

In	easy	steps	is	an	imprint	of	In	Easy	Steps	Limited
16	Hamilton	Terrace	·	Holly	Walk	·	Leamington	Spa
Warwickshire	·	United	Kingdom	·	CV32	4LY
www.ineasysteps.com

Copyright	©	2020	by	In	Easy	Steps	Limited.	All	rights	reserved.	No	part	of	this	book	may	be
reproduced	or	transmitted	in	any	form	or	by	any	means,	electronic	or	mechanical,	including
photocopying,	recording,	or	by	any	information	storage	or	retrieval	system,	without	prior	written
permission	from	the	publisher.

Notice	of	Liability
Every	effort	has	been	made	to	ensure	that	this	book	contains	accurate	and	current	information.
However,	In	Easy	Steps	Limited	and	the	author	shall	not	be	liable	for	any	loss	or	damage	suffered
by	readers	as	a	result	of	any	information	contained	herein.

Trademarks
All	trademarks	are	acknowledged	as	belonging	to	their	respective	companies.

http://www.ineasysteps.com

Contents

1	Get	Started	in	HTML
Meet	HTML
Understand	Structure
Create	Documents
Validate	Documents
Bestow	Titles
Supply	Metadata
Describe	Contents
Add	Styles
Include	Scripts
Link	Resources
Summary

2	Structure	Web	Pages
Proclaim	Headings
Group	Headings
Include	Navigation
Complete	Framework
Create	Sections
Provide	Asides
Revise	Divisions
Summary

3	Manage	Text	Content
Insert	Paragraphs
Include	Quotations
Add	Emphasis
Add	Modifications
Add	Phrasing
Retain	Formatting
Use	Superscript
Display	Code
Give	Advice
Gauge	Quantity
Direct	Language
Create	Hyperlinks
Access	Keys
Fragment	Links
Protocol	Links

Summary

4	Write	Lists	and	Tables
Unordered	Lists
Ordered	Lists
Description	Lists
Basic	Table
Span	Cells
Enhance	Tables
Control	Columns
Summary

5	Incorporate	Media	Content
Add	Images
Image	Maps
Reference	Figures
Select	Pictures
Embed	Objects
Embed	Vectors
Embed	Frames
Add	Audio
Add	Video
Indicate	Progress
Use	Templates
Insert	Slots
Employ	Dialogs
Paint	Canvas
Summary

6	Create	a	Local	Domain
Install	Abyss
Install	Python
Configure	Abyss
Echo	Script
Test	Environment
Summary

7	Produce	Input	Forms
Submit	Text
Input	Types
Text	Areas
Check	Boxes
Hide	Data
Upload	Files
Push	Buttons

Image	Buttons
Add	Logos
Select	Options
Datalist	Options
Label	Controls
Summary

8	Get	Started	in	CSS
Meet	CSS
Create	Rules
Apply	Rules
Select	Type
Select	Class
Select	Identity
Select	Relatives
Select	Attributes
Weigh	Importance
Paint	Colors
Set	Backgrounds
Summary

9	Manage	the	Box	Model
Recognize	Boxes
Display	Inline
Define	Dimensions
Control	Borders
Add	Padding
Set	Margins
Position	Boxes
Fix	Positions
Stack	Boxes
Float	Boxes
Handle	Overflow
Layout	Pages
Summary

10	Manipulate	Text	Content
Suggest	Font
Set	Size
Vary	Style
Use	Shorthand
Align	Text
Control	Space
Decorate	Text
Change	Direction
Enhance	Text

Number	Sections
Summary

11	Organize	Tables	&	Lists
Construct	Columns
Space	Cells
Collapse	Borders
Assign	Features
Choose	Markers
Position	Markers
Provide	Navigation
Make	Dropdowns
Summary

12	Generate	Effects
Choose	Cursors
Show	Focus
Roll	Over
Push	Buttons
Reveal	Elements
Draw	Corners
Cast	Shadows
Blend	Gradients
Decorate	Borders
Transform	Shapes
Make	Transitions
Animate	Elements
Fit	Objects
Summary

13	Control	the	Web	Page
Change	Models
Draw	Outlines
Use	Columns
Span	Columns
Use	Flexbox
Align	Items
Draw	Grid
Place	Items
Query	Media
Switch	Navigation
Summary

14	Design	for	Devices
Adapt	Layouts

Compare	Schemes
Combine	Schemes
Add	Breakpoints
Scale	Images
Hide	Content
Summary

15	Get	Started	in	JavaScript
Meet	JS
Include	Scripts
Console	Output
Make	Statements
Avoid	Keywords
Store	Values
Create	Functions
Assign	Functions
Recognize	Scope
Use	Closures
Summary

16	Perform	Useful	Operations
Convert	Values
Do	Arithmetic
Assign	Values
Make	Comparisons
Assess	Logic
Examine	Conditions
Juggle	Bits
Force	Order
Summary

17	Manage	the	Script	Flow
Branch	If
Branch	Alternatives
Switch	Alternatives
Loop	For
Loop	While
Do	Loops
Break	Out
Catch	Errors
Summary

18	Use	Script	Objects
Custom	Objects
Extend	Objects

Built-in	Objects
Create	Arrays
Loop	Elements
Slice	Arrays
Sort	Elements
Get	Dates
Extract	Calendar
Extract	Time
Set	Dates
Match	Patterns
Meet	JSON
Make	Promises
Fetch	Data
Summary

19	Control	Strings	&	Numbers
Calculate	Areas
Compare	Numbers
Round	Decimals
Generate	Randoms
Unite	Strings
Split	Strings
Find	Characters
Trim	Strings
Summary

20	Address	the	Window	Object
Meet	DOM
Inspect	Properties
Show	Dialogs
Scroll	Around
Pop-up	Windows
Make	Timers
Examine	Browsers
Check	Status
Control	Location
Travel	History
Summary

21	Interact	with	the	Document
Extract	Info
Address	Arrays
Address	Elements
Write	Content
Manage	Cookies
Load	Events

Mouse	Events
Event	Values
Check	Boxes
Select	Options
Reset	Changes
Validate	Forms
Summary

How	to	Use	This	Book
The	examples	in	this	book	demonstrate	HTML,	CSS,	and	JavaScript	features
that	are	supported	by	leading	web	browsers,	and	screenshots	illustrate	the	actual
results	produced	by	the	listed	code	examples.	Colorization	conventions	are	used
to	clarify	the	code	listed	in	the	steps...

HTML	tags	and	punctuation	are	Blue,	attribute	values	are	Orange,	and	literal
text	is	Black:

<p	class=”frame”>HTML,	CSS	&	JavaScript	in	easy	steps</p>

CSS	selectors,	properties,	and	punctuation	are	Blue,	attributes	are	Orange,
specified	values	are	Red:

p.frame	{	color	:	White	;	background	:	Green	;	}

JavaScript	keywords	and	punctuation	are	Blue,	specified	names	are	Red,	and
literal	values	are	Black:

let	greeting	=	‘Hello	World!’	;

All	comments	are	colored	green:	<!--	HTML	Comments	-->	/*	CSS	&	JS	Comments	*/

Additionally,	in	order	to	identify	each	source	code	file	described	in	the	steps,	a
file	icon	and	file	name	appears	in	the	margin	alongside	the	steps:

The	source	code	of	HTML	documents	used	in	the	book’s	examples	is	not	listed
in	full	to	avoid	unnecessary	repetition	–	only	the	relevant	code	is	listed	for	each
example.	You	can	download	a	single	ZIP	archive	file	containing	all	the	example
files	by	following	these	easy	steps:

Browse	to	www.ineasysteps.com	then	navigate	to	Free	Resources	and
choose	the	Downloads	section

http://www.ineasysteps.com

Next,	find	HTML,	CSS,	&	JavaScript	in	easy	steps	in	the	list,	then	click
on	the	hyperlink	entitled	All	Code	Examples	to	download	the	ZIP
archive	file

Now,	extract	the	archive	contents	to	any	convenient	location	on	your
computer

If	you	don’t	achieve	the	result	illustrated	in	any	example,	simply	compare
your	code	to	that	in	the	original	example	files	you	have	downloaded	to
discover	where	you	went	wrong.

1

Get	Started	in	HTML

This	chapter	is	an	introduction	to	the	exciting	world	of	HTML.	It	demonstrates	how	to	create	a	valid

HTML	document	and	how	to	include	style	rules,	script	code,	and	linked	resources.

Meet	HTML
Understand	Structure

Create	Documents
Validate	Documents
Bestow	Titles
Supply	Metadata

Describe	Contents
Add	Styles
Include	Scripts
Link	Resources

Summary

Meet	HTML
Historically,	the	desire	to	have	text	printed	in	specific	formats	meant	that
original	manuscripts	were	“marked	up”	with	annotation	to	indicate	to	the	book
printer	how	the	author	would	like	sections	of	text	laid	out.	This	annotation	had	to
be	concise	and	needed	to	be	easily	understood	both	by	the	printer	and	the	author.
A	series	of	commonly-recognized	abbreviations	therefore	formed	the	basis	of	a
standard	markup	language.

HyperText	Markup	Language	(HTML)	is	a	modern	standard	markup	language
that	uses	common	abbreviations	called	“tags”	to	indicate	to	the	web	browser
how	the	author	would	like	to	have	sections	of	a	web	page	laid	out.	It	was	first
devised	in	1989	by	British	physicist	Tim	Berners-Lee	at	CERN	in	Switzerland
(the	European	organization	for	nuclear	research)	to	share	all	computer-stored
information	between	the	CERN	physicists.	Berners-Lee	created	a	text	browser	to
transfer	information	over	the	internet	using	hypertext	to	provide	point-and-click
navigation.	In	May	1990	this	system	was	named	the	World	Wide	Web	and	was
enhanced	in	1993	when	college	student	Marc	Andreessen	added	an	image	tag.
Now	that	HTML	could	display	both	text	and	images,	the	World	Wide	Web
quickly	became	hugely	popular.

As	various	web	browsers	were	developed,	their	makers	began	to	add	individual
proprietary	tags	–	effectively	creating	their	own	versions	of	HTML!	The	World
Wide	Web	Consortium	(W3C)	standards	organization	recognized	the	danger	that
HTML	could	become	fragmented,	so	they	created	a	standard	specification	to
which	all	web	browsers	should	adhere.	This	successfully	encouraged	the
browser	makers	to	support	the	standard	tags.	The	final	W3C	standard
specification	of	HTML5	is	now	continued	by	the	Web	Hypertext	Application
Technology	Working	Group	(WHATWG)	as	the	“HTML	Living	Standard”.

The	World	Wide	Web	comprises	a	series	of	large-capacity	computers,	known	as

“web	servers”,	which	are	connected	to	the	internet	via	telephone	lines	and
satellites.	The	web	servers	each	use	the	HyperText	Transfer	Protocol	(HTTP)	as
a	common	communication	standard	to	allow	any	computer	connected	to	any	web
server	to	access	files	across	the	web.

HTML	web	pages	are	merely	plain	text	files	that	have	been	saved	with	a	“.htm”
or	“.html”	file	extension,	such	as	index.html.

You	can	find	the	HTML	Living	Standard	specification,	and	other	related
specifications,	online	at	whatwg.org

In	order	to	access	an	HTML	file	across	the	internet,	its	web	address	must	be
entered	into	the	address	field	of	the	web	browser.	The	web	address	is	formally
known	as	its	“Uniform	Resource	Locator”	(URL),	and	typically	has	three	parts:

• Protocol	–	any	URL	using	the	HTTP	protocol	begins	by	specifying	the
protocol	as	http://	or	secure	https://

• Domain	–	the	host	name	of	the	computer	from	which	the	file	can	be
downloaded.	For	instance:	www.example.com

• Path	–	the	file	name	prefixed	by	any	parent	directory	names	where
applicable.	For	instance:	/htdocs/index.html

A	URL	describing	the	location	of	a	file	by	protocol,	domain,	and	path	is	stating
its	full	“absolute	address”.	Files	resident	within	the	same	domain	can	be
referenced	more	simply	by	their	“relative	address”,	which	means	that	files
located	in	the	same	directory	can	be	referenced	just	by	their	file	name.
Additionally,	a	relative	address	can	reference	a	file	in	its	parent	directory	by
prefixing	its	name	with	“../”.	For	instance,	a	file	named	“higher.html”	in	the
parent	directory	can	be	referenced	as	../higher.html

http://www.whatwg.org

How	do	web	servers	work?
When	you	enter	a	URL	into	the	browser	address	field,	the	browser	first	examines
the	protocol.	Where	the	protocol	is	specified	as	HTTP,	or	assumed	to	be	HTTP	if
unspecified,	the	browser	recognizes	that	a	file	is	being	sought	from	a	web	server.
It	then	contacts	a	Domain	Name	Server	(DNS)	to	look	up	the	numerical	Internet
Protocol	(IP)	address	of	the	specified	domain	name.	Next,	a	connection	is
established	with	the	web	server	at	that	IP	address	to	request	the	file	at	the
specified	path.	When	the	file	is	successfully	located,	it	is	copied	back	to	the
browser,	otherwise	the	web	server	sends	an	error	code,	such	as	“404	–	Page	Not
Found”.

