boost. To use this technique, Poco must have enough

memory to hold at least two scanlines in memory: the previously rendered

scanline that’s now being transmitted and the current scanline that’s

now being rendered. Because this technique provides such a significant

performance increase, Poco allocates two scanlines by default.

 Restricting the Drawing Area
As you’ve seen in the sections “Pixel Rate Impacts Frame Rate”

and “Scanline Rendering,” a key technique used with graphics on

microcontrollers is to update the display in parts rather than all at once.

Note the following aspects of this technique in Poco and Piu:

• In Poco – The feature of the Poco rendering engine

that enables restricting drawing to subsections of the

display is called clipping. Poco uses a single rectangle to

describe the clipping area; the portion of each drawing

operation that intersects this clipping rectangle is

Chapter 8 GraphiCs Fundamentals

328

drawn, whereas any portion of the operation that falls

outside the clipping rectangle is not drawn. This feature

is used by Poco to implement scanline rendering (and

by Piu to implement partial frame updates). It’s also

available for use in your applications—for example, to

draw a subset of an image.

• In Piu – Updating the smallest possible area of

the display increases rendering performance on

microcontrollers; however, determining the smallest

possible area to update is quite difficult in the general

case. Poco can’t determine the optimal drawing areas

for you because, being a rendering engine, it has

no knowledge of what your code is drawing. Piu, on

the other hand, is a user interface framework with

complete knowledge of the different objects that make

up your onscreen display. As a result, Piu is able to

calculate the smallest possible update areas for you

automatically, behind the scenes.

To understand the challenges of calculating the smallest possible

update area, let’s look at an example of a bouncing ball. In each frame,

the ball moves some number of pixels. In Figure 8-1, the ball moves a

few pixels down and to the right. The smallest rectangle that encloses the

previous and current position of the ball is a good first estimate of the

smallest possible area of the screen to update.

Chapter 8 GraphiCs Fundamentals

329

Now consider the case in which the ball moves a much longer distance

(Figure 8-2): the smallest rectangle that encloses the previous and current

positions includes many pixels that didn’t actually change, but they’re

redrawn because they’re included in the area to be updated.

Figure 8-1. Ball moving slightly, one update rectangle

Figure 8-2. Ball moving farther, one update rectangle

Chapter 8 GraphiCs Fundamentals

330

As shown in Figure 8-3, in this case Piu recognizes that it’s more

efficient to update two separate areas: the area enclosing the previous

location of the ball, which fills to the background color, and the area

enclosing the current location of the ball.

Figure 8-3. Ball moving farther, two update rectangles

Piu actually goes one step further. In the first example, where the ball

moves only a small distance—a distance that causes the current position to

overlap with the previous position—Piu recognizes that a single enclosing

rectangle isn’t the smallest possible update area; consequently (as shown

in Figure 8-4), it updates three separate rectangles in this case, which

avoids unnecessarily updating many background pixels that haven’t

changed.

Chapter 8 GraphiCs Fundamentals

331

The calculations involved in optimizing the drawing area for a

single bouncing ball are already surprisingly complex, and they would

be even more complicated in an application with several bouncing

balls that sometimes overlap. Piu automatically calculates the minimal

set of rectangles for you; this does require time and memory, but the

performance boost it gives makes it worthwhile. That’s because rendering

performance is largely limited by the pixel rate of your application and Piu

is automatically minimizing the pixel rate of your code.

 Pixels
Every display contains pixels, but not all displays have the same kind of

pixels. Pixels come in different sizes and colors. This has always been

the case but is easy to forget, because nearly all modern computers and

mobile devices support the same 24-bit color pixel format. Like many

areas of embedded development, the variety of pixel formats is partly a

consequence of trying to keep hardware costs low. A display that’s able

Figure 8-4. Ball moving slightly, three update rectangles

Chapter 8 GraphiCs Fundamentals

332

to display colors tends to cost more, but there are factors other than cost

that influence the pixel format used. For example, an ePaper display (often

referred to by the name of the company that pioneered it, E Ink) that uses a

technology only capable of displaying a handful of colors—typically black,

white, and a few shades of gray—has no need for a pixel format that holds

more than a few colors.

 Pixel Formats
Most displays support a single type of pixel. The QVGA color displays used

in most of the examples in this book use a color 16-bit pixel that has 5 bits

for red, 6 bits for green, and 5 bits for blue. Your mobile phone probably

has 24-bit color pixels, with 8 bits each for red, green, and blue. While both

kinds of pixels are adequate for displaying full-color user experiences,

the 24-bit color pixels are able to show 256 times more colors (16,777,216

vs. 65,536). That difference means that images on an embedded device

may have a less refined appearance, especially in areas filled with similar

colors, such as a sunset. This can be a problem for photos, but it’s generally

not an issue for user interfaces driven by microcontrollers if the design of

the interface takes this limitation into consideration.

In addition to 16-bit color, a few displays support only 8-bit color.

This is much more limited, allowing only 256 colors. Each pixel contains

3 bits for red, 3 bits for green, and 2 bits for blue. It’s possible to build a

reasonable user interface with a display that uses this type of pixel, but it

takes some work to carefully select colors that look good within the limits.

In some cases, it can be beneficial to use 8-bit color pixels on a display that

supports 16-bit pixels. This clearly doesn’t improve quality, but it does

reduce the storage space required by assets and the time needed to render

images. If you find your project is struggling to fit into available storage

space or if rendering performance isn’t quite what you need, using 8-bit

color pixels on a 16-bit display may be a viable solution.

Chapter 8 GraphiCs Fundamentals

333

There are also 4-bit color pixels, but it’s so difficult to achieve a

professional result with these that they aren’t addressed here. However,

4-bit gray pixels—which can display 14 levels of gray plus black and

white—are very useful. An ePaper display that’s unable to display color

needs only gray pixels; since most ePaper displays are capable of showing

only a few levels of gray, a 4-bit gray pixel is sufficient. Grayscale rendering

is even faster than color rendering. You can use 4-bit gray pixels with a

16-bit color display to save even more storage space. There are also 8-bit

gray pixels, which can display 254 levels of gray plus black and white;

these provide excellent quality, but for many practical purposes 4-bit gray

rendering is almost indistinguishable in quality from 8-bit gray pixels.

Some displays are just black and white. These displays tend to be

small and low quality and to be used more for industrial IoT products than

for consumer IoT products. A 1-bit pixel is sufficient for these displays;

however, rendering well at 1 bit per pixel is very difficult. The Poco

renderer does not support 1-bit pixel displays directly. Instead, the display

driver receives 4-bit gray pixels and then reduces the image to 1-bit when

transmitting it to the display.

 Configuring a Host for a Pixel Format
In Chapter 1, you learned how to build a host using the mcconfig

command line tool. On the command line, you use the -p option to pass

the name of the hardware platform you’re targeting—for example,

-p esp32 to build for an ESP32. For device targets that include a display,

such as development boards from Moddable and M5Stack, the default

pixel format is automatically configured for you. For example, when you

build for Moddable One, Moddable Two, or M5Stack FIRE, the pixel format

is set to rgb565le, for 16-bit color pixels; for Moddable Three, which has

an ePaper display, it’s set to gray16, for 4-bit gray pixels.

Chapter 8 GraphiCs Fundamentals

334

The most common display driver for 16-bit pixels is the ILI9341

driver, which implements the MIPI display standard used by the display

controllers in both the Moddable and M5Stack development boards. The

hardware uses 16-bit pixels, but the driver supports other pixel formats

as well. You can experiment with different pixel formats by specifying the

format on the command line using the -f option. For example, to use 4-bit

gray pixels:

> mcconfig -d -m -p esp32/moddable_two -f gray16

When you configure the host this way, the ILI9341 driver converts the

4-bit gray pixels rendered by Poco to 16-bit color pixels when transmitting

them to the display. But there are more changes going on than that:

• When you change the pixel format, the Poco renderer

itself is recompiled. In this example, all the support for

rendering to 16-bit pixels is removed and replaced with

support for rendering to 4-bit gray pixels. This is one

technique Poco uses to keep its code size small while

still supporting many different pixel formats.

• Poco requires that certain graphics assets be stored in

the same pixel format as the display, which normally

would require you to recreate your graphics in a

compatible format. But because that’s tedious, time-

consuming, and error-prone, mcconfig automatically

invokes other tools in the Moddable SDK to convert

your assets to a compatible format. This means you can

switch pixel formats simply by specifying a different

format, making it as easy as rebuilding your project to

try different formats and see tradeoffs.

The ILI9341 driver also supports 8-bit color and 8-bit gray pixels.

You can use those with mcconfig by specifying rgb332 and gray256,

respectively, in the -f command line option.

Chapter 8 GraphiCs Fundamentals

335

If you find that the pixel format that works best for your product is

different from the default, you can specify your preferred format in your

project’s manifest. That way you don’t need to remember to include it

on the command line each time you build. To do this, define a format

property in the config section of your manifest:

"config": {

 "format": "gray256"

},

 Freedom to Choose a Display
While the large variety of pixel formats available can seem confusing, it

gives you options when creating a product. You can choose the display

that best meets your requirements for quality, cost, and size. Poco is able

to render pixels that work with your display, so you don’t have to choose

a display based on your software stack’s limitations. In the next section,

you’ll learn how to automatically transform the graphics assets in your

project to match the display you’re using.

 Graphics Assets
User interfaces built using Poco and Piu are composed of three different

elements: rectangles, bitmap images, and text. That’s everything; there

are no graphics operations to draw lines, circles, round rectangles, arcs,

splines, or gradients. At first, this may seem a little too simple, and you

might conclude that it’s impossible to build a modern user interface with

such a small number of drawing operations. In the coming chapters,

you’ll see how to combine these elements to create a rich user experience

that runs well on inexpensive microcontrollers. This section focuses on

graphics assets—the images and fonts you use to build your user interface.

Chapter 8 GraphiCs Fundamentals

336

 Masks
The most common type of asset used to build user interfaces with Poco

and Piu is a mask. A mask is a grayscale image; you can think of it almost

as a shape. Because the mask contains gray pixels, and not just black and

white pixels, it can have smooth edges. Figure 8-5 shows two versions of a

circle, the first as a grayscale mask and the second as a simple 1-bit mask,

with their edges magnified to show the difference; note the gray edges in

the magnification of the grayscale mask.

Figure 8-5. Grayscale mask (left) and 1-bit mask (right)

When Poco renders a grayscale mask, it doesn’t draw it as an image.

If it did, the white pixels would hide the background, as illustrated in

Figure 8-6.

Chapter 8 GraphiCs Fundamentals

337

Instead, Poco renders masks by treating black pixels as solid (fully

opaque), white pixels as transparent (fully invisible), and the grayscale

levels between as different levels of blending. The result corresponding to

Figure 8-6 is shown in Figure 8-7, where the black circle is superimposed

on the background (which is visible through the transparent white pixels)

and the gray edges of the circle blend with the background, eliminating

any jagged edges.

Figure 8-6. Grayscale mask if drawn as image

Figure 8-7. Grayscale mask drawn as mask

Chapter 8 GraphiCs Fundamentals

338

You probably want to include color in your user interface, in which

case gray images don’t seem like an obvious solution. However, Poco lets

you draw grayscale masks in any color. The black pixels are replaced by the

color you choose, and the gray pixels blend that color with the background.

Figure 8-8 shows the same circle mask drawn in blue (which appears gray

in printed versions of this book).

Figure 8-8. Grayscale mask drawn as mask in color

The ability to draw a single grayscale mask in a variety of colors is very

powerful, as it enables a single graphics asset to be displayed in different

colors. This reduces the number of assets needed, saving storage space in

your project.

Figure 8-9 shows some examples of grayscale masks used as user

interface elements.

Figure 8-9. Grayscale masks used as user interface elements

Chapter 8 GraphiCs Fundamentals

339

As you know from the “Pixel Formats” section, Poco defines two

different kinds of grayscale pixels: 4-bit and 8-bit. All Poco masks are 4-bit

grayscale, which allows for the smallest storage size and fastest rendering

without sacrificing much quality.

 Adding Masks to Your Project

You add masks to your project as PNG files, the same kind of image

file used by desktop applications, mobile apps, and web pages for

user interface elements. Being able to use PNG files in your project

is convenient; however, the ESP32 and ESP8266 aren’t able to work

efficiently with PNG images because of the memory requirements and

CPU overhead needed to decode PNG images. Instead, the build tools

convert your PNG files to formats that can be handled efficiently on these

microcontrollers. Because of this automatic conversion, it’s not necessary

for you to understand the details of these nonstandard image formats

(although the details are available in the Moddable SDK).

To include a PNG mask image in your project, add it to your project’s

manifest file in the resources section as shown in Listing 8-1.

Listing 8-1.

"resources": {

 "*-mask": [

 "./assets/arrow",

 "./assets/thermometer"

]

}

Keep in mind that resources specified in the manifest do not include

a file extension. In the example in Listing 8-1, the file names of the image

files are arrow.png and thermometer.png.

Chapter 8 GraphiCs Fundamentals

340

 Mask Compression

Grayscale masks are small enough to use in products targeting

microcontrollers. The thermometer image shown earlier in Figure 8-9 is

2,458 bytes when stored as a 4-bit grayscale mask. Still, it would be nice if

it were smaller. Poco has a solution: it includes a compression algorithm

specifically for 4-bit grayscale images. The algorithm is optimized for use

on microcontrollers and therefore doesn’t require much CPU time or

additional memory.

For the thermometer image, the compression algorithm reduces

the data size to 813 bytes, 67% smaller than the original uncompressed

version. Compression ratios vary depending on the image. The Poco mask

compression ratio improves for images that contain larger continuous

white and black areas.

 Uncompressed Masks

When drawing the masks for the user interface, it’s often convenient to

group several related elements together in a single graphics file. Many

graphic designers prefer to work this way since it makes modifying the

masks faster and easier. Because Poco supports clipped rendering, it’s

able to use only part of a mask when drawing, so you have the option to

organize your graphics files this way. The masks in Figure 8-10, showing

several different states of a Wi-Fi connection, are combined in a single

graphics file.

Figure 8-10. Multiple masks combined in single graphics file

Chapter 8 GraphiCs Fundamentals

341

You can compress these combined mask images as described

previously. However, there’s a performance penalty for using compression

with a mask containing multiple images. That’s because to render a part of

the compressed image, the decompressor must skip over the parts of the

image above and to the left of the target area, which takes additional time.

For some projects, the storage size reduction benefit of compression is

more important than the performance reduction. You can keep the mask

uncompressed by adding it to your manifest in a *-alpha section rather

than the *-mask section (see Listing 8-2). Of course, your manifest may

include both *-mask and *-alpha, to compress some masks while leaving

others uncompressed.

Listing 8-2.

"resources": {

 "*-alpha": [

 "./assets/wifi-states"

]

}

 Fonts
Fonts are a unique challenge in embedded development. Your computer

and mobile phone have dozens, if not hundreds, of fonts built in. One

or more of those fonts include nearly all the characters defined in the

Unicode standard, meaning that there’s no text character your devices

can’t display. On a microcontroller, there are no built-in fonts; the only

fonts available to your project are the fonts you include in your project.

There are many fonts available for your computer, and it would be

convenient to be able to use those same fonts in your IoT products. Most,

if not all, of the fonts on your computer are stored in a format based on

the TrueType scalable font technology created by Apple (the OpenType

font format is a derivative of TrueType). Rendering these fonts on a

Chapter 8 GraphiCs Fundamentals

342

microcontroller is possible but challenging, and the amount of code,

memory, and CPU resources needed for rendering makes it impractical

for many projects. The examples in this book use a simpler font format, a

high-quality bitmap font. A TrueType-compatible renderer is available on

the ESP32 and is introduced in this section.

 Converting TrueType Fonts to Bitmap Fonts

Even though it’s probably impractical to use TrueType fonts in all of

your projects, you can still use the fonts on your computer, by using your

computer to convert the TrueType fonts to a format that can be easily

handled by a microcontroller. The TrueType font is rendered in a specific

point size to a bitmap, with all the characters being stored in a single

bitmap. The bitmap uses 4-bit gray pixels, rather than black and white,

to maintain the anti-aliasing of the original font. In addition, a .fnt file

is generated that maps between Unicode character codes and rectangles

in the font bitmap. This font format that combines a bitmap image with a

map file is called BMFont, for “bitmap font.” There are several variations of

BMFont; the Moddable SDK uses the binary BMFont format. Figure 8-11

shows an example of what the Open Sans font at 16-point size looks like in

the BMFont format.

Chapter 8 GraphiCs Fundamentals

343

Notice that the characters are not arranged in the same order as in

the Unicode or ASCII standard. For example, the letters A, B, and C do

not appear in sequence. Instead, characters are arranged by height, to

make the bitmap image as small as possible by minimizing the amount of

unused white space.

The tools that may be used to create these bitmap files are not part

of the Moddable SDK. Glyph Designer from 71 Squared works well. The

Moddable SDK includes a suite of pre-built fonts in the BMFont format, so

you can get started developing without any additional investment in tools.

The BMFont format has two files for each font: an image file, usually in

the PNG format, and a font map file with a .fnt file extension. These two

files should have the same name with different file name extensions, as in

OpenSans-Regular-16.png and OpenSans-Regular-16.fnt. To add these

to your project, include the name in your project manifest as shown in

Listing 8-3.

Figure 8-11. Character images of font in BMFont format

Chapter 8 GraphiCs Fundamentals

344

Listing 8-3.

"resources": {

 "*-mask": [

 "./assets/OpenSans-Regular-16"

]

}

Notice that the *-mask section is the same one used for compressed

grayscale masks. Fonts included in this way are compressed too; however,

rather than the entire image being compressed, each character is

compressed individually. This enables each character to be decompressed

directly, avoiding the overhead that would otherwise be required to skip

over the pixels above and to the left of each glyph.

The compressed glyphs are merged with the data from the .fnt file into

a single resource. This results in compact font files that still retain excellent

quality and can be rendered efficiently. The preceding Open Sans 16-point

font example uses just 6,228 bytes of storage in total for both the compressed

characters and the font metric information needed for layout and rendering.

Additionally, because fonts are stored using the same compression format

as grayscale masks, they may also be rendered in any color.

The BMFont format does not require fonts to be grayscale. This

format is popular with game designers because it enables them to include

creative, colorful fonts in their games. Full-color fonts are supported by

Poco and Piu. They’re not commonly used on microcontrollers because

they require significantly more storage. In case you want to try them out,

the Moddable SDK contains examples to get you started.

 Using Scalable Fonts

The BMFont format is convenient and efficient, but it eliminates one of the

key benefits of TrueType fonts: the ability to scale the fonts to any size. If

your project uses the same font at three different sizes, you need to include

Chapter 8 GraphiCs Fundamentals

345

three different versions of it, one for each point size. It’s possible to use

scalable fonts directly on some more powerful microcontrollers, including

the ESP32. A high-quality implementation of scalable TrueType fonts

that’s optimized for microcontrollers is available as a commercial product

from Monotype Imaging, a leading provider of fonts and font technology.

The Monotype Spark scalable font renderer has been integrated with the

Moddable SDK and so can be used with both Poco and Piu. For more

information, contact Moddable or Monotype.

 Font Copyright

For commercial products, you need to make sure you have the rights to

use any font you include in your products. Just like books and computer

software, fonts can be copyrighted by their creators. Fortunately, there are

many excellent fonts available in the public domain or under a FOSS (free

and open source software) license. The Open Sans font created by Google

for Android is one such font that works well in the user interfaces of IoT

products.

 Color Images
While grayscale masks are a powerful tool for building user interfaces,

there are times when you need full-color images. Poco uses uncompressed

bitmaps to support color images. These bitmaps provide excellent quality

and performance; however, they can be quite large and so are typically

used sparingly in interfaces for microcontrollers.

You can use standard JPEG and PNG files for color images. As with

grayscale masks, mcconfig converts them at build time to the optimal

format for your build target. To include color images in your project, add

them to a *-color section in the resources section of your manifest (see

Listing 8-4). Note that the .jpg or .png file extension is omitted.

Chapter 8 GraphiCs Fundamentals

346

Listing 8-4.

"resources": {

 "*-color": [

 "./quack"

]

}

Full-color images are fully opaque; they have no blended or

transparent areas. Figure 8-12 shows the quack JPEG image from the

preceding manifest fragment rendered in a simple user interface.

Figure 8-12. Rendering of full-color image

Chapter 8 GraphiCs Fundamentals

347

The shape is a rectangle because all of the pixels in the image are

drawn. Images stored in a PNG file may contain an optional alpha channel.

An alpha channel is like a grayscale mask: it indicates which pixels from

the image should be drawn, which should be skipped, and which should

be blended with the background. Alpha channels are usually created when

you edit the image in tools like Adobe Photoshop. Poco supports rendering

alpha channels; you indicate that you want to preserve the alpha channel

by putting the image into the *-alpha section of the resources section of

your manifest (see Listing 8-5).

Listing 8-5.

"resources": {

 "*-alpha": [

 "./quack-with-alpha"

]

}

Figure 8-13 shows the result. The duck image is the same one used

in Figure 8-12; however, an alpha channel has been added to mask the

background. Consequently, only the duck is drawn when the image is

rendered.

Chapter 8 GraphiCs Fundamentals

348

When you include images with an alpha channel in your project, the

build tools create two separate images: the full-color image as if you’d put

the image into the *-color section and the uncompressed alpha channel

as a 4-bit grayscale mask. The color resource is named quack-color.bmp

and the compressed mask resource is named quack-alpha.bm4. Figure 8- 14

shows the alpha channel used to mask the drawing of the duck image.

Figure 8-13. Rendering of full-color image with alpha channel

Chapter 8 GraphiCs Fundamentals

349

Figure 8-14. Alpha channel used in Figure 8-13

When Poco and Piu render the image, they use both the color image

and the mask. You’ll learn how to do this in the next two chapters.

 Display Rotation
Each display has a native orientation, meaning there’s one edge that is

the “top.” This orientation is defined by the position of the first pixel that

the hardware draws and the direction in which drawing proceeds from

there. The native orientation is determined by the hardware and cannot be

changed. Still, it’s often desirable to treat a different edge of the screen as

the top, to effectively rotate the image on the display. This is common on

mobile devices that automatically rotate the image on the display to match

the orientation in which the user is holding the device. This ability is also

present in most LCD televisions, so that the user can mount the display

however is most convenient and then manually adjust the orientation to

display the image “right side up.”

While many IoT products don’t allow the user to change the orientation,

either by configuration or by rotating the device, these products may still

need to rotate the display—for example, when the product’s design requires

a landscape orientation but the display’s native orientation is portrait mode,

or when the display is mounted upside down in the product to save space

(which may seem unusual, but it really does happen). Also, sometimes the

Chapter 8 GraphiCs Fundamentals

350

hardware designer mistakenly mounted the display upside down, and to

save time the software team is asked to compensate. For these reason and

more, the ability to render the user interface at orientations of 0, 90, 180, and

270 degrees is necessary for many IoT products.

As described in the following sections, there are two different

techniques for rotating the display: a software approach that works with all

displays and a hardware approach that works with some displays.

 Rotating in Software
The most common technique for rotating the user interface is to draw the

full interface into an offscreen memory buffer as if the display was at the

rotated orientation. Then, when the pixels are transmitted to the display,

they’re transformed to match the hardware orientation. This approach

isn’t feasible on low-cost microcontrollers because there’s not enough

memory available to store a full frame in an offscreen buffer.

Poco takes a very different approach: it rotates all image assets to the

desired orientation during the build so that they don’t need to be rotated at

runtime. This rotation is performed at the same time as any needed pixel

format conversions. Then, when the application on the embedded device

makes drawing calls, Poco only needs to rotate the drawing coordinates to

the target orientation. With those two steps done, Poco renders as usual

and the result appears rotated on the display. This approach has almost

no measurable runtime overhead—no additional memory is used, and

only a trivial amount of additional code is run to perform the coordinate

transformation—so it’s almost a no-cost feature. Because software rotation

is implemented entirely in the Poco renderer, it works with all displays.

When using software rotation, you can change orientation with the -r

command line option to mcconfig. The supported rotation values are 0, 90,

180, and 270.

> mcconfig -d -m -p esp/moddable_one -r 90

Chapter 8 GraphiCs Fundamentals

351

As with the pixel format configuration, you may also specify the

software rotation in your project manifest:

"config": {

 "rotation": 90

}

There’s one notable limitation to software rotation: the rotation is fixed

at build time and therefore can’t be changed at runtime. Consequently,

this technique is useful for situations where the IoT product user interface

needs to be at a different orientation than the native orientation of the

display but not when it needs to respond to a user action, such as turning

the screen. Hardware rotation, when available, overcomes this limitation.

 Rotating in Hardware
Hardware rotation uses features of the display controller to rotate the

image as the display receives the pixels from the microcontroller. Using

hardware rotation requires both the display controller and the display

driver to support the capability. Hardware rotation is fully supported by

the ILI9341 driver for MIPI-compatible display controllers.

Hardware rotation is performed entirely at runtime, so there’s nothing

to define in your build command line or project manifest. In fact, it’s

important that you do not use both hardware and software rotation in

your project; they’re not designed to work together, so the results can be

unpredictable.

When using hardware rotation, you set the rotation at runtime instead

of configuring it at build time. You use the screen global variable to

communicate with the display driver. For displays that support hardware

rotation, the screen global has a rotation property; you can check

whether hardware rotation is supported by seeing whether this property is

defined.

Chapter 8 GraphiCs Fundamentals

352

if (screen.rotation === undefined)

 trace("no hardware rotation\n");

else

 trace("hardware rotation!\n");

To change the rotation, set the rotation property:

screen.rotation = 270;

Your code can read screen.rotation to retrieve the current rotation:

trace(`Rotation is now ${screen.rotation}\n`);

When the hardware rotation is changed, the display does not change.

The full content of the display must be redrawn before the user sees the

changed orientation. If you update only part of the screen after changing

the rotation, the user will see part of the display drawn in the original

orientation and other parts with the new orientation.

The host for the M5Stack target includes support to automatically

rotate the user interface of projects using Piu, to match the hardware

orientation. This results in the same behavior as a mobile phone with a

display that adjusts to how the user is holding the device. This feature is

possible because the M5Stack includes a built-in accelerometer sensor,

which provides the current device orientation. For M5Stack projects that

don’t want to use this feature, you can disable it in your project manifest.

"config": {

 "autorotate": false

}

 Poco or Piu?
Throughout this chapter, you’ve learned about the Poco rendering engine

for graphics and the Piu user interface framework, both of which can be

used to build the user interface of IoT products running on inexpensive

Chapter 8 GraphiCs Fundamentals

353

microcontrollers (including the ESP32 and ESP8266). Poco and Piu have

similar graphics capabilities, because Piu uses Poco for rendering. When

you start creating your own projects, you must decide whether to use the

Poco API, the Piu API, or perhaps both. This section explains some of the

differences, to help you make your choice.

Poco and Piu are inherently different APIs:

• Poco is a graphics API. You make function calls that

eventually cause parts of the screen to be drawn.

• Piu is an object-oriented API for building user

experiences. You create user interface objects with Piu

such as text labels, buttons, and images. Adding these

objects to the application causes parts of the screen

to be drawn; you do not make drawing function calls

yourself.

Piu takes care of many details for you, so you’ll likely write less code;

for example, it calls Poco to render your user interface objects when

necessary. Because you tell Piu about all the active user interface objects

on the current screen, Piu is able to minimize the amount of drawing

necessary when you move, change, show, or hide an element. For example,

with Piu you change the color of a user interface element using a mask

with just a single line of code; Piu determines what pixels on the screen

must be updated and automatically draws the changed element along with

any objects that intersect it. By contrast, Poco has no knowledge about the

user interface of your application, so you must write the code to refresh

the screen and minimize the update areas. The code to do that often starts

simple but becomes increasingly difficult to maintain as the user interface

grows more complex.

Piu uses memory to keep track of the active user interface objects and

consequently uses more memory than Poco alone. Of course, if you don’t

use Piu your code must keep track of the active user interface objects itself,

which also requires memory.

Chapter 8 GraphiCs Fundamentals

354

Piu has built-in support for responding to touch events. In fact, Piu

automatically supports multi-touch. (The displays on Moddable One and

Moddable Two both support two touch points.) Being a graphics engine,

Poco is focused on drawing and has no support for touch input, so your

application must interact with the touch input driver directly; while this

isn’t too difficult to do, it’s more code for you to write and maintain.

Perhaps the biggest advantage of using Piu is that, as a framework,

it provides the basic structure of your project. The following predefined

objects give your project a well-defined, well-designed organization that’s

backed by the very efficient implementation of Piu itself:

• The Application object maintains global state and

exists for the entire application lifetime.

• The Texture and Skin objects organize your graphics

assets.

• The Style objects manage font face, size, and style

using cascading style sheets like CSS on the web.

• The Container and Content objects define the

elements of your user interface.

• The Behavior objects group together event handlers

for a specific purpose, such as providing a touch button

behavior.

• The Transitions objects each implement a unique

transition, either of the entire display or parts of it.

When you use Poco, you have to design and implement the application

structure yourself. If your project user interface looks somewhat similar to

a mobile app, desktop application, or web page, it’s probably a good idea to

use Piu, because it’s designed and optimized for that. If you enjoy writing

user interface frameworks or if your user experience is quite different—for

example, a game—then using Poco directly is probably the right choice.

Chapter 8 GraphiCs Fundamentals

355

Some projects have a standard user interface style but need to provide

a specialized rendering of part of the screen. One example of this is an IoT

product showing a real-time graph of sensor data; the buttons and labels

on the screen are a good fit for Piu, but the graph would be most efficiently

rendered with Poco. The solution for a project like this is to use Piu for the

screen and, to draw the graph, embed a Piu Port object, which lets you

issue drawing commands similar to Poco within a Piu layout.

 Conclusion
The next chapter further discusses Poco and its graphics framework,

Commodetto, and the chapter following that one discusses Piu. As you

read through these two chapters, consider the needs of your own project

and whether the high-level Piu user interface API or the low-level Poco

graphics rendering API is a better fit. Poco and Piu are quite different to

work with, so it would be worthwhile to experiment with both of them to

understand which is best for your needs.

Chapter 8 GraphiCs Fundamentals

357© Peter Hoddie and Lizzie Prader 2020
P. Hoddie and L. Prader, IoT Development for ESP32 and ESP8266 with JavaScript,
https://doi.org/10.1007/978-1-4842-5070-9_9

CHAPTER 9

Drawing Graphics
with Poco
The Poco renderer is at the core of all graphics and user interface code in

this book. As you learned in Chapter 8, the design and implementation of

Poco are optimized for delivering high-quality, high-performance graphics

on the inexpensive microcontrollers used in many IoT products. This

chapter introduces all the major capabilities of the Poco API through a

series of examples. The name Poco is a term from classical music meaning

“a little,” reflecting the compact size and scope of the rendering engine.

Poco is part of Commodetto, a graphics library that provides bitmaps,

instantiation of graphics assets from resources, offscreen graphics

buffers, display drivers, and more. Some of the examples in this chapter

use these Commodetto features. The name Commodetto, also a term

from classical music, means “leisurely,” reflecting the ease of working

with the graphics library.

 Installing the Poco Host
You can run all of this chapter’s examples by following the pattern

described in Chapter 1: install the host on your device using mcconfig,

then install example applications using mcrun.

https://doi.org/10.1007/978-1-4842-5070-9_9#ESM

358

All the Poco examples require the use of a screen, making it essential

for your mcconfig command line to specify a platform with a screen driver

for your development board. The examples are intended to run on screens

with 240 x 320 resolution. The following command lines are for Moddable

One, Moddable Two, and M5Stack FIRE:

> mcconfig -d -m -p esp/moddable_one

> mcconfig -d -m -p esp32/moddable_two

> mcconfig -d -m -p esp32/m5stack_fire

If you’re wiring the screen to your development board using a

breadboard and jumper wires, follow the instructions in Chapter 1. The

wiring provided there for the ESP32 works with the esp32/moddable_zero

target; likewise for the ESP8266 and the esp/moddable_zero target.

If your device doesn’t have a screen, you can run this chapter’s

examples on the desktop simulator provided by the Moddable SDK. The

following command lines are for macOS, Windows, and Linux:

> mcconfig -d -m -p mac

> mcconfig -d -m -p win

> mcconfig -d -m -p lin

The host for this chapter is in the $EXAMPLES/ch9-poco/host directory.

Navigate to this directory from the command line and install it with mcconfig.

If you’re using the desktop simulator, make sure you change the

dimensions of the screen to 240 x 320 before you install examples. You do

this by selecting 240 x 320 from the Size menu in the application’s toolbar.

 Preparing to Draw
To use the Poco renderer, you need to import the Poco class from the

commodetto/Poco module:

import Poco from "commodetto/Poco";

Chapter 9 Drawing graphiCs with poCo

359

Poco is a general-purpose renderer. The pixels it renders can be sent

to a screen, a memory buffer, a file, or the network. Poco doesn’t know

how to send pixels to any of these destinations; instead, it outputs pixels

to an instance of the PixelsOut class, and each subclass of PixelsOut

knows how to send pixels to a particular destination. For example, the

display driver is a subclass of PixelsOut that knows how to send pixels

to the screen. BufferOut, another subclass of PixelsOut, sends pixels to

a memory buffer (as you’ll see in the “Efficiently Rendering Gradients”

section of this chapter).

When you instantiate Poco, you provide an instance of a PixelsOut

class for Poco to call with rendered pixels. The host for this chapter

automatically creates an instance of PixelsOut for the display driver of

your development board and stores it in the screen global variable. To

work with the screen, you simply pass screen to the Poco constructor.

let poco = new Poco(screen);

The pixel format and display dimensions of the display driver are

configured in the host’s manifest. The screen instance has width and

height properties, but these do not include the effects of software rotation.

Instead, when working with Poco, use the width and height properties

of the Poco instance to get the bounds of the display with any rotation

adjustments (hardware or software) applied.

trace(`Display width is ${poco.width} pixels.`);

trace(`Display height is ${poco.height} pixels.`);

As noted in Chapter 8, Poco is a retained mode renderer, meaning that

instead of executing drawing commands immediately, it builds up a list of

drawing operations to render all at once. This display list requires memory.

The default display list is 1,024 bytes. If your drawing overflows the display

list allocation, you need to increase it. If your project doesn’t use all of the

Chapter 9 Drawing graphiCs with poCo

360

default display list allocation, you can decrease it to free memory for other

uses. The following example adjusts the display list to 4 KB:

let poco = new Poco(screen, {displayListLength: 4096});

You can monitor how much of the display list your project is using by

watching the “Poco display list used” row of the Instrumentation panel in

xsbug (see Figure 9-1).

Poco also allocates memory for rendering. The default rendering buffer

is two hardware scanlines. The width of one hardware scanline is available

from screen.width. If memory is very tight in your product, you can

reduce this to a single scanline, though no smaller.

let poco = new Poco(screen, {pixels: screen.width});

Figure 9-1. Monitoring display list use in xsbug Instrumentation
panel

Chapter 9 Drawing graphiCs with poCo

361

Poco is able to render faster when it renders several scanlines at once.

The following code increases the rendering buffer to eight full scanlines,

while setting the display list to 2 KB.

let poco = new Poco(screen,

 {displayListLength: 2048, pixels: screen.width * 8});

As an optimization, Poco shares the memory allocated for the display

list and the rendering buffer. If the display list for the frame being rendered

isn’t entirely full, Poco includes those unused bytes in the rendering buffer,

often enabling it to render a little faster.

The three fundamental drawing operations Poco provides are those for

drawing rectangles, bitmaps, and text. As mentioned in Chapter 8, this may

not sound like much, but you can combine these elements to create a rich

user experience. The next sections cover them in detail.

 Drawing Rectangles
Drawing rectangles is the simplest of the three fundamental drawing

operations that Poco provides. In introducing this first drawing operation,

this section also presents some fundamentals about drawing with Poco.

 Filling the Screen
The $EXAMPLES/ch9-poco/rectangle example simply fills the entire screen

with a solid color. The code is shown in Listing 9-1.

Listing 9-1.

let poco = new Poco(screen);

let white = poco.makeColor(255, 255, 255);

poco.begin();

 poco.fillRectangle(white, 0, 0, poco.width, poco.height);

poco.end();

Chapter 9 Drawing graphiCs with poCo

362

The first line invokes the Poco constructor to create an instance of

Poco. The instance delivers rendered pixels to screen. This step is common

for all examples in this chapter and so will be omitted from the remaining

examples shown here.

Let’s look in turn at each of the methods called in this example:

 1. The three arguments to poco.makeColor receive

the red, green, and blue color components, each

with a range from 0 (none) to 255 (full). Here the

color specified is white, so the red, green, and blue

components are each 255. The makeColor method

combines these three values to a single value that’s

optimal for rendering to the destination (screen

in this example). Poco uses different algorithms to

create the color value from the color components,

depending on the destination. Therefore, you

should only pass the value returned by makeColor to

the same Poco instance that created it.