A	successful	response	sends	HTTP	headers	to	the	web	browser,	describing	the
nature	of	the	response,	along	with	a	copy	of	the	requested	file.	The	HTTP
headers	are	not	normally	visible	but	can	be	examined	using	various	development
tools,	such	as	the	F12	Developer	Tools	feature	in	the	Google	Chrome	web
browser.

Understand	Structure

The	skeletal	structure	of	an	HTML	document	has	three	parts:

• Document	type	declaration	–	declaring	precisely	which	version	of	HTML	is
used	to	mark	up	the	document.

• Head	section	–	providing	descriptive	data	about	the	document	itself,	such	as
the	document’s	title	and	the	character	set	used.

• Body	section	–	containing	the	content	that	is	to	appear	when	the	document
gets	loaded	into	a	web	browser.

Document	type	declaration
The	document	type	declaration	must	appear	at	the	start	of	the	first	line	of	every
HTML	document	to	ensure	the	web	browser	will	“render”	(display)	the
document	in	“Standards	Mode”	–	following	the	HTML	specifications.	The
document	type	declaration	tag	for	all	HTML	documents	looks	like	this:

<!DOCTYPE	HTML>

It	is	important	to	note	that	HTML	is	not	a	case-sensitive	language	–	so	the
document	type	declaration	tag,	and	all	other	tags,	may	alternatively	be	written	in
any	combination	of	uppercase	and	lowercase	characters.	For	example,	the
following	are	all	valid:

<!DOCTYPE	html>

<!Doctype	Html>

<!doctype	html>

The	choice	of	capitalization	is	yours,	but	it	is	recommended	you	adhere
consistently	to	whichever	style	you	choose.	The	document	type	declaration	tag
capitalization	style	favored	throughout	this	book	uses	all	uppercase	to	emphasize
its	prominence	as	the	very	first	tag	on	each	page	–	but	all	other	tags	are	in	all
lowercase.

Those	familiar	with	earlier	versions	of	HTML	may	be	surprised	at	the	simplicity
of	the	HTML	document	type	declaration.	In	fact,	the	document	type	declaration
in	earlier	versions	was	not	actually	part	of	the	HTML	language	–	so	required
lengthy	references	to	schema	documents.	By	contrast,	the	modern	HTML
document	type	declaration	is	an	intrinsic	part	of	HTML	itself.

The	document	type	declaration	in	earlier	versions	of	HTML	was	part	of
the	Standard	Generalized	Markup	Language	(SGML)	from	which	HTML
is	derived.

The	entire	document	head	section	and	body	section	can	be	enclosed	within	a	pair
of	<html>	</html>	tags	to	contain	the	rest	of	the	document.	The	HTML
specification	actually	states	that	these	are	optional,	but	it	is	logical	to	provide	a
single	“root”	element.	Most	HTML	tags	are	used	in	pairs	like	this	to	act	as
“containers”	with	the	syntax	<	tagname	>	data	</	tagname	>

Head	section
The	document’s	head	section	begins	with	an	HTML	opening	<head>	tag	and	ends
with	a	corresponding	closing	</head>	tag.	Data	describing	the	document	can	be
added	later	between	these	two	tags	to	complete	the	HTML	document’s	head
section.

Body	section
The	document’s	body	section	begins	with	an	HTML	opening	<body>	tag	and
ends	with	a	corresponding	closing	</body>	tag.	Data	content	to	appear	in	the
browser	can	be	added	later	between	these	two	tags	to	complete	the	HTML
document’s	body	section.

Code	comments
Comments	can	be	added	at	any	point	within	both	the	head	and	body	sections
between	a	pair	of	<!--	and	-->	tags.	Anything	that	appears	between	the	comment
tags	is	ignored	by	the	browser.

An	HTML	“element”	is	any	matching	pair	of	opening	and	closing	tags,	or
any	single	tag	not	requiring	a	closing	tag	–	as	described	in	the	HTML
element	tags	list	on	the	inside	front	cover	of	this	book.

Fundamental	structure
So,	the	markup	tags	that	create	the	fundamental	structure	of	every	HTML
document	look	like	this:

<!DOCTYPE	HTML>

<html>
<head>
<!--	Data	describing	the	document	to	be	added	here.	-->
</head>

<body>
<!--	Content	to	appear	in	the	browser	to	be	added	here.	-->
</body>

</html>

The	“invisible”	characters	that	represent	tabs,	newlines,	carriage	returns,
and	spaces	are	collectively	known	as	“whitespace”.	They	may	optionally
be	used	to	inset	the	tags	for	clarity.

Create	Documents
The	fundamental	HTML	document	structure	described	here,	can	be	used	to
create	a	simple	HTML	document	in	any	plain	text	editor	–	such	as	Windows’
Notepad	application.	In	order	to	create	a	valid	“barebones”	HTML	document,
information	must	first	be	added	defining	the	document’s	primary	written
language,	its	character	encoding	format,	and	its	title.

The	document’s	primary	language	is	defined	by	assigning	a	standard	language
code	to	a	lang	“attribute”	within	the	opening	<html>	root	tag.	For	the	English
language	the	code	is	en,	so	the	complete	opening	root	element	looks	like	this:
<html	lang=“en”>

The	document’s	character	encoding	format	is	defined	by	assigning	a	standard
character-set	code	to	a	charset	attribute	within	a	<meta>	tag	placed	in	the
document’s	head	section.	The	recommended	encoding	is	the	popular	8-bit
Unicode	Transformation	Format	for	which	the	code	is	UTF-8,	so	the	complete
element	looks	like	this:	<meta	charset=“UTF-8”>

HTML	documents	should	not	be	created	in	word	processors	such	as	MS
Word,	as	those	apps	include	additional	information	in	their	file	formats.

Finally,	the	document’s	title	is	defined	by	text	between	a	pair	of	<title>	</title>
tags	placed	in	the	document’s	head	section.

Follow	these	steps	to	create	a	valid	barebones	HTML	document:

Launch	your	favorite	plain	text	editor	then	start	a	new	document	with	the
HTML	document	type	declaration
<!DOCTYPE	HTML>

hello.html

Below	the	document	type	declaration,	add	a	root	element	that	defines	the
document’s	primary	language	as	English
<html	lang=”en”>
<!--	Head	and	Body	sections	to	be	added	here.	-->

</html>

Within	the	root	element,	insert	a	document	head	section
<head>
<!--	Descriptive	information	to	be	added	here.	-->

</head>

Within	the	head	section,	insert	an	element	defining	the	document’s
encoding	character	set
<meta	charset=“UTF-8”>

The	<meta>	tag	is	a	single	tag	–	it	does	not	have	a	matching	closing	tag.
See	the	element	tags	list	on	the	inside	front	cover	of	this	book	to	find
other	single	tags.

Next,	within	the	head	section,	insert	an	element	defining	the	document’s
title
<title>Get	Started	in	HTML</title>

After	the	head	section,	insert	a	document	body	section
<body>
<!--	Actual	document	content	to	be	added	here.	-->

</body>

Within	the	body	section,	insert	a	size-one	large	heading
<h1>Hello	World!</h1>

Set	the	file’s	encoding	to	the	UTF-8	format,	then	save	the	document	as
“hello.html”

Now,	open	the	HTML	document	in	a	modern	web	browser	to	see	the	title
displayed	on	the	title	bar	or	tab,	and	the	document	content	displayed	as	a
large	heading

The	quotation	marks	around	an	attribute	value	are	usually	optional	but

are	required	for	multiple	values.	For	consistency,	attribute	values	in	the
examples	throughout	this	book	are	all	surrounded	by	quotation	marks.

You	will	discover	more	about	headings	here.

Validate	Documents
Just	as	text	documents	may	contain	spelling	and	grammar	errors,	HTML
documents	may	contain	various	errors	that	prevent	them	from	conforming	to	the
specification	rules.	In	order	to	verify	that	an	HTML	document	does	indeed
conform	to	the	rules	of	its	specified	document	type	declaration,	it	can	be	tested
by	a	validator	tool.	Only	HTML	documents	that	pass	the	validation	test
successfully	are	sure	to	be	valid	documents.

Web	browsers	make	no	attempt	at	validation	so	it	is	well	worth	verifying	every
HTML	document	with	a	validator	tool	before	it	is	published,	even	when	the
content	looks	fine	in	your	web	browser.	When	the	browser	encounters	HTML
errors	it	will	make	a	guess	at	what	is	intended	–	but	different	browsers	can	make
different	interpretations	so	may	display	the	document	incorrectly.	Conversely,
valid	HTML	documents	should	always	appear	correctly	in	any	standards-
compliant	browser.

The	World	Wide	Web	Consortium	(W3C)	provides	a	free	online	validator	tool	at
validator.w3.org	that	you	can	use	to	check	the	syntax	of	your	web	documents:

With	an	internet	connection,	open	your	web	browser	and	navigate	to	the
W3C	Validator	Tool	at	validator.w3.org	then	click	on	the	Validate	by	File
Upload	tab

http://validator.w3.org
http://validator.w3.org

Other	tabs	in	the	validator	allow	you	to	enter	the	web	address	of	an
HTML	document	located	on	a	web	server	to	“Validate	by	URI”	or	copy
and	paste	all	code	from	a	document	to	“Validate	by	Direct	Input”.

Click	the	Browse	button	then	navigate	to	the	HTML	document	you	wish
to	validate	–	once	selected,	its	local	path	appears	in	the	validator’s	“File”
field

Next,	click	the	validator’s	Check	button	to	upload	a	copy	of	the	HTML
document	and	run	the	validation	test	–	the	results	will	then	be	displayed

The	validator	automatically	detects	the	document’s	character	set	and
HTML	version.

If	validation	fails,	the	errors	are	listed	so	you	may	easily	correct	them.	When
validation	succeeds,	you	may	choose	to	include	a	suitable	logo	at	the	end	of	the
document	to	prove	validation:

The	validation	logo	can	be	customized	to	describe	the	technology
classes	used	by	the	web	page.	Discover	the	logo	Badge	Builder	online	at
w3.org/html/logo	where	you	can	generate	the	code	to	paste	into	your
HTML	document	and	so	display	a	suitable	logo.

http://www.w3.org/html/logo

Bestow	Titles

The	specifications	require	every	HTML	document	to	have	a	title,	but	its
importance	is	often	overlooked.	The	document	title	should	be	carefully
considered,	however,	as	it	is	used	extensively:

• Bookmarks	–	save	the	document	title	to	link	back	to	its	URL.

• Title	Bar	–	a	web	browser	window	may	display	the	title.

• Navigation	Tab	–	a	web	browser	tab	may	display	the	title.

• History	–	saves	the	document	title	to	link	back	to	its	URL.

• Search	Engines	–	read	the	document	title	and	typically	display	it	in	search
results	to	link	back	to	its	URL.

Document	titles	should	ideally	be	short	and	meaningful	–	each	tab	on	a	modern
tabbed	browser	may	display	only	10	characters.

Document	titles	throughout	a	website	should	follow	a	consistent	naming
convention	and	capitalize	all	major	words.	One	popular	naming	convention
provides	a	personal	or	company	name	and	brief	page	description	separated	by	a
hyphen.	For	example,	“Amazon	-	C	Programming	in	easy	steps”.	An	alternative
puts	the	description	first,	so	it	remains	visible	when	the	title	is	truncated.	For
example,	“C	Programming	in	easy	steps	-	Amazon”.

Document	titles	and	document	content	may	contain	special	characters	that	are
known	in	HTML	as	“entities”.	Each	entity	reference	begins	with	an	ampersand
and	ends	with	a	semicolon.	For	example,	the	entity	<	(less	than)	creates	a	“<”
character	and	the	entity	>	(greater	than)	creates	a	“>”	character.	These	are
often	needed	to	avoid	confusion	with	the	angled	brackets	that	surround	each

HTML	tag.	Other	frequently	used	entities	include	 	(a	single	non-breaking
space),	•	(bullet	point),	©	(©),	®	(®),	™	(™),	and	"
(quotation	mark).	These	are	best	avoided	in	document	titles,	however,	as	the
vocal	narrator	used	by	visually	impaired	viewers	may	read	each	entity	character
as	a	word.

The	specifications	do	not	define	a	naming	scheme	for	document	titles	but
do	encourage	authors	to	consider	accessibility	issues	in	all	aspects	of
their	web	page	designs.

You	can	find	a	chart	of	all	character	entities	at	dev.w3.org/html5/html-
author/charref

Start	a	new	HTML	document	with	a	type	declaration
<!DOCTYPE	HTML>

title.html

Add	a	root	element	containing	head	and	body	sections
<html	lang=“en”>

<head>
<!--	Data	describing	the	document	to	be	added	here.	-->
</head>

<body>
<!--	Content	to	appear	in	the	browser	to	be	added	here.	-->
</body>

http://dev.w3.org/html5/html-author/charref

</html>

Within	the	head	section,	insert	a	meta	element	specifying	the	character
set	and	an	empty	title	element
<meta	charset=“UTF-8”>
<title>	</title>

Within	the	title	element	insert	a	title	including	entities
<HTML	in	easy	steps>

Save	the	document	then	open	it	in	your	web	browser

Start	a	vocal	narrator	to	hear	that	the	title	may	be	read	out	as	“Less-than-
HTML-in-easy-steps-greater-than”

Edit	the	document	title	to	make	it	more	user-friendly
"HTML	in	easy	steps"

Save	the	document	once	more	then	open	it	in	your	web	browser	to	hear
the	narrator	now	read	the	document	title	as	“HTML	in	easy	steps”

The	character	set	can	be	defined	in	uppercase,	as	shown	here,	or	in
lowercase	as	“utf-8”.

In	Windows	10,	press	Winkey	+	Ctrl	+	Enter	to	launch	the	narrator,	then
click	the	tab	to	hear	the	title.	Title	text	that	is	not	visible	on	the	tab	will	still
be	read	by	the	narrator.	Windows	10	ignores	angled	brackets	in	a	title,
but	they	are	read	literally	by	the	narrator	in	earlier	versions	of	Windows.

Supply	Metadata
Meta	information	is	simply	data	that	describes	other	data.	In	the	context	of
HTML,	document	metadata	describes	the	document	itself	–	rather	than	the
document’s	contents.

HTML	metadata	is	defined	in	the	head	section	of	the	HTML	document	using	the
<meta>	tag.	The	<meta>	tag	is	an	“empty”	tag	that	needs	no	matching	closing	tag
to	create	an	HTML	element	–	it	is	only	used	to	specify	information	with	its	tag
attributes.	Previous	examples	have	used	this	tag	to	specify	the	document’s
character-set.	Further	<meta>	tags	can	be	added	to	describe	other	aspects	of	the
document.

Given	the	number	of	handheld	devices	that	may	view	a	web	page,	it	is	useful	to
optimize	the	page	for	smaller	screens	by	including	this	<meta>	tag	in	all	your
HTML	documents’	head	sections:

<meta	name=”viewport”
content=”width=device-width,	initial-scale=1”>

This	will	ensure	your	document	will	fill	the	device	screen	width	and	sets	the
initial	zoom	level	so	the	content	is	not	zoomed.

A	<meta>	tag	can	also	assign	a	document	HTTP	header	property	to	an	http-equiv
attribute	and	can	specify	that	property’s	value	to	a	content	attribute.	You	can
assign	the	HTTP	“refresh”	property	to	an	http-equiv	attribute	to	reload	the	page
after	a	number	of	seconds	specified	to	its	content	attribute	–	for	example,	to
reload	the	page	after	five	seconds,	like	this:

<meta	http-equiv=“refresh”	content=	“5”>

This	technique	is	often	used	on	websites	to	dynamically	update	news	or	status
items,	as	it	does	not	depend	on	JavaScript	support.

Another	popular	use	redirects	the	browser	to	a	new	web	page	after	a	specified
number	of	seconds,	like	this:

<meta	http-equiv=“refresh”	content=	“5	;	url=’new-page.html’	”>

In	this	case,	the	<meta>	tag’s	content	attribute	specifies	both	the	number	of
seconds	to	delay	and	the	new	URL	to	load.

Setting	the	width	to	the	device-width	typically	sets	the	initial-scale	to	1
automatically,	but	it	doesn’t	hurt	to	set	it	explicitly	as	meta	data.

Create	a	barebones	HTML	document
<!DOCTYPE	HTML>
<html	lang=“en”>
<head>
<meta	charset=”UTF-8”>
<!--	More	metadata	to	be	inserted	here.	-->
<title>Meta	Refresh</title>
</head>
<body>
<h1>Moving	in	5	Seconds...</h1>
</body>
</html>

refresh.html

Insert	two	more	elements	of	metadata
<meta	name=”viewport”

content=”width=device-width,	initial-scale=1”>
<meta	http-equiv=“refresh”

content=	“5	;	url=’https://ineasysteps.com’	”>

Save	the	document	then	open	it	in	your	web	browser	and	wait	five

seconds	to	see	the	browser	redirect

When	you	only	specify	the	domain	to	the	url	attribute,	as	in	this	case,	the
browser	will	automatically	load	the	index.html	page	at	that	domain
location.

Describe	Contents
In	addition	to	specifying	the	document’s	character-set	and	expiry	date,	<meta>
tags	can	be	used	to	provide	information	that	may	be	used	by	search	engines.	This
offers	no	guarantee	of	high	ranking,	however,	as	search	engines	also	use	other
page	information	for	that	purpose	–	especially	the	document	title.	Typically,	a
Search	Engine	Results	Page	(SERP)	will	show	the	meta	description	in	search
results	below	the	page	title.

Search	Engine	Optimization	(SEO)	is	highly	prized	to	ensure	a	web	page	will
appear	at	the	top	of	a	SERP	to	increase	traffic	to	a	website.	Unfortunately,	there
is	no	sure-fire	technique	to	achieve	this	as	the	search	engines	constantly	change
the	algorithm	by	which	pages	are	ranked.	It	is,	however,	useful	to	provide
metadata	that	describes	the	page	content.

Descriptive	<meta>	tags	have	a	name	attribute	that	is	assigned	a	“description”
value,	and	a	content	attribute	that	is	assigned	a	description	of	the	page	contents.

The	description	should	be	between	50-160	characters	long,	as	lengthy
descriptions	may	be	truncated.	The	description	should	include	keywords	relative
to	the	text	content.	For	example,	a	search	for	“italian	ceramics”	could	return	all
web	pages	with	“italian”	and	“ceramics”	in	their	description.

The	description	serves	as	advertising	copy	so	a	readable,	compelling	description
using	important	keywords	will	encourage	visits	to	the	page	from	a	SERP.	You
should	not	repeat	keywords	in	the	description,	but	do	try	to	use	the	plural	form
for	keywords	–	to	match	searches	made	with	both	the	single	and	plural	form	of
that	word.	Additionally,	you	should	not	include	double	quotation	marks	in	the
description	as	Google	may	truncate	the	description	at	a	double	quotation	mark.

If	a	website	contains	pages	of	identical	or	very	similar	content,	you	can	specify
which	page	is	to	be	indexed	by	including	a	“canonical	link”	in	your	HTML	code
to	indicate	the	preferred	source.	This	uses	a	<link>	tag	containing	a	rel

(relationship)	attribute	to	specify	a	“canonical”	value,	and	an	href	(hypertext
reference)	attribute	to	specify	the	URL	address	of	the	preferred	page.

All	search	engines	find	pages	to	add	to	their	index	–	even	if	the	page	has
never	been	submitted	to	them.

Always	include	the	three	most	important	keywords	in	the	description.

Create	a	barebones	HTML	document
<!DOCTYPE	HTML>
<html	lang=“en”>
<head>
<meta	charset=”UTF-8”>
<!--	More	metadata	to	be	inserted	here.	-->
<title>Tuscan	Home	Decor</title>
</head>
<body>	<h1>Beautiful	Tuscan	Ceramics</h1>	</body>
</html>

keywords.html

Insert	a	metadata	description	of	the	web	page
<meta	name=“description”	content=“Explore	our	extensive	range	of	high	quality
italian	ceramics	including	tuscan	majolica,	dinnerwares,	vases,	plates,	and
bowls”>

Next,	in	the	head	section,	add	an	element	to	specify	that	this	page	is	the

preferred	page	for	indexing	purposes
<link	rel=”canonical”

href=”https://www.example.com/keywords.html”	>

Save	the	document	then	visit	the	Chrome	Web	Store	at
chrome.google.com/webstore/category/extensions	and	search	for	“seo”
to	add	a	search	engine	analysis	extension

Open	the	HTML	document	in	the	Google	Chrome	web	browser	then	use
the	analysis	tool	to	see	the	meta	data

There	are	a	number	of	free	meta	tag	generators	available	online	–	enter
“free	meta	tag	generator”	into	a	search	engine.

http://chrome.google.com/webstore/category/extensions

Add	Styles
Cascading	Style	Sheets	(CSS)	rules	can	be	incorporated	within	HTML
documents	to	control	the	presentational	aspects	of	each	element	on	the	page.	The
use	of	style	sheets	has	replaced	all	features	of	HTML	that	formerly	related	to
presentation.	For	example,	the		tag	has	become	obsolete,	as	font	family,
weight,	style,	and	size	are	now	specified	by	a	style	sheet	rule.

Style	sheets	embedded	with	<style>	</style>	tags	can	be	added	within	the	head
section	of	an	HTML	document	to	enclose	rules	governing	how	the	content	will
appear.	For	example,	a	simple	style	sheet	containing	rules	to	determine	the
appearance	of	all	size-one	headings	could	look	like	this:

<style>

h1	{	color	:	red	;	background	:	yellow	;	}

</style>

This	is	acceptable	and	will	validate	but,	in	line	with	the	aim	of	HTML	to
separate	content	from	presentation,	style	sheets	may	be	contained	within	a
separate	file.	The	great	advantage	of	placing	style	sheets	in	separate	files	is	that
they	can	be	applied	to	multiple	HTML	documents	–	thus	making	website
maintenance	much	easier.	Editing	a	shared	style	sheet	instantly	affects	each
HTML	document	that	shares	that	file.

An	external	style	sheet	is	incorporated	within	an	HTML	document	by	adding	a
<link>	tag	in	the	document’s	head	section.	This	must	contain	a	rel	(relationship)
attribute	assigned	a	“stylesheet”	value,	and	the	URL	of	the	style	sheet	must	be
assigned	to	its	href	(hypertext	reference)	attribute	–	for	example,	add	an	adjacent
style	sheet	file	named	“style.css”,	like	this:

<link	rel=“stylesheet”	href=“style.css”>

You	can	also	specify	style	rules	“in-line”	to	a	style	attribute	of	presentational

HTML	tags,	like	this:

<h1	style=”color:red”>

In-line	style	rules	are	useful	in	some	circumstances	but	can	make	page
maintenance	more	difficult.

When	multiple	rules	select	the	same	property	of	an	element	for	styling,
the	rule	read	last	by	the	browser	will	generally	be	applied,	but	in-line	rules
take	precedence	over	embedded	rules	and	external	rules.	Embedded
rules	take	precedence	over	external	rules.