 2. The call to poco.begin tells Poco that you’re

beginning to render a new frame. All drawing

operations that occur after this are added to the

display list for the frame.

 3. The poco.fillRectangle call adds a command to

draw a full-screen white rectangle to the display list.

The color is the first argument, followed by the x and

y coordinates, and then the width and height. The

coordinate plane puts (0, 0) at the top-left corner of

the screen with the height and width progressing

down and right.

Chapter 9 Drawing graphiCs with poCo

363

 4. The call to poco.end tells Poco that you’ve

completed issuing the drawing operations for

this frame. Poco then renders the pixels and

sends them to screen; this may take some time,

depending on the size of the display, the speed of

the microcontroller, and the difficulty of rendering

the frame. On a Moddable One or Moddable Two, it

finishes quickly.

Important poco doesn’t automatically fill the background with a
color, because that would reduce rendering performance. this means
your code must draw to every pixel in the frame. if you don’t specify a
color for a pixel, poco outputs an undefined color. Make sure your code
fills the background with a color, as this example shows, or ensure
that the combination of drawing calls you make covers every pixel.

 Updating Part of the Screen
When you call the begin method, you have the option to specify the area

of the screen to update. You may recall that updating smaller parts of the

screen is one technique for achieving higher frame rates.

The following example fills a square of 20 x 20 pixels with red; the other

pixels on the display are unchanged. If you append this code to the earlier

rectangle example, the screen will be white except for a small red square

in the top-left corner.

let red = poco.makeColor(255, 0, 0);

poco.begin(0, 0, 20, 20);

 poco.fillRectangle(red, 0, 0, 20, 20);

poco.end();

Chapter 9 Drawing graphiCs with poCo

364

Here the call to begin defines the area in which to draw—called the

update area—to be only the 20 x 20 square in the top-left corner of the

display. Only the pixels in the update area are drawn, so the white pixels

outside the update area remain unchanged. When you call begin with no

arguments, as in the rectangle example, the update area is the entire screen.

In this example, the call to fillRectangle uses the same coordinates and

dimensions as the call to begin, filling the entire update area with red pixels.

As noted previously, the code between begin and end must make

drawing calls that cover every pixel to generate a correct result—but

what happens if that code draws outside the area specified in the call to

begin? Consider the following example, which calls fillRectangle with

parameters specifying the full screen:

let red = poco.makeColor(255, 0, 0);

poco.begin(0, 0, 20, 20);

 poco.fillRectangle(red, 0, 0, poco.width, poco.height);

poco.end();

This example produces exactly the same result as the preceding example.

Instead of responding to the request by fillRectangle to draw to the full

screen, Poco limits the output of fillRectangle to the update area specified

in the call to begin. This approach is convenient for many rendering

situations—especially for animations—as it enables you to limit the area to

update without changing your code to restrict its drawing to the update area.

 Drawing Random Rectangles
A classic computer graphics demonstration is to continuously render

randomly colored rectangles of random sizes and at random locations.

The $EXAMPLES/ch9-poco/random-rectangles example does exactly that,

by specifying coordinates in the call to Poco’s begin method to limit the

drawing to the current rectangle being drawn. If you run the example,

you’ll see an animated version of the screen shown in Figure 9-2.

Chapter 9 Drawing graphiCs with poCo

365

The first step is to instantiate Poco and clear the screen:

let black = poco.makeColor(0, 0, 0);

poco.begin();

 poco.fillRectangle(black, 0, 0, poco.width, poco.height);

poco.end();

Next, a repeating timer (Listing 9-2) is scheduled to run at about

60 frames a second. When the timer fires, random coordinates and

dimensions of a rectangle are generated along with a random color.

The begin method limits the drawing to the area of the rectangle.

Figure 9-2. Rendering from random-rectangles animation

Chapter 9 Drawing graphiCs with poCo

366

Listing 9-2.

Timer.repeat(function() {

 let x = Math.random() * poco.width;

 let y = Math.random() * poco.height;

 let width = (Math.random() * 50) + 5;

 let height = (Math.random() * 50) + 5;

 let color = poco.makeColor(255 * Math.random(),

 255 * Math.random(), 255 * Math.random());

 poco.begin(x, y, width, height);

 poco.fillRectangle(color, 0, 0, poco.width,

 poco.height);

 poco.end();

}, 16);

The random values are all floating-point because the call to Math.random

returns a number from 0 to 1. All Poco functions expect integer values for

coordinates, so makeColor and begin automatically round the floating-

point numbers provided to the nearest integer. In Chapter 11, you’ll learn

how to add your own random integer function to increase performance by

eliminating these floating-point operations.

 Drawing Blended Rectangles
The rectangles drawn up to this point have all been solid: the pixels

are entirely opaque and completely obscure the pixels behind them. A

blended rectangle combines a single color with the pixels behind it, which

creates an effect like looking through a pair of tinted glasses. Blended

rectangles are used in user interfaces to provide a layered effect and to

draw shadows.

To draw a blended rectangle, use the blendRectangle method. The

parameters are similar to those of fillRectangle, with the addition of the

blend level as the second parameter. The blend level is a number from 0

Chapter 9 Drawing graphiCs with poCo

367

to 255, where 0 means fully transparent (entirely invisible) and 255 means

fully opaque. The following line blends over the entire screen with red at a

blend level of 128 (50%). Like all other drawing operations, this must occur

between calls to begin and end.

poco.blendRectangle(red, 128, 0, 0, poco.width, poco.height);

If you pass blendRectangle a blend level of 0, it ignores the drawing

operation entirely, not even adding an entry to the display list. If you pass a

blend level of 255, blendRectangle behaves exactly like fillRectangle.

To explore what blended rectangles look like and their rendering

performance, the $EXAMPLES/ch9-poco/blended-rectangle example

animates a blended rectangle. Figure 9-3 shows images of the blended

rectangle in several positions on the screen.

The background of the animation consists of four colored bars—white,

red, green, and blue. The bars are drawn by the drawBars helper function,

shown in Listing 9-3.

Figure 9-3. Renderings from blended-rectangle animation

Chapter 9 Drawing graphiCs with poCo

368

Listing 9-3.

function drawBars(poco) {

 let w = poco.width;

 let h = poco.height / 4;

 poco.fillRectangle(poco.makeColor(255, 255, 255),

 0, 0, w, h);

 poco.fillRectangle(poco.makeColor(255, 0, 0),

 0, h, w, h);

 poco.fillRectangle(poco.makeColor(0, 255, 0),

 0, h * 2, w, h);

 poco.fillRectangle(poco.makeColor(0, 0, 255),

 0, h * 3, w, h);

}

When the example starts, it covers the entire screen by drawing the

colored bars. Notice that drawBars doesn’t begin with a single call to

fillRectangle to fill the entire screen with a solid color, but rather draws

four separate strips that combine to cover the entire screen area.

poco.begin();

 drawBars(poco);

poco.end();

Next, variables are defined to control the animation of a blended

black box that drops from the top center of the screen to the bottom

(see Listing 9-4).

Listing 9-4.

let boxSize = 30;

let boxBlend = 64;

let boxStep = 2;

let boxColor = poco.makeColor(0, 0, 0);

let x = (poco.width - boxSize) / 2, y = 0;

Chapter 9 Drawing graphiCs with poCo

369

The size of the box in pixels is defined by boxSize. The blend level is 64

(25%). On each frame of the animation, the box steps two pixels, as defined

by boxStep. The boxColor variable defines the box to be drawn in black.

Finally, the initial coordinates of the box’s top-left corner are set in the x

and y variables.

The motion of the box is animated with a repeating timer, shown

in Listing 9-5. The call to begin specifies a drawing area that includes

both the current and the previous positions of the box, ensuring that the

previous position is fully erased and the new position is fully drawn in one

operation. The call to drawBars specifies coordinates that fill the screen,

but those are limited to the update area passed to begin. At the end of the

timer callback function, the y coordinate is incremented by boxStep. Once

the box slides off the bottom of the screen, the y coordinate is reset to 0 to

continue animating from the top of the screen.

Listing 9-5.

Timer.repeat(function() {

 poco.begin(x, y - boxStep, boxSize, boxSize + boxStep * 2);

 drawBars(poco);

 poco.blendRectangle(boxColor, boxBlend, x, y, boxSize,

 boxSize);

 poco.end();

 y += boxStep;

 if (y >= poco.height)

 y = 0;

}, 16);

This animation runs at a smooth 60 frames per second on both the

ESP32 and the ESP8266. That’s because the code optimizes the drawing

area so that the microcontroller sends only about 60,000 pixels per second

to the display, or less than one full frame. The rendering and transmission

Chapter 9 Drawing graphiCs with poCo

370

to the screen of those pixels is spread across 60 frames. This reduces the

number of pixels rendered and transmitted by 98.6% compared with

rendering full frames. Experiment by changing the variables that control

the animation to see the effects of changing the size of the box, the blend

level, and the box color.

When running the example, you may notice a small artifact of the box

at the bottom of the screen when the box returns to the top. It’s possible

to modify the code to eliminate the artifact, but doing so makes the code

more complex. This is one of the details automatically taken care of by Piu,

as you’ll see in Chapter 10.

 Drawing Bitmaps
Drawing bitmaps is the second fundamental drawing operation provided

by Poco. It’s used for both mask bitmaps and image bitmaps. Because there

are so many different kinds of bitmaps and so many uses for bitmaps in

building a user interface, there are several different functions for drawing

bitmaps. This section introduces you to some of the most commonly used

functions.

 Drawing Masks
As you learned in Chapter 8, masks are the most common type of bitmap

used in building user interfaces with microcontrollers. There are many

reasons for that: they provide excellent quality because they support anti-

aliasing, they can be rendered in different colors, they render quickly, and

they can be compressed to minimize storage requirements.

Masks are stored in resources. You choose the mask images to use

in your project by including them in your project’s manifest as shown

in Listing 9-6 (and as you learned in the section “Adding Masks to Your

Project” in Chapter 8).

Chapter 9 Drawing graphiCs with poCo

371

Listing 9-6.

"resources": {

 "*-mask": [

 "./assets/mask"

]

}

To use a mask bitmap, you must first access the resource it’s stored

in. The resource is just data; a Poco bitmap object is needed to render the

mask using the Poco API. Commodetto provides functions to create Poco

objects from the resource’s data.

To instantiate a bitmap object from a compressed mask, use

Commodetto’s parseRLE function. (“RLE” stands for “run-length

encoding,” the algorithm used to compress the mask.) The following code

retrieves a resource and uses parseRLE to create the bitmap object:

import parseRLE from "commodetto/parseRLE";

let mask = parseRLE(new Resource("mask-alpha.bm4"));

There are some important details to understand in this small example:

• As you saw in Chapter 5, the Resource constructor

references the resource data in flash memory rather

than loading it into RAM. The parseRLE function also

references the data in place rather than copying the

data from flash memory to RAM; however, parseRLE

does allocate a small amount of RAM for the Poco

bitmap object that references that data.

• Notice that the path the resource is loaded from is

mask-alpha.bm4, not mask.png. Remember that tools

that are run at build time convert PNG files to an

optimized format for the microcontroller, and these

Chapter 9 Drawing graphiCs with poCo

372

tools put the optimized image data into a file of type

bm4. Because the image is used as an alpha channel,

-alpha is appended to the name. The code running

on the microcontroller therefore needs to load the

data with a different name than the original. (Piu

automatically uses the correct name and extension for

you.)

Once you have the bitmap object for the mask, you draw the mask by

calling the drawGray method:

poco.drawGray(mask, red, 10, 20);

The first argument is the mask, the second is the color to apply, and

the final two arguments are the x and y coordinates. Note that you do not

specify the dimensions; Poco always renders bitmaps at their original size,

without applying any scaling. This is done because high-quality scaling

would use more CPU time and increase the amount of rendering code in

Poco.

The mask bitmap object returned by parseRLE has width and height

properties that give the dimensions of the bitmap in pixels. These can be

useful in your drawing by enabling it to adapt automatically when you

change the dimensions of graphics assets. For example, the following code

draws a blue rectangle in the area behind the mask, so any pixels that the

mask doesn’t draw are blue and any pixels in the mask with transparency

blend against the blue background. The size of the blue background

rectangle always precisely matches the size of the mask.

poco.fillRectangle(blue, 10, 20, mask.width, mask.height);

poco.drawGray(mask, red, 10, 20);

Chapter 9 Drawing graphiCs with poCo

373

 Using an Uncompressed Mask

As you know from Chapter 8, drawing only a subset of a compressed

mask has some inefficiency because the decompressor must skip over

the parts of the image above and to the left of what you want to draw. You

can use an uncompressed mask instead. To do that, put the mask image

in the *-alpha section (rather than the *-mask section) of your manifest’s

resources to have it stored in uncompressed form. Then, instead of using

parseRLE to load it, use parseBMP with a resource extension of .bmp.

import parseBMP from "commodetto/parseBMP";

let mask = parseBMP(new Resource("mask-alpha.bmp"));

When switching between compressed and uncompressed masks,

remember to do the following:

• Put the resource in the correct section: *-alpha for

uncompressed and *-mask for compressed.

• Use the correct loading function to instantiate the

bitmap: parseBMP for uncompressed and parseRLE for

compressed.

• Use the correct extension in the resource name: .bmp

for uncompressed and .bm4 for compressed.

Once you have the bitmap, you use drawGray to render masks whether

they’re compressed or uncompressed.

 Drawing Part of a Mask

The image in Figure 9-4 (which you first saw in Chapter 8) is a single

uncompressed mask image that contains icons depicting several different

Wi-Fi states.

Chapter 9 Drawing graphiCs with poCo

374

An obvious use for this image is to draw an icon that reflects the

current Wi-Fi status. Your application will want to draw only one of the

icons at a time, reflecting the current status. As discussed in the preceding

section, for reasons of efficiency the image combining the different states

should not be compressed.

To draw only part of a bitmap, you specify a source rectangle, the area

of the bitmap to use. In the $EXAMPLES/ch9-poco/wifi-icons example,

the source rectangle’s x and y coordinates, width, and height are passed to

drawGray as optional arguments following the drawing coordinates. Each

individual status icon is 27 pixels square. The following code from the

wifi-icons example draws four status icons as shown in Figure 9-5:

poco.drawGray(mask, black, 10, 20, 0, 0, 27, 27); // top left

poco.drawGray(mask, black, 37, 20, 0, 27, 27, 27); // bottom left

poco.drawGray(mask, black, 10, 47, 112, 0, 27, 27); // top right

poco.drawGray(mask, black, 37, 47, 112, 27, 27, 27); // bottom right

Figure 9-4. Wi-Fi icon strip

Chapter 9 Drawing graphiCs with poCo

375

 Fading a Mask In and Out

Fading an image in or out is a common transition in a user interface. The

drawGray method has an option to blend the mask with the background

pixels. This is the same idea as blended rectangles, but using a mask enables

you to blend any shape. The $EXAMPLES/ch9-poco/fade- mask example

fades a volume icon in and out, as shown in Figure 9-6.

Figure 9-5. Icons created from Wi-Fi icon strip

Chapter 9 Drawing graphiCs with poCo

376

The blend level is specified in the optional ninth argument to

drawGray. As in blendRectangle, the blend level is a number from 0 to 255,

where 0 means fully transparent and 255 means fully opaque.

Listing 9-7 shows the code from the fade-mask example that fades the

mask resource from transparent to opaque. The same drawBars function

as in the blended-rectangle example (Listing 9-3) draws the mask over a

background.

Listing 9-7.

let mask = parseRLE(new Resource("mask-alpha.bm4"));

let maskBlend = 0;

let blendStep = 4;

let maskColor = poco.makeColor(0, 0, 255);

Figure 9-6. Renderings from fade-mask animation

Chapter 9 Drawing graphiCs with poCo

377

Timer.repeat(function() {

 let y = (poco.height / 4) - (mask.height / 2);

 poco.begin(30, y, mask.width, mask.height);

 drawBars(poco);

 poco.drawGray(mask, maskColor, 30, y,

 0, 0, mask.width, mask.height, maskBlend);

 poco.end();

 maskBlend += blendStep;

 if (maskBlend > 255)

 maskBlend = 0;

}, 16);

Notice that to use the blend level, you must also provide the source

rectangle, even when drawing the entire mask. The dimensions of the

bitmap rectangle—mask.width and mask.height in this example—are

used for the source rectangle; this ensures that the code doesn’t need to

change when the dimensions of the asset are changed.

 Drawing Color Images
You add color images to your project using JPEG and PNG files. The build

tools convert these to uncompressed bitmaps for rendering on the device,

because it’s generally impractical to use the JPEG and PNG compression

formats on a microcontroller to build a high-performance user interface.

The bitmap is stored in a BMP file (with a .bmp extension) and can be quite

large because it’s not compressed. For example, an image 40 pixels square

for a display using 16-bit pixels takes up 3,200 bytes of storage.

You create a Poco bitmap for a BMP image using the parseBMP

function, as you saw earlier, and you draw it using the drawBitmap method,

passing as arguments the x and y coordinates of where to draw the image.

let image = parseBMP(new Resource("quack-color.bmp"));

poco.drawBitmap(image, 30, 40);

Chapter 9 Drawing graphiCs with poCo

378

As with drawGray, you can optionally draw only part of the image by

specifying the source rectangle. The following example draws only the top-

left quadrant of the image:

poco.drawBitmap(image, 30, 40, 0, 0,

 image.width / 2, image.height / 2);

 Drawing JPEG Images
Because of their memory and CPU requirements, compressed

JPEG images aren’t a good general-purpose way to store images on

microcontrollers; however, they’re useful when you need to store a large

number of images in a relatively small space—for example, a slide show

or a collection of images to use in a user interface. Commodetto includes

a JPEG decompressor that you can use together with Poco to draw JPEG

images in your projects. This section explains two different ways to do that.

 Storing JPEG Data in Resources

As you know, the build tools automatically convert images in your manifest

to BMP files. If you want to keep a JPEG file in its original compressed

format, put the JPEG image in the data section of the manifest instead of

the resources section (see Listing 9-8). The contents of the data section

are always copied without any transformation.

Listing 9-8.

"data": {

 "*": [

 "./piano"

]

}

Chapter 9 Drawing graphiCs with poCo

379

The approaches to drawing a JPEG image that are introduced in the

following section are incompatible with software display rotation. That’s

because software rotation depends on rotating the image at build time,

and here the manifest tells the build tools not to transform the images.

These techniques for drawing JPEG images work only when you’re using

hardware rotation or when software rotation is 0 degrees.

 Drawing a JPEG Image from Memory

On computers and phones, JPEG images are usually decompressed once

to an offscreen bitmap; then, when the JPEG image is needed, that bitmap

is drawn. This approach gives excellent rendering performance, because

the complex operation of decompressing the JPEG image happens only

once. However, storing the decompressed JPEG image uses a great deal

of memory. Consequently, this approach is typically appropriate on

microcontrollers for only relatively small images.

The following example uses the loadJPEG function to decompress a

resource containing JPEG data to a Poco bitmap. Once the image is in a

bitmap, you use drawBitmap to render it as described previously.

import loadJPEG from "commodetto/loadJPEG";

let piano = loadJPEG(new Resource("piano.jpg"));

poco.drawBitmap(piano, 0, 0);

The call to loadJPEG takes some time to complete, because

decompressing JPEG images is a relatively difficult operation for

a microcontroller. The time varies based on the size of the image,

compression level, and microcontroller performance.

Chapter 9 Drawing graphiCs with poCo

380

 Drawing a JPEG Image During Decompression

If you don’t have enough memory to hold the full decompressed JPEG

image in memory, you can still display the image, by displaying it in blocks

as it’s decompressed. The $EXAMPLES/ch9-poco/draw-jpeg example

demonstrates how to decompress a full-screen (240 x 320) JPEG image

directly to the screen. When you run the example, you’ll see the screen

shown in Figure 9-7.

First you use the JPEG class to create a Poco bitmap for the JPEG image:

import JPEG from "commodetto/readJPEG";

let jpeg = new JPEG(new Resource("harvard.jpg"));

Figure 9-7. JPEG image from draw-jpeg example

Chapter 9 Drawing graphiCs with poCo

381

The JPEG decompressor always decodes one block at a time. The size

of the block varies depending on how the JPEG image is compressed, and

is between 8 x 8 and 16 x 16 pixels. As the blocks are decompressed, your

code can draw them directly to the screen.

Listing 9-9 shows the code from the draw-jpeg example that

decompresses the JPEG image to the screen. The read method

decompresses one block of the image and returns it as a Poco bitmap. The

bitmap object includes x and y properties that provide the coordinates of

the block in the JPEG image and width and height properties that provide

the block’s dimensions. The ready property of the JPEG class returns true

while there are more blocks to display and false after all blocks have been

decoded.

Listing 9-9.

while (jpeg.ready) {

 let block = jpeg.read();

 poco.begin(block.x, block.y, block.width, block.height);

 poco.drawBitmap(block, block.x, block.y);

 poco.end();

}

 Filling with Color Images
Filling an area of the screen with a texture can create a more interesting

user interface than a solid color. The $EXAMPLES/ch9-poco/pattern-fill

example demonstrates how to tile an image of earth to cover part of the

screen, as shown in Figure 9-8.

Chapter 9 Drawing graphiCs with poCo

382

Using a large image of a textured pattern takes more storage than it

needs to. A good alternative is to use a small pattern that can be tiled. Your

code can simply draw the small image multiple times; however, it takes

time to issue all those calls to drawBitmap, and doing so may overflow

Poco’s display list. A better option is to use Poco’s fillPattern method,

which tiles a rectangular area with a Poco bitmap. For example, here’s how

to fill the entire screen with a bitmap stored in a variable named tile:

poco.fillPattern(tile, 0, 0, poco.width, poco.height);

The arguments after the bitmap are the x and y coordinates, width, and

height of the rectangle to fill. The fillPattern method also supports an

optional source rectangle, which enables you to use only a section of the

bitmap for the tile. For example (as shown in Figure 9-9), the image from

Figure 9-8. Repeated earth texture from pattern-fill example

Chapter 9 Drawing graphiCs with poCo

383

the pattern-fill example combines 11 different versions of the same

texture, each in a different step of an animation.

The pattern-fill example uses the source rectangle to fill an area

of the screen with an animated pattern. Listing 9-10 shows the code that

creates the animation. A timer is used to move sequentially through the

eight different images in the combined image. The phase variable keeps

track of which of the eight steps of the animated pattern to draw.

Listing 9-10.

let tile = parseBMP(new Resource("tiles-color.bmp"));

let size = 30;

let x = 40, y = 50;

let phase = 0;

Timer.repeat(function() {

 poco.begin(x, y, size * 5, size * 5);

 poco.fillPattern(tile, x, y, size * 5, size * 5,

 phase * size, 0, size, size);

 poco.end();

 phase = (phase + 1) % 8;

}, 66);

 Drawing Masked Color Images
Drawing a color image through a mask (an alpha channel) is a common

technique in mobile apps and web pages. As you saw in Chapter 8, it

enables you to draw a full-color image of any shape, not just rectangles.

Figure 9-9. Image from pattern-fill example

Chapter 9 Drawing graphiCs with poCo

384

Using the drawMasked method of Poco, you can draw an uncompressed

color image through an uncompressed grayscale mask.

The drawMasked call takes many arguments, all but one of which is

required. These are the parameters, in order:

• image – The color bitmap image.

• x, y – The coordinates at which to draw.

• sx, sy, sw, sh – The source rectangle to use from the

color bitmap.

• mask – The mask bitmap (uncompressed 4-bit

grayscale; compressed masks are not supported).

• mask_sx, mask_sy – The coordinates of the top left of

the source rectangle to use from the mask bitmap. (The

width and height are the same as those of the color

bitmap source rectangle.)

• blend – (Optional) The blend level, from 0 to 255;

defaults to 255 (fully opaque).

To try drawing a color image through a mask, you’ll need an image

and a mask. The $EXAMPLES/ch9-poco/masked-image example uses the

circle mask in Figure 9-10 to create a spotlight effect with the train image in

Figure 9-11.

Figure 9-10. Circle mask from masked-image example

Figure 9-11. Train image from masked-image example

Chapter 9 Drawing graphiCs with poCo

385

The mask and color image are loaded with parseBMP because they’re

both uncompressed:

let image = parseBMP(new Resource("train-color.bmp"));

let mask = parseBMP(new Resource("mask_circle.bmp"));

As shown in the following code, the drawing location is set to the

coordinates (30, 30) in the x and y variables. The variable sx is the left side

of the source rectangle; it’s initialized to the right side of the image so that

the train rendering begins at the front of the train. The step variable is set

to 2 to advance the train two pixels on each frame.

let x = 30, y = 30;

let sx = image.width - mask.width;

let step = 2;

Listing 9-11 shows the code that does the animation. A timer is used

to move the train at regular intervals. The location of the drawing is always

the same, with the train moving through the mask. The train moves by

adjusting sx, the left edge of the image’s source rectangle.

Listing 9-11.

Timer.repeat(function() {

 poco.begin(x, y, mask.width, mask.height);

 poco.fillRectangle(gray, x, y, mask.width, mask.height);

 poco.drawMasked(image, x, y,

 sx, 0, mask.width, mask.height, mask, 0, 0);

 poco.end();

 sx -= step;

 if (sx <= 0)

 sx = image.width - mask.width;

}, 16);

Chapter 9 Drawing graphiCs with poCo

386

Figure 9-12 shows the result of drawing part of the train through the

mask. Notice that the edges of the mask blend with the gray background.

The optional blend argument to drawMasked changes the relative

opacity of each pixel. Figure 9-13 shows the same train image rendered

with a blend level of 128 (about 50%). Notice now that all the pixels, not

only the edges, blend with the background.

Figure 9-12. Masked train with default blend level (255)

Chapter 9 Drawing graphiCs with poCo

387

 Drawing Text
The third and last of the fundamental drawing operations supported by

Poco is drawing text. To draw text, you first need a font. Fonts are stored as

bitmaps and are usually compressed.

In your applications, fonts are loaded from a resource using the

parseBMF function. For compressed fonts, the extension is .bf4. This

chapter identifies a font resource with a name consisting of hyphen-

separated parts according to the convention that’s typically used in

applications built with Piu (as described further in Chapter 10).

import parseBMF from "commodetto/parseBMF";

let regular16 = parseBMF(new Resource("OpenSans-Regular-16.bf4"));

let bold28 = parseBMF(new Resource("OpenSans-Semibold-28.bf4"));

Figure 9-13. Masked train with blend level of 128

Chapter 9 Drawing graphiCs with poCo

388

Poco doesn’t impose a limit on the number of fonts your project

may contain. Of course, the available flash storage space on your target

microcontroller limits the number and size of fonts in your project.

The characters in a font are grayscale masks, so they can be drawn in

any color. The drawText method requires as arguments a text string, font,

color, and drawing coordinates. The coordinates specify the location of

top-left corner of the first character drawn. The following line draws the

string Hello in 16-point, regular-weight Open Sans in black starting at the

top-left corner of the screen:

poco.drawText("Hello", regular16, black, 0, 0);

 Drawing a Text Shadow
You can achieve a drop shadow effect by drawing the text twice, each time

with different coordinates—first as a shadow and then as the primary

text. The $EXAMPLES/ch9-poco/text-shadow example begins by drawing

the text in the shadow color down and to the right of where the primary

text will go and then overlays that with the same string in the primary

color drawn at the primary coordinates. This results in the text shown in

Figure 9-14.

let text = "Drop Shadow";

poco.drawText(text, bold28, lightGray, 0 + 2, 100 + 2);

poco.drawText(text, bold28, blue, 0, 100);

Chapter 9 Drawing graphiCs with poCo

389

 Measuring Text
The height of the text drawn is the same as the height of the font, which is

contained in the height property of the font object. The width of the text

drawn is determined by using the getTextWidth method. The following

code fills the area behind the text with green before drawing the text:

let text = "Hello";

let width = poco.getTextWidth(text, regular16);

poco.fillRectangle(green, 0, 0, width, regular16.height);

poco.drawText(text, regular16, black, 0, 0);

Figure 9-14. Text drawn by text-shadow example

Chapter 9 Drawing graphiCs with poCo

390

Note the font is passed to getTextWidth because it contains the
measurements for each character. take care not to measure with one
font and draw with another; their measurements are likely different,
so you could get unexpected results.

 Truncating Text
In situations where the text you want to draw is wider than the space

available for it, a common solution is to draw an ellipsis (...) at the

point where the text is cut off. The drawText method does this for you

automatically when you tell it the width that’s available for drawing.

The following example draws a sentence on a single line, truncating it

to the width of the screen. The result is shown in Figure 9-15.

let text = "JavaScript is one of the world's most widely used

 programming languages.";

poco.drawText(text, regular16, black, 0, 0, poco.width);

poco.drawText(text, bold28, black, 0, 40, poco.width);

Chapter 9 Drawing graphiCs with poCo

391

Figure 9-15. Truncated text in two different fonts

 Wrapping Text
In some situations, you may want to draw text across multiple lines of the

display. In the general case of supporting written languages from around

the world, such word wrapping is challenging. The $EXAMPLES/ch9-poco/

text-wrap example presents a basic approach that’s sufficient for common

situations when you’re working with languages written with Roman

characters.

The example uses the split method of String objects to create an

array containing the words of the string:

let text = "JavaScript is one of the world's most widely used

 programming languages.";

text = text.split(" ");

Chapter 9 Drawing graphiCs with poCo

392

It then loops through all the words, one at a time, as shown in

Listing 9-12. If there’s enough room on the line to fit the current word

or if the word is wider than the full line, the text is drawn; otherwise,

width is reset to the full line width and y is increased by the font’s

height so that drawing resumes on the next line down.

Listing 9-12.

let width = poco.width;

let y = 0;

let font = regular16;

let spaceWidth = poco.getTextWidth(" ", font);

while (text.length) {

 let wordWidth = poco.getTextWidth(text[0], font);

 if ((wordWidth < width) || (width === poco.width)) {

 poco.drawText(text[0], font, black, poco.width - width, y);

 text.shift();

 }

 width -= wordWidth + spaceWidth;

 if (width <= 0) {

 width = poco.width;

 y += font.height;

 }

}

Figure 9-16 shows the result of running this example with the font set

to regular16 and bold28, respectively.

Chapter 9 Drawing graphiCs with poCo

393

Figure 9-16. text-wrap example with font size 16 (left) and 28 (right)

 Additional Drawing Techniques
Poco and Commodetto provide many tools to simplify and optimize

drawing for specific needs. The following sections introduce three of them:

using clipping to restrict text to a box, using the origin to easily reuse

drawing code, and drawing offscreen to efficiently render gradients.

 Restricting Text to a Box
As you know, Poco does not draw outside the update area defined when

you call Poco’s begin method; it clips to that area, by setting the initial

clipping area to be the same as the update area. Your code can also adjust

the clipping area during drawing. The clipping area is always limited by

the update area defined by begin; you can shrink the clipping area, but you

can ever expand it beyond the initial drawing area.

Chapter 9 Drawing graphiCs with poCo

394

One place where clipping is useful is a ticker—a scrolling text message

that fits into a section of the screen. The text must never be drawn outside

the bounds of the ticker but should be drawn all the way to its edges. The

$EXAMPLES/ch9-poco/text-ticker example demonstrates how to do this;

Figure 9-17 shows a rendering of the example.

Listing 9-13 shows some of the variables used throughout the drawing

code. There’s a black frame around the outside, with its size in pixels stored

in the frame variable. There’s a small margin inside the frame, where the

text cannot be drawn; its size in pixels is stored in the margin variable. The

width of the area reserved for the ticker text is stored in tickerWidth. The

overall width and height are calculated from these values.

Figure 9-17. Ticker tape drawn by text-ticker example

Chapter 9 Drawing graphiCs with poCo

395

Listing 9-13.

let frame = 3;

let margin = 2;

let x = 10, y = 60;

let tickerWidth = 200;

let width = tickerWidth + frame * 2 + margin * 2;

let height = regular16.height + frame * 2 + margin * 2;

The text is measured once, before drawing starts, to avoid redundant

calculations during rendering. The result is stored in textWidth.

let text = "JavaScript is one of the world's most widely used

 programming languages.";

let textWidth = poco.getTextWidth(text, regular16);

The variable dx stores the current horizontal offset of the text from the

left edge of the ticker text area. The text starts just off the right edge and

scrolls in from there.

let dx = tickerWidth;

The ticker is drawn in two parts. First, the black frame and yellow ticker

background are drawn:

poco.fillRectangle(black, x, y, width, height);

poco.fillRectangle(yellow, x + frame, y + frame,

 tickerWidth + margin * 2,

 regular16.height + margin * 2);

Next, the text is drawn (Listing 9-14). The example first uses the

clip method to change the clipping area. It calls clip with the x and y

coordinates, width, and height of the clipping rectangle. This pushes the

current clipping area onto a stack and then intersects it with the requested

clip. Calling clip with no arguments pops the clip stack and restores the

previous clip. This approach makes it easy to nest clipping area changes.

Chapter 9 Drawing graphiCs with poCo

396

Listing 9-14.

poco.clip(x + frame + margin, y + frame + margin, tickerWidth,

 regular16.height);

poco.drawText(text, regular16, black, x + frame + margin + dx,

 y + frame);

poco.clip();

Finally, the horizontal offset of the ticker is advanced, to prepare for

the next animation frame. When the text completely scrolls off the left

edge, it resets to again scroll in from the right edge.

dx -= 2;

if (dx < -textWidth)

 dx = tickerWidth;

 Easily Reusing Drawing Code
The origin for drawing, (0, 0), is the top-left corner of the screen after you

call Poco’s begin method, and the origin has remained there in all the

examples so far. You can use the origin method to offset the origin. This

simplifies writing a function to draw a user interface element at different

locations on the screen. The $EXAMPLES/ch9-poco/origin example uses

the origin method to draw identical yellow rectangles with black frames in

different locations, as shown in Figure 9-18.

Chapter 9 Drawing graphiCs with poCo

397

Figure 9-18. Rectangles drawn by the origin example

The following function from the origin example draws a yellow

rectangle with a black frame:

function drawFrame() {

 poco.fillRectangle(black, 0, 0, 20, 20);

 poco.fillRectangle(yellow, 2, 2, 16, 16);

}

In this function, drawing is done at the origin. Moving the origin before

calling drawFrame causes the drawing to appear at a different location on

the screen. Listing 9-15 shows the code from the origin example that calls

the origin method to offset the origin before each call to drawFrame. The

result is the four rectangles you saw in Figure 9-19.

Chapter 9 Drawing graphiCs with poCo

398

Listing 9-15.

drawFrame();

poco.origin(20, 20);

drawFrame();

poco.origin(20, 20);

drawFrame();

poco.origin();

poco.origin();

poco.origin(0, 65);

drawFrame();

poco.origin();

The origin starts at (0, 0). The first call to poco.origin(20, 20) moves

the origin to (20, 20). Because the values are relative, the second call to

poco.origin(20, 20) moves the origin to (40, 40).

The origin method stores the current origin on a stack. Calling origin

with no arguments pops the origin stack and restores the previous origin.

As with the clip method, this approach makes nested origin changes easy.

In this example, the call to poco.origin(0, 65) occurs after all items

on the stack are removed, so the origin is back at (0, 0). After the call, the

origin is at (0, 65).

While the final call to origin may appear unnecessary, since no further

drawing is performed, Poco considers it an error if you fail to fully clear

the origin or clip stack before calling the end method. If this unbalanced

situation occurs, the end method reports an error.

 Efficiently Rendering Gradients
Your projects aren’t limited to bitmaps created at build time; you can also

create bitmaps while your project is running. You’ve already seen one

example of this: the loadJPEG function creates a bitmap in memory from

compressed JPEG data. Because these bitmaps must be stored in RAM,

Chapter 9 Drawing graphiCs with poCo

399

they’re limited by the amount of available memory. You can create a

bitmap at runtime using the BufferOut class, which also creates a virtual

screen for the bitmap. This enables you to draw to the offscreen bitmap

using Poco in the same way you draw to a physical screen.

import BufferOut from "commodetto/BufferOut";

The $EXAMPLES/ch9-poco/offscreen example creates an offscreen

bitmap, draws a simple gradient to the bitmap, and then animates the

bitmap on the screen. When creating the offscreen bitmap, you specify its

width and height and the pixel format for the new bitmap. Here the pixel

format is set to poco.pixelsOut.pixelFormat so that the offscreen bitmap

and the screen have the same pixel format.

let offscreen = new BufferOut({width: 64, height: 64,

 pixelFormat: poco.pixelsOut.pixelFormat});

This offscreen bitmap is a 64 x 64 pixels square. To draw to it, you

create another instance of Poco bound to offscreen, instead of to screen

like the first instance.

let pocoOff = new Poco(offscreen);

The example then uses pocoOff to draw to the bitmap exactly as if it

were drawing to the screen. Listing 9-16 shows the code it uses to draw the

gray gradient shown in Figure 9-19.

Listing 9-16.

pocoOff.begin();

 for (let i = 64; i >= 1; i--) {

 let gray = (i * 4) - 1;

 let color = pocoOff.makeColor(gray, gray, gray);

 pocoOff.fillRectangle(color, 0, 0, i, i);

 }

pocoOff.end();

Chapter 9 Drawing graphiCs with poCo

400

The bitmap attached to offscreen is available from its bitmap

property. The following line draws the offscreen bitmap to the screen:

poco.drawBitmap(offscreen.bitmap, 0, 0);

Rendering the content of this offscreen bitmap requires drawing 64

different rectangles, each of a slightly different size and color. Drawing

those rectangles over and over in an animation would be too much

calculation for a microcontroller. Fortunately, drawing the offscreen

bitmap is much easier.

The offscreen example goes on to animate 19 copies of an offscreen

bitmap by sliding them left and right at different speeds. Listing 9-17 shows

the animation code, and Figure 9-20 shows a rendering of the animation.

Listing 9-17.

let step = 1;

let direction = +1;

Timer.repeat(function() {

 poco.begin(0, 0, 240, 240);

 poco.fillRectangle(white, 0, 0, poco.width, poco.height);

 for (let i = 0; i < 19; i += 1)

 poco.drawBitmap(offscreen.bitmap, i * step, i * 10);

Figure 9-19. Gray gradient drawn by offscreen example

Chapter 9 Drawing graphiCs with poCo

401

 step += direction;

 if (step > 40) {

 step = 40;

 direction = -1;

 }

 else if (step < 1) {

 step = 0;

 direction = +1;

 }

 poco.end();

}, 33);

Figure 9-20. Rendering of offscreen animation

Chapter 9 Drawing graphiCs with poCo

402

 Touch Input
If you’re using Poco to draw your product’s user interface and you want to

incorporate touch capabilities, you need to implement support for touch

input by reading directly from the touch input driver. When you use Piu,

touch input is automatically taken care of for you. Fortunately, reading the

touch input is not very difficult.

 Accessing the Touch Driver
The most common capacitive touch input is the FocalTech FT6206. This

part is used in Moddable One and Moddable Two boards. You import the

touch driver in your project and create an instance as follows:

import FT6206 from "ft6206";

let touch = new FT6206;

Older resistive touch screens commonly use the XPT2046 touch

controller.

import XPT2046 from "xpt2046";

let touch = new XPT2046;

Both touch drivers implement the same API, so once you’ve

instantiated the driver your code to read from them is the same for both.

 Reading Touch Input
To retrieve touch points from the touch driver, you call the read method.

You pass an array of touch points to the read call, and the driver updates

the points. Usually you allocate the touch points once, after instantiating

the touch driver to minimize the work done by the memory manager and

garbage collector. The following line allocates an array with a single touch

Chapter 9 Drawing graphiCs with poCo

403

point. The array is assigned to the points property of the touch input

driver instance.

touch.points = [{}];

To retrieve the current touch points, call read with the array of points:

touch.read(touch.points);

The driver sets the state property for each touch point. The values of

the state property are as follows:

• 0 – no touch

• 1 – touch input begin (finger down)

• 2 – touch input continue (finger still down)

• 3 – touch input end (finger lifted)

For all state values except 0, the x and y properties of the touch point

indicate the current touch location. The code in Listing 9-18, which is

excerpted from $EXAMPLES/ch9-poco/touch, samples the touch driver 30

times a second, outputting the current state to the debug console.

Listing 9-18.

Timer.repeat(function() {

 let points = touch.points;

 let point = points[0];

 touch.read(points);

 switch (point.state) {

 case 0:

 trace("no touch\n");

 break;

 case 1:

 trace(`touch begin @ ${point.x}, ${point.y}\n`);

 break;

Chapter 9 Drawing graphiCs with poCo

404

 case 2:

 trace(`touch continue @ ${point.x}, ${point.y}\n`);

 break;

 case 3:

 trace(`touch end @ ${point.x}, ${point.y}\n`);

 break;

 }

}, 33);

Some versions of the FT6206 do not reliably generate the touch

end state. When you run the example, you can see the behavior of your

component. If the touch end state is not generated, you can determine

that a touch sequence has ended when the touch point enters state 0 (no

touch).

 Using Multi-touch
The reason that the read method takes an array of points rather than a

single point is so that it can support multi-touch. The FT6206 capacitive

touch sensors support two simultaneous touch points, as long as they’re

not too close together. To use multi-touch, you just need to pass an array

with two points.

touch.points = [{}, {}];

touch.read(touch.points);

 Applying Rotation
The touch driver always provides points that have neither hardware nor

software rotation applied. If you’re using rotation, you need to apply it to

the touch points. As you might expect, Piu takes care of rotating the touch

points for you.

Chapter 9 Drawing graphiCs with poCo

405

You can use code from Listing 9-19 to transform coordinates for

rotations of 90, 180, and 270 degrees.

Listing 9-19.

if (90 === rotation) {

 const x = point.x;

 point.x = point.y;

 point.y = screen.height - x;

}

else if (180 === rotation) {

 point.x = screen.width - point.x;

 point.y = screen.height - point.y;

}

else if (270 === rotation) {

 const x = point.x;

 point.x = screen.width - point.y;

 point.y = x;

}

 Conclusion
The Poco renderer provides all the basic tools you need to build the

user interface of an IoT product. You can draw rectangles, bitmaps,

and text with many different options. The rendering capabilities

include anti-aliased text, grayscale masks drawn in any color, and

rendering of color images through alpha channel masks. You can

optimize rendering performance using clipping to restrict the area of

the screen that you update.

Chapter 9 Drawing graphiCs with poCo

406

Poco gives you a great deal of control—but that power brings with it

some inconveniences. You must load resources and invoke the appropriate

functions to parse them, you must calculate the area of the screen to

update, and you must take care of some details of rotation. The next

chapter introduces the Piu user interface framework, which takes care of

many of these details for you.

Chapter 9 Drawing graphiCs with poCo

407© Peter Hoddie and Lizzie Prader 2020
P. Hoddie and L. Prader, IoT Development for ESP32 and ESP8266 with JavaScript,
https://doi.org/10.1007/978-1-4842-5070-9_10

CHAPTER 10

Building User
Interfaces with Piu
Piu is an object-oriented user interface framework that simplifies the

process of creating sophisticated user interfaces. It uses the Poco renderer

to draw. This chapter provides an overview of how Piu works and

introduces some of its major capabilities through a series of examples. The

name Piu means “more” in classical music and reflects the remarkably rich

set of capabilities that Piu builds on Poco.

Keep in mind that learning a new user interface framework can

be challenging. Every framework has its own way of addressing the

problem of building a user interface and its own suite of APIs to solve

the problem. It takes more than following the examples in this chapter to

fully understand the intricacies of Piu. The goal of the chapter is to teach

you the most important and commonly used features of Piu, show simple

examples of where they’re used, and explain them enough that you can

use them in your own user interfaces for your own products.

Some parts of Piu will look familiar to you if you already know

Cascading Style Sheets, or CSS, a language for defining styles—for example,

of text—that’s most commonly used in designing web pages written

in HTML. The similarities between Piu and CSS are no accident; Piu

incorporates many CSS conventions to provide consistency for developers

working on both web and IoT products.

https://doi.org/10.1007/978-1-4842-5070-9_10#ESM

408

 Key Concepts
It’s important to understand a few of the key concepts behind Piu before

diving into code. If you’re new to working with object-oriented user

interface frameworks, the information in this section is particularly

important because it gets you in the right mindset to work with Piu. If

you’re already comfortable working with object-oriented frameworks, this

section is still important because it introduces information specific to Piu.

 Everything Is an Object
The most important concept to grasp is that every element of the user

interface in a Piu application has a corresponding JavaScript object. The

JavaScript objects are instances of the classes Piu provides. Piu is unlike

the other Moddable SDK features introduced in this book in that you don’t

have to import most Piu classes. Instead, Piu stores the constructors for

commonly used classes in global variables, making it easy for you to use

them from any module in your application.

Every Piu application begins with the same object: an instance of

the Piu Application class. The host for this chapter creates the instance,

so none of the examples in this chapter need to create it. Listing 10-1

shows how the host instantiates the Application instance by calling the

Application constructor.

Listing 10-1.

new Application(null, {

 displayListLength: 8192,

 commandListLength: 4096,

 skin: new Skin({fill: "white"}),

 Behavior: AppBehavior

});

Chapter 10 Building user interfaCes with piu

409

Don’t worry about the details of the various properties for now. Do

notice that the displayListLength property from Poco is used here, since

Piu uses Poco for drawing.

As part of the Application constructor, Piu stores the instance in

the application global variable. The examples access the Application

instance through the application global.

The application object is the root of a Piu application. Think of it as a

container that holds all the graphical elements that appear on the screen.

Graphical elements added to the container are called content objects. To

display a content object on the screen, you create an instance of it and

add it to the application object. To display a line of text, for example, you

create an instance of Piu’s Label class, a kind of content object, and add

that to the application object.

Note this chapter refers to classes by their capitalized names, as
in “the Label class,” and to instances of classes by the uncapitalized
class name, as in “a label object” (or simply “a label”).

You can create Piu content objects without adding them to the

application object, but they’re not drawn until they’re added. When you

use Piu, you don’t call drawing functions yourself. The content objects

know how to draw themselves; they call the drawing functions for you as

needed to update the screen.

Of course, you can also remove content objects from the screen.

As you may have guessed, you do this by removing them from the

application object.

Chapter 10 Building user interfaCes with piu

410

 Every User Interface Element Is a Content Object
As you now know, every element of the user interface in a Piu application

is associated with a content object. More specifically, every user interface

element is associated with an instance of a class that inherits from the

Content class. There are many such classes, including the Label class

mentioned previously. You’ll learn about various types of content objects

throughout this chapter.

Note in this chapter, “content object” refers to an instance of the
Content class, whereas the generic term content object refers to an
instance of any class that inherits from the Content class.

When you create a content object, you specify its properties in a

JavaScript dictionary. In the case of a label object, properties include the

label’s string and text style. The dictionary is passed to the constructor of

the class.

let sampleLabel = new Label(null, {

 style: textStyle,

 string: "Hello"

});

The properties of a content object can be changed at any time. You

change a property by setting its value in the instance, usually using the

same property name you used to initialize the property when you called

the constructor.

sampleLabel.style = OpenSansBold12;

sampleLabel.string = "Goodbye";

Chapter 10 Building user interfaCes with piu

411

When you change the properties of a content object that you added to

the application object, the screen is updated automatically. Piu causes an

update by invalidating the appropriate parts of the display, and the content

object calls the needed drawing functions to update the screen.

 Not All Piu Objects Are Content Objects
In addition to content objects, Piu has several other kinds of objects, the

most common of which are introduced in this section. They’re all used to

modify content objects in some way—their appearance, how they behave,

or how they animate. None of these objects inherit from the Content class.

The classes that define them are introduced here and described in greater

detail later in this chapter.

 Defining Appearance

The Skin, Texture, and Style classes modify the appearance of content

objects: skin and texture objects are used by content objects to fill an

area with color and images, while style objects define the appearance

of text, including its font and color. In the preceding section, for example,

sampleLabel was instantiated with a dictionary containing a style

property set to a style object named textStyle. The style object is not

associated with a single content object; rather, it may be applied to one or

more label objects and other content objects.

Similarly, skin objects are associated with content objects through the

skin property of the content objects, and, like style objects, they may be

shared by many content objects. The Texture class, on the other hand, is

not used directly by content objects; texture objects are associated with

skin objects, through the texture property of the skin objects, and they

may be shared by many skin objects.

Chapter 10 Building user interfaCes with piu

412

As with content objects, you specify the properties of skin, texture,

and style objects with a dictionary passed to their constructor. Unlike

with content objects, the properties of skin, texture, and style objects

cannot be changed. This means, for example, that to change the font used

by a label, you change the style property of the label object, not the font

property of the style object.

 Controlling Behavior

Behaviors perform actions in response to events, such as taps on the

screen, changes in sensor values, or the expiration of a timer. The behavior

of content objects is defined by subclasses of the Behavior class. Behaviors

are part of how Piu enables an event-driven programming style. If you’re

new to event-driven programming, don’t worry; this chapter thoroughly

explains how behavior objects and events work in Piu.

A content object must have a behavior assigned to it to be able to

respond to events. A content object need not have an assigned behavior,

but it won’t respond to events without one. Usually a content object has

its own instance of a Behavior subclass, though it’s possible for multiple

content objects to share one behavior instance.

 Animating

To animate content objects, you use the Timeline and Transition classes.

You can animate content objects by changing their properties to make

them move, change color, fade in or out, and more, and you can swap one

content object for another—for example, to move between screens.

Content objects do not have timeline or transition properties;

instead, timeline and transition objects refer to the content objects

they animate.

Chapter 10 Building user interfaCes with piu

413

 Installing the Piu Host
You can run all of this chapter’s examples by following the pattern

described in Chapter 1: install the host on your device using mcconfig,

then install example applications using mcrun.

All the Piu examples require the use of a screen, making it essential

for your mcconfig command line to specify a platform with a screen

driver for your development board. The examples are intended to run on

screens with 320 x 240 resolution. The following command lines are for the

Moddable One, Moddable Two, and M5Stack FIRE:

> mcconfig -d -m -p esp/moddable_one

> mcconfig -d -m -p esp32/moddable_two

> mcconfig -d -m -p esp32/m5stack_fire

If you’re wiring the screen to your development board using a

breadboard and jumper wires, follow the instructions in Chapter 1. The

wiring provided there for the ESP32 works with the esp32/moddable_zero

target; likewise for the ESP8266 and the esp/moddable_zero target.

The screen driver for the Moddable Zero, Moddable One, Moddable Two,

and M5Stack FIRE supports the use of hardware rotation. The host configures

the screen rotation so that it renders pixels in landscape (320 x 240) orientation

rather than the default portrait (240 x 320) orientation.

If your device doesn’t have a screen, you can run this chapter’s

examples on the desktop simulator provided by the Moddable SDK. The

following command lines are for macOS, Windows, and Linux:

> mcconfig -d -m -p mac

> mcconfig -d -m -p win

> mcconfig -d -m -p lin

The host for this chapter is in the $EXAMPLES/ch10-piu/host directory.

Navigate to this directory from the command line and install it with

mcconfig.

Chapter 10 Building user interfaCes with piu

414

If you’re using the desktop simulator, make sure you change the

dimensions of the screen to 320 x 240 before you install examples. You do

this by selecting 320 x 240 from the Size menu in the application’s toolbar.

 “Hello, World” with Piu
When you run the $EXAMPLES/ch10-piu/helloworld example, you see the

screen shown in Figure 10-1.

This isn’t the most exciting user interface, but it’s a good starting point

to demonstrate the basics of creating Piu objects to build a simple screen.

The text displayed is defined in a label object, and the first line of code in

the example creates a style—an instance of the Style class—to define the

appearance of the text.

const textStyle = new Style({

 font: "24px Open Sans"

});

The details of the font property are covered in the next section. For

now, just notice that the properties of the style object are defined in a

dictionary passed to the constructor of the Style class. As you learned

Figure 10-1. helloworld example

Chapter 10 Building user interfaCes with piu

415

earlier, this is the convention for both Piu content objects and the objects

that define their appearance. Each Piu object requires certain properties

to be specified, while other properties are optional. For example, the Style

constructor requires a font property, but the properties associated with

the color, horizontal and vertical alignment, and line height are optional.

The helloworld example then creates a content object: a label object

named sampleLabel (see Listing 10-2). A label object renders text on a

single line with a single style.

Listing 10-2.

const sampleLabel = new Label(null, {

 style: textStyle,

 string: "Hello, World",

 top: 0, bottom: 0, left: 0, right: 0

});

The string property specifies the text that the label displays, and the

style property defines the style of the text (textStyle, as created earlier).

The top, bottom, left, and right properties define the position of the label

by specifying the margins between the label object and its container, the

application object; setting these all to 0 makes the label object fill the

entire screen. Text is centered horizontally and vertically by default, so the

text is drawn in the center of the screen.

Note Keep in mind that top, bottom, left, and right are
not absolute coordinates but rather specify margins from the
corresponding edge of the parent container.

Chapter 10 Building user interfaCes with piu

416

As you learned earlier, simply creating a content object doesn’t

make it appear on the screen. You have to add content objects to the

application object in order for Piu to draw them. This is done by calling

application.add.

application.add(sampleLabel);

In this example, textStyle is attached to just one content object, but

recall that one style object can be attached to more than one content

object. You could add a second label that uses the same style but with

different text displayed at a different location. For example, adding the

code in Listing 10-3 to the example would display the text Second string

in the bottom-right corner of the screen.

Listing 10-3.

application.add(new Label(null, {

 style: textStyle,

 string: "Second string",

 bottom: 0, right: 0

}));

Note that top and left properties are not specified for this label. If you

specify a bottom property of a label but no top, or vice versa, the height of

the label is the height of the text in the style specified by its style property.

Similarly, if you specify only one of left and right, the width of a label is

the width of the text in its style.

 Fonts
The font property of a style object indicates the font to use to draw

text when the style is applied to content objects. Fonts are typically

compressed bitmaps stored in a resource, as explained in Chapter 8. Piu

doesn’t include any built-in fonts; instead, the host and the application

Chapter 10 Building user interfaCes with piu

417

may include fonts in their manifests. The host for this chapter provides two

fonts, which are used by all the examples that draw text. Listing 10-4 shows

the fragment of the manifest that includes the fonts.

Listing 10-4.

"resources": {

 "*-alpha": [

 "./OpenSans-Regular-24",

 "./OpenSans-Semibold-16"

]

},

 Font Names

Piu uses the font property of a style to locate the font resource to use. This

section introduces the naming convention for fonts, and the next section

explains how those names are mapped to a font resource.

In the helloworld example, the font name is specified by the string

"24px Open Sans". This Piu format for the font name is a subset of the CSS

font name format. There are five parts to a Piu font name, in this order:

 1. Style – (Optional) The font style, specified as italic

or omitted if normal.

 2. Weight – (Optional) The thinness or thickness of the

font. You can use the same keywords and numerical

values as in CSS (for example, light, bold, or 800).

Each keyword has an equivalent numeric value; for

example, the weight light is equivalent to 300 and

bold is 700. Table 10- 1 lists the weight keywords and

their equivalent numeric values. The default value

of normal (400) is used if this part of the font name is

omitted.

Chapter 10 Building user interfaCes with piu

418

 3. Stretch – (Optional) The spacing between

characters, specified as condensed or omitted if

normal.

 4. Size – The height of the font in pixels. The height

extends from the bottom of the descender to

the top of a typical uppercase letter, as shown

in Figure 10-2. You can use the absolute-size

keywords from CSS (for example, x-small or

medium) or specify the size in pixels (as in 24px).

Note that the actual height varies depending on the

font family. Table 10-2 lists the size keywords and

their corresponding pixel sizes.

 5. Family – The name of the font family (for example,

Times New Roman or Open Sans).

Figure 10-2. Font size

Chapter 10 Building user interfaCes with piu

419

Table 10-1. Weight keywords

Keyword Equivalent Number

ultralight 100

thin 200

light 300

normal 400

medium 500

semibold 600

bold 700

heavy 800

black 900

Table 10-2. Size keywords

Keyword Equivalent Size

xx-small 9px

x-small 10px

small 13px

medium 16px

large 18px

x-large 24px

xx-large 32px

Chapter 10 Building user interfaCes with piu

420

Table 10-3 lists and explains examples of font names that might be

specified in a text style’s font property.

 Font Resources

The font name 24px Open Sans refers to a font stored in a resource named

OpenSans-Regular-24.fnt. Although the font name and resource name

are clearly similar, they’re not identical. Piu gets from the font name to the

font’s resource data by applying a set of rules to create a resource name

from the font name. You need to understand these rules to match the font

names you specify in your code with the font resources you include in your

project’s manifest.

The following list shows, in order, the parts of the resource name

(excluding the .fnt extension) and explains how Piu generates them from

the font name.

Table 10-3. Example font names

Piu Font Name Explanation

24px Open Sans the font family is Open Sans and the size is 24px. no

stretch, weight, or style is specified, so they’re all normal.

bold 16px Fira

Sans

the font family is Fira Sans, the size is 16px, and the

weight is bold (equivalent to 700). no stretch or style is

specified, so they’re both normal.

italic bold

medium Open Sans

the font family is Open Sans and the size is medium,

or 16px. the weight is bold (equivalent to 700) and the

style is italic. no stretch is specified, so it’s normal.

italic bold

condensed small

Open Sans

the font family is Open Sans and the size is small,

or 13px. the stretch is condensed, the weight is bold

(equivalent to 700), and the style is italic.

Chapter 10 Building user interfaCes with piu

421

Note the keywords here (such as Light and Regular) are case-
sensitive, so their capitalization is significant.

 1. Family – The name of the font family, with any

spaces removed. For example, Open Sans becomes

OpenSans.

 2. Hyphen (-) – A hyphen separating the font family

name from what follows.

 3. Stretch – Omitted if the stretch of the font is normal;

otherwise, Condensed.

 4. Weight – Omitted if the font weight is normal;

otherwise, the font weight—for example, Light,

Bold, or a numeric value such as 200.

 5. Style – Omitted if the font style is normal; otherwise,

Italic.

 6. Regular – If the stretch, weight, and style are

normal, the resource name includes the keyword

Regular in place of all three.

 7. Hyphen (-) – A hyphen separating the stretch,

weight, and style (or Regular) from the size that

follows.

 8. Size – The height in pixels, as a number—for

example, 16 or 24.

Table 10-4 gives examples of Piu font names and the resource names

that they map to.

Chapter 10 Building user interfaCes with piu

422

When creating your own bitmap font files, name the files in accordance

with Piu’s resource naming conventions. Doing so ensures that when your

code specifies a font name, Piu will find the corresponding font data in

your resources.

 Additional Notes on Fonts

The font naming conventions Piu takes from CSS are designed to

be convenient for developers while expressive enough for building

sophisticated user interfaces. They also provide consistency for web

developers. However, although CSS is powerful, some developers find

it more confusing than helpful. If you prefer, you can simply use the

Table 10-4. Example font names mapped to resource names

Piu Font Name Resource Name Notes

24px Open

Sans

OpenSans- Regular-

24.fnt

spaces are removed from the font

family name. Because the stretch,

weight, and style are all normal,

Regular is used in place of those

three parts in the resource name.

bold 16px

Fira Sans

FiraSans- Bold-

16.fnt

the font size is moved to the end

and the style, bold, is capitalized in

the resource name.

italic bold

16px Open

Sans

OpenSans-

BoldItalic- 16.fnt

although the font name places

italic before bold, the resource

name specifies BoldItalic

because the weight always precedes

the style. also note that there’s no

space or hyphen between Bold and

Italic.

Chapter 10 Building user interfaCes with piu

423

name of the font resource as the font name. For example, textStyle in

the helloworld example can be defined as follows:

const textStyle = new Style({

 font: "OpenSans-Regular-24"

});

Remember that the only fonts available to your project are those

that you include in your manifest or are provided by the host. In many

cases, that’s just a few fonts. If you specify a font that’s not installed, Piu

cannot render it. This is different from desktop and web development

environments, where there’s always a fallback font.

Because each font resource corresponds to only one family, stretch,

weight, style, and size, you need a separate resource for each variation. If

you create a text style whose font property is 24px Open Sans, you must

have a font resource named OpenSans-Regular-24.fnt. Even if you have

a related font resource available, such as OpenSans-Regular-12.fnt, Piu

cannot resize it to match the 24px size specified in your text style. This

too is different from desktop and web development environments, where

resizable fonts are common.

 Adding Color
The $EXAMPLES/ch10-piu/helloworld-color example adds color to the

helloworld example to make it a little more interesting. It has just a few

changes from helloworld.

First, the style object in helloworld-color specifies a color property

that causes the label to draw the string in yellow:

const textStyle = new Style({

 font: "24px Open Sans",

 color: "yellow"

});

Chapter 10 Building user interfaCes with piu

424

The example also creates a skin object, named labelBackground.

Skins control the drawing of the background of content objects. The skin

object here specifies the fill property in hexadecimal notation, as the

color #1932ab, a shade of blue.

const labelBackground = new Skin({

 fill: "#1932ab"

});

The sampleLabel object (Listing 10-5) adds a skin property to set its

background, causing the label to fill its background with the shade of blue

specified in labelBackground.

Listing 10-5.

const sampleLabel = new Label(null, {

 left: 0, right: 0, top: 0, bottom: 0,

 style: textStyle,

 string: "Hello, World",

 skin: labelBackground

});

When you run the helloworld-color example on your device, you see

the same text and layout as for helloworld but with yellow text on a blue

background instead of black text on a white background.

When no skin property is specified, as in the helloworld example, the

label doesn’t draw anything for its background, causing the text to appear

in front of whatever is behind it. The background is white because, in the

absence of a skin, the text appears in front of the application object itself

(created by the host as shown in the section “Everything Is an Object”);

since the host sets the application’s skin property to white, that’s the

background color for the entire screen.

Chapter 10 Building user interfaCes with piu

425

 Specifying Color

The color property in the helloworld-color example’s style object is set

to a color name, while the fill property in the skin object denotes a color

in hexadecimal notation. You can specify the color for these two properties

in either way, as discussed in this section.

The color property in the example’s style object is set to the string

"yellow". Piu supports 18 color names: black, silver, gray, white,

maroon, red, purple, fuchsia, green, lime, olive, yellow, navy, blue,

teal, aqua, orange, and transparent. The colors and their RGB values are

taken from the CSS Level 2 specification.

The fill property in the example’s skin object is "#1932ab", a shade

of blue specified in hexadecimal notation. As shown in Listing 10-6, Piu

supports specifying colors as strings in any of four hexadecimal notations:

"#RGB", "#RGBA", "#RRGGBB", and "#RRGGBBAA". In these notations, A

stands for "alpha channel" and represents the level of transparency of

the color: an alpha value of 0xFF means fully opaque, 0 means entirely

transparent, and values in between perform blending. (The alpha value is

the same as the blend level used in some Poco rendering functions, such

as blendRectangle and drawGray.)

Listing 10-6.

const redSkin = new Skin({

 fill: "#f00"

});

const blendedRedSkin = new Skin({

 fill: "#f008"

});

const greenSkin = new Skin({

 fill: "#00ff00"

});

Chapter 10 Building user interfaCes with piu

426

const blendedGreenSkin = new Skin({

 fill: "#00ff0080"

});

All these forms of hexadecimal color notation are also used in CSS.

 Changing Color Based on State

Earlier in this chapter, you learned that the properties of skin and style

objects cannot be changed. So, for example, you can’t change the color

of a content object by changing the color property of its skin and style

objects; instead, you create a different skin or style object to change the

color. However, there’s another approach to changing color that’s more

common and convenient.

Often the reason you want to change the color of a user interface

element is to indicate its current state. A button, for example, might have

three states: disabled, enabled but not being tapped, and enabled and

being tapped. Or a label displaying a sensor reading might have states

for when it’s within 5% of a target value, within 15% of a target value, and

more than 15% off a target value. To support these situations, every content

object has a state property, a number that indicates its current state.

Piu uses the state property together with properties of style objects to

change the appearance of the user interface element.

The state property is just a number; the state that the number

corresponds to is up to you as the developer. It’s also up to you to

determine how the user interface changes when a content object changes

state. For example, you might choose to make a button light gray when

disabled, green when enabled but not being tapped, and darker green

when enabled and being tapped.

Chapter 10 Building user interfaCes with piu

427

An easy way to change the color of content objects is to use their state

property as an index to properties in skin and style objects. You do this

by setting the fill or color properties of skin or style objects to an array

of two, three, or four colors, rather than a string representing a single color.

For example:

const blackAndWhiteStyle = new Style({

 color: ["black", "white"]

});

Following from this example, Listing 10-7 creates a label with black text

because the state is 0 and the color at index 0 is "black".

Listing 10-7.

const sampleLabel = new Label(null, {

 top: 0, bottom: 0, left: 0, right: 0,

 style: blackAndWhiteStyle,

 state: 0,

 string: "Hello, World"

});

When you change the state property, the user interface element is

redrawn with the corresponding color from its style. Changing the state to

1 here causes the label to be redrawn with white text.

sampleLabel.state = 1;

You can also use non-integer values for the state, causing colors from

surrounding states to be blended. For example, you can make the text gray

in this example as follows:

sampleLabel.state = 0.5;

Chapter 10 Building user interfaCes with piu

428

The ability to specify fractional values for the state may seem odd

conceptually; what does it mean, for instance, for a button to be halfway

between the disabled and enabled states? However, there are some

interesting uses, such as when you’re animating between two states: you

can create a style with two colors and slowly fade a label from the first

color to the second by changing its state from 0 to 1 in small increments.

 Responding to Events with Behaviors
Once you have some content objects on the screen, the next step is to

enable them to perform actions in response to events. You do this with

behavior objects.

A behavior object is a collection of methods. You attach a behavior

object to a content object by setting its behavior property. When the

content object receives an event, it looks in its behavior object for a

method corresponding to that event; if it finds a method with the same

name as the event, it calls that method to handle the event.

Piu defines a set of events that it triggers as needed. For example,

it triggers the onTouchBegan event when a finger is placed on a content

object and the onTouchEnded event when the finger is removed. The

TraceBehavior class in Listing 10-8 contains methods that respond to Piu’s

onTouchBegan and onTouchEnded events by tracing to the debug console.

Listing 10-8.

class TraceBehavior extends Behavior {

 onTouchBegan(label) {

 trace("touch began\n");

 }

 onTouchEnded(label) {

 trace("touch ended\n");

 }

}

Chapter 10 Building user interfaCes with piu

429

Events defined and triggered by Piu are called low-level events. You

can also define your own events, using any you name like; these are called

high-level events. For example, you might create an onSensorValueChanged

event that your application triggers when the value of a sensor changes.

The rest of this section introduces some commonly used low-level events;

later in this chapter, you’ll learn how to define and trigger your own high-

level events.

 “Hello, World” with a Behavior

The $EXAMPLES/ch10-piu/helloworld-behavior example adds a behavior

to the helloworld example to make the string "Hello, World" appear one

character at a time as you tap the screen. This simple behavior shows how

Piu delivers events to content objects.

The sampleLabel object in the helloworld-behavior example

(Listing 10-9) is similar to the one from helloworld. However, there are

three important differences:

• The string property of sampleLabel starts out as the

empty string so that it may be filled in one character at

a time in response to taps.

• The active property is set to true. This property

specifies whether the content object should respond

to touch events. If it’s set to true, Piu triggers touch-

related events such as onTouchBegan. The default value

is false, so you have to explicitly set active to true to

make contents tappable.

• A Behavior property is specified in the dictionary

passed to the constructor. This sets the behavior of

sampleLabel as the LabelBehavior class.

Chapter 10 Building user interfaCes with piu

430

Listing 10-9.

const sampleLabel = new Label(null, {

 top: 0, bottom: 0, left: 0, right: 0,

 style: textStyle,

 string: "",

 active: true,

 Behavior: LabelBehavior

});

sampleLabel.message = "Hello, World";

LabelBehavior is a class that extends the built-in Behavior class:

class LabelBehavior extends Behavior {

 ...

}

When sampleLabel is created, Piu also creates an instance of

LabelBehavior and assigns it to the behavior property of sampleLabel.

Notice that the Behavior property is capitalized in the dictionary passed to

the Label constructor, whereas the behavior property of a created instance

is lowercase; that’s because property names follow the same capitalization

convention as the values they take: the class is passed to the constructor

in the Behavior property (and class names in JavaScript are uppercase by

convention), whereas the behavior property of sampleLabel contains an

instance of the class (and instance names in JavaScript are lowercase by

convention).

LabelBehavior has just one method, onTouchBegan, shown in

Listing 10-10. The argument to this method is the label object itself.

The first argument to all event handler methods invoked in a behavior

is the content object they’re attached to. When called, this method adds

the next character from the string "Hello, World" to the label object

until all characters have been added. Then it sets the label object’s

active property to false to stop it from receiving further touch events.

Chapter 10 Building user interfaCes with piu

431

Listing 10-10.

onTouchBegan(label) {

 const message = label.message;

 label.string = message.substring(0, label.string.length + 1);

 if (label.string === message)

 label.active = false;

}

That’s all it takes to implement a basic touch behavior. When you run

the example and tap the label object (which covers the entire screen), Piu

triggers the object’s onTouchBegan event. The label object then checks its

behavior to see if it has an onTouchBegan method; it does, so it calls that

method, passing a reference to itself as the first argument.

Many low-level events have additional arguments that may be useful in

your projects. For example, the onTouchBegan event also passes these four

arguments:

• id – The identifier of the touch point used to support

multi-touch. This example supports only one touch

point, so id is always 0. The id value is a number

that comes from the touch controller, enabling you

to distinguish between different touch points on the

screen.

• x and y – The global coordinates of the event—that is, of

the point touched—in pixels.

• ticks – The global time of the event in milliseconds.

This value is not the time of day and is unrelated to

UTC; it’s used only to determine the time elapsed

between two events.

Chapter 10 Building user interfaCes with piu

432

When you’re working with an event for the first time, a good way to

understand it well is to add a method to the behavior to trace the arguments

it receives to the debug console. For example, to observe details of how and

when onTouchBegan is invoked, change the helloworld- behavior example

to the function shown in Listing 10-11.

Listing 10-11.

onTouchBegan(label, id, x, y, ticks) {

 trace(`id: ${id}\n`);

 trace(`{x, y}: {${x}, ${y}}\n`);

 trace(`ticks: ${ticks}\n`);

}

 The onTimeChanged and onDisplaying Events

This section introduces these commonly used low-level events:

• The onTimeChanged event gives you access to the clock

built into every Piu content object.

• The onDisplaying event gives your behavior a chance

to configure itself before the content object appears on

the screen.

These events are introduced through the $EXAMPLES/ch10-piu/

helloworld-ticking example, which is similar to the helloworld-behavior

example in that it adds one character of "Hello, World" to the screen at a

time; however, instead of adding characters when the screen is tapped, it

adds them at a regular interval. Note the following about this example:

• The sampleLabel object is identical to the one in

helloworld-behavior except that its active property

is not set to true, because it doesn’t respond to touch

events.

Chapter 10 Building user interfaCes with piu

433

• The LabelBehavior class includes onDisplaying

and onTimeChanged methods (Listing 10-12) instead

of an onTouchBegan method. Their first argument is

a reference to the label object associated with the

behavior, as with all events defined by Piu.

Listing 10-12.

class LabelBehavior extends Behavior {

 onDisplaying(label) {

 ...

 }

 onTimeChanged(label) {

 ...

 }

}

The onDisplaying event is triggered after the content object is

added to the application object but before it’s visible to the user. This

is useful for initializing the state of the object, especially content objects

that may be hidden and later shown several times. One common use

of the onDisplaying event is to start a timer that’s used to animate the

appearance of the content object.

Because animation is such a pervasive part of modern user interfaces,

Piu gives every content object a built-in clock. The clock “ticks” at the

interval specified by the content object’s interval property. Both the

interval property and the clock express the time in milliseconds. Each

time the clock ticks, it generates an onTimeChanged event. The clock is not

always running and is initially stopped; you use a content object’s start

and stop methods to control when its clock is running.

Chapter 10 Building user interfaCes with piu

434

In this example, the behavior’s onDisplaying method (Listing 10- 13)

begins by resetting the index property, which stores the number of

characters of the string that are in the label object at any given time. The

code sets the interval property to 250 milliseconds to request that the

onTimeChanged event be generated every quarter of a second. Finally, the

method starts the label’s clock ticking by calling its start method.

Listing 10-13.

onDisplaying(label) {

 this.index = 0;

 label.interval = 250;

 label.start();

}

The behavior’s onTimeChanged method (Listing 10-14) adds one new

character to the label object’s string property at each interval. It uses

the substring method, which returns part of a string. The arguments to

substring specify the indexes of the first character to include and the first

character to exclude, respectively. When the complete string has been

displayed, onTimeChanged calls the label’s stop method to prevent the

clock from ticking so that onTimeChanged is no longer triggered.

Listing 10-14.

onTimeChanged(label) {

 const message = label.message;

 this.index += 1;

 if (this.index > message.length)

 label.stop();

 else

 label.string = message.substring(0, this.index);

}

Chapter 10 Building user interfaCes with piu

435

Later examples show how to use a content object’s clock to drive

animations.

 Adding Images
Images are a fundamental part of building a user interface. Just as Piu uses

skin objects to fill an area of the screen with a solid color, it also uses them

to fill an area of the screen with an image, enabling any content object to

draw images. A texture in a skin object specifies the image to use.