Create	a	barebones	HTML	document
<!DOCTYPE	HTML>
<html	lang=“en”>
<head>
<meta	charset=”UTF-8”>
<title>Style	Sheet	Example</title>
</head>
<body>
<h1>Styled	Heading</h1>
</body>
</html>

style.html

Next,	in	the	head	section,	add	an	embedded	style	sheet
<style>
h1	{	color	:	Red	;	background	:	Yellow	;	}
</style>

Now,	in	the	head	section,	insert	a	link	to	an	adjacent	external	style	sheet
file

<link	rel=“stylesheet”	href=“style.css”>

style.css

Save	the	HTML	document	then	open	a	new	text	editor	window	and
precisely	copy	this	style	sheet
h1
{

border	:	10px	dashed	Blue	;
padding	:	5px	;
width	:	500px	;

}

Save	the	Cascading	Style	Sheets	file	in	the	same	directory	as	the	HTML
document,	then	open	the	web	page	in	your	browser	to	see	the	style	rules
applied

Some	HTML	elements,	such	as	<div>	and		(see	here),	exist
purely	for	styling.	CSS	is	a	separate	topic	but	many	examples	in	this
book	include	embedded	CSS	style	sheet	rules	to	provide	standalone
example	files	that	demonstrate	the	use	of	HTML	elements.	Some	of	the
source	code	examples	include	unlisted	CSS	rules	to	illustrate	the	size
and	position	of	HTML	elements	and	their	content	in	screenshots.

Include	Scripts
Scripts	can	be	incorporated	within	HTML	documents	to	interact	with	the	user
and	to	provide	dynamic	effects.	This	ability	has	become	increasingly	important
with	the	development	of	pages	in	which	sections	of	the	page	can	be	dynamically
updated.	Previously,	the	browser	would	typically	request	an	entire	new	page
from	the	web	server,	which	was	less	efficient	and	more	cumbersome.

JavaScript	code	enclosed	by	<script>	</script>	tags	can	be	embedded	within	an
HTML	document.	These	are	best	placed	in	the	body	section	of	the	document,
just	before	the	</body>	closing	tag,	so	the	browser	can	process	the	content	of	the
document	before	reading	the	script.

In	line	with	the	aim	of	HTML	to	separate	content	from	presentation,	scripts	may
also	be	contained	in	a	separate	file.	In	this	case,	the	URL	address	of	the	script
file	must	be	assigned	to	an	src	attribute	within	the	<script>	tag.	The	</script>
closing	tag	is	also	required.	These,	too,	can	be	placed	at	the	end	of	the	body
section	of	the	HTML	document,	as	the	browser	will	treat	the	external	script	as	if
it	was	embedded	there	–	for	example,	to	add	an	adjacent	external	script	file
named	“script.js”,	like	this:

<script	src=“script.js”></script>

Remember	that	the	<script>	tag	always	needs	to	have	a	matching
closing	tag.

You	can	also	specify	script	“in-line”	to	on-event	attributes	of	HTML	tags.	For
example,	to	recognize	a	mouse	click	event:

<h1	onclick=”alert(‘Clicked!’)”>

In-line	script	is	useful	in	some	circumstances	but	can	make	page	maintenance
more	difficult.	Alternative	fallback	content	can	be	provided	in	the	document’s
body	section	between	<noscript>	</noscript>	tags,	which	will	only	be	displayed
when	script	functionality	is	absent	or	disabled.

Create	a	barebones	HTML	document
<!DOCTYPE	HTML>
<html	lang=“en”>
<head>
<meta	charset=“UTF-8”>
<title>JavaScript	Example</title>
</head>
<body>
</body>
</html>

script.html

In	the	body	section,	insert	a	fallback	message	and	heading
<noscript>JavaScript	Is	Not	Enabled!</noscript>
<h1	onclick=”this.innerText=’Mouse	Clicked!’;

this.style.color=’Red’”>Active	Heading</h1>

At	the	end	of	the	body	section,	add	an	embedded	script	and	nominate	an
external	script
<script>
document.getElementsByTagName(‘h1’)[0].onmouseover	=
function	()	{
this.innerText=	’Mouse	Is	Over’	;	this.style.color=’Blue’	}
</script>
<script	src=”script.js”>	</script>

script.js

Save	the	HTML	document	then	open	a	new	text	editor	window	and
create	the	external	script
document.getElementsByTagName(‘h1’)[0].onmouseout	=
function	()	{
this.innerText=	’Active	Heading’	;	this.style.color	=	’Black’	}

Save	the	JavaScript	file	as	“script.js”	in	the	same	directory	as	the	HTML
document,	then	open	the	web	page	in	your	browser	and	click	on	the
heading

Some	HTML	elements,	such	as	<template>	and	<slot>	(see	here),	exist
purely	for	scripting.	JavaScript	is	a	separate	topic	but	many	examples	in
this	book	include	embedded	JavaScript	code	to	provide	standalone
example	files	that	demonstrate	the	use	of	HTML	elements.

Link	Resources
The	<link>	tag	that	was	used	in	an	earlier	example	to	incorporate	a	style	sheet	in
an	HTML	document	can	also	be	used	to	incorporate	other	resources	into	a
document.

This	tag	may	only	appear	in	the	head	section	of	a	document,	but	the	head	section
can	contain	many	<link>	tags.	Each	<link>	tag	must	contain	rel	and	href	attributes,
stating	the	relationship	and	location	of	the	link	resource.	It	may	also	include	a
type	attribute	where	appropriate,	to	hint	at	the	MIME	type	of	the	link	resource.

Permitted	rel	(relationship)	values

alternate author bookmark help icon

license next nofollow noreferrer prev

search stylesheet tag shortcut	icon

MIME	(Multipart	Internet	Mail	Extension)	types	describe	file	types	–	such
as	text/html	for	HTML	files.	You	can	find	the	list	of	official	MIME	types	at
https://www.iana.org/assignments/media-types/media-types.xhtml

Many	of	the	link	types	above	are	intended	to	help	search	engines	locate
resources	associated	with	that	HTML	document,	and	the	<link>	tag	may	also
include	a	title	attribute	to	further	describe	the	resource	–	for	example,	a	version
of	the	page	in	another	language:

<link	rel=“alternate”	type=“text/html”	href=“esp.html”
title=“Esta	página	en	Español	-	This	page	in	Spanish”	>

https://www.iana.org/assignments/media-types/media-types.xhtml

In	this	case,	the	location	of	the	resource	is	specified	using	a	relative	address	that,
by	default,	the	browser	will	seek	in	the	directory	in	which	the	HTML	document
is	located.	The	browser	can,	however,	be	made	to	seek	a	relative	address	in	a
different	directory	by	inserting	a	<base>	tag	at	the	start	of	the	document’s	head
section.	Its	href	attribute	can	then	specify	the	absolute	directory	address	–	for
example,	to	specify	a	separate	“resources”	directory,	like	this:

<base	href=	“http://localhost/resources/”>

It	is	popular	to	link	an	icon	resource	to	display	in	the	web	browser.	This	is
named	exactly	as	“favicon.ico”	and	can	be	placed	in	the	same	directory	as	the
HTML	document,	or	in	a	directory	specified	by	the	<base>	tag.	All	browsers
recognize	any	other	resources	in	the	directory	specified	by	the	<base>	tag.

When	using	a	<base>	element	it	must	be	placed	in	the	head	section
before	any	<link>	elements.

Create	a	new	HTML	document	that	includes	metadata,	a	linked	resource,
and	areas	for	style	rules	and	script	code

<!DOCTYPE	HTML>
<html	lang=“en”>
<head>
<meta	charset=“UTF-8”>
<meta	name=”viewport”

content=”width=device-width,	initial-scale=1”>
<link	rel=“shortcut	icon”	href=“favicon.ico”>
<title>Document	Title</title>
<style>

</style>
</head>
<body>

<script>

</script>

</body>
</html>

This	template	is	the	basic	HTML	document	that	is	used	in	all	ensuing
examples	to	create	a	new	HTML	document	–	only	the	title	changes	to	suit
each	example.

At	the	beginning	of	the	head	section,	insert	an	element	to	specify	a	base
“resources”	directory
<base	href=“http://localhost/resources/”>

Change	the	document	title	to	“Favicon,”	then	save	the	HTML	document

favicon.html

Open	an	icon	editor	and	create	an	icon	sized	32	x	32	pixels	and	save	your
icon	alongside	the	HTML	document,	or	in	the	“resources”	directory,
named	as	“favicon.ico”

favicon.ico	32px	x	32px

Open	the	HTML	document	in	your	web	browser	via	a	web	server	to	see
the	icon	resource	appear	in	the	browser

You	can	force	your	browser	to	refresh	the	favicon	by	assigning
favicon.ico?v=2	to	the	link’s	href	attribute.

Summary
• The	Web	Hypertext	Application	Technology	Working	Group	(WHATWG)

oversees	the	HTML	Living	Standard.

• HyperText	Transfer	Protocol	(HTTP)	is	the	common	communication
standard	used	by	web	servers.

• A	Uniform	Resource	Locator	(URL)	is	an	absolute	web	address	comprising
protocol,	domain,	and	path	components.

• A	relative	address	can	reference	an	adjacent	file	by	its	name,	and	may	use	the
../	syntax	to	reference	a	parent	directory.

• Web	servers	send	response	headers	back	to	the	requesting	computer	and	a
copy	of	the	requested	file,	or	an	error	code.

• Each	HTML	document	should	have	a	document	type	declaration,	a	head
section,	and	a	body	section.

• Information	about	the	document	itself	is	contained	in	the	head	section,	and
content	is	contained	in	the	body	section.

• The	document’s	written	language	is	specified	to	a	lang	attribute	in	the
opening	<html>	root	element.

• The	document’s	character-set	encoding	is	specified	to	a	charset	attribute	in	a
<meta>	tag	within	the	head	section.

• The	document’s	title	is	specified	between	<title>	</title>	tags	within	the	head
section.

• The	free	online	W3C	validator	tool	can	be	used	to	verify	that	an	HTML
document	is	free	of	errors.

• Metadata	describes	the	document,	and	a	content	description	can	be	used	by
search	engines	to	index	the	web	page.

• The	<style>	</style>	tags	can	be	used	to	embed	style	sheets	within	an	HTML
document.

• The	<script>	</script>	tags	can	be	used	to	include	internal	and	external
JavaScript	code	in	an	HTML	document.

• The	<link>	tag	can	be	used	to	embed	external	style	sheets	and	other	resources

within	an	HTML	document.

2

Structure	Web	Pages

This	chapter	demonstrates	how	to	position	page	content	into	groups	and	sections.

Proclaim	Headings
Group	Headings

Include	Navigation
Complete	Framework
Create	Sections
Provide	Asides

Revise	Divisions
Summary

Proclaim	Headings
HTML	heading	elements	are	created	using	<h1>,	<h2>,	<h3>,	<h4>,	<h5>,	and	<h6>
tags.	These	are	ranked	in	importance	by	their	numeric	value	–	where	<h1>	has	the
greatest	importance,	and	<h6>	has	the	least	importance.	Each	heading	requires	a
matching	closing	tag	and	should	only	contain	heading	text.	Typically,	the
heading’s	font	size	and	weight	will	reflect	its	importance,	but	headings	also
serve	other	purposes.

Heading	elements	should	be	used	to	implicitly	convey	the	document	structure	by
correctly	sequencing	them	–	so	<h2>	elements	below	an	<h1>	element,	<h3>
elements	below	an	<h2>	element,	and	so	on.	This	structure	helps	readers	quickly
skim	through	a	document	by	navigating	its	headings.	Search	engine	spiders	may
promote	documents	that	have	correctly	sequenced	headings	as	they	can	use	the
headings	in	their	index.	They	assume	headings	are	likely	to	describe	their
content	so	it	is	especially	useful	to	include	meta	keywords	from	the	document’s
head	section	in	the	document’s	headings.

The	<h1>	element	is	by	far	the	most	important	heading,	and	should	ideally	appear
only	once	to	proclaim	the	document	heading.	Often,	this	can	be	a	succinct
version	of	the	document	title.	Below	that,	a	number	of	<h2>	headings	can
proclaim	topical	headings	for	long	documents.	Each	topic	might	contain
individual	article	headings	within	<h3>	elements,	followed	by	paragraph	<p>
elements	containing	the	actual	article	content.

Create	an	HTML	document	(as	the	template	here)

heading.html

Within	the	body	section,	insert	a	main	document	heading

<h1>Document	Heading</h1>

Next,	within	the	body	section,	insert	a	topic	heading
<h2>Topic	Heading</h2>

Now,	within	the	body	section,	insert	some	article	headings	followed	by
paragraphs	containing	the	article	content
<h3>Article	Heading</h3>
<p>Article	content...</p>

<h3>Article	Heading</h3>
<p>Article	content...</p>

Never	use	heading	elements	for	their	font	properties	as	these	can	be
overridden	by	style	sheet	rules	–	always	consider	headings	to	represent
structure.