To show how to render an image, the $EXAMPLES/ch10-piu/js-icon

example draws the JavaScript logo. The example draws the screen shown

in Figure 10-3.

A skin object is used to create the icon. The first step is to create a

reference to the image file to use, by instantiating a texture object. The

path property of the dictionary passed to the Texture constructor is the

name of the resource that contains the image.

const jsLogoTexture = new Texture({

 path: "js.png"

});

Figure 10-3. js-icon example

Chapter 10 Building user interfaCes with piu

436

Notice that the resource name has a .png extension, instead of .bmp

as you saw for Poco in Chapter 9. While the PNG image is still converted

to another format for rendering on the microcontroller, Piu is aware of the

conversion and automatically changes the .png extension to the correct

extension for the device.

In the helloworld-color example, you used a skin object with a fill

property to create a solid-colored background. In this example, instead

of fill you use a texture property, together with height and width

properties, to create a skin, jsLogoSkin, that fills content objects using

jsLogoTexture. The height and width properties are set to match the

dimensions of the js.png image file, 100 x 100 pixels.

const jsLogoSkin = new Skin({

 texture: jsLogoTexture,

 height: 100, width: 100

});

The final step is to create a content object that references jsLogoSkin:

const jsLogo = new Content(null, {

 skin: jsLogoSkin

});

Because the skin is defined to be 100 x 100 pixels, the jsLogo content

object has those same dimensions by default.

 Drawing Part of an Image
You may have wondered why you had to specify height and width

properties in the Skin constructor earlier. Why didn’t the skin just use the

entire image by default? The reason is a feature of the skin object that

enables you to draw only part of the texture. To specify the area of the

Chapter 10 Building user interfaCes with piu

437

texture to draw, you use the x, y, height, and width properties to define

the source rectangle in pixels. The x and y properties default to 0, but the

height and width properties are required.

The code in Listing 10-15 is an alternative to jsLogoSkin in the

js-icon example. Here the skin is defined to draw a square of 70 x 70 pixels

from the bottom right of the image. The result is shown in Figure 10-4.

Listing 10-15.

const jsLogoSkin = new Skin({

 texture: jsLogoTexture,

 x: 24, y: 30,

 height: 70, width: 70

});

Drawing a portion of a single icon is rare. After all, if you only want to

draw the bottom-right corner, you might as well crop the image file and

save some storage space. However, it’s often convenient to store several

icons in a single image, in which case being able to draw a portion of an

image is very useful. The next section walks through an example.

Figure 10-4. js-icon example with cropped jsLogoSkin

Chapter 10 Building user interfaCes with piu

438

 Drawing Multiple Icons from One Image
Recall the icons in Figure 10-5, which you first saw in Chapter 8. These

icons show several different states of a Wi-Fi connection and are combined

into a single image.

The icons are organized into a uniform grid, in which the columns and

rows are as follows:

• Each column is a different state of the Wi-Fi icon,

representing signal strength levels from weak to strong.

• Each row is a different variant of the Wi-Fi icon. The

top row is the open Wi-Fi access point variant and the

bottom row is the secure Wi-Fi access point variant.

Just as Piu uses a content object’s state property to determine which

color to draw from a style, it can use a content object’s state and variant

properties to determine which icon to draw from a texture containing a

grid of icons. To do this, the skin containing the texture here must specify

the width of each column and the height of each row, using the states and

variants properties, respectively, in the dictionary used to create the skin

(see Listing 10-16).

Listing 10-16.

const wifiTexture = new Texture({

 path: "wifi-strip.png"

});

Figure 10-5. Wi-Fi icons

Chapter 10 Building user interfaCes with piu

439

const wifiSkin = new Skin({

 texture: wifiTexture,

 width: 28, height: 28,

 states: 28,

 variants: 28

});

The image in this example contains icons that are 28 pixels square, so

the states and variants properties are both 28. In addition, the height

and width properties are both set to 28 so that the size of the skin is exactly

the size of one icon.

The $EXAMPLES/ch10-piu/wifi-status example draws one icon from

this image at a time, changing the icon once a second. It starts with the

top-left icon (state and variant both 0), as shown in Listing 10-17.

Listing 10-17.

const wifiIcon = new Content(null, {

 skin: wifiSkin,

 state: 0,

 variant: 0,

 Behavior: WifiIconBehavior

});

The state and variant properties of a content object can be

updated at any time. This example changes them to move through the

icon strip one icon at a time, from left to right, first across the top row

and then across the bottom row; then it goes back to the top row and

repeats this indefinitely. As shown in Listing 10-18, the onDisplaying

and onTimeChanged event handlers in the behavior of wifiIcon use

the content object’s built-in clock to drive the animation (as you saw in

the helloworld-ticking example): the behavior changes the variant

property on each tick, moving across a row of icons; when the last icon in a

row is reached, it changes the state property to switch to the other row.

Chapter 10 Building user interfaCes with piu

440

Listing 10-18.

class WifiIconBehavior extends Behavior {

 onDisplaying(content) {

 content.interval = 1000;

 content.start();

 }

 onTimeChanged(content) {

 let variant = content.variant + 1;

 if (variant > 4) {

 variant = 0;

 content.state = content.state ? 0 : 1;

 }

 content.variant = variant;

 }

}

 Using Masks
Compressed grayscale masks are more efficient for storing grayscale images

than full-color bitmap images are, and (as you learned in Chapter 8) masks

may be drawn in any color. Many icons drawn in user interfaces are only a

single color and consequently can be stored as a mask. A texture object

may refer to a mask image resource as well as a color bitmap resource,

enabling your user interface to include both.

Adding a mask image to your application is very similar to adding a

full-color bitmap. The $EXAMPLES/ch10-piu/mask-icon example displays

an icon stored as a mask. When you tap the icon, it changes color.

The example’s texture and skin properties (Listing 10-19) should look

familiar. The key difference is that maskSettingsSkin specifies a color

property with two colors, "orange" for when the content object’s state

property has a value of 0 and "yellow" for when it’s 1. (Note that there

Chapter 10 Building user interfaCes with piu

441

are two different ways to specify the color of a skin: when you use a skin

to draw a mask texture, you specify the color property; to create a solid-

colored background, you specify the fill property.)

Listing 10-19.

const maskSettingsTexture = new Texture({

 path: "settings-mask.png"

});

const maskSettingsSkin = new Skin({

 texture: maskSettingsTexture,

 width: 80, height: 80,

 color: ["orange", "yellow"]

});

As usual, you have to create a content object that references the skin.

Listing 10-20 shows the one created in this example: a content object that

also has a behavior and an active property (set to true so that the object

can receive touch events).

Listing 10-20.

const maskSettingsIcon = new Content(null, {

 skin: maskSettingsSkin,

 state: 0,

 active: true,

 Behavior: SettingsIconBehavior

});

When the icon is first drawn, the mask is drawn in orange, because the

state value of 0 means it uses the color at index 0 of the array in the color

property.

Chapter 10 Building user interfaCes with piu

442

As shown in Listing 10-21, this example provides touch feedback using

the onTouchBegan and onTouchEnded events triggered at the beginning and

end of a tap:

• When maskSettingsIcon receives an onTouchBegan

event, its behavior sets its state to 1, causing it to redraw

with the color at index 1 of its color property—in this

case, yellow.

• When maskSettingsIcon receives an onTouchEnded

event, its behavior changes its state to 0, making the

icon orange again.

Listing 10-21.

class SettingsIconBehavior extends Behavior {

 onTouchBegan(content) {

 content.state = 1;

 }

 onTouchEnded(content) {

 content.state = 0;

 }

}

 Tiling Images
You can draw repeating patterns by tiling the texture of a skin. This is

another way to reduce storage space, because you can use image files that

are a single tile of a background rather than the full size of the screen.

 Tiling a Single Image

The $EXAMPLES/ch10-piu/tiled-background example uses the image in

Figure 10-6 to create the tiled background shown in Figure 10-7.

Chapter 10 Building user interfaCes with piu

443

Like the skin of an icon, a tiled skin uses a texture object and

defines height and width properties to specify the area of the texture to

draw (in this case all of it). As shown in Listing 10-22, you also include a

tiles property—an object with left, right, top, and bottom properties

indicating different parts of the texture to tile; here they’re all 0 because

this example uses the entire image as a repeating tile. (The following

section, on drawing 9-patch images, explains how to use these four

properties with other values.)

Listing 10-22.

const tileTexture = new Texture({

 path: "tile.png"

});

Figure 10-6. Image from tiled-background example

Figure 10-7. tiled-background example

Chapter 10 Building user interfaCes with piu

444

const tileSkin = new Skin({

 texture: tileTexture,

 height: 50, width: 50,

 tiles: {

 left: 0, right: 0, top: 0, bottom: 0

 }

});

When you attach tileSkin to a full-screen content object, it draws as

shown in Figure 10-7:

const background = new Content(null, {

 left: 0, right: 0, top: 0, bottom: 0,

 skin: tileSkin

});

 Drawing 9-Patch Images with Tiles

A 9-patch image is used to efficiently draw rectangular shapes, such as a

rounded rectangle, at different sizes. The term “9-patch” comes from the

Android mobile OS, although the concept is widely used elsewhere; it

refers to the way the image asset is divided into nine parts, as you’ll see in a

moment. Many interesting effects can be created with 9-patch images. Piu

incorporates this concept through the use of a tiled skin.

Recall from earlier that the properties of a tiles object indicate

different sections of the texture to tile. More specifically, these properties

define the parts of a 9-patch image by specifying a number of pixels in

from the edges of the image, as shown in Figure 10-8 for a tiles object

whose properties all specify 14. The light gray lines in the figure delineate

the nine parts and assign a number to each one. The whole image is 56

pixels square.

Chapter 10 Building user interfaCes with piu

445

A tiled skin for this image would be defined as in Listing 10-23.

Listing 10-23.

const tileSkin = new Skin({

 texture: tileTexture,

 height: 56, width: 56,

 tiles: {

 left: 14, right: 14, top: 14, bottom: 14

 }

});

When this skin is applied to a content object, Piu draws the nine parts

of the image using the following rules:

• Zones 1, 3, 7, and 9 are each drawn once at the

corresponding corner of the content object.

• Zones 2 and 8 repeat horizontally across the top and

bottom of the content object, respectively.

• Zones 4 and 6 repeat vertically along the left and right

sides of the content object, respectively.

• Zone 5 repeats vertically and horizontally to fill space

in the middle of the content object not covered by other

tiles.

Figure 10-8. Rounded rectangle with nine parts delineated

Chapter 10 Building user interfaCes with piu

446

Figure 10-9 shows how this tiled skin is rendered by content objects

with the following dimensions (from left to right): 28 x 28, 56 x 56,

110 x 100, and 70 x 165. Note that the nine parts of the image are only

repeated and never resized.

The $EXAMPLES/ch10-piu/rounded-buttons example uses a simple,

solid-colored rounded rectangle to create buttons of different sizes

(Figure 10-10).

Figure 10-9. tileSkin rendered in different sizes

Figure 10-10. rounded-buttons example

Chapter 10 Building user interfaCes with piu

447

The skin in this example is defined as shown in Listing 10-24. It looks

similar to the preceding skin example, but the image asset is smaller and

the left, right, top, and bottom properties of the tiles object are all set

to 5. It also specifies a color property; tiled skins can use masks.

Listing 10-24.

const roundedTexture = new Texture({

 path: "button.png"

});

const roundedSkin = new Skin({

 texture: roundedTexture,

 width: 30, height: 30,

 color: ["#ff9900", "#ffd699"],

 tiles: {

 top: 5, bottom: 5, left: 5, right: 5

 }

});

The three buttons in this example are label and text objects

(Listing 10-25). They have different heights and widths, but roundedSkin

tiles its texture as described previously to fit all the different sizes.

Listing 10-25.

const button1 = new Label(null, {

 top: 10, left: 10,

 skin: roundedSkin,

 style: smallTextStyle,

 string: "Option 1",

 active: true,

 Behavior: ButtonBehavior

});

Chapter 10 Building user interfaCes with piu

448

const button2 = new Label(null, {

 top: 60, left: 10,

 skin: roundedSkin,

 style: textStyle,

 string: "Option 2",

 active: true,

 Behavior: ButtonBehavior

});

const button3 = new Text(null, {

 top: 120, left: 10, width: 90,

 skin: roundedSkin,

 style: textStyle,

 string: "Option 3",

 active: true,

 Behavior: ButtonBehavior

});

Recall that a label object renders text on a single line; this example

uses a text object for the third button to illustrate that text objects, unlike

label objects, can render text on multiple lines.

The behavior ButtonBehavior in this example is identical to

SettingsIconBehavior in the mask-icon example, with onTouchBegan and

onTouchEnded methods providing feedback when the buttons are tapped.

 Building Compound User Interface Elements
The user interfaces of real products are composed of more complex

elements than just a string of text or single icon in the middle of the screen.

The initial examples in this chapter use a simple structure to introduce

fundamental Piu concepts; you’re now ready to put those elements

together to build more sophisticated interfaces.

Chapter 10 Building user interfaCes with piu

449

Adding content objects to the application object creates a tree data

structure called a containment hierarchy. The simple examples so far have

created a two-level containment hierarchy, with the application object at

the root and content objects as leaves, but there can be many levels in the

hierarchy.

The containment hierarchy organizes the content objects in your

user interface by placing them into groups called containers. Containers

are implemented by the Container class, a key built-in Piu class. The

application object itself is a container, which is how it’s able to hold other

content objects. The containment hierarchy does more than group content

objects together; it also affects how the objects are drawn and how they

receive events.

The idea of a containment hierarchy should be familiar to you if

you’ve ever built a user interface with HTML or with other object-oriented

user interface frameworks. If not, the example in the next section will get

you started by taking you through the steps of building a containment

hierarchy.

 Creating a Header
Like previous examples in this chapter, the $EXAMPLES/ch10-piu/header

example adds text and an icon to the screen. But rather than treating them

as standalone elements as in those examples, it groups them together into

one compound user interface element, the header shown in Figure 10-11.

Chapter 10 Building user interfaCes with piu

450

The jsLogo and headerText objects in the header example (Listing 10- 26)

are similar to the content and label objects in the previous examples.

Listing 10-26.

const jsLogo = new Content(null, {

 left: 10,

 skin: jsLogoSkin

});

const headerText = new Label(null, {

 style: textStyle,

 string: "Example"

});

The header object (Listing 10-27) is an instance of the Container class.

The Container class inherits from the Content class and extends it with the

ability to hold other content objects.

Listing 10-27.

const header = new Container(null, {

 top: 0, height: 50, left: 0, right: 0,

 skin: headerSkin,

Figure 10-11. header example

Chapter 10 Building user interfaCes with piu

451

 contents: [

 jsLogo,

 headerText

]

});

The header object contains the jsLogo and headerText objects, which

are placed in the contents property array. The skin property gives the

header object a blue background (because headerSkin has a fill property

of "#1932ab").

Because the jsLogo and headerText objects are contained by the

header object, when the header object is added to the application object

all the elements—the blue background, icon, and text—appear on the

screen:

application.add(header);

Similarly, removing the header object makes all the elements

disappear, and moving the header object around the screen moves all the

elements it contains simultaneously.

When a content object is added to a container, the content object is

said to be a child object, or simply child, of the container; correspondingly,

the container is said to be the content object’s parent object, or simply

parent. In this example, the header is the parent container, and the text

and icon are child objects of the header.

You can use the container property of an object to access its parent

container object and the length property to determine the number

of child objects in a container. If an object has no parent container, its

container property is null. If there are no child objects, the length

property is 0. Several different methods of accessing the objects in a

container are described in the section “Accessing Content Objects in a

Container” later in this chapter.

Chapter 10 Building user interfaCes with piu

452

 Relative and Absolute Coordinates

As you’ve learned, the left, right, top, and bottom properties passed to

a content object’s constructor define the position of the content object by

specifying the margins between the object and its container. Since these

properties express the location of points relative to the parent container,

they’re called relative coordinates. For example, when you pass left with a

value of 10, it doesn’t necessarily mean the content object will be 10 pixels

from the left side of the screen when it’s drawn; it means the content will

be 10 pixels from the left side of whatever container it’s placed in.

The coordinates of a content object once it’s drawn on the screen are

called absolute coordinates, which express the location of points as the

distance from the edges of the screen. When the container is the entire

screen, which is usually the case for the application object, the relative

and absolute coordinates of the container’s child objects are the same.

When a container moves, Piu adjusts the absolute coordinates of all of

the container’s child content objects. This makes it much easier to animate

compound user interface elements, like the header in the header example,

since your code needs to move only the container of the compound

element rather than each individual content element.

 Adding and Removing Container Contents

The contents of a container are not fixed. Just as you can add and remove

objects from the application object, you can add and remove objects

from a container object at any time. The Container class and all classes

that inherit from it have add and remove methods that you use to modify

their contents array. The Application class is one common class that

inherits from the Container class.

You can call a container’s add method at any time, whether or not the

container is part of the containment hierarchy. For example, instead of

passing a contents array to the constructor when you create the header

Chapter 10 Building user interfaCes with piu

453

object (as in Listing 10-27 earlier), you can add each content object to the

header after instantiating all the objects but before adding the header to

the application object (see Listing 10-28).

Listing 10-28.

const header = new Container(null, {

 top: 0, height: 50, left: 0, right: 0,

 skin: headerSkin

});

header.add(jsLogo);

header.add(headerText);

application.add(header);

Either way, the result is the same: jsLogo and headerText are

contained by header, and header is contained by the application object.

This creates a three-level containment hierarchy, with the application

object at the root, header as a branch, and jsLogo and headerText as

leaves.

Here’s how you could use the remove method to take jsLogo out of the

header’s child list:

header.remove(jsLogo);

The empty method removes all child elements from a container. This

is useful when you need to rebuild the content of a compound node, such

as when moving to another screen (as you’ll see later, in the section “The

Application Logic”).

header.empty();

Chapter 10 Building user interfaCes with piu

454

 One Container for Each Content Object

A content object can be a child of only one container at any time. You

can add and remove an object from its container as many times as you

want, and you can move an object into a new container by removing it

from its current container and adding it to a new one; however, you can’t

add the same content object to multiple containers at the same time. If

you attempt to add a content object already in one container to another

container, Piu throws an error.

This may seem strange. You might think that adding the same object

to multiple containers would just create identical objects that go into

different containers, but that’s not the case. Every graphical element that

shows up on the screen is associated with a single content object.

If this still seems strange, a metaphor to the real world may help you

understand it. Imagine you have two boxes and one physical object—a pen,

for example. You can put the pen in either box but not in both boxes at the

same time. The same rule applies to content objects and containers in Piu.

Of course, you can always create identical contents and put them in

different containers. Later in this chapter, you’ll learn about an easy way to

create similar or identical contents, using templates.

 Building Responsive Layouts
The screen shown in Figure 10-12 displays a navigation bar consisting of

three buttons, each with an icon and text in it that identify its purpose. If

asked to describe the position of these buttons, most people would say

something like, “There’s a row of evenly spaced buttons in the middle of

the screen.” Few would say, “There’s one button that’s 20 pixels from the

left and 74 pixels from the top of the screen, one that’s 120 from the left

and 74 from the top, and another that’s 220 from the left and 74 from the

top.” To put this another way, people would most likely describe the layout

rule rather than the coordinates of each button.

Chapter 10 Building user interfaCes with piu

455

A layout rule is a concise way of describing how to arrange the content

objects in a container. The layout rule may be independent of the current

container size, adjusting to whatever the current size happens to be. For

example, the layout shown here can evenly space the buttons whether the

width of the container (the screen) is 320 or 480 pixels. A layout rule that

adjusts intelligently to changes to the size of its parent container is called a

responsive layout.

If you have a background in web design or in writing mobile apps,

you’re likely familiar with the concept of responsive layout. Good web

pages are designed to render well regardless of the size of the browser

window or screen; in other words, they respond to differences in size.

Many mobile apps rotate based on the orientation of the screen; that is,

they respond to changes in orientation.

Piu has features that enable you to create responsive layouts as

well. These features are often useful, as demonstrated in the next few

examples, even if the size of the screen in all the models of your product

is the same.

Figure 10-12. Row of buttons in centered navigation bar

Chapter 10 Building user interfaCes with piu

456

 Row and Column Layouts
The $EXAMPLES/ch10-piu/nav-bar example displays the navigation bar

shown in Figure 10-12. A column object groups together the icon and label

for each of the three compound button elements. Listing 10-29 shows the

code for the leftmost button. The code for the other two buttons follows

the same pattern but with a different skin and label for each. (To keep the

example simple, the behavior of each button has been omitted.)

Listing 10-29.

const settingsButton = new Column(null, {

 skin: outlineSkin, width: 80,

 contents: [

 Content(null, {

 top: 5,

 skin: settingsSkin

 }),

 Label(null, {

 top: 0,

 style: textStyle,

 string: "Settings"

 })

]

});

The Column class extends the Container class with a layout rule to

arrange its contents in a vertical column. In this example, the content

object has a top margin of 5 and the label object has a top margin of 0.

If you placed them in a container, they would overlap; however, because

they’re in a column object, the content object’s top margin is relative to the

column object, and the label object’s top margin is relative to the bottom

of the content object. If you add another object, its top margin will be

relative to the bottom of the label object, and so on.

Chapter 10 Building user interfaCes with piu

457

The column objects for all three buttons are placed in a row object, as

shown in Listing 10-30. The Row class is another subclass of the Container

class.

Listing 10-30.

const navBar = new Row(null, {

 left: 0, right: 0,

 contents: [

 Content(null, {left: 0, right: 0}),

 settingsButton,

 Content(null, {left: 0, right: 0}),

 weatherButton,

 Content(null, {left: 0, right: 0}),

 timeButton,

 Content(null, {left: 0, right: 0})

]

});

A row object arranges its contents horizontally and, like a column

object, relative to each other. The left margin of the first item in a row

object’s contents array is relative to the left of the row, the left margin of

the second item is relative to the first item, and so on.

You’re likely wondering why there are content objects in Listing 10-30.

Here are a few important things to note about them:

• They have no skin and therefore are transparent.

They represent the blank space around the buttons

in the row.

• No width is specified for them; instead, the row object

calculates the amount of blank space to put around the

buttons.

Chapter 10 Building user interfaCes with piu

458

• Their left and right margins (like those of the three

buttons) are 0; otherwise, the margins would enter into

the calculations that the row object does, which isn’t

normally what you’d want.

To understand this further, let’s first look at what the result would be

if the content objects were removed from the row, leaving only the three

buttons. Because the buttons all have a defined width of 80 but no left or

right margins, placing them in the navBar row on their own causes them to

be pushed together into 240 pixels on the left side of the screen, as shown

in Figure 10-13.

If you then give each button a left margin of 20, you get the desired

layout on a 320 x 240 screen, as shown earlier in Figure 10-12. But now

imagine a different-sized screen is used—say, a 480 x 320; Figure 10-14

shows the result in that case.

Figure 10-13. navBar without content objects

Chapter 10 Building user interfaCes with piu

459

Figure 10-14. navBar without content objects but with margins,
larger screen

The content objects are what make the layout responsive to different

screen sizes. Since the content objects have no width, the row object

figures out how wide to make them in order to achieve the desired layout:

it calculates the width taken up by the three buttons on their own—240 in

this case—and the rest of the pixels available in the row are distributed

evenly among the remaining contents (resulting in the same amount of

space before the first button, between the buttons, and after the last one).

On the 320 x 240 screen in Figure 10-12, this comes to (320 – 240) / 4, or 20

pixels per content object; on a 480 x 320 screen (Figure 10-15), it comes to

60 pixels each.

Chapter 10 Building user interfaCes with piu

460

If you wanted the buttons in this example to be exactly 20 pixels apart

but still centered on the screen, you could specify a width of 20 for the

two middle content objects. The row object would then calculate only the

amount of space to put before the first button and after the last one.

If you’re sure the size of the screen won’t change or rotate, adding

transparent content objects isn’t necessary; you can just define left and

right margins to space items as desired. Still, it’s a useful trick to know if

you’re designing for multiple screen sizes.

 Scrolling Content
When you have more content than you can fit on the screen at once, one

common solution is to use scrolling to move through the content. The

$EXAMPLES/ch10-piu/scrolling-text example uses scrolling to display

content that’s too large to fit on a 320 x 240 screen. Figure 10-16 shows the

screen as it initially appears.

Figure 10-15. navBar on larger screen, properly centered

Chapter 10 Building user interfaCes with piu

461

This example scrolls a header, a gray bar, and sample text, defined

by label, content, and text objects, respectively. These objects are in a

column container, laying them out vertically. The column is the first item in

a scroller object’s contents array, as shown in Listing 10-31.

Listing 10-31.

const sampleVerticalScroller = new Scroller(null, {

 left: 0, right: 0, top: 0, bottom: 0,

 contents: [

 Column(null, {

 left: 0, right: 0, top: 0,

 contents: [

 sampleHeader,

 grayBar,

 sampleText

]

 })

],

 active: true,

 Behavior: VerticalScrollerBehavior

});

Figure 10-16. scrolling-text example

Chapter 10 Building user interfaCes with piu

462

The Scroller class extends the Container class with a layout rule that

scrolls the first item in its contents array while leaving the other contents

(none, in this example) to follow the default container layout behavior. The

Scroller class can scroll horizontally, vertically, or both; this example scrolls

vertically. The way a scroller object scrolls is determined by its behavior.

The behavior VerticalScrollerBehavior in this example (Listing 10-32)

uses touch input to control the scrolling. When you touch the screen and drag

up or down, the scroller moves the content up or down. The onTouchMoved

event is a low-level event that’s triggered when a finger is moved on the

screen. A content object may receive many onTouchMoved events after an

onTouchBegan event (and before the onTouchEnded event, if any).

Listing 10-32.

class VerticalScrollerBehavior extends Behavior {

 onTouchBegan(scroller, id, x, y, ticks) {

 this.initialScrollY = scroller.scroll.y;

 this.initialY = y;

 scroller.captureTouch(id, x, y, ticks);

 }

 onTouchMoved(scroller, id, x, y, ticks) {

 const dy = y - this.initialY;

 scroller.scrollTo(0, this.initialScrollY - dy);

 }

}

Note the following about this code:

• The onTouchBegan method calls the scroller object’s

captureTouch method, which prevents other content

objects from triggering touch events related to the touch.

This isn’t necessary here, because there are no other

active content objects to receive touch events, but it’s

included because it makes the behavior more reusable.

Chapter 10 Building user interfaCes with piu

463

• The onTouchMoved method calls the scrollTo method

of the scroller object to scroll the content vertically

based on finger movements. It’s best to use scrollTo

rather than changing the coordinates of the content;

scrollTo prevents the content from moving off screen,

so you don’t have to write additional code to avoid

doing so.

• There’s no onTouchEnded method because no feedback

is provided at the end of the touch.

 Templates for Content Objects
User interfaces often use the same element, sometimes with small

variations, in many places. For example, each screen of an application may

use a header with the same icon in it but different text, or each button in

a navigation bar may have a different icon and text in it, as in the nav-bar

example. To create each of its three buttons, the nav-bar example used

essentially the same code. Piu templates are a more concise and efficient

way to achieve the same result. A template is a class that you create using a

content object’s template method. The ability to create classes at runtime

like this is a powerful feature of JavaScript that Piu builds on.

 Creating a Button Template Class
Recall that the nav-bar example creates the row of buttons using three

column objects, each containing a content object (for the icon) and a

label object. These column objects differ only in the skin property of the

content object and the string property of the label object. The buttons

are placed in a row object along with invisible content objects to make the

layout responsive to multiple screen sizes.

Chapter 10 Building user interfaCes with piu

464

Writing nearly identical code to create each of three buttons may

not seem unreasonable, but imagine you want to create ten buttons:

you’d have over a hundred lines of code that look similar. And if you then

decided to make each of those buttons a few pixels wider, it would be

tedious and error-prone to change each width property individually.

The $EXAMPLES/ch10-piu/nav-bar-template example creates a

Button class for the nav-bar buttons. It does this by calling the static

template method of the Column class, as shown in Listing 10-33.

Listing 10-33.

const Button = Column.template($ => ({

 skin: outlineSkin,

 width: 80,

 contents: [

 Content(null, {

 top: 5,

 skin: $.skin

 }),

 Label(null, {

 top: 0,

 style: textStyle,

 string: $.string

 })

]

}));

The template method called here creates and returns a constructor for the

Button class. This new class extends Column because the template method is

part of the Column class. All Piu content objects have a static template method.

Even though the Button class isn’t created using the class keyword, you

still create instances using the new keyword, as in new Button. Before getting

into how to use the Button class, let’s look at the implementation of the class.

Chapter 10 Building user interfaCes with piu

465

The sole argument to Column.template is a function that returns an

object. The syntax is a little unusual, in that the arrow function body is a

value rather than a series of statements; that value becomes the return

value of the function. To illustrate this with a simple example, the following

code defines an arrow function named test:

let test = () => ({one: 1});

test(); // returns {one: 1}

When the arrow function is called, it returns the object. Now consider

this example, which defines a version of test that takes a single argument:

let test = $ => ({one: $});

test(1); // returns {one: 1}

The argument to the arrow function is assigned to a variable named $.

Although $ is an unusual variable name, it’s valid JavaScript, and the

$ variable behaves like any other. (Note this is unrelated to $ used in

template literals for string substitution, as described in Chapter 2.)

Similarly, in the Button class implementation shown in Listing 10-33,

the argument to Column.template is an anonymous arrow function that

returns an object for which some property values are taken from the $

variable passed in. When you invoke the Button constructor, as shown for

settingsButton in the following code, you pass a dictionary that contains

properties to substitute in the template where the $ variable is used, here

substituting for $.skin and $.string; the constructor calls the arrow

function specified in its implementation, passing the dictionary shown

here as the $ argument:

const settingsButton = new Button({

 skin: settingsSkin,

 string: "Settings"

});

Chapter 10 Building user interfaCes with piu

466

Using the Button template, each additional button is created with a

concise invocation of the Button constructor, as shown in Listing 10-34.

(The rest of the code that creates the navigation bar is the same as in the

nav-bar example.)

Listing 10-34.

const weatherButton = new Button({

 skin: sunSkin,

 string: "Weather"

});

const timeButton = new Button({

 skin: clockSkin,

 string: "Time"

});

As you can see, defining a template class has these advantages:

• It significantly improves the code’s readability by

eliminating redundant code to define each button

(which also saves flash memory).

• It makes your code easier to maintain. To change a

common property, like the width of each column, all

you have to do is change that property of the template.

 Content Constructor Arguments
You probably noticed that the Button constructor invocations in the

nav- bar- template example look different from the content object

constructors in the earlier examples: the calls to the Button constructor

pass a dictionary as the first argument rather than null, and they omit the

Chapter 10 Building user interfaCes with piu

467

second argument (which, when present, is the dictionary that configures

the object). In looking more closely at these two arguments, which every

Piu content constructor takes, this section explains these differences.

 The Instantiating Data Argument

The first argument a content constructor takes is called the instantiating

data. This concept is most relevant when working with templates. For

example, the Button template class created earlier uses the data passed

as the first argument to create the dictionary from which to instantiate

the class (in other words, the dictionary normally passed as the second

argument).

The instantiating data can be any JavaScript value or object. The

class you instantiate determines what data is valid. For example, the

Button class template as defined in Listing 10-33 expects the instantiating

data to be an object with skin and string properties. An alternative

implementation of the Button class is shown in Listing 10-35.

Listing 10-35.

const Button = Column.template($ => ({

 skin: outlineSkin,

 width: 80,

 contents: [

 Label(null, {

 top: 0,

 style: textStyle,

 string: $

 })

]

}));

Chapter 10 Building user interfaCes with piu

468

This Button class has no icon and expects a string to be passed as the $

argument, as in these examples:

const weatherButton = new Button("Weather");

const timeButton = new Button("Time");

The instantiating data has another interesting property: it’s passed

to the onCreate method of the created instance’s behavior. For example,

Listing 10-36 shows another way to implement the Button class from

Listing 10-35.

Listing 10-36.

const Button = Column.template($ => ({

 skin: outlineSkin,

 width: 80,

 contents: [

 Label(null, {

 top: 0,

 style: textStyle

 })

],

 Behavior: class extends Behavior {

 onCreate(column, $) {

 column.first.string = $;

 }

 }

}));

The functionality of the instantiating data is not limited to templates;

any content object constructors can use it. For example, Listing 10-37

creates a label with the string "Hello, World".

Chapter 10 Building user interfaCes with piu

469

Listing 10-37.

const sampleLabel = new Label("Hello, World", {

 top: 0, bottom: 0, left: 0, right: 0,

 style: textStyle,

 Behavior: class extends Behavior {

 onCreate(label, data) {

 label.string = data;

 }

 }

});

Later in this chapter, you’ll learn an advanced use of the instantiating

data argument: defining content anchors.

 The Content Dictionary Argument

The second argument to a content constructor is a dictionary that defines

properties of the created instance. The properties you include in this

content dictionary are associated with built-in properties of the content

class you’re instantiating—for example, the instance’s skin or width.

Except for the Button template examples shown earlier, all the examples in

this chapter define the content dictionary argument; however, it’s optional

and is undefined by default.

Listing 10-37 demonstrated the use of both the instantiating data

argument and the content dictionary argument to create a label object.

The $EXAMPLES/ch10-piu/colored-squares example demonstrates how

to use both these arguments when calling a template constructor to create

the colored squares shown in Figure 10-17.

Chapter 10 Building user interfaCes with piu

470

Listing 10-38 shows the code for creating the template and

constructing the squares.

Listing 10-38.

const Square = Content.template($ => ({

 width: 80, height: 80,

 skin: new Skin({fill: $})

}));

const redSquare = new Square("red", {left: 20, top: 20});

const yellowSquare = new Square("yellow");

const blueSquare = new Square("blue", {right: 20, bottom: 20});

In this example, the instantiating data is a string that defines the fill

color of the square. The position of the red and blue squares is defined

by the second dictionary argument, while the yellow square omits the

second argument and therefore defaults to being centered in its parent

container.

Figure 10-17. colored-squares example

Chapter 10 Building user interfaCes with piu

471

 Accessing Content Objects in a Container
In the examples you’ve seen so far, you’ve accessed content objects

through local variables, but you haven’t seen how to access content objects

when you don’t have a reference to them in a local variable. There are

many situations where you may need to access objects directly from the

containment hierarchy, such as when working with compound objects you

created using a template.

You’ve already learned that a container object contains a list of child

objects, the number of which is available from the container’s length

property. The following sections introduce several methods for accessing

content objects within the containment hierarchy.

 Using first, last, next, and previous
You can use the first property of a container to retrieve its first child,

and the last property to retrieve its last child. If a container has no child

objects, first and last are null.

Every content object has a next property that you can use to access the

following content object in its container, or null if there is none. Likewise,

a previous property returns the preceding content object (or null).

Using these properties is a simple way to access contents in a

container. They work well for some situations but not all. For example, the

code to access the fourth child of a container named myContainer using

first and next is difficult to read and tedious to write.

let button = myContainer.first.next.next.next;

The next section introduces a better solution for these situations.

Chapter 10 Building user interfaCes with piu

472

 Accessing Children by Index and Name
The content method provides access to a container’s child objects by

index. The index values begin at 0, so you can access the third child in a

container named myContainer as follows:

myContainer.content(2);

Like the first, last, next, and previous properties, this method of

accessing child objects is simple, but it requires you to modify your code when

the order of contents in the container changes. Alternatively, you can use

the content method to access child objects by their name. You define a name

property for a content object in the dictionary passed into the constructor.

let myContent = new Content(null, {

 name: "foo"

});

If myContent is a child of myContainer, you can access it as follows:

let foo = myContainer.content("foo");

This method works well for many containment hierarchies, but note

that the content object has to be a direct child of the container for it to

work. You can’t use the content method to access grandchildren, great-

grandchildren, and so on, of a container.

 Accessing Content with Anchors
An anchor is a reference to a content object saved as a property in the

instantiating data of the content object. Anchors are the best method

of accessing contents in complex interfaces with many levels in their

containment hierarchy; however, they’re the most difficult to understand.

Trying to explain anchors conceptually is often more confusing than

helpful, so let’s go right into looking at them through an example.

Chapter 10 Building user interfaCes with piu

473

The $EXAMPLES/ch10-piu/anchors example demonstrates a basic use

of anchors to create an animated user interface. When you tap the Start

button, the background and a colored square flash between two different

colors. Figure 10-18 shows the two states the screen toggles between when

the Start button is tapped.

This interface consists of three content objects:

• The Start button (an instance of the StartButton class)

• A colored square (an instance of the AnimatedSquare class)

• A background object (an instance of the MainContainer

class) that fills the background with color and, as shown in

Listing 10-39, contains the Start button and colored square

Listing 10-39.

const MainContainer = Container.template($ => ({

 ...

 contents: [

 new StartButton($),

 new AnimatedSquare($)

],

 ...