Finally,	add	another	topic	with	two	more	articles
<h2>Topic	Heading</h2>

<h3>Article	Heading</h3>
<p>Article	content...</p>

<h3>Article	Heading</h3>
<p>Article	content...</p>

Save	the	HTML	document	then	open	it	in	your	web	browser	to	see	the
headings	and	document	structure

The	document	structure	created	by	the	sequenced	headings	is	known	as	the
document	“outline”.	Properly	constructed	outlines	allow	a	part	of	the	page,	such
as	a	single	article,	to	be	easily	syndicated	into	another	site.	The	outline	for	the
document	above	is	illustrated	alongside	the	screenshot	above.

You	will	discover	more	about	the	<p>	paragraph	element	here.

All	screenshots	throughout	this	chapter	have	added	(unlisted)	style	rules
to	more	clearly	illustrate	the	elements	described.

Group	Headings

Headings	sometimes	have	a	sub-heading	or	tagline.	For	example,	a	document
heading	could	be	marked	up	like	this:

<h1>American	Airlines</h1>
<h2>Doing	What	We	Do	Best</h2>

Unfortunately,	this	would	strictly	require	all	subsequent	headings	to	be	<h3>
down	to	<h6>	–	to	maintain	a	correctly	sequenced	outline.	Fortunately,	HTML
provides	a	grouping	solution	with	the	<hgroup>	</hgroup>	element.	This	can	be
used	to	enclose	both	the	heading	and	sub-heading,	like	this:

<hgroup>
<h1>American	Airlines</h1>
<h2>Doing	What	We	Do	Best</h2>
</hgroup>

A	document	may	contain	multiple	<hgroup>	elements,	and	each	<hgroup>	element
may	contain	headings	<h1>	down	to	<h6>.

Complete	headers	may	be	enclosed	in	<header>	</header>	tags	to	include	a
heading	element,	or	<hgroup>	element,	along	with	other	introductory	items	–
such	as	a	banner,	logo,	or	a	table	of	contents.

Create	an	HTML	document	(as	the	template	here)

header.html

Within	the	body	section,	insert	a	main	document	heading	that	includes	a
banner	image
<header>

<img	src=”header-banner.png”	width=”500”
height=”72”	alt=”Banner”>

<hgroup>
<h1>HTML</h1>
<h2>Building	better	websites</h2>
</hgroup>

</header>

Next,	within	the	body	section,	insert	a	topic	and	article
<hgroup>
<h2>Topic	Heading</h2>
<h3>Article	Heading</h3>
</hgroup>

<p>	Article	Content...</p>

You	cannot	nest	<header>	elements	one	within	another.

You	will	discover	more	about	the		image	element	here.

Now,	within	the	body	section,	insert	a	second	topic	with	a	single	article
<hgroup>
<h1>CSS</h1>
<h2>Cascading	Style	Sheets</h2>
<h3>Article	Heading</h3>
</hgroup>

<p>Article	content...</p>

Save	the	HTML	document	then	open	it	in	your	web	browser	to	see	the
grouped	headings	and	document	header

The	<hgroup>	element	only	groups	headings	<h1>	to	<h6>,	but	the
<header>	element	groups	headings	and	additional	items.

Include	Navigation
Groups	of	hyperlinks	on	a	web	page,	which	enable	the	user	to	navigate	around
the	page	or	website,	should	be	enclosed	between	<nav>	</nav>	tags,	or	<menu>
</menu>	tags	for	other	links.

This	group	of	links	may	typically	be	a	horizontal	menu	in	the	document	header	–
often	called	a	navigation	bar	(“nav	bar”)	–	or	may	be	a	vertical	menu	down	the
edge	of	the	page.	Note	that	the	<nav>	element	is	simply	a	wrapper	around	the
menu	–	it	does	not	replace	any	structural	elements.

Create	an	HTML	document	(as	the	template	here)

nav.html

Within	the	body,	insert	a	header	containing	a	logo,	document	heading,
and	horizontal	page	navigation	bar
<header>

<h1>Building	better	websites</h1>

<nav	id=”horizontal”>
<h2>Site	Links</h2>	<p>
Markup	|
Scripting	|
Style	Sheets	</p>
</nav>

</header>

Next,	in	the	body,	insert	a	vertical	site	navigation	menu
<nav	id=”vertical”	>
<h2>Page	Links</h2>
<p>Further	Reading

	JavaScript

	CSS	</p>
</nav>

Now,	add	topic	headings	and	content
<h2	id=”html”>HTML</h2>
<p>All	about	markup...</p>

<h2	id=”js”>JavaScript</h2
<p>All	about	scripting...</p>

<h2	id=”css”	>CSS</h2>
<p>All	about	style	sheets...</p>

You	will	discover	more	about	the	<a>	anchor	element	here	and	find
details	about	the	
	line	break	element	here.

Not	every	group	of	hyperlinks	is	eligible	to	be	contained	in	a	<nav>
element	–	only	those	that	provide	page-wide	or	site-wide	navigation.

Add	a	style	sheet	to	position	the	logo	image,	horizontal	navigation	bar,
and	vertical	navigation	menu
<style>
#logo			{	float	:	left	;	}
#horizontal					{	padding-left	:	100px	;	display	:	block	;	}
#vertical	{	float	:	left	;	padding	:	0px	30px	30px	30px	;	}
</style>

Save	the	HTML	document,	then	open	the	web	page	in	your	browser	and

try	out	the	navigation	links

It	is	popular	to	create	vertical	navigation	menus	as	unordered	lists	–	see
here.

Complete	Framework
Just	as	a	typical	HTML	document	may	contain	a	document	heading	or	header
group	it	may	also	contain	a	footer,	or	footer	group,	at	the	bottom	of	the	page.
The	content	of	each	footer	is	contained	between	<footer>	</footer>	tags	and
provides	information	about	that	part	of	the	document.

Typically,	a	<footer>	element	might	contain	the	author’s	name,	the	author’s
contact	details	within	an	<address>	element,	or	copyright	and	legal	disclaimers
within	a	<small>	element.	Like	a	<header>	element,	a	<footer>	element	can	also
contain	hyperlinks	for	page	and	site	navigation	within	a	nested	<nav>	element.

The	document	heading	and	footer	can	sensibly	be	separated	by	a	<main>	</main>
element	that	will	contain	the	page	content.

Create	an	HTML	document	(as	the	template	here)

framework.html

Within	the	body,	insert	a	document	heading
<h1	id=”top”>Interesting	Articles</h1>

Next,	add	a	main	content	container
<main>

<!--	Page	content	to	be	inserted	here.	-->

</main>

In	the	main	content	container,	insert	two	articles	that	are	the	main	page
content
<article>

<h2	id=”art-1”>Sally’s	Article</h2>
<p>Article	content...</p>

</article>

<article>

<h2	id=”art-2”>Terry’s	Article</h2>
<p>Article	content...</p>

</article>

The	HTML	<article>	elements	might	also	each	contain	a	<footer>
element	providing	contact	details	for	the	article’s	author.

Finally,	within	the	body,	insert	a	document	footer	containing	page
navigation	hyperlinks,	copyright	details,	and	a	URL	address
<footer>

<nav>
<h3>Information</h3>
Sally’s	Article	-
Terry’s	Article	-
Top	of	Page
</nav>

<small>Copyright	©	Example	Corporation</small>
<address>www.example.com</address>

</footer>

Save	the	HTML	document,	then	open	the	web	page	in	your	browser	to
see	that	the	document	structure	comprises	a	heading,	page	content,	and
footer	area

Create	Sections
In	HTML	all	content	within	the	<body>	element	is	considered	to	be	part	of	a
“section”.	Section	limits	are	defined	implicitly	by	correctly	sequenced	headings
in	the	document	outline.	Section	limits	are	defined	explicitly	by	placing	content
within	the	<header>,	<main>,	and	<footer>	framework	elements	demonstrated	in	the
previous	example	here.

Page	content	within	the	document	body	or	<main>	element	can	also	be	arranged
in	sections	between	<section>	</section>	tags.	Each	section	might	typically	begin
with	its	own	heading	followed	by	articles.	Similarly,	each	article	might	typically
begin	with	its	own	heading	followed	by	one	or	more	paragraphs.

In	understanding	the	<section>	and	<article>	elements	it	helps	to	consider	the	way
a	newspaper	contains	various	sections	–	news,	sport,	real	estate,	and	so	on.	Each
section	contains	various	articles.

Create	an	HTML	document	(as	the	template	here)

section.html

Within	the	body,	insert	a	document	heading
<h1>Newspaper</h1>

Next,	add	a	main	content	container
<main>

<!--	Page	content	to	be	inserted	here.	-->

</main>

Now,	in	the	main	content	container,	insert	a	section	containing	two

articles
<section>
<h2>News	Section</h2>

<article>
<h3>Article	#1</h3>
<p>Article	content...</p>
</article>

<article>
<h3>Article	#2</h3>
<p>Article	content...</p>
</article>

</section>

<section>	elements	are	not	required	in	short	documents	like	this	one	–
unless	you	particularly	want	to	add	section	headings	and	footers.

Next	in	the	main	content	container,	insert	another	section	containing	a
single	article
<section>
<h2>Sport	Section</h2>

<article>
<h3>Article	#1</h3>
<p>Article	content...</p>
</article>

</section>

After	the	main	content	container,	add	a	page	footer
<footer>
<small>Copyright	©	Example	Corporation</small>
</footer>

Save	the	HTML	document	then	open	it	in	your	browser	to	see	the	article
content	displayed	in	sections

A	<section>	is	just	a	grouping	element	but	an	<article>	contains	a
stand-alone	composition.

The	document,	section,	and	article	headings	appear	correctly	nested	in
the	document	outline.

Provide	Asides
HTML	usefully	provides	<aside>	</aside>	tags	that	can	be	nested	within	an
<article>	element	in	order	to	incorporate	content	that	is	somewhat	related	to	the
main	content	of	that	article.	These	allow	for	supplemental	yet	separate	content	to
be	included	–	typically	displayed	as	a	sidebar	or	footnote.

Content	within	an	<aside>	element	should	be	stand-alone	information	that	is
related	to	the	article,	such	as	pull-quotes	extracted	from	an	affiliated	article,	a
glossary	of	terms	used	within	the	article,	or	even	hyperlinks	to	pages	providing
further	reading	associated	with	the	article.

Alternatively,	the	<aside>	element	can	be	used	alone,	without	an	<article>
element,	to	contain	secondary	content	that	is	related	to	the	entire	page,	such	as
related	advertising	or	a	web	blog.

Create	an	HTML	document	(as	the	template	here)

aside.html

Within	the	body,	insert	a	document	heading
<h1>Famous	Quotes</h1>

Next,	add	a	main	content	container
<main>

<!--	Page	content	to	be	inserted	here.	-->

</main>

Now,	in	the	main	content	container,	insert	an	article	containing	a

heading,	a	paragraph,	and	an	aside	element
<article>
<h2>Happiness</h2>

<p><q>The	secret	of	happiness	is	not	in	doing	what	one	likes,	but	in	liking	what
one	has	to	do.</q>	

<cite>James	M.	Barrie</cite></p>

<aside>James	M.	Barrie	(1860	-	1937)	was	a	Scottish	author	and	playwright.
</aside>

</article>

The	HTML	<aside>	and	<nav>	elements	may	also	each	contain	a
<footer>	element.

In	the	main	content	container,	insert	a	second,	similar	article	–	containing
a	class	attribute	for	sidebar	styling
<article	class=”sidebar”>
<h2>Cynicism</h2>

<p>	<q>A	cynic	is	a	man	who	knows	the	price	of	everything
but	the	value	of
nothing.</q>	

<cite>Oscar	Wilde</cite></p>

<aside>Oscar	Wilde	(1854	–	1900)

was	an	Irish	writer	and	poet.</aside>

</article>

Add	a	page	footer	after	the	main	content	container,	then	add	a	style	sheet
to	control	the	position	of	the	aside
<footer>
<small>Copyright	©	Example	Corporation</small>
</footer>

<style>
article.sidebar	>	p,aside
{	display	:	table-cell	;	padding-right	:	20px	;	}
</style>

Save	the	HTML	document	and	the	style	sheet,	then	open	the	web	page	in
your	browser	to	see	how	the	asides	appear

Avoid	using	the	<aside>	element	to	contain	unrelated	advertising.

Do	not	use	the	<aside>	element	to	contain	navigation	hyperlinks	–	those
should	always	be	contained	inside	a	<nav>	element.

Revise	Divisions
The	<div>	</div>	division	tags,	which	were	used	widely	in	earlier	versions	of
HTML,	continue	to	be	supported	for	backward	compatibility	–	but	the	<div>
element	provides	no	semantic	meaning	so	is	best	avoided	in	favor	of	more
meaningful	tags.

Unlike	other	meaningful	elements	such	as	<header>,	<main>,	<section>,	<article>,
<nav>,	and	<footer>,	the	meaningless	<div>	element	is	anonymous.	For	example,	a
smart	browser	might	have	a	shortcut	key	to	jump	to	the	page’s	navigation
section.	This	section	is	easily	identifiable	when	contained	in	a	meaningful	<nav>
element,	but	not	so	obvious	when	contained	in	a	meaningless	<div>	element.

The	<div>	element	remains	useful	for	styling	purposes,	as	do	the	similarly
anonymous			tags.	Although	the	<div>	and		elements	are
meaningless	alone,	they	can	include	an	identifying	id,	class,	or	style	attribute	for
application	of	style	rules.

Only	use	the	<div>	element	for	styling	–	always	look	for	a	meaningful
element	to	use	instead.

Documents	that	use	the	<div>	element	for	structural	rather	than	stylistic	purposes
should	be	revised	to	use	meaningful	elements	instead	–	for	example,	given	the
document	elements	below:

divided.html

<body>
<div	class=”header”>
<h1>Web	Languages</h1>
</div>

<div	class=”nav”>
<h2>Menu</h2>
<p>JavaScript</p>
<p>Cascading	Style	Sheets</p>
</div>

<div	class=”main”>
<h2>		HyperText
Markup	Language</h2>
<p>All	about	HTML...</p>

<h2>eXtensible	
Markup	Language</h2>
<p>All	about	XML...</p>
</div>

<div	class=”footer”>
<p><small>Copyright	©	Example	Corporation</small></p>
</div>

</body>

Replace	the	“header”	class	<div>	with	a	<header>	element

revised.html

Replace	the	“nav”	class	<div>	with	a	<nav>	element

Replace	the	“main”	class	<div>	with	a	<main>	element

Add	<article>	elements	around	heading	and	paragraphs,	then	replace	the
	elements	with		elements	–	for	automatic	emphasis
<article>

<h2>	HyperText	Markup	Language</h2>
<p>All	about	HTML...</p>

</article>

<article>

<h2>eXtensibleMarkup	Language</h2>
<p>All	about	XML...</p>

</article>

Replace	the	“footer”	class	<div>	with	a	<footer>	element

Save	the	edited	document,	then	open	both	documents	in	your	browser	to
see	they	look	identical	–	the	structure	is	the	same	but	the	revision	gives
semantic	meaning

You	will	discover	more	about	the		emphasis	element	here.

Also	amend	any	associated	style	sheets	to	select	the	new	elements.

Summary
• Heading	elements	<h1>,	<h2>,	<h3>,	<h4>,	<h5>,	and	<h6>	are	ranked	in	order	of

importance	from	<h1>	down	to	<h6>.

• Correctly	sequenced	heading	elements	implicitly	convey	the	document
structure	–	to	create	the	document	outline.

• The	<hgroup>	element	can	be	used	to	enclose	both	a	heading	and	sub-
headings	–	from	<h1>	down	to	<h6>.

• Complete	headers,	including	a	logo,	banner,	and	headings	<h1>	to	<h6>	can	be
enclosed	in	a	<header>	element.

• Groups	of	hyperlinks	providing	page	or	site	navigation	should	be	enclosed
within	a	<nav>	element.

• A	<nav>	element	is	just	a	wrapper	around	a	menu,	typically	displayed
horizontally	in	the	header	or	vertically	in	a	sidebar.

• A	web	page	body	section	framework	may	comprise	<header>,	<main>,	and
<footer>	elements.

• Typically,	a	<footer>	element	might	contain	contact	details	in	an	<address>
element	or	legal	details	in	a	<small>	element.

• Each	document	<section>	element	will	typically	begin	with	a	section	heading,
followed	by	one	or	more	articles.

• Each	document	<article>	element	will	typically	begin	with	an	article	heading,
followed	by	one	or	more	paragraphs.

• Stand-alone	information	related	to	an	article	can	be	enclosed	within	an
<aside>	element	nested	in	an	<article>	element.

• The	<div>	and		elements	are	meaningless	but	are	useful	for	styling
purposes.

3

Manage	Text	Content

This	chapter	demonstrates	how	to	include	text	and	hyperlinks	in	page	content.

Insert	Paragraphs
Include	Quotations

Add	Emphasis
Add	Modifications
Add	Phrasing
Retain	Formatting

Use	Superscript
Display	Code
Give	Advice
Gauge	Quantity

Direct	Language
Create	Hyperlinks
Access	Keys
Fragment	Links

Protocol	Links
Summary

Insert	Paragraphs
All	text	content	is	traditionally	separated	into	sentences	and	paragraphs	to	be
more	easily	read	and	more	readily	understood.	This	is	also	true	for	text	content
in	HTML	documents,	and	their	paragraphs	are	contained	within	<p>	</p>	tags.
Each	paragraph	element	is	visually	separated	from	the	next	one	by	the	browser	–
typically	leaving	two	empty	lines	between	them.

Text	within	a	paragraph	will	normally	automatically	wrap	to	the	next	line	when
it	meets	the	element’s	edge,	but	it	can	be	forced	to	wrap	sooner	by	inserting	a
line	break	
	tag.

For	emphasis,	a	horizontal	rule	<hr>	tag	can	be	inserted	between	paragraphs	to
draw	a	line	separating	them.	The	<hr>	tag	cannot,	however,	be	inserted	inside	a
paragraph	to	separate	sentences.	You	may	be	surprised	to	find	the	<hr>	tag	in
HTML	as	it	would	seem	to	perform	a	purely	presentational	function.	It	is,
however,	described	in	the	specifications	as	representing	a	“paragraph-level
thematic	break”,	such	as	a	scene	change	in	a	story.

The	
	tag	and	<hr>	tag	are	both	single	tags	that	need	no	matching	closing	tag.

Create	an	HTML	document

para.html

Insert	a	large	heading	within	the	body	section
<h1>The	Statue	of	Liberty</h1>

Next,	add	a	paragraph	within	the	body	section
<p>The	Statue	of	Liberty	was	built	over	nine	years	by	French	sculptor	Auguste
Bartholdi.	Upon	its	completion	in	1884	all	350	individual	pieces	of	the	statue	were
packed	into	214	crates	for	the	long	boat	ride	from	France	to	New	York.</p>

After	the	paragraph,	add	a	horizontal	ruled	line
<hr>

After	the	horizontal	ruled	line,	add	a	second	paragraph
<p>The	statue	arrived	in	America	several	months	later	and	was	reconstructed	on
Liberty	Island.	Auguste	Bartholdi	thought	that	the	New	York	harbor	was	the
perfect	setting	for	his	masterpiece	because	it	was	where	immigrants	got	their	first
view	of	the	New	World.</p>

Now,	insert	breaks	into	the	paragraphs	to	control	the	length	of	their	lines
<p>The	Statue	of	Liberty	was	built	over	nine	years

by	French	sculptor	Auguste	Bartholdi.

Upon	its	completion	in	1884	all	350	individual	pieces	of	the	statue	were
packed	into	214	crates	for	the	long	boat	ride	from	France	to	New	York.</p>

<p>The	statue	arrived	in	America	several	months	later

and	was	reconstructed	on	Liberty	Island.

Auguste	Bartholdi	thought	that	the	New	York	harbor	was	the	perfect	setting
for	his	masterpiece	because	it	was	where	immigrants	got	their	first	view	of	the
New	World.</p>

Save	the	HTML	document	then	open	it	in	your	web	browser	to	see	the
heading,	paragraphs,	forced	line	breaks,	and	horizontal	ruled	line

The	<	hr>	element	can	be	considered	to	be	the	HTML	equivalent	of	the
***	section	separator	often	found	in	stories	and	essays.

Include	Quotations
It	is	important	to	recognize	that	some	HTML	elements	produce	a	rectangular
block	area	on	the	page	in	which	to	display	content,	while	others	merely	produce
a	small	block	on	a	line	within	an	outer	containing	block.	These	are	referred	to	as
“flow”	and	“phrasing”	elements.	Phrasing	elements,	which	produce	a	small
block	on	a	line,	must	always	be	enclosed	by	a	flow	element,	which	produces	the
larger	containing	block,	such	as	<p>	</p>.	The	difference	between	flow	elements
and	phrasing	elements	can	be	seen	by	contrasting	how	web	browsers	display	the
two	HTML	elements	that	are	used	to	include	quotations	in	documents.

The	<blockquote>	</blockquote>	tags	are	intended	to	surround	long	quotations	from
another	source,	which	can	be	specified	by	its	cite	attribute.	For	this	element,	the
browser	typically	produces	a	rectangular	block	area	to	contain	the	quotation,
starting	on	a	new	line	and	indented	from	surrounding	content	–	so	<blockquote>	is
a	flow	element.

The	<q>	</q>	tags,	on	the	other	hand,	are	intended	to	surround	short	quotations
from	another	source,	which	can	be	specified	by	its	cite	attribute.	For	this	element,
the	browser	typically	produces	a	small	block	area	on	the	current	line	to	contain
the	quotation	–	so	<q>	is	a	phrasing	element.

Unlike	the	<blockquote>	flow	element,	the	<q>	phrasing	element	causes	the
browser	to	automatically	add	quotation	marks	around	the	element’s	content
when	it	gets	displayed	on	the	page.	Ideally,	these	should	be	double	quotation
marks	surrounding	the	entire	element	content,	and	single	quotation	marks	around
any	inner	nested	quotations,	but	its	implementation	may	vary.

Create	an	HTML	document

quote.html

Insert	a	paragraph	within	the	body	section
<p>A	Paragraph	Flow	Block!</p>

Within	the	body	section,	insert	a	blockquote	containing	two	small	nested
quotations
<blockquote	cite=”http://www.example.com/origin.html”>
A	Blockquote	Flow	Block!
Paul	said,	<q>I	saw	Emma	at	lunch,	she	told	me
<q>Susan	wants	you	to	get	some	ice	cream	on	your	way	home.</q>	I	think	I	will
get	some	at	Ben	and	Jerry’s	on	Main	Street.</q>	</blockquote>

Save	the	HTML	document	then	open	it	to	compare	the	double	quote
marks,	single	quote	marks,	and	apostrophe

Insert	this	style	sheet	into	the	head	section	of	the	document,	then	reload
the	page	to	reveal	the	blocks
<style>
p,	blockquote	{	border	:	2px	solid	Green	;	}
q	{	background	:	LawnGreen	;	}
</style>

By	default,	the	paragraph	element	block	will	fill	the	width	of	its	containing
element	–	like	the	<h1>	element	block	in	the	example	here.

HTML	recognizes	the	standard	color	names	and	codes	described	at
w3.org/TR/css-color-3/#svg-color	The	names	are	not	case-sensitive,
but	can	usefully	be	capitalized	–	for	example,	LawnGreen	is	more
readable	than	lawngreen.	The	flow	elements	are	shown	here	with	Green
solid	borders,	and	the	phrasing	elements	with	a	LawnGreen	background.

http://www.w3.org/TR/css-color-3/#svg-color

Add	Emphasis

HTML	provides	four	phrasing	elements	that	can	be	used	to	emphasize	text
within	the	body	of	a	document:

• Text	enclosed	between			tags	is	enhanced	without	conveying	extra
importance,	such	as	keywords	in	a	paragraph	–	typically	displayed	in	a	bold
font.

• Text	enclosed	between	<i>	</i>	tags	is	enhanced	without	conveying	extra
importance,	such	as	technical	terms	in	a	paragraph	–	typically	displayed	in	an
italic	font.

• Text	enclosed	between			tags	gains	increased	importance,
without	changing	the	meaning	of	the	sentence	–	typically	displayed	in	a	bold
font.

• Text	enclosed	between			tags	should	be	stressed	to	deliberately
affect	the	meaning	of	the	sentence	–	typically	displayed	in	an	italic	font.