}));

Figure 10-18. anchors example

Chapter 10 Building user interfaCes with piu

474

Note that all three objects are passed the same instantiating data,

through the $ variable. In this example, the instantiating data starts out as

an empty dictionary.

let instantiatingData = {};

application.add(new MainContainer(instantiatingData));

The colored square and background objects have behaviors that

change their fill color twice a second when their internal clock is

running—that is, when each object’s start method is called and the object

begins receiving onTimeChanged events. The Start button is responsible for

calling the start method of these objects when tapped; the colored square

and the background object create anchors so that the Start button can

reference them to do this.

To create an anchor for a content object, you specify an anchor

property in the dictionary passed to its constructor. The MainContainer

template sets the anchor property to the string "BACKGROUND", as shown in

Listing 10-40.

Listing 10-40.

const MainContainer = Container.template($ => ({

 ...

 anchor: "BACKGROUND",

 ...

}));

Likewise, the AnimatedSquare template sets the anchor property to the

string "SQUARE" (Listing 10-41).

Chapter 10 Building user interfaCes with piu

475

Listing 10-41.

const AnimatedSquare = Content.template($ => ({

 ...

 anchor: "SQUARE",

 ...

}));

When a content object with an anchor property is instantiated,

Piu assigns the instance to a property with the anchor’s name in the

instantiating data. Recall that instantiatingData started out as an empty

dictionary; if you are using anchors, the instantiating data must be a

dictionary so anchors can be added to it. After the colored square and

background objects are instantiated, instantiatingData looks like this:

{

 BACKGROUND: <reference to the background object>,

 SQUARE: <reference to the colored square object>

}

The BACKGROUND and SQUARE properties of instantiatingData are

anchors to the background and colored square objects. Anything with

access to instantiatingData can use these anchors to reference these

objects. In this example, the Start button uses the anchors to trigger the

start of the background and square’s animations. The code that uses the

anchors and triggers the animations is all contained within StartButton

template’s behavior.

As you know, the instantiating data passed to the constructor of a

content object is passed to the onCreate method of the created content’s

behavior. StartButtonBehavior saves a reference to the instantiating data

in a data property so that it can be used in other methods.

Chapter 10 Building user interfaCes with piu

476

class StartButtonBehavior extends Behavior {

 onCreate(label, data) {

 this.data = data;

 }

StartButtonBehavior then uses its data property in its onTouchEnded

method (Listing 10-42) to access the anchors to the background and

colored square so that it can call their start methods, which in turn causes

the animation to start.

Listing 10-42.

onTouchEnded(label) {

 ...

 this.data.SQUARE.start();

 this.data.BACKGROUND.start();

}

Note that the level of content objects in the containment hierarchy

does not matter when you use anchors. In this example, the Start button

and colored square are both children of the background object, but you

could rearrange the containment hierarchy—for example, you could make

the colored square a child of the application object—without having

to change the implementation of StartButtonBehavior to trigger the

animations. This flexibility makes anchors very useful when you create

containment hierarchies that may change.

 Defining and Triggering Your Own Events
You’ve seen several examples with behavior objects that respond to the

low-level events defined and triggered by Piu. Your applications may need

other events, high-level events not defined by Piu; for example, a product

with a sensor attached can trigger an onSensorValueChanged event when

Chapter 10 Building user interfaCes with piu

477

a sensor detects a change, so that the application can update the display

or report the change to a network service. To handle high-level events, you

add methods to your behavior just as you do for low-level events.

Often several content objects need to respond to a single event. For

example, when a sensor value changes, multiple elements in the user

interface may require an update. Your event handler for one object can

propagate events—the event it received or others it creates—to other

objects throughout the containment hierarchy. Piu provides the delegate,

distribute, and bubble methods for propagating events.

This section shows how to define and trigger your own events. It also

introduces methods to propagate events to one or more content objects in

the containment hierarchy.

 Triggering Events on a Content Object
The $EXAMPLES/ch10-piu/counter example stores a counter in a label

object and enables another object, in this case a button, to increment the

counter using a high-level increment event. Figure 10-19 shows the steps

in the example, with the counter starting at 0, the user touching the button,

and finally the counter being incremented to 1 when the touch ends.

As shown in Listing 10-43, the counter is a label object with a behavior

named CounterBehavior.

Figure 10-19. counter example

Chapter 10 Building user interfaCes with piu

478

Listing 10-43.

const counter = new Label(null, {

 top: 70, height: 30, left: 0, right: 0,

 style: textStyle,

 string: "0",

 Behavior: CounterBehavior

});

The counter is stored in the count property of the label’s behavior

(Listing 10-44) and is initialized to 0 by the onDisplaying event handler

of CounterBehavior. The behavior also implements an increment event

handler, which increments the label object’s counter and updates its

string property with the new value.

Listing 10-44.

class CounterBehavior extends Behavior {

 onDisplaying(label) {

 this.count = 0;

 }

 increment(label) {

 label.string = ++this.count;

 }

}

The incrementButton object (Listing 10-45) is also a label object, with

a behavior named IncrementButtonBehavior.

Listing 10-45.

const incrementButton = new Label(null, {

 top: 120, height: 40, left: 140, width: 40,

 style: textStyle,

Chapter 10 Building user interfaCes with piu

479

 string: "+",

 skin: buttonSkin,

 active: true,

 Behavior: IncrementButtonBehavior

});

When the button is tapped,IncrementButtonBehavior (Listing 10- 46)

provides feedback by changing the button’s state property in the

onTouchBegan and onTouchEnded methods. The onTouchEnded method

also delegates the increment event to the counter object. The delegate

method of a content object immediately triggers the event named in the

method’s first argument. Here the increment event is triggered on the

counter object.

Listing 10-46.

class IncrementButtonBehavior extends Behavior {

 onTouchBegan(label) {

 label.state = 1;

 }

 onTouchEnded(label) {

 label.state = 0;

 counter.delegate("increment");

 }

}

You can pass additional arguments to the event handler by passing

them to the delegate method after the event name; for example, an

onSensorValueChanged event could receive the new sensor reading as part

of the event. To change the counter example to increment by any number,

you could change the increment method in Listing 10-44 to accept an

additional argument specifying the amount to increment by, as shown in

Listing 10-47.

Chapter 10 Building user interfaCes with piu

480

Listing 10-47.

class CounterBehavior extends Behavior {

 ...

 increment(label, delta) {

 this.count += delta;

 label.string = this.count;

 }

}

You’d then pass a number to the delegate method in the

onTouchEnded method. For example:

counter.delegate("increment", 1); // increments by 1

counter.delegate("increment", 5); // increments by 5

 Distributing Events Inside a Container
The $EXAMPLES/ch10-piu/color-scheme example provides buttons to

change the appearance of the application between light and dark modes.

When the user taps the Light or Dark button, the button triggers an

event to all objects inside the application container. The objects respond

by updating their colors to the requested mode. Figure 10-20 shows the

interface starting in light mode, the Dark button while being tapped, and

the interface in dark mode. Text displayed above the buttons indicates the

current mode.

Figure 10-20. color-scheme example

Chapter 10 Building user interfaCes with piu

481

The Light and Dark buttons trigger an event named onModeChanged.

Each button is an instance of ModeButton, a template based on Label as

shown in Listing 10-48.

Listing 10-48.

const ModeButton = Label.template($ => ({

 top: 110, height: 40, width: 120,

 skin: buttonSkin,

 active: true,

 Behavior: ModeButtonBehavior

}));

ModeButtonBehavior (Listing 10-49) provides feedback when the

button is tapped, by changing the state property of the button in the

onTouchBegan and onTouchEnded methods. The onTouchEnded method

also distributes the onModeChanged event throughout the application

container, by calling the distribute method of the application object.

The distribute method triggers the event on each content object in the

container. In its call to application.distribute, ModeButtonBehavior

passes the name of the button, either "Light" or "Dark" in this example, as

an argument to indicate the mode to change to.

Listing 10-49.

class ModeButtonBehavior extends Behavior {

 onTouchBegan(label) {

 label.state = 1;

 }

 onTouchEnded(label) {

 label.state = 0;

 application.distribute("onModeChanged", label.string);

 }

}

Chapter 10 Building user interfaCes with piu

482

All container objects have a distribute method, which triggers a

specified event on the container and all content objects downward in the

containment hierarchy. Distribution of the event ends when the event is

delivered to all objects in the container or when one of the event handlers

returns true to indicate that the event has been fully handled. You can

think of the distribute method as a way to broadcast an event to the

contents of a container. In this example, it would be easy to directly call

delegate on the few content objects with an onModeChanged handler in

their behavior; however, as your application becomes more complex, it’s

easier to use the distribute method to traverse everything in a container

automatically.

Now that you know how distribute triggers events on the contents of

containers, let’s look at how content objects respond to those events. The

state property plays a key role. The LightDarkScreen container, which

holds the buttons and the string of text, has a skin that’s white when its

state property is 0 and black when its state property is 1.

const backgroundSkin = new Skin({

 fill: ["white", "black"]

});

The string of text is a label object that has a style that will do the

reverse, causing the text to be black when its state property is 0 and white

when its state property is 1. (See Listing 10-50.)

Listing 10-50.

const textStyle = new Style({

 font: "24px Open Sans",

 color: ["black", "white"],

 top: 10, bottom: 10, left: 10, right: 10

});

Chapter 10 Building user interfaCes with piu

483

The code for LightDarkScreen is shown in Listing 10-51.

Listing 10-51.

const LightDarkScreen = new Container(null, {

 top: 0, bottom: 0, left: 0, right: 0,

 skin: backgroundSkin,

 style: textStyle,

 contents: [

 Label(null, {

 top: 50, height: 30, left: 0, right: 0,

 string: "Light",

 Behavior: TextBehavior

 }),

 ModeButton(null, {

 left: 30,

 string: "Dark"

 }),

 ModeButton(null, {

 right: 30,

 string: "Light"

 })

],

 Behavior: LightDarkScreenBehavior

});

Both LightDarkScreen and the label object it contains have behaviors

that change their state property when they receive an onModeChanged

event. The label changes its string property to reflect which button was

tapped. Listing 10-52 shows these behaviors.

Chapter 10 Building user interfaCes with piu

484

Listing 10-52.

class LightDarkScreenBehavior extends Behavior {

 onModeChanged(container, mode) {

 container.state = (mode === "Dark")? 1 : 0;

 }

}

class TextBehavior extends Behavior {

 onModeChanged(label, mode) {

 label.state = (mode === "Dark")? 1 : 0;

 label.string = mode;

 }

}

 Bubbling Events Up the Containment Hierarchy
The $EXAMPLES/ch10-piu/background-color example provides buttons

to change the background color of the screen. When the user taps the

buttons, they trigger an event upward in the containment hierarchy. The

buttons’ parent container spans the whole screen and updates its skin

property in response to the event. Figure 10-21 shows the background in

its initial white state, the Yellow button while being tapped, and then the

background after it has changed to be yellow.

As shown in Listing 10-53, the buttons are created with a template that

creates a label object with a behavior named ColorButtonBehavior.

Figure 10-21. background-color example

Chapter 10 Building user interfaCes with piu

485

Listing 10-53.

const ColorButton = Label.template($ => ({

 height: 40, left: 10, right: 10,

 skin: buttonSkin,

 active: true,

 Behavior: ColorButtonBehavior

}));

ColorButtonBehavior (Listing 10-54) provides feedback when the

button is tapped, by changing the state property of the button in the

onTouchBegan and onTouchEnded methods. The onTouchEnded method

also bubbles the onColorSelected event up the containment hierarchy,

by calling the bubble method and passing it the string property of the

button—"Yellow", "Red", or "Blue"—as an argument to the event handler.

Listing 10-54.

class ColorButtonBehavior extends Behavior {

 onTouchBegan(label) {

 label.state = 1;

 }

 onTouchEnded(label) {

 label.state = 0;

 label.bubble("onColorSelected", label.string);

 }

}

All content objects have a bubble method, which causes them, their

parent container, and all container objects upward in the containment

hierarchy to trigger a specified event. Propagation of the event ends when

the event has been delivered to all objects up to the application object or

when one of the event handlers returns true to indicate that the event has

Chapter 10 Building user interfaCes with piu

486

been fully handled. As with the delegate and distribute methods, the

event is specified by name and passed as the first argument to the bubble

method.

Now that you know how to use the bubble method to trigger events,

let’s look at how the containment hierarchy of the example is organized

before exploring the details of how the onColorSelected event propagates

through this particular containment hierarchy.

The buttons are contained in a row object. This row is part of a

container object, named colorScreen, which is added to the application

object. As shown in Listing 10-55, the row doesn’t have a behavior

associated with it, but colorScreen references a behavior named

ColorScreenBehavior.

Listing 10-55.

const colorScreen = new Container(null, {

 top: 0, bottom: 0, left: 0, right: 0,

 skin: whiteSkin,

 style: textStyle,

 contents: [

 Row(null, {

 height: 50, width: 320,

 contents: [

 new ColorButton(null, {string: "Red"}),

 new ColorButton(null, {string: "Yellow"}),

 new ColorButton(null, {string: "Blue"})

]

 })

],

 Behavior: ColorScreenBehavior

});

application.add(colorScreen);

Chapter 10 Building user interfaCes with piu

487

ColorScreenBehavior changes the background color when it receives

the onColorSelected event; as shown in Listing 10-56, the new color is

passed as an argument. The first letter of each button string is uppercase

("Red"), but CSS colors are all lowercase, so the event handler uses

toLowerCase to convert the string to all lowercase letters.

Listing 10-56.

class ColorScreenBehavior extends Behavior {

 onColorSelected(container, color) {

 container.skin = new Skin({

 fill: color.toLowerCase()

 });

 }

}

Here’s what happens when one of the buttons is tapped:

 1. The onColorSelected event is first triggered on

the button itself. The button’s behavior has no

corresponding onColorSelected method, so the

event bubbles up to its parent container.

 2. The parent container of the button is the row object.

This object has no behavior and therefore no

onColorSelected method, so the event moves on to

the row’s parent container.

 3. The parent container of the row is the colorScreen

container. The behavior of this container has an

onColorSelected method, so the method is called

when the behavior triggers the onColorSelected

event. Then the event moves on to this container’s

parent container.

Chapter 10 Building user interfaCes with piu

488

 4. The parent container of the colorScreen container

is the application object. This object has no

onColorSelected method and is the root of the

containment hierarchy, so the traversal is complete.

As with the other examples of propagating events, it would be easy to

simply delegate the event to all of the contents that have a corresponding

onColorSelected method in their behavior. But applications with many

levels in their containment hierarchy can use the bubble method of

content objects to simplify the code that propagates an event and to

minimize the code changes needed when the containment hierarchy

changes.

 Animation
Incorporating animations into user interfaces can significantly improve the

user experience. Animations are used for meaningful, functional purposes,

such as to provide feedback when a user taps a button. They’re also used

for aesthetic purposes, to give the product a particular feel—for example,

to create an animated transition when moving between screens.

 Easing Equations
Animations that linearly modify the properties of content objects often

appear unnatural. Easing equations are a common tool for implementing

animations that feel more natural, or to add a visual style.

Piu extends the JavaScript Math object with Robert Penner’s well-

known easing equations. The names of these functions in Piu are self-

explanatory—for example, bounceEaseInOut creates a bouncing effect at

the start and end of the animation. Details on the Penner equations are

available at robertpenner.com/easing/.

Chapter 10 Building user interfaCes with piu

http://robertpenner.com/easing/

489

The Piu implementations of these easing equations all take a single

argument, a number in the range [0, 1], and return a number in the range

[0, 1] with the easing function applied. The equations are used extensively

in all types of animations. The input value is the fraction of the animation

that has completed; the easing function adjusts the fraction to another

value which is then used to calculate the state of values in the animation.

You’ll see examples of this in the sections that follow.

Some of the easing equations create a subtle effect to make the

animations feel more natural. For example, the quad easing functions—

Math.quadEaseIn, Math.quadEaseOut, and Math.quadEaseInOut—vary

the speed slightly throughout the duration of the animation to make the

beginning and/or end of the animation less abrupt. Others create a bold

effect. For example, the bounce easing functions—Math.bounceEaseIn,

Math.bounceEaseOut, and Math.bounceEaseInOut—make objects bounce

at the start and/or end of the animation.

Of course, you’re not limited to the easing functions that are included

by default; you can easily add your own easing equations to suit your

product’s needs. The details of creating your own easing equations are

outside the scope of this book, but there’s plenty of information online

should you decide it’s necessary for your product.

 Animating Content Objects
The helloworld-ticking example showed how to use the built-in clock

of a content object to create a simple animation. Creating more complex

animations, particularly those that independently move several interface

elements simultaneously, is difficult.

The $EXAMPLES/ch10-piu/timeline example demonstrates how to

create an animation sequence involving multiple objects on the screen. The

animation in this example is simple, but understanding the code will give

you a foundation to create much more sophisticated animations of your own.

Figure 10-22 shows the user interface at a few points during the animation.

Chapter 10 Building user interfaCes with piu

490

The interface in the example consists of a container object named

animatedContainer (Listing 10-57), which contains a label object and a

content object.

Listing 10-57.

const animatedContainer = new Container(null, {

 top: 0, bottom: 0, left: 0, right: 0,

skin: whiteSkin,

 contents: [

 new Label(null, {

 style: textStyle,

top: 80, left: 0, right: 0,

string: "Hello, World"

 }),

 new Content(null, {

 top: 115, height: 3, left: 0, width: 320,

skin: colorfulSkin

 })

],

 Behavior: TimelineBehavior

});

The animation is driven by TimelineBehavior, the behavior of

animatedContainer. TimelineBehavior instantiates a timeline object in

its onDisplaying event handler. Piu provides the Timeline class to simplify

and structure the code for implementing animations. This class can be

Figure 10-22. timeline example

Chapter 10 Building user interfaCes with piu

491

used both for animating elements within a single screen and for animating

transitions between screens. Using the Timeline class is generally the best

way to organize and implement animations of multiple content objects; for

example, it easily handles the situation where the time that each content

object begins animating is staggered. The API for the Piu Timeline class

is based on the API for TimelineLite by GreenSock, a popular JavaScript

library used to animate web pages.

The onDisplaying event handler also initializes the reverse property,

which is used to enable the timeline animation to run both forward and

backward. Listing 10-58 shows the relevant code.

Listing 10-58.

class TimelineBehavior extends Behavior {

 onDisplaying(container) {

 let timeline = this.timeline = new Timeline();

 this.reverse = false;

 ...

A timeline object consists of a set of tweens, each of which describes

how one or more properties of one content object change from an initial

value and an ending value. Tweens are added to the timeline by its from and

to methods, which define the tween based on the following arguments:

 1. target – the content object to animate

 2. properties – a dictionary whose keys are properties

of the target object to animate

 3. duration – the duration of the tween, in milliseconds

 4. easing – (optional) an easing function to use for the tween

 5. delay – (optional) the number of milliseconds that

this tween should start after the previous tween in

the timeline completes; defaults to 0

Chapter 10 Building user interfaCes with piu

492

A tween added by a timeline’s from method—called a from- tween—

eases the properties of the target object from the values specified in

the properties object to the original values of the target object over

duration milliseconds. The onDisplaying method in Listing 10-58

continues by adding the following from-tween. In this example, the label

object moves from a y position off the top of the screen to its original

position of 80 pixels from the top of the screen. At the same time, its state

animates from state 1 to state 0, causing it to fade from white to black.

Note that the label here is accessed as container.first because it’s the

first content object added to the container. The tween has a duration of

750 milliseconds and uses the quadEaseOut easing function.

timeline.from(container.first, {

 y: -container.first.height,

 state: 1

 }, 750, Math.quadEaseOut, 0);

As shown in the following code, a second call to the timeline’s from

method then adds a tween to move the color bar from an x position off the

left edge of the screen to its original position of 0 pixels from the left edge.

Each call to from extends the timeline by the duration of its animation and,

unless the delay argument is used, the tween added by the next call to from

begins at the end of the timeline. To make the two tweens run at the same

time, this example sets the delay property to –750 milliseconds, which causes

it to start at the same time as the first tween. This tween doesn’t change the

timeline’s duration, because it ends at the same time as the first tween.

timeline.from(container.last, {

 x: -320

 }, 750, Math.linearEase, -750);

A tween added by a timeline’s to method—called a to-tween—eases

the properties of the target object from its current values to the target

values specified in the properties object over duration milliseconds.

Chapter 10 Building user interfaCes with piu

493

The onDisplaying method continues by adding the to-tween shown as

follows. In this example, the color bar goes from its current state of 0 to a

state of 1. The delay property here isn’t specified, so it defaults to 0, which

causes this tween to begin immediately after the previous one completes.

timeline.to(container.last, {

 state: 1

 }, 750, Math.linearEase, 0);

After all the tweens are added, the timeline is ready to use, as shown

in the following code in the remaining calls in the onDisplaying method.

The timeline has a current time, between 0 and the timeline’s duration,

that indicates the progress in the animation and can be set using its seekTo

method. Like the duration property (and a content object’s clock), seekTo

expresses time in milliseconds. This example rewinds the timeline to the

beginning by using seekTo to set the timeline’s current time to 0. It then

uses the content object’s clock—in this case the container’s clock—to drive

the animation: after setting the container’s duration to match the duration

of the timeline, it rewinds the container’s clock and starts it ticking.

timeline.seekTo(0);

container.duration = timeline.duration;

container.time = 0;

container.start();

TimelineBehavior includes two additional event handlers,

onTimeChanged and onFinished (Listing 10-59):

• With the clock ticking, onTimeChanged is invoked at

regular intervals. Because the duration of the timeline

is equal to the duration of the container’s clock,

onTimeChanged uses seekTo to synchronize the timeline

with the time property of the container’s clock.

Chapter 10 Building user interfaCes with piu

494

• When the container’s clock reaches its duration, the

onFinished event is triggered. This also means that the

animation sequence is complete. In this example, the

timeline moves in reverse after it reaches the end, and

loops back and forth indefinitely.

Listing 10-59.

onTimeChanged(container) {

 let time = container.time;

 if (this.reverse)

 time = container.duration - time;

 this.timeline.seekTo(time);

}

onFinished(container) {

 this.reverse = !this.reverse;

 this.timeline.seekTo(0);

 container.time = 0;

 container.start();

}

 Animating Transitions
The Piu Transition class provides another method of implementing

animations. It’s most often used to swap one content object for another

in the containment hierarchy—for example, to move between screens.

This section focuses on the built-in wipe and comb transitions, which are

subclasses of the Transition class. Unlike timeline animations, which

modify the properties of content objects, the wipe and comb transitions

are purely graphical operations that operate on the pixels of the display.

Because they’re optimized to minimize the number of pixels drawn in

each frame, these transitions achieve high frame rates, even on an ESP8266

Chapter 10 Building user interfaCes with piu

495

microcontroller. You can also create your own transitions, by subclassing

the Transition class, but that’s outside the scope of this book.

You import the wipe and comb transitions classes from modules:

import WipeTransition from "piu/WipeTransition";

import CombTransition from "piu/CombTransition";

The wipe transition reveals the new screen starting from either an

edge or a corner of the screen. The constructor for this transition has the

following arguments to control the wipe:

 1. A duration in milliseconds

 2. An easing equation

 3. A horizontal direction, as "center", "left", or "right"

 4. A vertical direction, as "middle", "top", or "bottom"

The horizontal and vertical directions determine where the transition

starts. For example, if they’re center and top, the transition begins from

the top edge; if they’re right and bottom, the transition begins from the

bottom-right corner.

const wipeFromCenter = new WipeTransition(250,

 Math.quadEaseOut, "center", "top");

const wipeFromTopRight = new WipeTransition(250,

 Math.quadEaseOut, "right", "bottom");

The comb transition reveals the new screen through a series of

interleaved bars that emerge from either the top and bottom edges of the

screen or the left and right edges of the screen. The constructor for the

comb transition has the following arguments:

 1. A duration in milliseconds

 2. An easing equation

Chapter 10 Building user interfaCes with piu

496

 3. A direction, as either "horizontal" or "vertical"

 4. The number of bars

If the direction is set to horizontal, the bars emerge from the left and

right edges; if it’s set to vertical, the bars emerge from the top and bottom

edges.

const horizontalComb = new CombTransition(250,

 Math.quadEaseOut, "horizontal", 4);

const verticalComb = new CombTransition(250,

 Math.quadEaseOut, "vertical", 8);

Once you have an instance of a transition, you call the run method of

the parent container of the object to transition from, passing as arguments

the transition, the content object to transition from, and the content object

to transition to. The transition runs asynchronously and therefore doesn’t

block execution of your code. When the transition completes, the content

object to transition from is replaced in the containment hierarchy by the

content object to transition to. For example, the code in Listing 10-60 runs

the wipeFromTopRightTransition transition to replace firstScreen with

nextScreen.

Listing 10-60.

const firstScreen = new Content(...);

const nextScreen = new Content(...);

const sampleContainer = new Container(null, {

 ...

 contents: [

 firstScreen

]

});

sampleContainer.run(wipeFromTopRightTransition, firstScreen,

 nextScreen);

Chapter 10 Building user interfaCes with piu

497

The $EXAMPLES/ch10-piu/transitions example shows several

variations of the wipe and comb transitions. It transitions between two

screens at a regular interval.

 Drawing a Graph in Real Time
Sometimes there are elements of your user interface that are more

convenient or efficient to render using drawing functions like those

provided by Poco instead of creating and updating objects as Piu does.

For example, imagine you want to create a bar graph like the one shown in

Figure 10-23, which updates in real time based on readings from a sensor.

You could use Piu content objects, but that’s not the most efficient

implementation. You’d have many content objects to keep track of and

update—at least one content object for every bar in the graph and the

background of the graph, plus one or more label objects for the labels

on the y axis. Every object takes up some RAM, so your RAM usage would

quickly add up.

Fortunately, you don’t have to choose between the approaches of

Piu and Poco; you can combine them by using Piu’s Port class. A port is

a content object that lets you issue drawing commands similar to Poco

Figure 10-23. Bar graph that updates in real time

Chapter 10 Building user interfaCes with piu

498

within a Piu layout, making it great for user interface elements like graphs

that would otherwise require many content objects.

The $EXAMPLES/ch10-piu/graph example uses a single port object to

efficiently render the real-time bar graph shown in Figure 10-23:

const graph = new Port(null, {

 top: 0, bottom: 0, left: 0, right: 0,

 Behavior: GraphBehavior

});

This port’s behavior, GraphBehavior (Listing 10-61), maintains a list of

sample values to graph in an array stored in the values property. Every 100

milliseconds, the onTimeChanged event handler removes the first value in

the list and replaces it with a random number from 0 to 100. These random

numbers are simulated sensor readings. After generating a new value,

onTimeChanged calls the port’s invalidate method, which tells Piu that the

port needs to be redrawn.

Listing 10-61.

class GraphBehavior extends Behavior {

 onDisplaying(port) {

 this.values = new Array(20);

 this.values.fill(0);

 port.interval = 100;

 port.start();

 }

 onTimeChanged(port) {

 this.values.shift();

 this.values.push(Math.random() * 100);

 port.invalidate();

 }

Chapter 10 Building user interfaCes with piu

499

The call to invalidate causes the port object to trigger an onDraw

event on itself. Note that onDraw is invoked not from inside the call to the

invalidate method but a short time after. As shown in Listing 10-62, in

this case the onDraw event handler fills the background with white, draws

the y-axis labels and corresponding gray lines, and then draws a blue bar

for each randomly generated value.

Listing 10-62.

onDraw(port, x, y, width, height) {

 port.fillColor(WHITE, x, y, width, height);

 for (let i = 100, yOffset = 0; yOffset < height;

 yOffset += height / 5, i -= 20) {

 port.drawString(i, textStyle, "black",

 30 - textStyle.measure(i).width,

 yOffset);

 port.fillColor(GRAY, 35, yOffset + 10, width, 1);

 }

 let xOffset = 35;

 const values = this.values;

 for (let i = 0; i < values.length; i++) {

 let value = values[i];

 let barHeight = (value / 100) * (height - 10);

 port.fillColor(BLUE, xOffset, height - barHeight,

 12, barHeight);

 xOffset += 14;

 }

}

Chapter 10 Building user interfaCes with piu

500

This example uses two of the drawing methods provided by the port

content object:

• It calls drawString to draw a line of text the way a label

object would, with the style and color specified. The

measure method of the textStyle object is called to

calculate the width of the label strings so that they’ll be

positioned precisely.

• It calls fillColor to draw a rectangle in the color

specified.

The port object has several other drawing methods, including

drawTexture to draw the image specified by a texture and drawSkin to

draw a rectangle with a skin, just as any content object would. For details

on all the drawing commands available to port objects, see the Piu

documentation in the Moddable SDK.

 Adding an Onscreen Keyboard
In many IoT products, there are situations that require the user to

enter text—for example, to enter a Wi-Fi password when setting up the

product. Today this operation is usually done in a companion app on a

mobile phone, requiring the user to install a new mobile app and follow

a complex, error-prone process to configure Wi-Fi. On IoT products that

incorporate a touch screen, the user can configure Wi-Fi, and enter text for

other purposes, directly on the product. To enable that, you just need an

onscreen keyboard.

The challenge is that accurate typing is easier when the keyboard is

bigger, but bigger touch screens are more expensive. To solve this problem,

the Moddable SDK includes a module that provides an expanding

onscreen keyboard, making it possible to enter text accurately on small

touch screens. Typing a character on this keyboard is a two-step process:

Chapter 10 Building user interfaCes with piu

501

first you tap in the vicinity of the character you want to type (either on or

near that character); the keyboard expands around where you tapped,

and you then tap the character you want. You tap OK when you’re done

entering the text.

You can try this out by running the $EXAMPLES/ch10-piu/keyboard

example. When the example is launched, you see the keyboard in its

unexpanded state (Figure 10-24) with a blinking cursor in the text field

above the keyboard.

In Figure 10-25, the left image shows how the keyboard expands after

you tap on or near the letter a, and the right image shows how it expands

after you tap on or near the letter g.

Figure 10-24. Unexpanded keyboard

Figure 10-25. Keyboard expanded around letter a (left) and g (right)

Chapter 10 Building user interfaCes with piu

502

You then tap the character you want, which appears before the

blinking cursor in the text field, and the keyboard returns to the

unexpanded state. (Notice that in the expanded state, the OK button

changes to display a keyboard icon; you’d tap it if you didn’t want to type

a character after all but instead wanted to return to the unexpanded

keyboard and the OK button.)

Two variants of the expanding keyboard are available:

VerticalExpandingKeyboard for screens that are 240 pixels wide

and HorizontalExpandingKeyboard for screens 320 pixels wide.

The keyboard example uses the horizontal variant, so it imports

HorizontalExpandingKeyboard and KeyboardField objects from the

keyboard modules.

import {HorizontalExpandingKeyboard} from "keyboard";

import {KeyboardField} from "common/keyboard";

These modules are part of the Moddable SDK, so you can see the

source code and full documentation for them. Everything in the modules

will look familiar now that you’ve read this chapter; all elements of the

keyboard are built with Piu classes you’ve learned about, including

Port, Timeline, and Behavior. This section doesn’t describe the

implementation of the keyboard modules but only focuses on how to use

the modules to incorporate a keyboard in your projects.

The KeyboardContainer template (Listing 10-63) is a good place to

begin exploring this example. The first item in its contents is an instance of

KeyboardField, a content object class imported from the common/keyboard

module. This field is where the text you type will go. The KeyboardField

class has a behavior that responds to text input and blinks the cursor. The

second item is a container to hold the keyboard, although it starts as an

empty container. Note that both of these content objects have an anchor

property, so anchors to them are created in the instantiating data.

Chapter 10 Building user interfaCes with piu

503

Listing 10-63.

const KeyboardContainer = Column.template($ => ({

 left: 0, right: 0, top: 0, bottom: 0,

 contents: [

 KeyboardField($, {

 anchor: "FIELD",

 left: 32, right: 0, top: 0, bottom: 0,

 style: fieldStyle

 }),

 Container($, {

 anchor: "KEYBOARD",

 left: 0, right: 0, bottom: 0, height: 164

 })

],

 active: true,

 Behavior: KeyboardContainerBehavior

}));

In KeyboardContainerBehavior (Listing 10-64), the methods

associated with onDisplaying and onTouchEnded events (which you’re

already familiar with) both do the same thing: they call the addKeyboard

method.

Listing 10-64.

class KeyboardContainerBehavior extends Behavior {

 ...

 onDisplaying(column) {

 this.addKeyboard();

 }

Chapter 10 Building user interfaCes with piu

504

 onTouchEnded(column) {

 this.addKeyboard();

 }

 ...

}

The addKeyboard method (Listing 10-65) checks whether

the container object referenced by data.KEYBOARD already

contains a keyboard. If it doesn’t, the method adds an instance of

HorizontalExpandingKeyboard to the empty container object, based on

three arguments passed in:

• The style is the style of the characters on the keys of the

keyboard.

• The target is the object that should receive events when

a key is tapped, which in this case is the KeyboardField

object referenced by data.FIELD.

• The doTransition parameter specifies whether the

keyboard should transition in. If true, the keyboard

transitions in, one row at a time; if false, it appears all

at once.

Listing 10-65.

addKeyboard() {

 if (1 !== this.data.KEYBOARD.length) {

 this.data.KEYBOARD.add(HorizontalExpandingKeyboard(

 this.data, {

 style: keyboardStyle,

 target: this.data.FIELD,

Chapter 10 Building user interfaCes with piu

505

 doTransition: true

 }

));

 }

}

When the user taps the OK button, the keyboard distributes the

onKeyboardOK event to the application container with the text string the

user entered. In this example, KeyboardContainerBehavior responds to

the event by tracing the string entered and hiding the field that displays the

string and the cursor.

onKeyboardOK(application, string) {

 trace(`User entered: ${string}\n`);

 this.data.FIELD.visible = false;

}

The keyboard appears with a slide-in transition and slides out to

disappear when the user taps OK. When either of these transitions

completes, the keyboard bubbles an onKeyboardTransitionFinished event

with a parameter indicating whether the transition is for appearance or

disappearance of the keyboard. Your code can use these events to take actions

such as showing user interface elements hidden while the keyboard is in use.

In this example, the onKeyboardTransitionFinished method

(Listing 10- 66) responds to the disappearance of the keyboard by removing it

from the containment hierarchy, and the method responds to the appearance

of the keyboard by making the text field above the keyboard visible.

Listing 10-66.

onKeyboardTransitionFinished(application, out) {

 if (out) {

 let keyboard = this.data.KEYBOARD;

 keyboard.remove(keyboard.first);

 }

Chapter 10 Building user interfaCes with piu

506

 else

 this.data.FIELD.visible = true;

}

Note that the keyboard doesn’t have to be removed from the

containment hierarchy after being transitioned out; you could keep

transitioning the same instance in and out of view. In many applications,

however, tapping OK triggers a transition to another screen, so it’s better

to remove the keyboard from the containment hierarchy so that it can be

garbage-collected.

 Organizing User Interface Code Using
Modules
Every example in this chapter has been contained in one module, and

consequently one source code file. As your applications become more

complex—with multiple screens, interactions with cloud services and

other devices, and more—you’ll likely want to divide your code among

multiple modules. Separating code into modules has these benefits:

• Reusing code is easier because code that’s not specific

to one product can be stored in separate source code

files. The keyboard modules are an example of this.

• Editing and maintaining code is easier when it’s

organized in logical modules.

• It’s easier to distribute work across a team.

The $EXAMPLES/ch10-piu/multiple-screens example discussed in this

section shows a common way to organize your user interface. It’s a simple

application with two screens: a splash screen and a home screen, as pictured

in Figure 10-26. The application first displays an animated splash screen

and then transitions to a home screen that has a restart button and label on

Chapter 10 Building user interfaCes with piu

507

it. Tapping the restart button returns to the splash screen. Along the way,

the example demonstrates useful techniques for building maintainable,

memory-efficient applications with multiple modules and screens.

 The Modules
The multiple-screens example consists of three modules:

• example.js – the application logic for navigating

between screens

• assets.js – texture, skin, and style objects used

throughout the application

• screens.js – templates for the two screens of the

application

In this example, the assets and screens modules aren’t especially

long, and therefore it might seem strange to separate them, since the

assets module exports objects that only the screens module uses.

However, this is often a useful separation in larger applications, because

you need to modify only one file to change the colors and assets used

across all screens. It’s also useful when you’re building a line of products

with similar branding; you can give all your products a consistent look and

feel by creating a shared assets file that defines the common textures,

skins, and styles used by your screens.

Figure 10-26. Splash screen (left) and home screen (right) from
multiple-screens example

Chapter 10 Building user interfaCes with piu

508

You’ve already seen many examples of texture, skin, and style objects

in this chapter, so the assets module isn’t described in detail here. The next

sections focus on the example and screens modules and how they interact.

 The Application Logic
The example module contains all the application-specific logic, which in

this application is the simple logic to move between screens. At startup, the

example instantiates the MainContainer template (Listing 10-67) and adds

it to the application object. This container is what the example uses to

hold the screens.

Listing 10-67.

const MainContainer = Container.template($ => ({

 top: 0, bottom: 0, left: 0, right: 0,

 Behavior: MainContainerBehavior

}));

application.add(new MainContainer({}));

The instance of MainContainer is initially empty. Its behavior adds and

removes the screens that are defined in the screens module. As shown in

Listing 10-68, the behavior adds the first screen in the onDisplaying event

handler by calling its switchScreen method with the name of the screen,

"SPLASH".

Listing 10-68.

class MainContainerBehavior extends Behavior {

 onCreate(container, data) {

 this.data = data;

 }

Chapter 10 Building user interfaCes with piu

509

 onDisplaying(container) {

 this.switchScreen(container, "SPLASH");

 }

 ...

}

The next event handler in the behavior is switchScreen, which

the application calls each time it needs to switch to a new screen. The

switchScreen method triggers the doSwitchScreen event in order to

move to the new screen; however, rather than triggering the event with the

delegate method, which would trigger it immediately, it uses the defer

method, which defers delivery of the event until the next iteration of the

event loop. The only difference between defer and delegate is the timing

of when the event is delivered.

switchScreen(container, nextScreenName) {

 container.defer("doSwitchScreen", nextScreenName);

}

One reason you’d want to defer delivery of the event is to avoid a

stack overflow. The stack on the microcontroller is small, and the code

to create a screen often takes up quite a bit of stack space. If you switch

screens immediately, some of the stack has already been used by the calls

that invoke your behavior’s event handler. By deferring the delivery of the

event, your event handler runs on a nearly empty stack, thereby reducing

the peak stack usage.

Another reason to defer delivery of the event is to reduce peak memory

use when switching screens. Because of the way garbage collection works,

if you deliver the doSwitchScreen event immediately, the garbage collector

keeps both the previous and the next screens in memory for a brief period

Chapter 10 Building user interfaCes with piu

510

of time. Using defer makes it possible to first release the previous screen

before instantiating the next screen. That’s what the doSwitchScreen

method (Listing 10-69) of MainContainer does, as follows:

 1. It uses the empty method to empty the current

screen. Because this is done from a deferred event,

the objects associated with that screen become

eligible for garbage collection.

 2. It calls application.purge, which frees caches that

Piu created and runs the garbage collector, freeing up

the memory used by the objects from the old screen.

 3. It instantiates and adds the next screen.

Listing 10-69.

doSwitchScreen(container, nextScreenName) {

 container.empty();

 application.purge();

 switch (nextScreenName) {

 case "SPLASH":

 container.add(new SCREENS.SplashScreen(this.data));

 break;

 case "HOME":

 container.add(new SCREENS.HomeScreen(this.data));

 break;

 }

}

This process is a good way to manage an application’s RAM usage,

because it helps ensure that there are never two screens’ worth of objects

in RAM at the same time. Putting the logic for switching screens in the

behavior of the MainContainer is also useful because it prevents you from

Chapter 10 Building user interfaCes with piu

511

having to repeat it in the behavior of every screen template; instead, each

screen can simply delegate the switchScreen event when it’s time to go to

a new screen.

 The Splash Screen
Like many mobile and web apps, this example displays a simple splash

screen when the application is launched. As shown in Listing 10-70, the

logo on this screen is created by layering three content objects, which

enables each piece to be animated individually with a timeline object.

The title on the screen is a simple label object.

Listing 10-70.

const SplashScreen = Container.template($ => ({

 top: 0, bottom: 0, left: 0, right: 0,

 skin: ASSETS.backgroundSkin,

 contents: [

 Content($, {

 anchor: "LOGO1",

 top: 30,

 skin: ASSETS.logoSkin1

 }),

 Content($, {

 anchor: "LOGO2",

 top: 30,

 skin: ASSETS.logoSkin2

 }),

 Content($, {

 anchor: "LOGO3",

 top: 30,

 skin: ASSETS.logoSkin3

 }),

Chapter 10 Building user interfaCes with piu

512

 Label($, {

 anchor: "TITLE",

 top: 155,

 style: ASSETS.bigTextStyle,

 string: "lorem ipsum"

 })

],

 Behavior: SplashScreenBehavior

}));

As usual, the timeline is defined in the behavior (Listing 10-71) and is

driven by the container object’s internal clock.

Listing 10-71.

class SplashScreenBehavior extends Behavior {

 ...

 onDisplaying(container) {

 let data = this.data;

 let timeline = this.timeline = new Timeline;

 ...

 }

 onTimeChanged(container) {

 this.timeline.seekTo(container.time);

 }

}

When the animation completes, the behavior’s onFinished method

(Listing 10-72) does the following:

• It deletes the anchors for all the content objects on

the screen. Note that this doesn’t delete the content

objects themselves but only deletes the references to

them in the data object. It’s important to delete these

Chapter 10 Building user interfaCes with piu

513

references because the data object is shared by the

MainContainer object and passed to all the screens it

creates; if the references aren’t deleted, the garbage

collector won’t be able to free up the RAM associated

with the content objects when application.purge is

called in the doSwitchScreen method.

• It then bubbles the switchScreen event, which

eventually reaches the MainContainer object. It passes

the string "HOME" as the second argument, so the

MainContainer loads the home screen next.

Listing 10-72.

onFinished(container) {

 let data = this.data;

 // Delete anchors

 delete data.LOGO1;

 delete data.LOGO2;

 delete data.LOGO3;

 delete data.TITLE;

 // Transition to next screen

 container.bubble("switchScreen", "HOME");

}

 The Home Screen
The home screen (Listing 10-73) is a row that centers a restart button and

a label. The restart button and the home screen have behaviors named

RestartButtonBehavior and HomeScreenBehavior, respectively.

Chapter 10 Building user interfaCes with piu

514

Listing 10-73.

const HomeScreen = Row.template($ => ({

 top: 0, bottom: 0, left: 0, right: 0,

 skin: ASSETS.backgroundSkin,

 contents: [

 Content($, {

 left: 0, right: 0

 }),

 Container($, {

 anchor: "BUTTON",

 skin: ASSETS.buttonBackgroundSkin,

 contents: [

 Content($, {

 skin: ASSETS.restartArrowSkin

 })

],

 active: true,

 Behavior: RestartButtonBehavior

 }),

 Label($, {

 anchor: "TEXT",

 left: 10,

 style: ASSETS.bigTextStyle,

 string: "Restart",

 left: 0, right: 0

 })

],

 Behavior: HomeScreenBehavior

}));

Chapter 10 Building user interfaCes with piu

515

The HomeScreenBehavior class’s onDisplaying event handler animates

the restart button and the label, as shown in Listing 10-74.

Listing 10-74.

class HomeScreenBehavior extends Behavior {

 onCreate(container, data) {

 this.data = data;

 }

 onDisplaying(container) {

 let data = this.data;

 let timeline = this.timeline = new Timeline();

 ...

 container.start();

 }

 ...

}

Unlike the splash screen, the home screen doesn’t automatically

switch screens after it animates in. Instead, it waits to receive an

animateOut event; its behavior’s animateOut method (Listing 10-75)

creates a timeline object and sets the transitioningOut property to true.

Listing 10-75.

animateOut(container) {

 let data = this.data;

 this.transitioningOut = true;

 let timeline = this.timeline = new Timeline();

 ...

 container.start();

}

Chapter 10 Building user interfaCes with piu

516

When the onFinished event is triggered at the end of the

animation, the corresponding event handler (Listing 10-76) checks the

transitioningOut property to determine which action to take:

• If transitioningOut is true, the anchors to the button

and the label are deleted, and the switchScreen event

is bubbled to the MainContainer object.

• If transitioningOut is false, the timeline property

is deleted, making the timeline object eligible for

garbage collection. Since the garbage collector runs

only when it needs to free up RAM, and no other

objects are instantiated between the transitions in and

out, the garbage collector won’t run, so deleting the

timeline property is unnecessary here. Still, it’s good to

get in the habit of deleting references to objects that are

no longer in use.

Listing 10-76.

onFinished(container) {

 if (this.transitioningOut) {

 let data = this.data;

 // Delete anchors

 delete data.BUTTON;

 delete data.TEXT;

 // Transition to next screen

 container.bubble("switchScreen", "SPLASH");

 }

 else

 delete this.timeline;

}

Chapter 10 Building user interfaCes with piu

517

The restart button’s behavior (Listing 10-77) responds to just one event:

onTouchEnded. The behavior’s onTouchEnded method simply delegates the

onAnimateOut event to the button’s container, which is an instance of the

HomeScreen template. As you just saw, this triggers the animation out and

eventually leads to the transition back to the splash screen.

Listing 10-77.

class RestartButtonBehavior extends Behavior {

 onTouchEnded(content) {

 content.container.delegate("animateOut");

 }

}

 Adding More Screens
Now that you know how to switch between two screens, it’s straightforward

to add more screens. These are the steps:

 1. Define a template for a new screen.

 2. Add it to the default export of the screens module.

 3. In the example module, add a case to the switch

statement in the doSwitchScreen method of

MainContainerBehavior to instantiate the screen

template and add it to MainContainer.

 4. Trigger the switchScreen event as needed in your

code, passing in the name you used for the new

screen in the switch statement.

Chapter 10 Building user interfaCes with piu

518

 Conclusion
In this chapter, you learned the fundamentals of building user interfaces

with Piu, including how to add graphics and text, give them event-driven

behaviors, and create animations. You learned several techniques to

save RAM, such as reusing textures and skins and removing references to

unused objects. You also learned techniques to save ROM, including using

templates. With the information from this chapter, you can build beautiful,

modern user interfaces using inexpensive hardware.

This chapter introduced the key features of Piu that are used to build

user interfaces for embedded products. Piu has many other features that

you may find useful in your products—for example, support for efficiently

localizing the text strings for products that must support multiple

languages. For extensive documentation of all of Piu’s features and links to

examples that use them, see the Piu documentation in the Moddable SDK.

Chapter 10 Building user interfaCes with piu

519© Peter Hoddie and Lizzie Prader 2020
P. Hoddie and L. Prader, IoT Development for ESP32 and ESP8266 with JavaScript,
https://doi.org/10.1007/978-1-4842-5070-9_11

CHAPTER 11

Adding Native Code
There are times when JavaScript isn’t the best language to use to

implement parts of your IoT product. Fortunately, you don’t need to

choose either JavaScript or C (or C++) to build your product: you can

choose both. XS in C is a low-level C API provided by the XS JavaScript

engine so that you can integrate C code into your JavaScript projects (or

JavaScript code into your C projects!).

Here are three common reasons for using use native code in your project:

• Performance – High-level languages, including

JavaScript, can’t outperform optimized native code

at high-performance tasks. You can add your own

optimized native functions and invoke them from your

JavaScript code.

• Accessing hardware features – As a general-purpose

programming language, JavaScript doesn’t have

built-in support for the unique features of your host

hardware. You can implement your own functions and

classes to configure and use these.

• Reusing existing native code – You may have a large

body of existing native code that works well for your

products, and you’d prefer not to have to rewrite it in

JavaScript. You can use that code in your JavaScript

projects by using XS in C to bridge between it and your

JavaScript code.

https://doi.org/10.1007/978-1-4842-5070-9_11#ESM

520

XS in C lets you work with JavaScript features from C. As you know,

JavaScript has capabilities that C doesn’t directly support, such as dynamic

types and objects. Working with these features using XS in C can be

awkward, but it becomes straightforward as you get some practice and

learn some common patterns. This chapter introduces XS in C through a

series of examples that demonstrate different techniques to build a bridge

between JavaScript and C code.

Note that many engines that implement a high-level programming

language provide an API to bridge between that language and native code.

The Java language defines the Java Native Interface (JNI) for this purpose,

and the V8 JavaScript engine provides a C++ API.

Important The information introduced in this chapter is an
advanced topic. It assumes you’re comfortable programming in C
and have a solid understanding of the basic JavaScript concepts
discussed in this book.

 Installing the Host
There’s no host to install for this chapter, because all native code must be

part of the host itself; therefore, you build each example in this chapter as

a standalone host. Rather than using mcrun to install the examples, you

use mcconfig. The following command lines are for ESP32 and ESP8266

targets, respectively:

> mcconfig -d -m -p esp32

> mcconfig -d -m -p esp

These command lines don’t specify a development board (for example,

esp32/moddable_two) because the examples use only common features of

the microcontroller and don’t depend on board-specific features.

ChapTer 11 addIng naTIve Code

521

When you build the examples with mcconfig, both the JavaScript and

the C code are built. If an error occurs building either, it’s reported to the

command line.

 Generating Random Integers
The first example of native code integration generates random integers.

You saw in Chapter 9 that the random-rectangles example uses random

numbers generated by the JavaScript built-in function Math.random. That

example is less efficient than it could be because Math.random returns a

floating-point value, forcing Poco to convert several floating-point values

to integers for each rectangle. Floating-point operations are generally

slow on microcontrollers, and here they have no benefit. The C standard

library’s rand function generates random integers, and the $EXAMPLES/

ch11-native/random-integer example begins by using rand to generate

random integers for JavaScript code.

 Creating a Native Function
The first step is to create a JavaScript function that JavaScript code can

call to invoke your C function. The random-integer example declares a

randomInt function in the main.js source code file.

function randomInt() @ "xs_randomInt";

This syntax creates a JavaScript function named randomInt which,

when called, invokes the native function xs_randomInt, essentially

building a bridge from JavaScript to C. The use of @ here is not standard

JavaScript syntax but a language extension provided by XS to simplify

adding native code to your projects. Consequently, this code is unlikely to

compile or work the same with other JavaScript engines.

ChapTer 11 addIng naTIve Code

522

After creating the function, you can call it like any other JavaScript

function. The main.js module calls it 100 times, tracing the result to the

debug console.

for (let i = 0; i < 100; i++)

 trace(randomInt(), "\n");

 Implementing a Native Function
The implementation of xs_randomInt is contained in main.c. When you

build a file with a .js extension, mcconfig also builds a file with a .c

extension that has the same name. Listing 11-1 shows the entire contents

of main.c.

Listing 11-1.

#include "xsmc.h"

void xs_randomInt(xsMachine *the)

{

 xsmcSetInteger(xsResult, rand());

}

The include preprocessor command brings in the header file for XS

in C. (The file name, xsmc, stands for “XS Microcontroller.”) There’s also

an xs.h header file that’s used by some code. The two headers provide

equivalent functionality, but the functions in the xsmc.h header file are

more efficient and therefore preferred for use on microcontrollers.

The native function prototype of xs_randomInt is used for all functions

that implement native methods using XS in C. The JavaScript arguments

are not passed as arguments to the C function. You’ll see later in this

chapter how to access the arguments.

ChapTer 11 addIng naTIve Code

523

This example needs to return a value—the result of calling rand.

The result of rand is an integer, so this example uses xsmcSetInteger, a

function that assigns a native 32-bit integer value to a JavaScript value.

Here the JavaScript value is xsResult, which refers to the return value of

the function on the JavaScript stack.

 Using the Hardware Random Number Generator
You’ve seen how simple it is to declare, call, and implement a simple

native function. When you run the random-integer example, you see 100

random numbers from 0 to 2,147,483,647 traced to the debug console. But

when you restart the microcontroller and run the example a second time,

you see the exact same list of numbers. That’s not very random. Why does

it happen?

The rand function is a pseudo-random number generator. It’s an

algorithm to generate numbers that appear random; however, when you

restart the microcontroller you also restart the pseudo-random number

generator algorithm, causing it to generate the same sequence of numbers.

You can use the srand function to have the algorithm start a different

sequence, but you must provide srand with a different starting point on

each restart. The most common way to initialize the sequence is to use the

current time. Unfortunately, many microcontrollers, including the ESP32

and ESP8266, don’t know the time at startup, so this technique can’t be

applied.

Fortunately, many microcontrollers, including the ESP32 and ESP8266,

have hardware to generate random numbers, and these values are more

random than those generated by rand. The $EXAMPLES/ch11-native/

random-integer-esp example shows how to use the hardware random

number generator.

ChapTer 11 addIng naTIve Code

524

Important not all random numbers are guaranteed to be
sufficiently unpredictable to be safely used in security solutions, such
as the TLS protocol that protects network connections. (random
numbers that have this guarantee are called cryptographically
secure.) You should always verify that the source of random numbers
you use meets the security requirements of your project. This isn’t
easy to do, but it’s important, as a weak random number generator is
a vulnerability in your project’s overall security.

On the ESP32, accessing the hardware random number generator

requires just substituting the call to rand with a call to the ESP-IDF

function esp_random. The degree of randomness that esp_random provides

depends on a number of factors, including whether the radio (Wi-Fi or

Bluetooth) is enabled.

xsmcSetInteger(xsResult, esp_random());

On the ESP8266, there’s an undocumented hardware random number

generator that appears to work well. It should be used with care, as its

precise characteristics are not known. To access the random number

generator, you read its hardware register directly.

uint32_t random = *(volatile uint32_t *)0x3FF20E44;

Listing 11-2 shows the revised native implementation using the native

random number generators. Because the generator is accessed differently

on the ESP32 and the ESP8266, the C code uses conditional compilation

to select the correct version and to generate an error when the code is

compiled for an unsupported target.

ChapTer 11 addIng naTIve Code

525

Listing 11-2.

void xs_randomInt(xsMachine *the)

{

#if ESP32

 xsmcSetInteger(xsResult, esp_random());

#elif defined(__ets__)

 xsmcSetInteger(xsResult, (*(volatile unt32_t *)0x3FF20E44));

#else

 #error Unsupported platform

#endif

}

There are two problems with using this randomInt function:

• Both the ESP32 and ESP8266 hardware random

number generators return 32-bit unsigned values.

The xsmcSetInteger function requires a 32-bit signed

value. Consequently, using the hardware random

number technique changes the result of the JavaScript

randomInt function to return a range of values from

–2,147,483,648 to 2,147,483,647. Recall that when

you use rand, all values are positive. You could use

xsmcSetNumber instead to return the unsigned 32-bit

value as a floating-point number; however, that runs

counter to the goal of returning a random number as

an integer value.

• Usually you want a random number within a certain

range, and generating a value within a range requires a

division or modulo operation. The division operation

typically requires a floating-point operation, since the

result may have a fractional part. The modulo operation

can use an integer divide if both operands are integers.

ChapTer 11 addIng naTIve Code

526

However, instead of requiring the caller of randomInt to

efficiently restrict the return value to the desired range,

you can modify the native function to do that.

The next section addresses these issues.

 Restricting Random Numbers to a Range
The $EXAMPLES/ch11-native/random-integer-esp-range example

restricts random numbers to a range. The first step is to declare a function

that accepts a range for the random values. The randomIntRange function

accepts a single argument indicating the range of random values, starting

at 0 and ending at max.

function randomIntRange(max) @ "xs_randomIntRange";

The calling code in main.js is updated to pass in the range, which is

1,000 in this example.

for (let i = 0; i < 100; i++)

 trace(randomIntRange(1000), "\n");

The native function must first retrieve the range passed as the first

argument. The arguments are accessed by index using xsArg. Arguments

are numbered starting at 0, so the first argument is accessed as xsArg(0).

If the caller didn’t pass any arguments, xsArg(0) throws an exception;

therefore, it’s not usually necessary for your native code to check the

number of arguments passed. (If your function needs to know the number

of arguments, use the xsmcArgc integer value.) The exceptions thrown by

XS in C are ordinary JavaScript exceptions, which may be caught with a

familiar try and catch blocks in the JavaScript code.

The C code can’t make any assumption about the type of the

argument, because JavaScript doesn’t enforce any rules about the types

of arguments passed to a function. XS in C provides functions to convert

ChapTer 11 addIng naTIve Code

527

a JavaScript value to a specific native type. In the xs_randomIntRange

function (Listing 11-3), the call to xsmcToInteger asks XS to convert

the JavaScript property to a signed 32-bit integer. If XS is able to perform

the conversion, it returns the result; otherwise, it throws a JavaScript

exception. For example, passing a string value of "100" or a number value

of 100.1 succeeds because JavaScript knows how to convert them to an

integer; however, passing an empty object {} fails.

Listing 11-3.

void xs_randomIntRange(xsMachine *the)

{

 int range = xsmcToInteger(xsArg(0));

 if (range < 2)

 xsRangeError("invalid range");

 ...

}

The native function implementation next validates the requested

range. A range smaller than two values makes no sense for integer random

numbers. If the range is invalid, the function calls xsRangeError to throw

the JavaScript error RangeError. The preceding C code is equivalent to

these lines of JavaScript:

if (range < 2)

 throw new RangeError("invalid range");

It’s important to include error checking in the native code that bridges

between your JavaScript and C code. JavaScript programmers expect

the language to be safe—there should be no way to crash or corrupt the

device—and the JavaScript engine and runtime do their best to achieve

this goal. Your native code must do the same. For example, should the

JavaScript code pass 0 for the range, the result is undefined by the C

language. The modulo operation with a 0 on the right side on ESP32

ChapTer 11 addIng naTIve Code

528

generates an IntegerDivideByZero exception and on ESP8266 an Illegal

Instruction exception, both of which reset the microcontroller.

The remaining implementation of xs_randomIntRange (Listing 11- 4)

is straightforward. Instead of returning the 32-bit unsigned integer

value directly, the modulo operator (%) restricts the random value to the

specified range.

Listing 11-4.

#if ESP32

 xsmcSetInteger(xsResult, esp_random() % range);

#elif defined(__ets__)

 xsmcSetInteger(xsResult,

 (*(volatile uint32_t *)0x3FF20E44) % range);

#else

 #error Unsupported platform

#endif

 Comparing Random Number Approaches
The native randomIntRange function is just a few lines of native code, but

those few lines have many advantages for IoT development compared to

the built-in Math.random function:

• The returned values are integers, not floating-

point, allowing for more efficient execution on

microcontrollers.

• The returned values are efficiently limited to a

requested range.

• The numbers are more random because they use a

hardware random number generator.

ChapTer 11 addIng naTIve Code

529

Of course, there are also disadvantages:

• The native code isn’t portable. It builds successfully for

only two microcontrollers.

• You must build your native code as part of a host.

• Native code is more complex to implement and debug

and requires additional specialized knowledge.

When you have the option of adding native functionality to your

project, you should base your decision on a balance of the advantages and

the disadvantages.

 The BitArray Class
JavaScript typed arrays, such as Uint8Array and Uint32Array, enable you

to work with arrays of 8-, 16-, and 32-bit integer values using a minimum

of memory. The BitArray class implements a 1-bit array—that is, an array

that stores only the values 0 and 1. This is useful for efficiently storing a

large number of samples received from a digital input.

This section introduces two variations of BitArray, each with the same

JavaScript API. The first one uses a JavaScript ArrayBuffer to store the

bits, while the second uses native memory allocated with the C calloc

function.

The BitArray class constructor takes a single argument: the number

of bits the array needs to store. The class provides get and set methods

to access the values in the array. Listing 11-5 shows test code that uses the

BitArray class.

ChapTer 11 addIng naTIve Code

530

Listing 11-5.

import BitArray from "bitarray";

let bits = new BitArray(128);

bits.set(2, 1);

bits.set(3, bits.get(3) ? 0 : 1);

The first argument to both get and set is the index of the bit in the

array to get or set. The index of the first array element is 0. The final line of

the example toggles the value of the bit at index 3.

 Using Memory Allocated by ArrayBuffer
The implementation of BitArray in the $EXAMPLES/ch11-native/

bitarray-arraybuffer example is shown in Listing 11-6. It begins

by declaring the class in JavaScript. As in the earlier random-integer

examples, the special XS @ syntax is used to connect the JavaScript function

to a native C function. Notice that the constructor is implemented in

JavaScript while the get and set methods are implemented in C. There’s

no requirement that the class be implemented entirely in JavaScript or C;

you can choose the language that works best for each method.

Listing 11-6.

class BitArray {

 constructor(count) {

 this.buffer = new ArrayBuffer(Math.ceil(count / 8));

 }

 get(index) @ "xs_bitarray_get";

 set(index, value) @ "xs_bitarray_set";

}

export default BitArray;

ChapTer 11 addIng naTIve Code

531

The constructor allocates an ArrayBuffer to hold the bit values.

Because the memory of a new ArrayBuffer is always initialized to 0, no

further initialization is needed. The number of bits to store is divided by

8 to determine the number of bytes needed and then rounded up using

Math.ceil to ensure that there are enough bytes allocated when the

number of bits isn’t evenly divisible by 8. The ArrayBuffer is assigned to

the buffer property of the BitArray instance. The native implementations

of get and set access the memory using the buffer property.

 The get Function

The native implementation of the get function, xs_bitarray_get, begins

by retrieving the index of the bit, the first argument to the function. It uses

the index argument to calculate byteIndex, the index of the byte that

contains the bit, and bitIndex, the index of the bit within that byte.

int index = xsmcToInteger(xsArg(0));

int byteIndex = index >> 3;

int bitIndex = index & 0x07;

Next, xs_bitarray_get gets a pointer to the memory allocated by the

ArrayBuffer stored in the buffer property. To do this, it first allocates one

temporary JavaScript variable on the JavaScript stack, by calling xsmcVars

with the argument 1 specifying the number of temporary variables.

xsmcVars(1);

Variables allocated using xsmcVars are accessed with xsVar, which

is similar to xsArg but accesses local temporary variables instead of

arguments to the function. The variables are automatically released when

the native function that allocated them—in this case, xs_bitarray_get—

returns. You should call xsmcVars only one time in a function, allocating all

needed temporary variables at once.

ChapTer 11 addIng naTIve Code

532

The implementation of xs_bitarray_get retrieves a reference to its

instance’s buffer property by calling xsmcGet. The value of the buffer

property is placed in xsVar(0).

xsmcGet(xsVar(0), xsThis, xsID_buffer);

The second argument, xsThis here, tells xsmcGet which object you

want to retrieve the property from. The third argument, xsID_buffer here,

specifies that the name of the property you want to retrieve is buffer.

The preceding steps use many unfamiliar calls from XS in C. What

they do is quite simple in JavaScript, and much more verbose to express

in C. The JavaScript equivalent to the calls to xsmcVars and xsmcGet is as

follows:

let var0;

var0 = this.buffer;

The buffer property is not a pointer to the memory buffer used by

the ArrayBuffer instance; it’s a reference to the instance. Just as you

use xsmcToInteger to convert a JavaScript value to an integer, you use

xsmcToArrayBuffer to convert a JavaScript value to a native pointer.

If the JavaScript value is not an ArrayBuffer instance, the call to

xsmcToArrayBuffer throws an exception.

uint8_t *buffer = xsmcToArrayBuffer(xsVar(0));

Now that xs_bitarray_get has the buffer pointer, it uses the

byteIndex and bitIndex values calculated earlier to read the bit and set

the return value of the JavaScript function call to 0 or 1.

if (buffer[byteIndex] & (1 << bitIndex))

 xsmcSetInteger(xsResult, 1);

else

 xsmcSetInteger(xsResult, 0);

ChapTer 11 addIng naTIve Code

533

 The set Function

The implementation of the set function (Listing 11-7) in xs_bitarray_set

is very similar to the implementation of get. The values of byteIndex,

bitIndex, and buffer are determined in the same way. The sole difference

is that the value of the second argument, accessed with xsArg(1), is used

to determine whether to set or clear the specified bit.

Listing 11-7.

int value = xsmcToInteger(xsArg(1));

if (value)

 buffer[byteIndex] |= 1 << bitIndex;

else

 buffer[byteIndex] &= ~(1 << bitIndex);

 Security Vulnerability

This implementation of BitArray, using memory allocated by

ArrayBuffer, works well, but it has a critical flaw that makes it unsuitable

for safe use in real products. The get and set functions don’t verify that

the index argument is inside the bounds of the memory allocated. This

enables code using this implementation of BitArray to read and write

arbitrary memory on embedded devices, which can cause a crash or be

used as the basis of a privacy attack. There are multiple ways to solve this

problem; the next section discusses one of them.

 Using Memory Allocated by calloc
The implementation of BitArray in the $EXAMPLES/ch11-native/

bitarray-calloc example solves the security problem presented by the

bitarray-arraybuffer example as just discussed. It stores the number of

bits allocated by the constructor and then validates the index passed to the

get and set calls against that stored value.

ChapTer 11 addIng naTIve Code

534

The BitArray implementation in the bitarray-calloc example uses

calloc instead of ArrayBuffer to allocate memory. The memory allocated

by these two approaches comes from two different pools of memory:

memory allocated by calloc is taken from the native system memory

heap, whereas memory allocated by ArrayBuffer is inside the memory

heap managed by XS. Some hosts are configured with more free space

in one of these pools than the other, which may influence your decision

about where to allocate memory from. A little bit less code is required to

work with the memory allocated by calloc, though that difference may not

be significant.

The bitarray-calloc example illustrates some important techniques

for integrating native code into your project. In addition to a native

constructor, this BitArray class also has a native destructor to perform

cleanup when an instance of the class is garbage-collected. In XS, an

object with a native destructor is called a host object.

 The Class Declaration

Listing 11-8 shows the class declaration. This implementation of BitArray

uses primarily native methods, unlike the implementation from the

bitarray-arraybuffer example. Notice that the name of the native C

function that implements the destructor, xs_bitarray_destructor,

follows the declaration of the class name.

Listing 11-8.

class BitArray @ "xs_bitarray_destructor" {

 constructor(count) @ "xs_bitarray_constructor";

 close() @ "xs_bitarray_close";

 get(index) @ "xs_bitarray_get";

 set(index, value) @ "xs_bitarray_set";

ChapTer 11 addIng naTIve Code

535

 get length() @ "xs_bitarray_get_length";

 set length(value) {

 throw new Error("read-only");

 }

}

The declarations of the get and set methods are the same as in the

previous example, though the implementations are somewhat different.

The native constructor, destructor, and close functions are closely

related. The next sections look at each in turn.

 The Constructor

The native constructor in Listing 11-9 begins much like the JavaScript

implementation, by calculating the number of bytes needed to store the

requested number of bits and then allocating those bytes. The constructor

allocates additional space, the size of an integer, to hold the bit count.

If the allocation fails, the constructor calls xsUnknownError to throw an

exception. The use of Unknown in the name xsUnknownError means that

this a general-purpose error, which uses the JavaScript Error class, rather

than a specific error such as RangeError.

Listing 11-9.

void xs_bitarray_constructor(xsMachine *the)

{

 int bitCount = xsmcToInteger(xsArg(0));

 int byteCount = (bitCount + 7) / 8;

 uint8_t *bytes = calloc(byteCount + sizeof(int), 1);

 if (!bytes)

 xsUnknownError("no memory");

 *(int *)bytes = bitCount;

 xsmcSetHostData(xsThis, bytes);

}

ChapTer 11 addIng naTIve Code

536

Once the memory is allocated, the number of bits requested is stored

at the start of the block. Because the memory is allocated using calloc, all

bits are initialized to 0.

The call to xsmcSetHostData stores a reference to the memory

allocated with this host object. This pointer is then available to all

native methods of the object, through a call to xsmcGetHostData. You

might be tempted to simply store the bytes pointer in a global variable;

however, that approach fails when there’s more than one instance of the

object, since the two objects can’t share a single C global variable. Using

xsmcSetHostData to store the data pointer means that the implementation

of BitArray supports an arbitrary number of simultaneous instances.

 The Destructor

This is the first time in this book that you’ve seen a destructor. They’re

common in C++ in working with objects, but they’re not a visible part of the

JavaScript language. Instead, JavaScript automatically frees the memory used

by objects when they’re garbage-collected. The JavaScript engine doesn’t know

how to free the resources your host object allocated, such as the memory

allocated with calloc. Therefore, you must implement a destructor.

For BitArray, the destructor (Listing 11-10) simply calls free to release

the memory allocated by calloc.

Listing 11-10.

void xs_bitarray_destructor(void *data)

{

 if (data)

 free(data);

}

ChapTer 11 addIng naTIve Code

537

Here are some details to be aware of when implementing a destructor:

• The function prototype of a destructor is different from

regular native method calls. Instead of being passed

a reference to the XS virtual machine as the, it has an

argument that’s a data pointer, the same value you

passed to xsmcSetHostData.

• Because there’s no reference to the XS virtual machine

(no the argument), you can’t make calls to XS in C. For

example, you can’t call xsmcGetHostData, which is

why the data pointer is always passed to the destructor

function. That also means your destructor can’t create

new objects, change the values of properties, or make

function calls to the object. These limitations are

necessary because the destructor is called from inside

the garbage collector when such operations are unsafe.

• The value of data may be NULL. This happens,

for example, when the memory allocation in the

constructor fails. As you’ll see in the next section, it also

happens after the close method is called. Therefore, a

good practice is to always check that the data argument

isn’t NULL in your destructor before using it, as this

example does.

 The close Function

Chapters 3 and 5 contain examples of JavaScript objects that have a close

method. This method releases any native resources—memory, file handles,

network sockets, and so on—that the object owns. If the object isn’t explicitly

closed, those resources are eventually released when the garbage collector

determines that the object is no longer in use. However, there’s no way

to know when the garbage collector will make that determination, which

ChapTer 11 addIng naTIve Code

538

means it may be a very long time until the resources are freed. The close call

solves this problem by giving code a way to explicitly free those resources.

Many host objects have an implementation of close like the one for

BitArray (Listing 11-11).

Listing 11-11.

void xs_bitarray_close(xsMachine *the)

{

 uint8_t *buffer = xsmcGetHostData(xsThis);

 xs_bitarray_destructor(buffer);

 xsmcSetHostData(xsThis, NULL);

}

Here’s what these lines of code do:

 1. The call to xsmcGetHostData retrieves the data

pointer that was allocated in the constructor

and associated with this object by the call to

xsmcSetHostData.

 2. The data pointer is passed to the destructor, which

does the work of releasing the resources.

 3. The call to xsmcSetHostData sets the saved data

pointer to NULL. This ensures that, should close be

called twice, the data pointer is freed only once.

 The get and set Functions

This implementation of xs_bitarray_get calculates the bit and byte index

values in the same way as in the ArrayBuffer version of get:

int index = xsmcToInteger(xsArg(0));

int byteIndex = index >> 3;

int bitIndex = index & 0x07;

ChapTer 11 addIng naTIve Code

539

As shown in Listing 11-12, xs_bitarray_get uses xsmcGetHostData to

retrieve the data buffer. If the buffer is NULL, that indicates that the instance

has already been closed, and get throws an error. The count of the number

of bits allocated is stored in the first integer of the buffer; it’s extracted to

the local variable bitCount, and then the buffer pointer is advanced to

point to the bit array values.

Listing 11-12.

uint8_t *buffer = xsmcGetHostData(xsThis);

int bitCount;

if (NULL == buffer)

 xsUnknownError("closed");

bitCount = *(int *)buffer;

buffer += sizeof(int);

Before accessing the requested bit, the implementation first checks to

see whether the value is in range. Because the index is a signed integer, it

checks that it’s not greater than the number of bits allocated and that the

index is not negative.

if ((index >= bitCount) || (index < 0))

 xsRangeError("invalid bit index");

With that check complete, reading the requested bit and setting the

return value is identical to the previous version:

if (buffer[byteIndex] & (1 << bitIndex))

 xsmcSetInteger(xsResult, 1);

else

 xsmcSetInteger(xsResult, 0);

The implementation of set applies the same changes described for get

in this section and so is not repeated here.

ChapTer 11 addIng naTIve Code

540

 The length Property

The typed array classes include a length property in their instances which,

as in instances of Array, indicates the number of elements in the array.

This value is useful when you’re iterating over the array. Because this

implementation of BitArray stores the number of bits allocated, it can also

provide a length property.

The length property is implemented with a getter and a setter, two

special kinds of JavaScript functions that are called when code accesses a

property. Using the getter and setter for length enables you to write code

like the following to initialize all bits to 1:

let bits = new BitArray(55);

for (let i = 0; i < bits.length; i++)

 bits.set(i, 1);

The first step in implementing the length property is to add the getter and

setter to the BitArray class. Here the getter is the xs_bitarray_get_length

native function. The length property is read-only, so instead of native code

the setter implementation is a JavaScript function that always throws an

exception. Notice that a host object may have JavaScript methods.

get length() @ "xs_bitarray_get_length";

set length(value) {

 throw new Error("read-only");

}

The implementation of xs_bitarray_get_length, shown in Listing 11-13,

is straightforward. It uses xsmcGetHostData to retrieve the data pointer created

in the constructor. If the instance has been closed—that is, if buffer is

NULL—it throws an exception; otherwise, it sets the return value to the bit

count extracted from the start of the data pointer.