It	is	perhaps	surprising	that	the		and	<i>	tags	remain	in	HTML,	as	they
outwardly	suggest	that	content	should	be	presented	in	a	bold	or	italic	font	–
contradicting	the	aim	of	HTML	to	separate	structure	from	presentation.
According	to	the	specifications,	their	meaning	has	been	redefined,	however,	so
content	within	a		element	should	be	“stylistically	offset”	and	that	within	an
<i>	element	should	be	seen	as	in	an	“alternate	voice”.	In	real	terms,	these	are
nonetheless	represented	by	bold	and	italic	fonts,	but	should	only	be	used	as	a	last
resort	as	they	do	not	convey	meaning	–	use		and		tags	instead.

The	advantage	of	the		and		tags	is	that	they	describe	the	importance
of	their	content	relative	to	surrounding	text	and	let	the	browser	choose	how	it
should	be	presented.	Additionally,	these	tags	are	more	relevant	to	suggest	how
narrators	should	convey	their	content	vocally.

As	with	many	HTML	tags,	the		and		tags	can	be	nested	but	care
must	be	taken	to	close	nested	elements	correctly.	For	example,	...
	is	the	correct	order,	whereas	...	is
incorrect	and	will	not	validate.

The	specifications	encourage	web	page	authors	to	consider	accessibility
issues	in	all	aspects	of	their	web	page	designs.

Create	an	HTML	document

emphasis.htm

Within	the	body	section,	add	a	paragraph	that	emphasizes	some	text
without	affecting	the	meaning	of	the	sentence
<p>
Warning.
This	dungeon	is	dangerous.
Avoid	the	ducks.
Take	any	gold	you	find.
Do	not	take	any	of	the	diamonds,	they	are	explosive.	You	have
been	warned.
</p>

Next,	within	the	body	section,	add	paragraphs	that	emphasize	some	text
to	affect	the	meaning	of	the	sentence
<p>Puppy	dogs	are	cute.</p>

<p>Puppy	dogs	are	cute.</p>

<p>Puppy	dogs	are	cute.</p>

Insert	this	style	sheet	into	the	head	section	of	the	document	to	highlight
the	emphasized	text
<style>
strong,	em	{	background	:	LawnGreen	;	}

</style>

Save	the	HTML	document	then	open	it	in	your	web	browser	to	see	how
the	text	has	been	emphasized

The		tag	should	be	avoided	wherever	possible,	but	one	legitimate	use
is	to	mark	up	the	lead	sentence	of	an	article.

Add	Modifications

HTML	provides	three	elements	that	can	be	used	to	format	text	within	the	body
of	a	document:

• Text	enclosed	between	<small>	</small>	tags	is	regarded	as	a	side	comment	to
surrounding	text,	such	as	copyright	information	–	typically	displayed	in	a
smaller	font.

• Text	enclosed	within			tags	is	regarded	as	having	been	removed
from	the	document,	such	as	a	completed	item	in	a	to-do	list	–	typically
displayed	with	a	strike-through	line.

• Text	enclosed	within	<ins>	</ins>	tags	is	regarded	as	having	been	added	to	the
document,	such	as	a	new	additional	item	in	a	“to	do”	list	–	typically
displayed	with	an	underline.

The	<small>	tag	is	only	meant	to	contain	short	comments	that	supplement
surrounding	content.	It	is	not	intended	for	use	with	large	sections	of	text,	such	as
multiple	paragraphs,	as	that	would	be	considerably	more	than	a	side	comment.

In	displaying	content	contained	within	a	<small>	element,	the	web	browser
considers	the	size	of	the	font	used	to	display	the	surrounding	content,	then
applies	an	appropriate	reduction.	Therefore,	where	the	surrounding	content	is
displayed	with	a	font	of	12-point	size,	content	contained	within	a	<small>	element
might	be	displayed	with	a	font	of	10-point	size	–	the	precise	size	is	determined
by	the	browser.

Both		and	<ins>	elements	can	be	used	within	a	section	of	content,	to	markup
snippets	of	changed	text,	and	to	enclose	entire	sections	of	changed	content,	such
as	replaced	paragraphs.

The		and	<ins>	tags	may	optionally	include	a	cite	attribute	to
specify	the	URL	of	a	document	explaining	the	changes	made.

Create	an	HTML	document

format.html

Within	the	body	section,	insert	a	paragraph	containing	a	side	comment
for	legal	purposes
<p>Example	Corp	today	announced	record	profits	for	the	second	quarter	<small>
(Full	Disclosure:	EG	News	is	a	subsidiary	of	Example	Corp)</small>,	leading	to
speculation	about	a	merger	with	Demo	Group.</p>

Next,	insert	a	large	heading	and	a	regular	paragraph
<h1>To	Do	List</h1>
<p>Empty	the	dishwasher</p>

Now,	insert	a	paragraph	that	has	been	deleted
<p>Take	out	the	trash</p>

Then,	insert	a	paragraph	that	has	been	added
<ins><p>Sweep	the	yard</p></ins>

Finally,	insert	a	paragraph	that	has	been	added,	which	contains	a	text
snippet	that	has	been	changed
<ins>
<p>Feed	the	dog<ins>	cat</ins></p>
</ins>

Save	the	HTML	document	then	open	it	in	your	web	browser	to	see	how
the	text	has	been	formatted

The	<small>	tag	does	not	denote	content	of	lesser	importance,	only	that
it	is	a	side	comment	to	surrounding	text.

Add	Phrasing

HTML	provides	four	phrasing	elements	that	can	be	used	to	mark	text	for	special
treatment	within	the	body	of	a	document:

• Text	enclosed	between	<s>	</s>	tags	is	marked	as	being	superseded	by	more
accurate	or	relevant	up-to-date	content	–	typically	displayed	with	a	strike-
through	line.

• Text	enclosed	between	<u>	</u>	tags	is	marked	as	being	different	in	some	way
to	normal	text	content	–	typically	displayed	with	an	underscore	line	to
underline	the	text.

• Text	enclosed	between	<mark>	</mark>	is	marked	as	being	of	special
significance	for	reference	–	typically	displayed	in	a	colored	background
block	to	highlight	the	text.

• Text	broken	by	a	<wbr>	tag	is	invisibly	marked	as	being	a	suitable	point	at
which	to	break	a	line	of	text	–	representing	a	word-break	opportunity.

It	is	important	to	note	that	specifications	state	that	the	<s>	tag	should	not	be	used
to	indicate	edited	content	within	a	document.	The		tag	should	be	used
instead	to	indicate	document	edits.

Similarly,	the	<mark>	tag	should	not	be	used	to	emphasize	the	importance	of	text
content,	but	should	only	be	used	to	highlight	the	relevance	of	text	within	a
document.	The		and		tags	should	be	used	instead	to	indicate
emphasis.

The	<u>	tag	was	deprecated	in	the	HTML5.0	specification,	as	underlined	text
within	a	document	traditionally	indicates	hyperlinks.	The	<u>	tag	has,	however,
been	reinstated	for	the	purposes	of	labeling	misspelled	words	or	proper	names	in
Chinese.	Authors	are	nonetheless	strongly	discouraged	from	using	the	<u>	tag	for
emphasis,	to	avoid	confusion	with	hyperlinks.	Once	again,	the		and	
tags	should	be	used	instead	to	indicate	emphasis.

Where	the	document	contains	lengthy	content	that	may	exceed	the	width	of	the
browser,	you	may	wish	to	use	the	<wbr>	tag	to	indicate	appropriate	points	at
which	a	line-break	can	be	inserted.

Use	style	sheet	rules	for	presentation	purposes	rather	than	the	<u>	tag
for	underlines.

Create	an	HTML	document

mark.html

Within	the	body	section,	add	a	paragraph	that	marks	a	word-break
opportunity
<p>Microsoft	Surface	Pro	7
<wbr>-	256GB	/	Intel	Core	i7</p>

Next,	within	the	body	section,	add	a	paragraph	that	marks	a	superseded
price	and	provides	a	current	price
<p><s>$1,499</s>	$1,299</p>

Now,	within	the	body	section,	add	paragraphs	that	mark	text	for
reference	and	mark	a	misspelled	word
<p>Memory:	<mark>16GB</mark>

Screen:	<mark>12.3-inch</mark></p>
<p>Surface	<u>Penn</u>	Included</p>

Save	the	HTML	document	then	open	it	in	your	web	browser	to	see	how
the	text	has	been	marked

Suggesting	word-break	opportunities	with	<wbr>	is	particularly	suitable
for	small	devices,	but	implementation	is	dependent	upon	support	for	this
feature	in	the	browser.

Retain	Formatting

Where	it	is	desirable	to	have	the	browser	render	text	content	that	has	been
“preformatted”,	the	web	page	author	can	enclose	that	content	between	<pre>
</pre>	flow	element	tags.	These	advise	the	browser	that	the	following
instructions	should	be	applied:

• Preserve	white	space.

• Render	all	text	with	a	fixed-width	font.

• Disable	automatic	word-wrapping.

• Do	not	disable	bi-directional	processing.

Preserving	the	white	space	retains	all	spaces,	tabs,	and	line	breaks.	This	is	great
to	display	lengthy	poems	in	which	every	second	line	is	indented	–	for	example,
with	this	verse:

In	this	case,	each	second	line	is	indented	by	four-character	widths	–	created	by
hitting	the	space	bar	four	times	to	insert	four	invisible	space	characters.	These
indents	will	be	exactly	preserved	by	the	<pre>	element	as	four-character	widths.

Tab	characters,	on	the	other	hand,	can	present	some	surprises	as	they	are	usually
interpreted	by	a	browser	as	eight-character	widths.	This	agrees	with	the	tab	size
in	Windows’	Notepad	application	but	other	text	editors	can	vary.	This	means
that	preformatted	text	containing	tab	characters	may	appear	to	be	misaligned	by
the	<pre>	element.	It	is	for	this	reason	that	the	specifications	discourage	the	use

of	tab	characters	when	creating	preformatted	text	content.

The	<pre>	</pre>	tags	can	also	be	useful	to	ensure	“Text-Art”	(sometimes	used	as
web	forum	signatures)	will	appear	as	intended.

Use	spaces	rather	than	tabs	when	preparing	preformatted	text.

Create	an	HTML	document

preformat.html

Within	the	body	section,	insert	a	document	heading
<h1>Text-Art	Signature</h1>

Ensure	that	the	font	in	your	text	editor	is	set	to	a	fixed	width	font,	such	as
Lucida	Console	for	Notepad

Next,	in	the	body	section,	insert	a	<pre>	element	containing	preformatted
content	in	a	fixed	width	font	–	and	produced	without	any	tab	characters
<pre>

</pre>

Save	the	HTML	document	then	open	it	in	your	web	browser	to	ensure	the
content	retains	preformatting

Notice	that	<pre>	is	a	flow	element	so	it	does	not	need	to	be	enclosed
within	a	paragraph	–	it	creates	its	own	block.

You	can	use	any	character	within	a	fixed	width	font	to	create	your	Text-
Art	–	Windows	users	can	use	the	Character	Map	program	in	System
Tools	to	select	special	characters	from	the	Lucida	Console	font.

Use	Superscript

Regular	text	in	a	paragraph	area	of	a	web	page	is	displayed	in	invisible	inline
phrasing	boxes	that	comprise	an	outer	logical	box,	and	an	inner	font	box
containing	a	baseline:

The	vertical	line	spacing	is	determined	by	the	font	height	to	allow	space	between
characters	that	extend	below	the	baseline,	such	as	“p”,	and	tall	characters	that
extend	upwards,	such	as	“b”,	plus	a	vertical	margin	area.

Additionally,	the	font	box	will	accommodate	“superscript”,	such	as	the
trademark	symbol	™	produced	by	the	™	character	entity.	Superscript	is	any
text,	number,	or	symbol	that	appears	smaller	than	regular	text	and	is	set	above
the	baseline.	Mathematical	formulae	can	use	superscript	to	indicate	numeric
powers	with	the	character	entities	²	for	²	and	³	for	³.	The	font	box	will
also	accommodate	“subscript”	–	that	appears	smaller	than	regular	text	and	is	set
below	the	baseline.

You	can	find	a	chart	of	all	character	entities	at	dev.w3.org/html5/html-
author/charref

The	height	available	for	superscript	and	subscript	with	the	standard	vertical	line
spacing	is	limited	so	the	character	size	is	restricted.	Rather	than	use	character

http://dev.w3.org/html5/html-author/charref

entities	for	this	purpose	it	is	often	better	to	use	the	HTML		tags	for
superscript	and		tags	for	subscript.	These	elements	increase	the
vertical	line	spacing	to	allow	more	prominent	superscript	and	subscript
characters.	For	example,	²	is	larger	than	².	Additionally,	any
content	can	be	included	within	these	elements	so	you	are	not	restricted	to
available	character	entity	references.