ChapTer 11 addIng naTIve Code

541

Listing 11-13.

void xs_bitarray_get_length(xsMachine *the)

{

 uint8_t *buffer = xsmcGetHostData(xsThis);

 if (NULL == buffer)

 xsUnknownError("closed");

 int bitCount = *(int *)buffer;

 xsmcSetInteger(xsResult, bitCount);

}

 Advantages to This Approach

This second implementation of BitArray, using memory allocated by

calloc, has many advantages over the first version:

• It validates the input values, eliminating the ability of

sloppy code to cause a crash and of malicious code to

breach privacy.

• It provides a length property, making it more

convenient to work with.

• It uses system memory to store the bit data, reducing

the memory used in the memory heap managed by the

JavaScript engine.

• It uses the host data feature of XS in C to keep track of

the memory buffer, requiring less code and running

faster than using a JavaScript property.

ChapTer 11 addIng naTIve Code

542

 Wi-Fi Signal Notifications
You’ve learned how to implement a class to manage native resources as

a host object. This next example shows how to make calls from C code

back to JavaScript and how to configure a host object using a dictionary.

Both these techniques are used by many of the host objects in the

Moddable SDK.

The $EXAMPLES/ch11-native/wifi-rssi-notify example implements

the WiFiRSSINotify class, which lets you register callbacks to invoke when

the Wi-Fi signal strength crosses above and below a specified threshold.

You might use this in your product to give the user an indication of when

Wi-Fi is likely to perform well or to throttle the amount of network traffic

you generate when the signal is weak. The class could be implemented

entirely in JavaScript using Timer together with the net module introduced

in the “Getting Network Information” section of Chapter 3. This

implementation using native code is a bit more efficient and provides a

convenient starting point to show how to configure your host object from a

dictionary and how to invoke callback functions.

When you run this example, you must specify a Wi-Fi access point

for the microcontroller to connect to. That’s because RSSI measures the

strength of the signal between your microcontroller and the access point

it’s connected to; if there’s no connection, there’s nothing to measure.

Here’s a typical command line to build and run this example:

> mcconfig -d -m -p esp32 ssid="My Wi-Fi" password="secret"

 The Test Code
The WiFiRSSINotify class follows the common pattern of having a

constructor that accepts a dictionary object of configuration options.

Listing 11-14 shows test code in main.js that constructs an instance of

this class. You need to specify the RSSI threshold below which the signal is

ChapTer 11 addIng naTIve Code

543

considered weak and at which the signal is considered strong. An optional

poll property configures how often the signal strength is checked; it’s set

to 1,000 milliseconds in this example. The default polling frequency is

5,000 milliseconds.

Listing 11-14.

import WiFiRSSINotify from "wifirssinotify";

let notify = new WiFiRSSINotify({

 threshold: -66,

 poll: 1000

});

Once the notification instance is created, you can install an

onWeakSignal and/or onStrongSignal callback, as shown in Listing 11- 15.

The onWeakSignal callback is invoked when the RSSI reaches or falls

below the specified threshold, and onStrongSignal is invoked when the

RSSI exceeds the threshold. The functions are called when the threshold is

crossed, not each time the RSSI is polled. The current RSSI value is passed

to the callback functions.

Listing 11-15.

notify.onWeakSignal = function(rssi) {

 trace(`Weak Wi-Fi signal. RSSI ${rssi}.\n`);

}

notify.onStrongSignal = function(rssi) {

 trace(`Strong Wi-Fi signal. RSSI ${rssi}.\n`);

}

ChapTer 11 addIng naTIve Code

544

 The WiFiRSSINotify Class
The JavaScript class for WiFiRSSINotify is just a host object with a

destructor, constructor, and close function all implemented in native code:

class WiFiRSSINotify @ "xs_wifirssinotify_destructor" {

 constructor(options) @ "xs_wifirssinotify_constructor";

 close() @ "xs_wifirssinotify_close";

}

Default functions for the onWeakSignal and onStrongSignal callbacks

are not part of the class. Before invoking a callback, WiFiRSSINotify

confirms that the instance has a property with the callback’s name.

 The Native RSSINotifyRecord Structure
The WiFiRSSINotify class needs to maintain state to perform its work.

That state is stored in a C language structure named RSSINotifyRecord,

shown in Listing 11-16. You can think of this data structure as the C

equivalent of the properties in a JavaScript instance.

Listing 11-16.

struct RSSINotifyRecord {

 int threshold;

 int state;

 modTimer timer;

 xsMachine *the;

 xsSlot obj;

};

Before looking at the code that uses this data structure, it’s helpful to

review how each field is used:

ChapTer 11 addIng naTIve Code

545

• threshold – The RSSI threshold below which the

signal is considered weak and at which the signal is

considered strong.

• state – The WiFiRSSINotify instance is always in one

of three states: kRSSIUnknown when it’s created and

then either kRSSIWeak or kRSSIStrong. This state is

used to eliminate redundant callbacks when the state

has not changed.

• timer – A native timer used to implement polling.

• the – A reference to the XS virtual machine that

contains the WiFiRSSINotify instance. It’s used to

invoke callbacks from the timer.

• obj – A reference to the WiFiRSSINotify object that’s

used to invoke callbacks from the timer. The type of this

field, xsSlot, is used by XS to hold any JavaScript value.

The xsArg, xsVar, and xsGet functions that you already

know return values of type xsSlot.

Additional details about how these fields are used are provided in the

following sections.

The implementation also defines RSSINotify as a pointer to

RSSINotifyRecord for convenience:

typedef struct RSSINotifyRecord *RSSINotify;

 The Constructor
The WiFiRSSINotify constructor begins by allocating storage for the

RSSINotifyRecord structure. Once this structure is fully initialized, it’s attached

to the object using xsmcSetHostData. As a rule, the data structure is not attached

to the object before being initialized, to avoid having a partially initialized

structure in case an error occurs during execution of the constructor.

ChapTer 11 addIng naTIve Code

546

RSSINotify rn = calloc(sizeof(RSSINotifyRecord), 1);

if (!rn)

 xsUnknownError("no memory");

Next, the constructor initializes the state, the, and obj fields:

rn->state = kRSSIUnknown;

rn->obj = xsThis;

rn->the = the;

The constructor performs several operations that may fail. When they

fail, they throw an error that can be caught by the calling JavaScript code.

Because the first operation the constructor performs is allocating memory,

it needs to free that memory if an exception occurs. If it doesn’t do so,

the memory is orphaned, causing a memory leak that could eventually

lead to a system failure. To guard against this, the constructor surrounds

those operations with xsTry, catching any exceptions with xsCatch. After

catching the exception, the constructor frees the memory stored in rn and

then uses xsThrow to throw the error again. In C, that use of xsTry and

xsCatch has the structure shown in Listing 11-17.

Listing 11-17.

xsTry {

 ...

}

xsCatch {

 free(rn);

 xsThrow(xsException);

}

ChapTer 11 addIng naTIve Code

547

Recall that XS in C provides ways to access and implement basic

JavaScript capabilities in your C code. The C code for xsTry-xsCatch is

similar to the JavaScript version of the code, shown in Listing 11-18.

Listing 11-18.

try {

 ...

}

catch(e) {

 ...

 throw e;

}

The xsTry block begins by declaring a local variable, poll, to hold

the requested polling interval from the dictionary argument and using

xsmcVars to reserve space for a temporary value on the JavaScript stack:

int poll;

xsmcVars(1);

As shown in Listing 11-19, the constructor then calls xsmcHas to see if

the dictionary argument contains the poll property. If it does, the property

is retrieved, converted to an integer, and assigned to the local variable

poll; otherwise, a default value of 5,000 is used.

Listing 11-19.

if (xsmcHas(xsArg(0), xsID_poll)) {

 xsmcGet(xsVar(0), xsArg(0), xsID_poll);

 poll = xsmcToInteger(xsVar(0));

}

else

 poll = 5000;

ChapTer 11 addIng naTIve Code

548

The xsmcHas function is similar to the in operator used in JavaScript.

The preceding code is about the same as the JavaScript code in Listing 11- 20.

Listing 11-20.

let poll;

if ("poll" in options)

 poll = options.poll;

else

 poll = 5000;

The constructor next calls xsmcHas again, this time to confirm that

the required threshold property is present. If not, it throws an error;

otherwise, the JavaScript threshold property is retrieved, converted to an

integer, and assigned to the threshold field of rn.

if (!xsmcHas(xsArg(0), xsID_threshold))

 xsUnknownError("threshold required");

xsmcGet(xsVar(0), xsArg(0), xsID_threshold);

rn->threshold = xsmcToInteger(xsVar(0));

Finally, the xsTry block allocates a native timer using modTimerAdd

from the Moddable SDK. You may use another timer mechanism here,

one specific to your microcontroller. This code uses modTimerAdd for

convenience, as it’s available for both ESP32 and ESP8266 devices. If the

timer can’t be allocated—for example, because there’s insufficient memory

available—the constructor throws an exception.

rn->timer = modTimerAdd(1, poll, checkRSSI, &rn, sizeof(rn));

if (!rn->timer)

 xsUnknownError("no timer");

ChapTer 11 addIng naTIve Code

549

The call to modTimerAdd creates a timer that first fires after 1 millisecond

and then fires at the interval specified by poll. When the timer fires, it

calls the checkRSSI native function, passing it the value of rn. A later

section shows how the native callback retrieves this value and invokes the

JavaScript callbacks.

That’s the end of the xsTry block. Even in this relatively simple object,

there are two exceptions that the constructor itself generates. In addition,

the calls to xsmcToInteger throw exceptions when passed a value that

can’t be converted to an integer. These many potentials for exceptions

make it important for the constructor to ensure that no memory or other

resources are orphaned if an exception is thrown. Using xsTry with

xsCatch often helps with this.

There are two more steps remaining in the constructor. The first is to

store the rn data pointer with the object:

xsmcSetHostData(xsThis, rn);

The second is to ensure that the object is garbage-collected only

after the JavaScript code calls close on the object. This behavior is

common for JavaScript host objects that support callbacks. To do this, the

constructor calls the xsRemember function with the object stored in the

RSSINotifyRecord.

xsRemember(rn->obj);

You can only pass xsRemember a value in storage that your code

allocated. If you call xsRemember with values such as xsThis, xsArg(0),

xsVar(1), or other XS-provided values, it silently fails. As you might

expect, there’s a corresponding xsForget call that needs to be called in

close. The memory where the object is stored, rn->obj here, must persist

until xsForget is called and therefore must not be a local variable in the

constructor.

ChapTer 11 addIng naTIve Code

550

 The Destructor
The destructor for WiFiRSSINotify (Listing 11-21) is similar to the other

destructors in this chapter, with the addition of code to free the timer

allocated in the constructor. To access the timer in the RSSINotifyRecord

structure, the data pointer argument is cast to an RSSINotify pointer. The

constructor implementation guarantees that the timer field is never NULL

in the destructor when rn is non-NULL. Therefore, there’s no need to check

that rn->timer is non-NULL before calling modTimerRemove.

Listing 11-21.

void xs_wifirssinotify_destructor(void *data)

{

 RSSINotify rn = data;

 if (rn) {

 modTimerRemove(rn->timer);

 free(rn);

 }

}

 The close Function
The close method of WiFiRSSINotify (Listing 11-22) also follows a

familiar pattern. However, in addition it must call xsForget to make the

object eligible for garbage collection, counteracting the call to xsRemember

in the constructor. Because the call to xsForget accesses the obj field of

rn, the close implementation must guard against being called more than

once by checking that xsmcGetHostData returns a non-NULL value.

ChapTer 11 addIng naTIve Code

551

Listing 11-22.

void xs_wifirssinotify_close(xsMachine *the)

{

 RSSINotify rn = xsmcGetHostData(xsThis);

 if (rn) {

 xsForget(rn->obj);

 xs_wifirssinotify_destructor(rn);

 xsmcSetHostData(xsThis, NULL);

 }

}

The call to xsForget can’t be made in the destructor because the

destructor can’t use XS in C, as explained previously.

 The Callback
The checkRSSI function, shown in Listing 11-23, is at the heart of the

WiFiRSSINotify class. It’s invoked at the polling interval to detect when

the RSSI value crosses the specified threshold value. The function begins

by recovering the value of rn, the pointer to the RSSINotifyRecord

structure allocated in the constructor. Because the checkRSSI callback isn’t

called directly by XS, but by modTimer, the pointer can’t be retrieved using

xsmcGetHostData as usual, but is instead retrieved by dereferencing the

refcon argument.

Listing 11-23.

void checkRSSI(modTimer timer, void *refcon, int refconSize)

{

 RSSINotify rn = *(RSSINotify *)refcon;

 ...

}

ChapTer 11 addIng naTIve Code

552

The next step is to get the current RSSI value, which is done differently

on the ESP32 and the ESP8266. Listing 11-24 has conditional cases for

each, and an error for other targets.

Listing 11-24.

int rssi = 0;

#if ESP32

 wifi_ap_record_t config;

 if (ESP_OK == esp_wifi_sta_get_ap_info(&config))

 rssi = config.rssi;

#elif defined(__ets__)

 rssi = wifi_station_get_rssi();

#else

 #error Unsupported target

#endif

As shown in Listing 11-25, the polling function uses the current RSSI

value to decide if it’s necessary to invoke either the onStrongSignal or the

onWeakSignal JavaScript callback function. It checks to see if the current

value is above or below the specified threshold stored in rn->threshold.

If the RSSI value is on the same side of the threshold as the previous

check, checkRSSI returns immediately; otherwise, it updates rn->state

to the new state and assigns the ID of the callback to invoke, either

xsID_onStrongSignal or xsID_onWeakSignal, to the local variable callbackID.

Listing 11-25.

if (rssi > rn->threshold) {

 if (kRSSIStrong == rn->state)

 return;

 rn->state = kRSSIStrong;

ChapTer 11 addIng naTIve Code

553

 callbackID = xsID_onStrongSignal;

}

else {

 if (kRSSIWeak == rn->state)

 return;

 rn->state = kRSSIWeak;

 callbackID = xsID_onWeakSignal;

}

Invoking a JavaScript function from native code requires a valid

JavaScript stack frame. When a native method is called from JavaScript, XS

has already created that stack frame. The checkRSSI function isn’t called

by XS, but by modTimer, and therefore must set up the stack frame itself.

It does this by calling xsBeginHost before the callback. It calls xsEndHost

afterward to remove the stack frame that xsBeginHost creates. Both

functions take the, a reference to the JavaScript virtual machine, as their

sole argument. Between xsBeginHost and xsEndHost, you can make calls

to XS in C as usual.

The code in Listing 11-26 creates a temporary JavaScript variable using

xsmcVars(1) and assigns it an integer value of rssi using xsmcSetInteger.

It then calls xsmcHas to confirm that the object has the callback function.

If it does, it uses xsCall to invoke the callback function, passing the RSSI

value stored in xsVar(0).

Listing 11-26.

xsBeginHost(rn->the);

 xsmcVars(1);

 xsmcSetInteger(xsVar(0), rssi);

 if (xsmcHas(rn->obj, callbackID))

 xsCall1(rn->obj, callbackID, xsVar(0));

xsEndHost(rn->the);

ChapTer 11 addIng naTIve Code

554

You use xsCall1 to call functions with one argument (and xsCall0

to call functions with no arguments, xsCall2 for functions with two

arguments, and so on, up to xsCall9).

 Additional Techniques
You now know how to invoke native code from JavaScript code and

JavaScript code from native code, giving you the power to integrate native

code and scripts in whatever way makes the most sense for your project.

This section briefly introduces several important topics that you may find

useful when integrating native code into your own JavaScript-powered

products. Along with discussing a variety of techniques to help you build

the bridge between your native and JavaScript code, it includes warnings

about some common mistakes.

 Debugging Native Code
As you develop increasingly complex native code, you may need to debug

that code. Although you may not have a native debugger available, your

code can interact with xsbug.

A common debugging technique is to send diagnostic output to the

debug console. In embedded JavaScript, you use trace to do this. Using XS

in C, you can do the same with xsTrace.

xsTrace("about to get RSSI\n");

The argument to xsTrace is a string, making it convenient to output the

progress of a function. If you need to output more detailed information,

use xsLog, which provides printf-style functionality.

xsLog("RSSI is %d.\n", rssi);

ChapTer 11 addIng naTIve Code

555

Both xsTrace and xsLog require a valid XS stack frame; therefore, they

must be called either from a method invoked directly by XS or between an

xsBeginHost-xsEndHost pair. For example, to output the current RSSI level

to the debug console from the checkRSSI callback, you use this code:

xsBeginHost(rn->the);

 xsLog("RSSI is %d.\n", rssi);

xsEndHost(rn->the);

It can be useful to trigger a breakpoint in xsbug from your native code

to see the stack frames leading up to your native function being called and

the arguments passed to it. Although you can’t set a breakpoint in native

code using xsbug, you can trigger a breakpoint by calling xsDebugger in

your C code.

xsDebugger();

 Accessing Global Variables
Your code can get and set the value of global variables directly. All global

variables are part of the global object, which is accessed in JavaScript using

globalThis. In XS in C, the global object is available to your native code as

xsGlobal. You can use xsGlobal in your native code like any other object.

For example, you use the xsmcSet* functions to assign values to a global

variable, and the following lines set the global variable status to 0x8012:

xsmcSetInteger(xsVar(0), 0x8012);

xsmcSet(xsGlobal, xsID_status, xsVar(0));

You get the value of a global using xsmcGet:

xsmcGet(xsVar(0), xsGlobal, xsID_status);

int status = xsmcToInteger(xsVar(0));

ChapTer 11 addIng naTIve Code

556

The following code checks to see if there’s a global variable named

onRestart. If there is, it calls the function stored in the onRestart global.

if (xsmcHas(xsGlobal, xsID_onRestart))

 xsCall0(xsGlobal, xsID_onRestart);

 Getting a Function’s Return Value
When you use the family of xsCall* functions to invoke a JavaScript

function from C, you can access the return value by assigning the result to

a JavaScript value. For example, the following code calls the function on

the callback property of this and traces the result to the console:

xsmcVars(1);

xsVar(0) = xsCall0(xsThis, xsID_callback);

xsTrace(xsVar(0));

 Getting Values
The examples in this chapter use xsmcToInteger to get an integer value

from a JavaScript value. There are similar functions for getting a boolean,

floating-point number, string, and ArrayBuffer from a JavaScript value, as

shown in Listing 11-27.

Listing 11-27.

uint8_t boolean = xsmcToBoolean(xsArg(0));

double number = xsmcToNumber(xsArg(1));

const char *str = xsmcToString(xsArg(2));

uint8_t *buffer = xsmcToArrayBuffer(xsArg(3));

int bufferLength = xsmcGetArrayBufferLength(xsArg(3));

ChapTer 11 addIng naTIve Code

557

All of these functions fail if the JavaScript value can’t be converted to the

requested type. For example, xsmcToArrayBuffer fails if the value is a string.

Special care is required when working with the pointers to strings and

with ArrayBuffer pointers. See the section “Ensuring Your Buffer Pointers

Are Valid” for details.

 Setting Values
You’ve already seen how to use xsmcSetInteger to set a JavaScript

property to an integer value. In addition, there are xsmcSet* functions for

setting other basic JavaScript values, as shown in Listing 11-28.

Listing 11-28.

xsmcSetNull(xsResult);

xsmcSetUndefined(xsVar(0));

xsmcSetBoolean(xsVar(2), value);

xsmcSetTrue(xsVar(3));

xsmcSetFalse(xsResult);

xsmcSetNumber(xsResult, 1.2);

xsmcSetString(xsResult, "off");

const char *string = "a dog!";

xsmcSetStringBuffer(xsResult, string + 2, 3); // "dog"

You can also create objects using XS in C. The following code creates

an ArrayBuffer object of 16 bytes and sets the first byte to 1:

xsmcSetArrayBuffer(xsResult, NULL, 16);

uint8_t *buffer = xsmcToArrayBuffer(xsResult);

buffer[0] = 1;

ChapTer 11 addIng naTIve Code

558

Listing 11-29 creates an object and adds several properties to it. Using

this approach, your code can return objects just as the next method of the

File class does.

Listing 11-29.

xsmcSetNewObject(xsResult);

xsmcSetString(xsVar(0), "test.txt");

xsmcSet(xsResult, xsID_name, xsVar(0));

xsmcSetInteger(xsVar(0), 1024);

xsmcSet(xsResult, xsID_length, xsVar(0));

The JavaScript equivalent of that code is as follows:

return {name: "test.txt", length: 1024};

Listing 11-30 creates an array with eight elements and uses xsmcSet

to set each array element to the square of its index. You’ve already seen

xsmcSet used to set the value of a property of an object; here it’s used to set

the value of an array element by passing the element’s index instead of an

xsID_*-style symbol identifier.

Listing 11-30.

xsmcSetNewArray(xsResult, 8);

for (i = 0; i < 8; i++) {

 xsmcSetInteger(xsVar(0), i * i);

 xsmcSet(xsResult, i, xsVar(0));

}

ChapTer 11 addIng naTIve Code

559

 Determining a Value’s Type
Your native code sometimes needs to know the type of a JavaScript value.

For example, some functions change their behavior depending on whether

an argument is an object or a number. You use xsmcTypeOf to determine

the basic type of a value.

int typeOf = xsmcTypeOf(xsArg(1));

if (xsStringType == typeOf)

 ...;

The types returned by xsmcTypeOf are xsUndefinedType, xsNullType,

xsBooleanType, xsIntegerType, xsNumberType, xsStringType, and

xsReferenceType. Most of these correspond directly to JavaScript types

you’re already familiar with. Notice, however, that there are types for

both integers and numbers (floating-point values). While JavaScript itself

uses the Number type for both, XS stores them as distinct types, as an

optimization. If your native code checks whether a JavaScript value is of

type Number, it needs to check for both xsIntegerType and xsNumberType.

The type xsReferenceType corresponds to a JavaScript object.

This single type constant is used for all JavaScript objects. You use the

xsmcIsInstanceOf function to determine whether the object is an instance

of a particular class. The type xsmcIsInstanceOf is similar to JavaScript’s

instanceof operator. XS defines values for built-in objects—for example,

xsArrayPrototype. The following code sets the variable isArray to 1 if the

first argument to the native method is an array or 0 if it’s not:

int typeOf = xsmcTypeOf(xsArg(0));

int isArray = (xsReferenceType == typeOf) &&

 xsmcIsInstanceOf(xsArg(0), xsArrayPrototype);

ChapTer 11 addIng naTIve Code

560

The xsmcIsInstanceOf function returns true if the object is a subclass

of the specified type. For example, the section “Accessing Values of a Data

View” in Chapter 2 defines the Header class as a subclass of DataView.

Passing an instance of Header to the following call returns true:

if (xsmcIsInstanceOf(xsArg(0), xsDataViewPrototype))

 ...; // is a data view

Other useful prototypes defined by XS that may be used with

xsmcIsInstanceOf include xsFunctionPrototype, xsDatePrototype,

xsErrorPrototype, and xsTypedArrayPrototype. For a complete list, see

the xs.h header file in the Moddable SDK.

 Working with Strings
Strings are commonly used in JavaScript. Because XS stores them in UTF-8

encoding, strings are convenient to work with in C. Here are a few details

to keep in mind:

• You’re guaranteed that strings you receive from XS are

valid UTF-8. You must ensure that any strings you pass

to XS are also valid UTF-8.

• XS treats a null character (ASCII 0) as the end of the

string, so don’t include any null characters in your

strings. (Since the C language also uses the null

character to terminate a string, this should be familiar.)

Your code probably doesn’t intentionally create invalid

UTF-8 strings or include null characters in a string, but

they can sneak in when you import strings from a file

or a network connection; it’s a good practice to validate

these strings before passing them to XS.

• In JavaScript, strings are read-only. No functions

are provided to change the content of a string. You

ChapTer 11 addIng naTIve Code

561

could choose to break this rule in your native code—

but don’t! Doing so would break a fundamental

assumption that JavaScript programmers rely on.

Furthermore, it could cause a crash, as some strings are

stored in read-only flash memory and attempting to

write to them causes the microcontroller to reset.

• The string pointer returned from xsmcToString can

be invalidated when you make other calls using XS in C.

The next section explains the details.

 Ensuring Your Buffer Pointers Are Valid
When you call xsmcToString or xsmcToArrayBuffer, they don’t return a copy

of the data; they return a pointer into an XS data structure. This behavior is

important on microcontrollers, where the extra time and memory required to

make a copy are unacceptable. The pointer may become invalid when you

make a call to XS in C that causes the garbage collector to run. The garbage

collector cannot free the ArrayBuffer or string, because they’re in use.

However, the garbage collector may move the data structure when it compacts

the memory heap to make more space by combining areas of free space.

With some care, as in the following approaches, you can avoid any

problems when the garbage collector compacts the heap:

• Never use a pointer returned by XS in C after making

another call to XS in C. This may seem challenging, but

all the examples so far in this chapter have done

exactly that.

• Make a copy of the data. While this approach is not

optimal, it’s occasionally necessary.

Two functions can help when you’re working with pointers to strings

and ArrayBuffer pointers. The xsmcToStringBuffer function is similar

ChapTer 11 addIng naTIve Code

562

to xsmcToString, but instead of returning a string pointer it copies the

string to a buffer. If the buffer is too small to hold the string, it throws a

RangeError error.

char str[40];

xsmcToStringBuffer(xsArg(0), str, sizeof(str));

The xsmcGetArrayBufferData function copies all or part of an

ArrayBuffer into another buffer. The second argument is the ArrayBuffer

offset (in bytes) from which to begin copying the data, the third argument

is the destination buffer, and the final argument is the size of the

destination buffer in bytes. This example copies five bytes starting at offset

10 from an ArrayBuffer to the local variable buffer.

uint8_t buffer[5];

xsmcGetArrayBufferData(xsResult, 10, buffer, sizeof(buffer));

 Integrating with C++
XS in C enables you to bridge not only between C and JavaScript code

but also between C++ and JavaScript code. Although both JavaScript

and C++ support objects, the details of how they implement objects and

their features are quite different. Therefore, it’s usually unrealistic to try

to create a direct mapping between your C++ classes and your JavaScript

classes. Instead, design your JavaScript classes to make sense to JavaScript

programmers and your C++ classes to make sense to C++ programmers.

The bridge code you write using XS in C can translate between the two.

 Using Threads
JavaScript is a single-threaded language; for this reason, the XS JavaScript

engine is also single-threaded. This means that all calls to a single

JavaScript virtual machine, as represented to native code by the, should

ChapTer 11 addIng naTIve Code

563

be made from the same thread or task. You shouldn’t call XS in C from an

interrupt or a thread other than the one that created the virtual machine.

Techniques that provide multitasking execution of JavaScript code,

such as the Web Workers class, are built outside the JavaScript language.

The Moddable SDK supports a subset of the Web Workers class on the

ESP32, which enables several JavaScript virtual machines to coexist, each

in their own thread. Each virtual machine is single-threaded, but several

machines may run in parallel. The implementation of Web Workers for

ESP32 respects the requirement that each individual JavaScript virtual

machine is single-threaded.

 Conclusion
The ability to bridge between JavaScript and native code using the XS in C

API opens the door to many new possibilities for your projects. It enables

you to optimize memory use, improve performance, reuse existing C and

C++ code libraries, and access unique hardware capabilities. However,

using XS in C is considerably more difficult than working in JavaScript,

and consequently more error-prone. As a rule, using as little native code as

practical tends to minimize the risks.

To help you learn more about working with XS in C, these two excellent

resources are available:

• The XS in C documentation is a complete reference to

the API. It’s part of the Moddable SDK.

• All the classes in the Moddable SDK that access native

capabilities are implemented using XS in C. If you’re

curious about how they work, the source code is there

for you to read and learn from.

ChapTer 11 addIng naTIve Code

565© Peter Hoddie and Lizzie Prader 2020
P. Hoddie and L. Prader, IoT Development for ESP32 and ESP8266 with JavaScript,
https://doi.org/10.1007/978-1-4842-5070-9

 Glossary

 absolute coordinates (in Piu)

The coordinates of a content object on the screen, expressed as distance

from the edges of the screen. See also relative coordinates.

 access point

In this book, the point of connection between your Wi-Fi network and the

internet; also called a base station (or router). The access point creates a

local network that allows devices connected to it to communicate directly,

without using the internet.

 alpha channel

An indication of the degree of transparency (or opacity) of a solid color or

pixels in a color image: which pixels should be drawn, which should be

skipped, and which should be blended with the background.

 anchor (in Piu)

A reference to a content object saved as a property in the instantiating data

of the content object.

 ArrayBuffer

In JavaScript, a block of memory of a fixed number of bytes, with no type

associated with the data in it. The memory is initialized to 0. To access the

data, you wrap the ArrayBuffer in a view; see also data view and typed array.

https://doi.org/10.1007/978-1-4842-5070-9#ESM

566

 arrow function

In modern JavaScript, a compact syntax for declaring functions (using

=> syntax) that, when called, has a this value that’s the same as the this

value of the function in which the arrow function is defined; formally

known as a lambda function.

 asynchronous networking

See non-blocking networking.

 bare module specifier

In JavaScript, a module specifier that’s not a path. This book uses only bare

module specifiers, which are more common for embedded JavaScript.

 base station

See access point.

 behavior (in Piu)

A collection of methods that define the actions to be taken by a content

object in response to events; specifically, an instance of a subclass of the

Behavior class that’s assigned to the content object.

 BLE (Bluetooth Low Energy)

A wireless communication protocol that features low power consumption

and is widely used between two devices in close proximity to each other.

 block (in flash memory)

An organizational unit for flash memory. The size of a block varies

depending on the flash memory component used; a common value is

4,096 bytes.

GLOSSARY

567

blocking networking

Networking in which the device will be unresponsive to user input during

the network operation unless a more complex and memory-intensive

technique, such as threads, is also used.

BMFont

A font format that combines a bitmap image with a map file. There are

several variations of BMFont; the Moddable SDK uses the binary BMFont

format.

 bubble an event (in Piu)

To trigger a specified event on a content object, its parent container, and all

container objects upward in the containment hierarchy, using the object’s

bubble method.

 Central (in GAP)

One of the two main roles defined by GAP. A Central scans for devices

acting as Peripherals and initiates requests to establish a new connection

with a Peripheral.

 characteristic (in GATT)

In the GATT hierarchy that defines the format of data, a value of a GATT

service. See also profile and service.

 child object, child (in Piu)

In a containment hierarchy, a content object that has been added to

a container, which is said to be its parent object. The full term is often

shortened to child.

GLOSSARY

568

 chunked transfer encoding

A feature of the HTTP protocol that’s often used to deliver large responses.

The HTTP Request class decodes the chunks before invoking the callback

function, so your callback function doesn’t need to parse the chunk

headers.

 claiming (in mDNS)

The process whereby a device checks to see whether the mDNS name you

chose for it is already in use because mDNS requires each device to have a

unique name.

 Client (in GATT)

See GATT Client.

 clipping

Restricting drawing to subsections of the display. It’s used by Poco to

implement scanline rendering and by Piu to implement partial frame

updates, and is also available for use in your applications—for example, to

draw a subset of an image. See also clipping area.

 clipping area

The area that restricts where drawing will occur in the update area; a single

rectangle in Poco, but possibly multiple rectangles in Piu. Only the portion

of each drawing operation that intersects the clipping area is drawn.

 closure

In JavaScript, the binding of a function with a group of variables outside

the function. The references to outside variables persist for the lifetime of

the closure.

GLOSSARY

569

 Commodetto

A graphics library that includes Poco and adds features such as offscreen

graphics buffers, bitmaps, and instantiation of graphics assets from

resources.

constructor

A special kind of function that, when invoked with new, creates an instance

of the type specified by the constructor. The constructor function is

executed to initialize the instance.

 container (in Piu)

The organizing element of a containment hierarchy—a group into which

content objects are placed within the hierarchy; specifically, an instance

of any class that inherits from the Container class, which inherits from the

Content class and extends it with the ability to hold other content objects.

 containment hierarchy (in Piu)

The tree of content objects, with the application object at the root, that

make up the user interface of a Piu application.

 content object (in Piu)

A JavaScript object that’s associated with a graphical element of the user

interface; specifically, an instance of any class that inherits from the

Content class.

 CSS (Cascading Style Sheets)

A language for defining styles (for example, of text), most commonly

used in web pages. Piu incorporates many CSS conventions to provide

consistency for developers working on both web and IoT products.

GLOSSARY

570

 data view

A view in which you can wrap an ArrayBuffer to access the data in it.

Unlike typed arrays, in which all the values are of the same type, data

views are used to read and write different-sized integers and floating-point

values in a buffer.

 defer an event (in Piu)

To trigger a specified event on a content object at the next iteration of the

event loop, using the object’s defer method.

 delegate an event (in Piu)

To immediately trigger a specified event on a content object, using the

object’s delegate method.

 distribute an event (in Piu)

To trigger a specified event on a container and all content objects

downward in the containment hierarchy, using the container’s distribute

method.

 easing equations

Equations that implement common accelerations and decelerations for

animated state changes; also known as easing functions. These are often

used to give animations a more natural feel by making something move

more slowly at the start or near the end.

 event (in Piu)

An occurrence, such as a tap on the screen, a change in a sensor value, or

the expiration of a timer, that may trigger one or more content objects to

take an action defined by the object’s behavior.

GLOSSARY

571

extended mode (for TMP102 sensor)

A mode that increases the resolution of the TMP102 from the default of 12

bits to 13 bits, enabling the measurement of temperatures up to 150°C.

 from-tween (in Piu)

A tween, added to a timeline by the timeline’s from method, that

modifies the properties of the target object from the values specified

in the properties object to the original values of the target object over

duration milliseconds.

 GAP (Generic Access Profile)

The BLE protocol layer that defines how devices advertise themselves, how

they establish connections with each other, and their connection security.

 GATT (Generic Attribute Profile)

The BLE protocol layer that defines the way BLE devices transfer data back

and forth after a connection is established between them—a client-server

relationship.

 GATT Client

A BLE device that accesses data from a remote GATT Server by sending

read/write requests.

 GATT Server

A BLE device that stores data locally, receives read/write requests,

and notifies the remote GATT Client of changes to the values of its

characteristics.

GLOSSARY

572

 high-level event (in Piu)

An event defined and triggered by your application, using any name you

like—for example, an onSensorValueChanged event to be triggered when

the value of a sensor changes. See also low-level event.

 host

A collection of JavaScript modules, configuration variables, and other software

available that make up the environment in which your code runs. Each

chapter in the repository for this book on GitHub has its own host, which

contains the software environment needed to run that chapter’s examples.

 host object

In XS, an object with a native destructor, which performs cleanup when an

instance of the class is garbage-collected.

 I2C

A serial protocol for connecting multiple devices to a single two-wire bus.

 I2S

A protocol to connect digital audio devices; one of two hardware protocols

supported by the AudioOut class. It transmits unmodified audio samples

over a digital connection from the microcontroller to a dedicated audio

output component that performs the digital-to-analog conversion.

See also PDM.

 immediate mode rendering

A rendering technique, used in most graphics libraries used for

microcontrollers, that performs the requested drawing operation when

you call the drawing function. See also retained mode rendering.

GLOSSARY

573

 immutable

A characteristic of JavaScript objects and values meaning they’re read-

only—that is, you cannot modify them. JavaScript strings are immutable

and so can’t be modified in place.

 instantiating data (in Piu)

In a call to a content object constructor, a JavaScript value or object passed

as the first argument and used to instantiate the class. This data is also

passed to the onCreate method of the created instance’s behavior.

 iterator protocol

A protocol defined by JavaScript and implemented by the file module’s

Iterator class, which provides a standard way to implement and use

iterators. For example, it enables the use of for-of loops.

 lambda function

See arrow function.

 lexical this

A feature of arrow functions whereby the value of this inside the arrow

function is taken from the enclosing function.

 low-level event (in Piu)

An event defined and triggered by Piu—for example, the onTouchBegan

event when a finger is placed on a content object and onTouchEnded when

the finger is removed. See also high-level event.

GLOSSARY

574

 mDNS (Multicast DNS)

A protocol derived from DNS (Domain Name System) to allow devices

to easily connect to each other on a local network. Whereas DNS is a

centralized design that depends on authoritative servers to map names

to IP addresses, mDNS is decentralized, with each individual device

answering requests to map its name to an IP address.

 MQTT (Message Queuing Telemetry Transport)

A publish-and-subscribe networking protocol (designed for use by

lightweight IoT client devices) that organizes message into topics.

 non-blocking networking

A characteristic of networking APIs which means, for example, that when you

request data from the network using the HTTP protocol, your code continues

running while the request is made; also called asynchronous networking. This

is the way networking works when you use JavaScript on the web.

 one-shot mode (for TMP102 sensor)

A mode for taking just one temperature reading from a TMP102 sensor.

The most energy-efficient way to take infrequent readings, it’s available

only when the device is in shutdown mode.

 parent object, parent (in Piu)

In a containment hierarchy, a container into which a content object (said

to be its child object) has been added. The full term is often shortened to

parent.

GLOSSARY

575

 partition (in flash memory)

An organizational unit for the flash memory available to your

microcontroller. For example, one partition contains your project’s code,

another the preference data, and another the storage for the SPIFFS file

system. Each partition is identified by a name.

 PDM (pulse-density modulation)

The rapid toggling of a digital output pin to create energy levels that

correspond to the desired output signal; one of two hardware protocols

supported by the AudioOut class. See also I2S.

 Peripheral (in GAP)

One of the two main roles defined by GAP. Peripherals advertise

themselves to Centrals and accept requests from Centrals to establish a

connection.

 Piu

In the Moddable SDK, an object-oriented user interface framework that

simplifies the process of creating complex user interactions and uses Poco

for drawing.

 Poco

In the Moddable SDK, a rendering engine for embedded systems that you

can use to draw to displays. See also Piu.

 port (in Piu)

A content object that lets you issue drawing commands similar to Poco

within a Piu layout; an instance of the Port class.

 private method

A method that can only be called from within a class’s implementation.

GLOSSARY

576

 profile (in GATT)

In GATT, the top level of the hierarchy that defines the format of data. A

profile defines a specific use of BLE for communication between multiple

devices, including the roles of the devices involved and their general

behaviors. See also characteristic and service.

 promise

A feature of modern JavaScript that provides an alternative to callbacks

to simplify asynchronous programming. Callbacks can be turned into

promises using small helper functions so that applications can use

asynchronous functions.

 property

A characteristic of a JavaScript object that’s similar to a field in C or C++,

except that you can add properties to an object at runtime (without having

to declare them in advance).

 PWM (pulse-width modulation)

A type of digital signal whereby the digital pin outputs a square wave with

varied widths of high and low values. Taking the average of these high

and low pulses over time creates a power level between the high and low

values, proportional to the pulse widths.

 relative coordinates (in Piu)

The coordinates of a content object relative to the object’s parent

container, expressed as margins from the edges of the container; the left,

right, top, and bottom properties specify margins from the corresponding

edge. See also absolute coordinates.

GLOSSARY

577

 responsive layout (in Piu)

A layout rule that adjusts intelligently to changes to the size of its parent

container.

 rest parameters

A feature of modern JavaScript that provides similar functionality to the

special arguments variable, combining several arguments into an array,

but is always available and is more flexible.

 retained mode rendering (in Poco)

A rendering technique that doesn’t draw immediately but rather maintains

a list of drawing commands that executes only when you tell Poco you’re

done drawing. See also immediate mode rendering.

router

See access point.

 RSSI (received signal strength indication)

A measure of the strength of the signal received from the Wi-Fi access point.

 scanline rendering (in Poco)

A rendering technique that divides a frame into horizontal strips as small

as a single row of pixels and, after each strip is rendered, immediately

transmits it to the display.

 Server (in GATT)

See GATT Server.

GLOSSARY

578

 service (in GATT)

In the GATT hierarchy that defines the format of data, a collection of

characteristics that describe the behavior of part of a BLE device. See also

characteristic and profile.

 shutdown mode (for TMP102 sensor)

A mode that completely disables the temperature conversion hardware

in a TMP102 sensor, reducing energy consumption to 0.5 μA. Your

application can put the TMP102 in shutdown mode in the interval

between readings.

 skin (in Piu)

An object that controls the drawing of the background of one or more

content objects, filling the area with color or images. An instance of the Skin

class, it’s specified in a content object’s skin property. See also texture.

 sloppy mode

A JavaScript mode primarily used for backward compatibility for websites.

Sloppy mode includes features that may be error prone or reduce

performance. See also strict mode.

 SMBus (System Management Bus)

A subset of I2C for register-based devices.

 SNTP (Simple Network Time Protocol)

A lightweight way for an IoT device to retrieve the current time from

the network.

GLOSSARY

579

 source rectangle (in Poco)

When drawing a bitmap, the area of the bitmap to use, enabling you to

specify that only part of a mask or image should be drawn.

 sparse array

A JavaScript array in which not all elements have an assigned value.

spread syntax

A feature of modern JavaScript that separates the elements of an array or

properties of an object into individual arguments.

 SSID (service set identifier)

The human-readable name of a Wi-Fi network provided by a Wi-Fi base

station.

 strict equality operator

The JavaScript operator ===, which can be used in place of == to avoid type

conversion. This operator never performs type conversion; if its operands

are of different types, they’re always unequal.

 strict inequality operator

The JavaScript operator !==, which can be used in place of != to avoid type

conversion. This operator never performs type conversion; if its operands

are of different types, they’re always unequal.

 strict mode

A mode introduced in JavaScript 5th Edition which eliminates a handful of

confusing and inefficient features. This book uses strict mode exclusively.

See also sloppy mode.

GLOSSARY

580

 style (in Piu)

An object that controls the appearance of text, including the text’s font and

color, in one or more content objects. An instance of the Style class, it’s

specified in a content object’s style property.

 tag

A JavaScript feature that enables a function to modify the default behavior

of template literals. For example, you can use this feature to convert the

string representation of a UUID to binary data.

 template (in Piu)

A class, created using a content object’s template method, that enables

you to eliminate redundancy when creating several similar objects.

 template literal

A way of delineating JavaScript strings that uses the backtick character (`).

Strings defined in this way may span multiple lines and include string

substitutions.

 texture (in Piu)

An object that provides an image to be drawn (entirely or in part) by one

or more skins. An instance of the Texture class, it’s specified in a skin’s

texture property.

 TLS (Transport Layer Security)

A low-level tool for securing communication that works with many

different protocols, including HTTP; a more recent version of Secure

Sockets Layer (SSL).

GLOSSARY

581

 to-tween (in Piu)

A tween, added to a timeline by the timeline’s to method, that modifies the

properties of the target object from its current values to the target values

specified in the properties object over duration milliseconds.

 topic (in MQTT)

In the MQTT protocol, an organizational unit for messages. Messages to

and from an MQTT server are organized into topics; a particular server

may support many topics, but a client receives only the messages for the

topics it subscribes to.

 tween (in Piu)

A description of what happens to a specified content object in a timeline.

Each tween describes how one or more properties of the object change from

an initial value and an ending value. See also from-tween and to- tween.

 typed array

A view in which you can wrap an ArrayBuffer to access the data in it; a

collection of classes (subclasses of TypedArray for specific types) that let

you work with arrays of integers and floating-point values stored in an

ArrayBuffer. See also data view.

 update area (in Poco)

The initial drawing area, defined by Poco’s begin method. It can be

restricted by clipping; see also clipping area.

 WebSocket

A peer-to-peer protocol whereby two devices communicate over a

persistent network connection enabling efficient communication of brief

messages. Unlike HTTP, in which only the client can make a request and

GLOSSARY

582

the server always responds, WebSocket enables both devices to send and

receive messages.

 XS

A JavaScript engine optimized for resource-constrained environments

such as microcontrollers. XS implements the full JavaScript language

and supports on-device debugging, unlike other engines for embedded

use. Created by Kinoma, XS is maintained by Moddable as the core of the

Moddable SDK.

 XS in C

A low-level C API provided by the XS JavaScript engine so that you can

integrate C code into your JavaScript projects (or JavaScript code into

your C projects).

GLOSSARY

583© Peter Hoddie and Lizzie Prader 2020
P. Hoddie and L. Prader, IoT Development for ESP32 and ESP8266 with JavaScript,
https://doi.org/10.1007/978-1-4842-5070-9

Index

A
Absolute coordinates, 452, 565,

See also Relative coordinates
Access point, 128–136, 137–138, 163,

178–179, 438, 542, 565
Actuators, 255
Adafruit, 262, 277, 281, 294–297
Advertising

BLE, 203–204
multicast DNS, 167–168

Alpha channel, 347–349, 372, 383,
425, 565

Analog class, 281
Analog input, 277, 281
Anchor, Piu, 472–476, 565
Animation, 320–321, 323, 488–489

easing equations, 488–489, 570
transitions, 491, 494–497,

505–506, 508–511
Application class, Piu, 354,

408–409
ArrayBuffer, 106–107
Arrays, 96–106

typed, see Typed arrays
Arrow functions, 88–89, 101,

465, 566

async keyword, 182
Asynchronous

functions, 181–183, 190,
327, 576

Asynchronous networking, see
Non-blocking networking

Audio, 295–317
AudioOut class, 304–317, 572, 575
Automatic semicolon

insertion (ASI), 27
await keyword, 182–183

B
Bare module specifier, 91, 566
Base station, see Access point
Behavior class, Piu, 354, 412,

429–435, 566
Binary data, 25, 106–118

BLE, 199, 201
data views, 114–118, 570
in files, 226, 227, 230–231
HTTP, 141, 142, 158, 162
MQTT, 174, 176
typed arrays, 25, 107–113, 114,

242, 250, 529, 581

https://doi.org/10.1007/978-1-4842-5070-9#ESM

584

Bitmap
color images, 345, 370, 377–381
fonts, 342–343
masks, 370–377

Bitwise operators, 37
BLE, see Bluetooth Low

Energy (BLE)
BLEClient class, 189–190
BLEServer class, 189, 191
Blocking networking, 128, 567
Bluetooth Low Energy (BLE),

2, 185–220, 566
Central, 186–187, 189–190, 567
characteristic, 188–189, 567
client, 187, 189–190, 571
GAP, 186, 571
GATT, 187, 188, 571
notifications, 193, 198–200,

206–211
Peripheral, 186–187,

189–190, 575
profile, 188, 576
scanner, 192–193
secure communication, 215–219
server, 187, 189–190, 571
service, 188–189, 578

BMFont, 342–344, 567
Boolean value, 35, 106
Bootloader mode, 17
Bubble an event, 477, 484–488, 567
Buttons

onscreen, 426, 446
physical, 260–267

C
C, 25–126, 519–563
C++, 25–126, 562
Callback functions, 56, 87–89,

125–126
in classes, 87–89

Cascading Style Sheets (CSS), 407,
417–419, 422, 425–426, 569

catch block, 71–75, 526
Central, GAP, 186–187, 189–190, 567

scanning for Peripherals,
192–193, 195, 204

Characteristic, GATT, 188–189, 567
discovering, 197–198
notifications, 193, 198–200,

206–211
Child object, 451, 567
Chunked transfer encoding, 142,

162, 568
Classes, 75–89

subclasses, 78–84, 92, 102
Client class, WebSocket, 169–171
Clients, GATT, 187, 189–190, 571
Clipping, 327, 393–396, 568
Closures, 56–58, 568
Column class, Piu, 456–457 464
Commodetto, 357, 569,

See also Poco
CommonJS modules, 94
Comparison operators, 68–70
const, 28, 64–65
Constructor, 59, 76, 77, 79

INDEX

585

Container class, Piu, 354,
409–411, 569

Containment hierarchy, 449, 569
Content class, Piu,

354, 409–411, 569
Content object, 409, 569
CSS, see Cascading Style

Sheets (CSS)

D
Data views, 114–118, 570, See also

Typed arrays
Date class, 121–124
Debugging, See also xsbug

debugger statement, 12
native code, 554–555

Defer an event, 509–510, 570
Delegate an event, 477, 479–480, 570
delete operator, 62, 95, 118
Destructor, 118, 534–535, 536–537
Digital class, 259–262, 270
Digital input, 260–262, 266–267
Digital output, 259–260,

270–271, 305
Directories, 231–233
Display

benefits, 18, 294, 317, 320–322
pixel formats, 331–335
rotation, graphics, 349–352,

404–405, 413
in hardware, 351–352,

404–405, 413

in software, 350–351, 359,
379, 404–405

Distribute an event, 477,
480–482, 570

DNS, see Domain Name System
(DNS)

Domain Name System (DNS), 163
Drawing, see Piu; Poco

E
Easing equations,

488–489, 570
ECMAScript modules, 94
Equality operator (==), 69
Errors, 71–74
Event-driven programming,

125–126, 412
events in Piu, 412, 428–429,

432–434, 449, 462–463,
476–488, 570

Exceptions, 71–74
export statement, 93–94
Extended mode, TMP102 sensor,

288–290, 571
extends keyword, 78

F
File class, 233, 224–231
Files, 221–254

NOR flash memory, 244–246
preferences, 234–239

INDEX

586

resources, 239–243
SPIFFS, 222–223, 224, 231,

246–247
finally block, 73–75
Flash class, 246–254
Flash memory

blocks, 244, 566
partitions, 246–250, 575

Float32Array, 113
Float64Array, 113
Floating-point numbers, 35, 38, 39,

107, 235
Fonts, 341–345

BMFont format, 342–344, 567
Monotype, 345
TrueType format,

341, 342, 344
for-in loop, 99, 100
for loop, 32–33, 99
for-of loop, 99, 100
forEach method, Array, 100–101,

111
From-tween, 494, 573
Functions

arguments, 47–53
declaring, 55–56

G
GAP, see Generic Access Profile

(GAP)
Garbage collector, 119–120, 506,

509–510, 536–538, 561

GATT, see Generic Attribute
Profile (GATT)

Generic Access Profile
(GAP), 186, 571

Central, 186–187, 189–190, 567
Peripheral, 186–187,

189–190, 575
Generic Attribute Profile (GATT),

187, 188, 571
characteristic, 188–189, 567
Client, 187, 189–190, 571
profile, 188, 576
Server, 187, 189–190, 571
service, 188–189, 571

GET request, HTTP, 140–141
GitHub, 5
Global variables, 94–96, 557–558
globalThis object, 95–96
GPIO, 259, See also Digital input;

Digital output
Graphics fundamentals

clipping, see Clipping
displays, see Display
fonts, see Fonts
frame rate, 321, 323–324,

363, 494
images, see Bitmap
immediate mode rendering, see

Immediate mode renderer
masks, see Masks
overcoming hardware

limitations, 322–323
pixel formats, see Pixel formats
pixel rate, 323–324, 331

Files (cont.)

INDEX

587

rendering engine, see Poco
retained mode rendering, see

Retained mode renderer
scanline rendering, see Scanline

rendering
user interface framework,

see Piu

H
Hardware

actuators
LED, 258–260
servo, 274–277
tri-color LED, 267–273

protocols, 255–256
analog, 277, 281
digital, 258–267
I2C, 278, 282–294
PWM, 271–273, 576
servo, 274–277
SMBus, 287–288, 578

pull-up and pull-down
resistors, 265

sensors
buttons, 260–267
temperature sensors, 277–294

Hello, World program, 12–14,
22–23, 26–27, 414

High-level event, 429, 476, 572,
See also Low-level event

Host, 10, 572
Host object, 534, 572
HTML, 407, 449

HTTP, 138–152, 568
chunked transfer

encoding, 142, 162, 568
requests

GET, 140–141
getting response

headers, 148–149
POST, 149–150
setting request

headers, 147–148
server, 155–162

I
I2C class, 285–288
I2C hardware protocol,

284–288, 572
I2S hardware protocol, 296–297,

300–303, 306–308, 572,
See also Pulse-density
modulation (PDM)

if statement, 29–30
ILI9341 touch driver, 334, 351
Images, see Bitmap
Immediate mode renderer,

324–326, 572, See also
Retained mode renderer

import statement, 90–92
Inequality operator (!=), 70
Infinity, 36
Int8Array, 107
Int16Array, 109, 111
Iterator class, 223, 231–233
Iterators, 233–235, 576

INDEX

588

J
JSON

JSON.parse, 144–145
JSON.stringify, 149, 169, 170,

176, 238

K
Keyboard, 500–506

L
Label class, Piu,

409, 410, 415
Lambda functions, see Arrow

functions
Layouts, responsive, see Responsive

layouts
LED

blinking, 258–260, 313
tri-color, see Tri-color LED

Lexical this, 88–89, 573
Linux, 1, 7, 163
Loops, 32–33, See also for-in loop;

for loop; for-of loop
Low-level event, 429, 573, See also

High-level event

M
M5Stack FIRE, 5
macOS, 1, 7, 163
map method, Array, 101, 111

Masks, 336–341, 370–373, 440–442
compression, 340–341
images, 370–373
fonts, 344, 388
uncompressed, 340

Math object, 37–38, 488
MAUD, 308–309
mcconfig command line

tool, 11, 13, 130, 308–309,
334, 345, 350, 358, 413

mcrun command line
tool, 13, 137, 247, 308–309

mDNS, see Multicast DNS (mDNS)
MDNS class, 163–168
Memory management,

65, 66, 106–107, 118–119
audio, 310–311, 312
garbage collector, see Garbage

collector
networking, 128, 133, 141, 145,

148, 161, 183
Piu, 466, 509–510
Poco, 324, 326, 350

Message Queuing Telemetry
Transport protocol
(MQTT), 127, 173–176,
574, 587

Moddable One, 4
Moddable Two, 4
Modules

CommonJS, 94
ECMAScript, 94
exporting from, 93–94
importing from, 90–92

INDEX

589

Monitor class,
digital, 266–267

MQTT, see Message Queuing
Telemetry Transport
protocol (MQTT)

MQTT class, 173–176
Multicast DNS (mDNS),

128, 163–168, 568, 574

N
NaN, 36
Native code, see XS in C
Native functions,

519, 521–522
Net class, 137–138
Networking, 127–184

asynchronous, see Non-
blocking networking

mDNS, 128, 163–168, 568, 574
MQTT, 127, 173–176, 574, 587
SNTP, 177–178, 578
TLS, 127, 151–155, 169, 174, 239,

524, 580
WebSocket, 127, 128, 151,

168–172, 581–582
Wi-Fi, see Wi-Fi

Node.js, 10, 94
NodeMCU module, 1–2
Non-blocking

networking, 128, 574
NOR flash memory, 244–246
null, 68
Numeric separators, 36–37

O
Object.freeze, 64–67
Objects, 58–67

comparing, 70
freezing, 64–67
shorthand, 60–62

One-shot mode, TMP102
sensor, 292–294, 574

P
Parent object, 451, 574
parseFloat function, 39
parseInt function, 39
Partitions, in flash

memory, 246–250, 575
PDM, see Pulse-density

modulation
Peripheral, GAP, 186–187,

189–190, 575
advertising services, 203–204
connecting to, 204–206

Piu, 407–518
anchors, 472–476, 565
animation, 488–497
building compound user

interface elements,
448–453

containment hierarchy, 449, 569
images, 435–448
onscreen keyboard, 500–506
organizing code with

modules, 506–517
responsive layouts, 454–455, 577

INDEX

590

scrolling content, 460–463
similarities to CSS, 407
specifying color, 425–426
specifying fonts, 416–423
text, 409, 414–416
touch input, 428–431, 442,

462–463
Pixel formats, 332–333
PixelsOut class, 359
Poco, 357–406, See also

Commodetto
drawing bitmaps, 370–387
drawing rectangles, 361–370
drawing text, 387–396

Poco class, 359
Port class, Piu, 497–500, 575
POST request, HTTP, 149–150
Preference class, 234–239
Preferences, 234–239

deleting, 237
reading, 236–237
writing, 236–237

Private fields, 84–86
Private methods, 86–87, 575
Profiles, GATT, 188, 576
Promises, 128–129, 181–183, 576
Properties, 59–60, 576
prototype property, Object, 75
Pull-up and pull-down

resistors, 265
Pulse-density modulation (PDM),

304–306, 575, See also I2S
hardware protocol

Pulse-width modulation (PWM),
271–273, 576

PWM, see Pulse-width modulation
(PWM)

Q
Quote marks in strings, 42–43
QVGA display, 3–4, 18, 323, 326, 332

R
Random numbers

Math.random function,
37, 366, 521

RangeError, 71, 527
Received signal strength indication

(RSSI), 134, 542–543, 577
ReferenceError, 71
Relative coordinates, 452, 576, See

also Absolute coordinates
Request class, HTTP, 138–152, 568
Resource class, 241–243
Resources, 241–243
Responsive layouts, 454–455, 577

Piu row and column, 456–460
scrolling content, 460–463

REST API, 143, 155, 158
Rest parameters, 49–50, 577
Retained mode renderer,

324–326, 577, See also
Immediate mode renderer

Return value, 52–53, 556
Router, 128, 180, 565

Piu (cont.)

INDEX

591

Row class, Piu, 457–460
RSSI, see Received signal strength

indication (RSSI)

S
Scanline rendering, 326–328,

360, 577
Scroller class, Piu, 462
SecureSocket class, 152
Security, 39, 67, 94, 127, 524, 533

BLE, 186, 215–219
files, 239
networking, 151–152, 154

Semicolons, 27
Sensors, 255
Serial Peripheral Interface

Flash File System (SPIFFS),
222–223, 224, 231, 246–247

Server class
HTTP, 155–162, 179–181
WebSocket, 168, 171–172

Servers, GATT, 187, 189–190, 571
Service set identifier (SSID),

130, 579
Services, GATT, 188–189, 578

advertising, 203–204
discovering, 196–197

Servo class, 274–277
Servos, 274
Shutdown mode, TMP102 sensor,

291–292, 578
Simple Network Time Protocol

(SNTP), 177–178, 578

Skin class, Piu, 354, 411–412,
424–428, 578

Sloppy mode, 26, 578, See also
Strict mode

SMBus, see System Management
Bus (SMBus)

SNTP, see Simple Network Time
Protocol (SNTP)

SNTP class, 177–178
Sound, see Audio
Source rectangle, 374, 377, 378,

382, 579
SparkFun, 262, 267, 277, 278, 282
Sparse arrays, 98, 579
Speakers

analog speaker, 295, 297–300
digital speaker, 296, 300–303

SPIFFS, see Serial Peripheral
Interface Flash File
System (SPIFFS)

Spread syntax, 50–51, 579
SSID, see Service set identifier

(SSID)
static keyword, 94
Static methods, 77–78
Strict equality

operator (===), 69, 579
Strict inequality

operator (!==), 70, 579
Strict mode, 26, 579, See also

Sloppy mode
Strings, 39–47
Style class, Piu, 354, 411–412,

414–416, 580

INDEX

592

Subclasses, 78–84, 92, 102
switch statement, 30–32
System class, file, 223, 233
System Management Bus (SMBus)

protocol, 287–288, 578

T
Tags, template literal, 44, 580
Template literals, 43–44, 580
Templates, in Piu, 463–466, 517, 580
Text

drawing with Piu, 414–416
drawing with Poco, 387–396
files, reading and writing,

226–227, 229–230
fonts, 341–345, 416–423

Text class, Piu, 447–448
Texture class, Piu, 354, 411–412,

435–448, 580
this, 79, 80, 88–89, 573
throw statement, 71–73
Tiling images, 442–448
Time class, 177–178
Timeline class, 490–494
Timer class, 90, 272–273
TLS, see Transport Layer

Security (TLS)
TMP36 temperature sensor, 277–281
TMP102 temperature sensor, 278,

282–294, 571, 574, 578
To-tween, 492–493, 581
Topic, MQTT, 173, 175–176
toString method, 38, 77, 79, 124

Touch input
in Piu, 428, 429–432, 462–463, 500
in Poco, 402–404
touch drivers, 402–404

Touch screen, 18–22, 319, 321,
402, 500

Transition class, Piu, 354, 412,
494–497

Transport Layer Security (TLS),
127, 151–155, 169, 174, 239,
524, 580

private certificates, 154–155
public certificates, 152–154
with SecureSocket class, 152

Tri-color LED, 267–273
Troubleshooting

installation issues, 14–18
wiring issues, 259–260

try block, 72, 74, 75, 547
Tween, 491, See also From-tween;

To-tween
Typed arrays, 25, 107–113, 114, 242,

250, 529, 581, See also Data
views

TypeError, 71

U
Uint8Array, 108, 106, 529
Uint8ClampedArray, 113
Uint16Array, 107–108
undefined, 34, 36, 40, 48, 51, 53,

62, 63, 68, 79, 85, 97, 98,
99–100, 109

INDEX

593

Update area, 328–331, 353, 364, 393,
568, 581, See also Clipping

User interface framework, see Piu

V
V8 JavaScript engine, 520
Variables, 27–29, 56–57, 94–96

W
WAVE audio files, 308
Web Workers, 563
WebSocket, 127, 128, 151, 168–172,

581–582
while loop, 32

Wi-Fi
access point, 128–136, 137–138,

163, 178, 438, 542, 565
connection, 129–136

WiFi class, 131–136, 179
Windows operating

system, 1, 7, 163

X, Y, Z
XS, see XS JavaScript engine
XS in C, 519
XS JavaScript engine, 7, 35, 40, 66,

85, 119, 145, 519, 562, 582
xsbug debugger, 7–9, 12–13, 257,

300, 360, 554–555

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewers
	About the Editor
	Acknowledgments
	Foreword
	Introduction
	Chapter 1: Getting Started
	Hardware Requirements
	Software Requirements
	Downloading the Example Code
	Setting Up Your Build Environment
	Using xsbug
	Important Features for Examples in This Book

	Running Examples
	Installing the Host
	mcconfig
	Confirming the Host Was Installed

	Installing helloworld
	mcrun
	Finishing Up

	Troubleshooting
	Device Not Connected/Recognized
	macOS/Linux
	Windows

	Incompatible Baud Rate
	Device Not in Bootloader Mode

	Adding a Display
	Connecting a Display to the ESP32
	Connecting a Display to the ESP8266

	Installing helloworld-gui
	Conclusion

	Chapter 2: JavaScript for Embedded C and C++ Programmers
	Fundamental Syntax
	“Hello, world”
	Semicolons
	Declaring Variables and Constants
	The if Statement
	The switch Statement
	Loops

	Types
	undefined
	Boolean Values
	Numbers
	Infinity and NaN
	Bases
	Numeric Separators
	Bitwise Operators
	The Math Object
	Converting Numbers to Strings
	Converting Strings to Numbers

	Strings
	Accessing Individual Characters
	Modifying Strings
	Determining the Length of Strings
	Embedding Quotes and Control Characters
	String Substitution
	Adding Strings
	Converting String Case
	Extracting Parts of Strings
	Repeating Strings
	Trimming Strings
	Searching Strings

	Functions
	Function Arguments
	Passing Functions As Arguments
	Declaring Functions
	Closures

	Objects
	Object Shorthand
	Deleting Properties
	Checking for Properties
	Adding Properties to Functions
	Freezing Objects

	null

	Comparisons
	Comparing Objects

	Errors and Exceptions
	Classes
	Class Constructor and Methods
	Static Methods
	Subclasses
	Private Fields
	Private Methods
	Using Callback Functions in Classes

	Modules
	Importing from Modules
	Exporting from Modules
	ECMAScript Modules vs. CommonJS Modules

	Globals
	Arrays
	Array Shorthand
	Accessing Elements of an Array
	Iterating over Arrays
	Adding and Removing Elements of an Array
	Searching Arrays
	Sorting Arrays

	Binary Data
	ArrayBuffer
	Typed Arrays
	Typed Array Shorthand
	Copying Typed Arrays
	Filling Typed Arrays
	Writing Typed Array Values
	Floating-Point Typed Arrays

	Data Views
	Accessing Values of a Data View

	Memory Management
	The Date Class
	Event-Driven Programming
	Conclusion

	Chapter 3: Networking
	About Networking
	Connecting to Wi-Fi
	Connecting from the Command Line
	Connecting with Code
	Connecting to Any Open Access Point

	Installing the Network Host
	Installing Examples
	Getting Network Information
	Making HTTP Requests
	Fundamentals
	GET
	Streaming GET
	GET JSON
	Subclassing an HTTP Request
	Setting Request Headers
	Getting Response Headers
	POST
	Handling Errors

	Securing Connections with TLS
	Using TLS with the SecureSocket Class
	Public Certificates
	Private Certificates

	Creating an HTTP Server
	Fundamentals
	Responding to a Request
	Responding to JSON PUT
	Receiving a Streaming Request
	Sending a Streaming Response

	mDNS
	Claiming a Name
	Finding a Service
	Advertising a Service

	WebSocket
	Connecting to a WebSocket Server
	Creating a WebSocket Server

	MQTT
	Connecting to an MQTT Server
	Subscribing to a Topic
	Publishing to a Topic

	SNTP
	Advanced Topics
	Creating a Wi-Fi Access Point
	Promises and Asynchronous Functions

	Conclusion

	Chapter 4: Bluetooth Low Energy (BLE)
	BLE Basics
	GAP Centrals and Peripherals
	GATT Clients and Servers
	GAP vs. GATT
	Profiles, Services, and Characteristics
	Profiles
	Services
	Characteristics

	The BLE API of the Moddable SDK
	The BLEClient Class
	The BLEServer Class

	Installing the BLE Host
	Creating a BLE Scanner
	Creating Two-Way Communication
	Connecting to the Peripheral
	The onConnected Callback
	The onServices Callback
	The onCharacteristics Callback

	Receiving Notifications

	Creating a Heart Rate Monitor
	Defining and Deploying Services
	Advertising
	Establishing a Connection
	Sending Notifications
	Responding to Read Requests

	Establishing Secure Communication
	Secure Heart Rate Monitor

	Conclusion

	Chapter 5: Files and Data
	Installing the Files and Data Host
	Files
	File Classes
	File Paths
	File Operations
	Determining Whether a File Exists
	Deleting a File
	Renaming a File
	Opening a File

	Writing to a File
	Writing Text
	Writing Binary Data
	Getting File Size
	Writing Mixed Types

	Reading from a File
	Reading Text
	Reading Text in Pieces
	Reading Binary Data
	Reading Binary Data in Pieces

	Directories
	Iterating over Directories
	Iterating with JavaScript Iterators

	Getting File System Information

	Preferences
	The Preference Class
	Preference Names
	Preference Data
	Reading and Writing Preferences
	Deleting Preferences
	Don’t Use JSON
	Security

	Resources
	Adding Resources to a Project
	Accessing Resources
	Using Resources

	Accessing Flash Memory Directly
	Flash Hardware Fundamentals
	Accessing Flash Partitions
	Getting Partition Information
	Reading from a Flash Partition
	Erasing a Flash Partition
	Writing to a Flash Partition
	Mapping a Flash Partition

	Example: Frequently Updated Integer
	Initializing the Block
	Updating the Value
	Reading the Value
	Benefits and Future Work

	Conclusion

	Chapter 6: Hardware
	Installing the Hardware Host
	Notes on Wiring
	Following the Wiring Instructions
	Troubleshooting Wiring Issues

	Blinking an LED
	Reading a Button
	Other Digital Input Modes
	ESP32 Wiring Instructions
	ESP8266 Wiring Instructions
	Understanding the external-button Code
	More About Pull-Up and Pull-Down Resistors

	Monitoring for Changes

	Controlling a Tri-color LED
	LED Setup
	ESP32 Wiring Instructions
	ESP8266 Wiring Instructions
	Using Digital with a Tri-color LED
	Using PWM with a Tri-color LED

	Rotating a Servo
	ESP32 Wiring Instructions
	ESP8266 Wiring Instructions
	Understanding the servo Code

	Getting the Temperature
	TMP36
	ESP32 Wiring Instructions
	ESP8266 Wiring Instructions
	Understanding the tmp36 Code

	TMP102
	ESP32 Wiring Instructions
	ESP8266 Wiring Instructions
	Understanding the tmp102 Code
	Using SMBus
	Configuring the TMP102
	Reading Higher Temperatures with Extended Mode
	Setting the Conversion Rate
	Saving Energy with Shutdown Mode
	Taking One-Shot Temperature Readings

	Conclusion

	Chapter 7: Audio
	Speaker Options
	Adding the Analog Speaker
	ESP32 Wiring Instructions
	ESP8266 Wiring Instructions

	Adding an I2S Chip and Digital Speaker
	ESP32 Wiring Instructions
	ESP8266 Wiring Instructions

	Installing the Audio Host
	The AudioOut Class
	AudioOut Configuration
	Audio Hardware Protocols
	Pulse-Density Modulation (PDM)
	I2S

	Audio Data Formats
	Audio Compression
	Setting the Audio Queue Length

	Playing Audio with AudioOut
	Instantiating AudioOut
	Playing a Single Sound
	Repeating a Sound
	Using Callbacks to Synchronize Audio
	Using Commands to Change Volume
	Playing a Sequence of Sounds
	Playing Sounds Simultaneously
	Playing Part of a Sound
	Flushing the Audio Queue

	Conclusion

	Chapter 8: Graphics Fundamentals
	Why Add a Display?
	Overcoming Hardware Limitations
	Pixel Rate Impacts Frame Rate
	Drawing Frames
	Scanline Rendering
	Restricting the Drawing Area

	Pixels
	Pixel Formats
	Configuring a Host for a Pixel Format
	Freedom to Choose a Display

	Graphics Assets
	Masks
	Adding Masks to Your Project
	Mask Compression
	Uncompressed Masks

	Fonts
	Converting TrueType Fonts to Bitmap Fonts
	Using Scalable Fonts
	Font Copyright

	Color Images

	Display Rotation
	Rotating in Software
	Rotating in Hardware

	Poco or Piu?
	Conclusion

	Chapter 9: Drawing Graphics with Poco
	Installing the Poco Host
	Preparing to Draw
	Drawing Rectangles
	Filling the Screen
	Updating Part of the Screen
	Drawing Random Rectangles
	Drawing Blended Rectangles

	Drawing Bitmaps
	Drawing Masks
	Using an Uncompressed Mask
	Drawing Part of a Mask
	Fading a Mask In and Out

	Drawing Color Images
	Drawing JPEG Images
	Storing JPEG Data in Resources
	Drawing a JPEG Image from Memory
	Drawing a JPEG Image During Decompression

	Filling with Color Images
	Drawing Masked Color Images

	Drawing Text
	Drawing a Text Shadow
	Measuring Text
	Truncating Text
	Wrapping Text

	Additional Drawing Techniques
	Restricting Text to a Box
	Easily Reusing Drawing Code
	Efficiently Rendering Gradients

	Touch Input
	Accessing the Touch Driver
	Reading Touch Input
	Using Multi-touch
	Applying Rotation

	Conclusion

	Chapter 10: Building User Interfaces with Piu
	Key Concepts
	Everything Is an Object
	Every User Interface Element Is a Content Object
	Not All Piu Objects Are Content Objects
	Defining Appearance
	Controlling Behavior
	Animating

	Installing the Piu Host
	“Hello, World” with Piu
	Fonts
	Font Names
	Font Resources
	Additional Notes on Fonts

	Adding Color
	Specifying Color
	Changing Color Based on State

	Responding to Events with Behaviors
	“Hello, World” with a Behavior
	The onTimeChanged and onDisplaying Events

	Adding Images
	Drawing Part of an Image
	Drawing Multiple Icons from One Image
	Using Masks
	Tiling Images
	Tiling a Single Image
	Drawing 9-Patch Images with Tiles

	Building Compound User Interface Elements
	Creating a Header
	Relative and Absolute Coordinates
	Adding and Removing Container Contents
	One Container for Each Content Object

	Building Responsive Layouts
	Row and Column Layouts
	Scrolling Content

	Templates for Content Objects
	Creating a Button Template Class
	Content Constructor Arguments
	The Instantiating Data Argument
	The Content Dictionary Argument

	Accessing Content Objects in a Container
	Using first, last, next, and previous
	Accessing Children by Index and Name
	Accessing Content with Anchors

	Defining and Triggering Your Own Events
	Triggering Events on a Content Object
	Distributing Events Inside a Container
	Bubbling Events Up the Containment Hierarchy

	Animation
	Easing Equations
	Animating Content Objects
	Animating Transitions

	Drawing a Graph in Real Time
	Adding an Onscreen Keyboard
	Organizing User Interface Code Using Modules
	The Modules
	The Application Logic
	The Splash Screen
	The Home Screen
	Adding More Screens

	Conclusion

	Chapter 11: Adding Native Code
	Installing the Host
	Generating Random Integers
	Creating a Native Function
	Implementing a Native Function
	Using the Hardware Random Number Generator
	Restricting Random Numbers to a Range
	Comparing Random Number Approaches

	The BitArray Class
	Using Memory Allocated by ArrayBuffer
	The get Function
	The set Function
	Security Vulnerability

	Using Memory Allocated by calloc
	The Class Declaration
	The Constructor
	The Destructor
	The close Function
	The get and set Functions
	The length Property
	Advantages to This Approach

	Wi-Fi Signal Notifications
	The Test Code
	The WiFiRSSINotify Class
	The Native RSSINotifyRecord Structure
	The Constructor
	The Destructor
	The close Function
	The Callback

	Additional Techniques
	Debugging Native Code
	Accessing Global Variables
	Getting a Function’s Return Value
	Getting Values
	Setting Values
	Determining a Value’s Type
	Working with Strings
	Ensuring Your Buffer Pointers Are Valid
	Integrating with C++
	Using Threads

	Conclusion

	Glossary
	Index