Create	an	HTML	document

modify.html

Within	the	body	section,	insert	a	paragraph	containing	superscript
produced	by	character	entities
<p>
Square	of	four:	4²	=	16	

Cube	of	four:	4³	=	64
</p>

Now,	in	the	body	section,	insert	a	similar	paragraph	containing
superscript	produced	by	HTML	elements
<p>
Square	of	four:	4²	=	16	

Cube	of	four:	4³	=	64
</p>

Finally,	in	the	body	section,	insert	a	paragraph	containing	subscript
produced	by	HTML	elements
<p>
Water:	H₂O	

Oil	of	Vitriol:	H₂SO₄
</p>

Save	the	document	then	open	it	in	your	browser	to	compare	the
superscript	and	to	see	the	subscript	text

When	using	superscript	²	in	paragraphs	to	denote	area,	such	as	10	feet²,
you	may	prefer	to	use	the	entity	²	rather	than	²	to
keep	line	spacings	equal.

Display	Code

HTML	provides	five	phrasing	elements	specifically	to	include	computer
program	code	within	the	body	of	a	document:

• Complete	program	code,	or	snippets,	can	be	enclosed	between	<code>	</code>
tags	for	display	in	a	suitable	font.

• Program	variable	instances	can	be	enclosed	between	<var>	</var>	tags	to
differentiate	them	from	regular	text.

• Sample	program	input	and	output	can	be	enclosed	between	<samp>	</samp>
tags	to	differentiate	them	from	regular	text.

• Content	that	also	has	associated	machine-readable	code	can	be	enclosed
between	<data>	</data>	tags	and	the	code	specified	to	its	required	value
attribute.

• Dates	and	times	can	be	enclosed	in	<time>	</time>	tags	and	a	machine-readable
version	specified	to	its	datetime	attribute.

The	<data>	element	could,	for	example,	describe	a	book	title	and	its	machine-
readable	ISBN,	then	the	<time>	element	could	describe	that	book’s	publication
date:

Create	an	HTML	document

code.html

In	the	body	section,	insert	a	program	description	containing	variables,
sample	input,	and	sample	output
<p>

This	program	assigns	an	input	value	to
<var>degF</var>
then	performs	a	conversion	on	that	value,	assigning	the	result	to
<var>degC</var>
for	output.	For	example,	input	of
<samp>98.6</samp>
will	output
<samp>37C</samp>.
</p>

Now,	in	the	body	section,	state	the	program	code	source
<data	value=”978-1-84078-719-1”>
C++	Programming	in	easy	steps,	5th	Edition</data>
<time	datetime=”2023-12-15”>
(December	25th,	2023)</time>

The	datetime	value	of	a	<time>	element	must	be	in	a	valid	format	–	for
example,	as	full	datetime	with	2023-12-25	14:30	or	month	as	2023-12	or
date	as	2023-12-25	or	day	with	12-25	or	time	only	as	14:30.

Next,	in	the	body	section,	insert	the	preformatted	program	code
<pre>
<code>
#include	<iostream>
using	namespace	std;

int	main()
{
float	degF,	degC;
cout	<<	“Enter	Fahrenheit	Temperature:	“;
cin	>>	degF;
degC	=	((degF	-	32.0)	*	(5.0	/	9.0));
cout	<<	degF	<<	“F	is	“	<<	degC	<<	“C”;
cout	<<	endl;
return	0;

}
</code>
</pre>

Save	the	HTML	document	then	open	it	in	your	web	browser	to	see	how
the	program	description,	source	details,	and	program	code	is	displayed

Note	that	all	angled	bracket	characters	in	the	program	code	have	been
replaced	by	character	entities	to	avoid	conflict	with	the	HTML	tags.

Remember	to	insert	the	phrasing	<code>	element	within	a	<pre>	flow
element	to	preserve	the	program	code	layout	in	an	HTML	document.

Give	Advice

HTML	provides	four	phrasing	elements	that	can	be	used	to	designate	advisory
phrases	within	the	body	of	a	document:

• Text	can	be	enclosed	between	<abbr>	</abbr>	tags	to	indicate	it	is	an
abbreviation.

• Text	can	be	enclosed	between	<cite>	</cite>	tags	to	indicate	it	is	a	citation	or
reference	from	another	source.

• Text	can	be	enclosed	between	<dfn>	</dfn>	tags	to	indicate	it	is	the	definitive
instance	of	that	term.

• Text	can	be	enclosed	between	<kbd>	</kbd>	tags	to	indicate	input	to	be	entered
by	the	user	from	the	keyboard.

Every	HTML	element	that	can	legally	appear	within	the	body	of	a	document
may	optionally	include	a	title	attribute.	Values	specified	to	a	title	attribute	are
typically	displayed	as	a	tooltip	that	pops	up	when	the	user	places	the	cursor	over
the	element.	This	means	that	each	of	the	phrasing	elements	listed	above	can
include	a	title	attribute	to	expand	on	the	meaning	of	its	content.

Create	an	HTML	document

advice.html

In	the	body	section,	insert	a	paragraph	containing	an	abbreviation	with
tooltip	advice
<p>
<abbr	title=”HyperText	Markup	Language”>
HTML

</abbr>	in	easy	steps</p>

Next,	insert	a	citation	reference	with	tooltip	advice
<p>
<cite	title=”Inventor	of	the	HyperText	Markup	Language”>Sir	Tim	Berners-
Lee</cite></p>

Now,	insert	a	definitive	term	with	tooltip	advice
<p>
<dfn	title=”The	popular	language	of	the	World	Wide	Web.	Commonly	abbreviated
to	‘HTML’”>
HyperText	Markup	Language</dfn></p>

Remember	to	use	single	quote	marks	for	nested	quotes	–	as	with	‘HTML’
in	Step	4.

Then,	insert	a	keyboard	instruction	with	tooltip	advice
<p>
<kbd	title=”Press	the	Y	key	on	your	keyboard	to	execute	a	script.	This	requires
JavaScript	to	be	enabled	in	your	browser”>Hit	Y	to	Continue.</kbd></p>

Finally,	add	a	script	that	will	respond	to	the	keyboard	instruction
<script>

function	showkey(e)	{

if(e.keyCode	===	89	||	e.keyCode	===	121)
{
alert(‘Y	pressed.	Thank	You.’)
}

}

document.onkeydown	=	showkey

</script>

Save	the	HTML	document,	then	open	it	in	your	browser	and	place	the
cursor	over	the	elements	to	see	the	tooltips

With	JavaScript	enabled	in	your	browser,	hit	the	Y	key	to	see	the	script
response

The	script	looks	at	the	keycode	when	the	key	gets	pressed	and	will
respond	to	lowercase	“y”	and	uppercase	“Y”.

Gauge	Quantity
The	value	within	a	range	can	be	represented	visually	on	a	web	page	using	an
HTML	<meter>	element	to	display	a	gauge.

The	<meter>	element	must	include	a	value	attribute	that	defines	a	fractional
measurement.	Optionally,	the	<meter>	tag	may	also	include	min	and	max	attributes
to	specify	minimum	and	maximum	range	boundaries.	If	these	are	omitted,	the
default	range	0-1	is	assumed.

The	<meter>	tag	may	also	include	low	and	high	attributes	to	specify	low	and	high
positions	within	a	range,	and	an	optimum	attribute	can	specify	an	ideal	preferred
position	within	a	range.

The	low	and	high	attributes	can	specify	a	sub-optimal	range	within	the	overall
range	specified	by	the	min	and	max	attributes.	This	can,	in	effect,	separate	the
gauge	into	three	parts	–	low,	medium,	and	high.	Although	not	included	in	the
HTML	standard	specifications,	these	three	parts	can	be	denoted	by	the	web
browser	using	different	colors.	For	example,	the	Google	Chrome	browser
sensibly	uses	red	for	the	low	part,	yellow	for	the	medium	part,	and	green	for	the
high	part.

It	is	recommended	that	the	<meter>	element	should	include	text	describing	the
state	of	the	gauge	that	will	be	displayed	only	in	browsers	that	do	not	display	this
element	visually.

Interactive	<details>	and	<summary>	elements	can	respond	to	user	actions	without
scripting	to	disclose	additional	information.	Typically,	the	<details>	element
provides	a	“disclosure	widget”	on	the	web	page	represented	by	a	triangular
arrow.	A	nested	<summary>	element	displays	a	caption	describing	information
hidden	within	the	widget.	The	additional	information	is	contained	within
elements	nested	within	the	<details>	element,	after	the	<summary>	element.

When	the	user	clicks	the	<summary>	element,	the	widget	state	changes	from

“closed”	to	“open”	and	the	hidden	information	is	revealed.	Clicking	the
<summary>	element	once	more	will	close	the	widget	and	hide	the	information
again.

The	triangular	arrow	twists	around	to	represent	the	open	and	closed	state
of	the	widget	–	consequently,	these	widgets	are	sometimes	called
“twisties”.

Create	an	HTML	document

meter.html

In	the	body	section,	insert	an	article	containing	a	meter	with	a	range	0-
100,	a	sub-optimal	range	15-50,	an	optimum	value	of	100,	and	a	current
value	of	80%
<article><h2>Gauge</h2>Fuel	Level:
<meter	min=”0”	low=”15”	high=”50”	max=”100”
optimum=”100”	value=”80”	>80%</meter>
<!--	Details	to	be	inserted	here.	-->
</article>

Insert	details	describing	the	current	status	of	the	gauge
<details>
<summary>Status</summary>
OK	to	Continue...
</details>

Repeat	Steps	2	and	3	twice,	to	create	two	more	gauges,	then	edit	their
current	values	to	40	and	10	respectively,	and	supply	appropriate
descriptions

Save	the	HTML	document	then	open	it	in	your	browser	and	click	each
<summary>	element	to	see	its	description

The	<meter>	element	should	only	be	used	to	indicate	a	fractional
measurement	within	a	specified	range,	not	to	indicate	progress	–	use	the
<progress>	element	for	that	(see	here).

Direct	Language

The	recommended	UTF-8	document	encoding	format	provides	support	for	bi-
directional	text,	so	that	characters	from	languages	written	right-to-left,	such	as
Hebrew,	are	automatically	written	in	that	direction	and	may	appear	alongside
left-to-right	text	such	as	English.	Content	to	be	read	in	right-to-left	direction
should	be	enclosed	within	<bdi>	</bdi>	bi-directional	isolation	tags	so	as	not	to
confuse	the	browser,	as	it	expects	to	read	left-to-right.	Additionally,	HTML
provides	a	<bdo>	bi-direction	override	element	to	which	a	text	direction	can	be
explicitly	specified	as	either	“ltr”	or	“rtl”	by	its	dir	attribute.	The	bi-direction
override	allows	characters	from	right-to-left	languages	to	be	written	as	character
entities	in	an	HTML	document	in	“logical”	left-to-right	order,	but	to	be
displayed	in	“visual”	right-to-left	order.	For	example,	the	<bdo>	element	below
encloses	five-character	entities	from	left-to-right,	in	the	order	they	may	have
been	entered,	but	displays	them	right-to-left:

<bdo	dir=”rtl”>ישראל</bdo>

....	appears	as	 	(Yiśrā’ēl	in	the	Latin	alphabet).

Without	the	bi-direction	override,	these	character	entities	get	displayed	in
their	logical	order	as	 	–	which	is	backto-	front	for	the	right-toleft
Hebrew	language.

Ruby	annotation
For	Eastern	languages,	HTML	supports	“Ruby	annotation”	that	usefully
provides	pronunciation	alongside	text.	In	Japanese,	for	example,	there	is	more
than	one	alphabet.	Text	written	in	the	semantic	“Kanji”	alphabet,	which	has

thousands	of	characters,	is	often	annotated	with	its	equivalent	in	the	phonetic
“Hiragana”	language,	which	has	around	50	characters,	to	aid	pronunciation.	This
is	called	“Furigana”	in	Japanese	and	“Ruby”	in	English	–	named	after	the	small
font	used	to	indicate	the	pronunciation.	For	the	benefit	of	Westerners,	the
Japanese	kanji	text	can	be	annotated	with	“Romaji”	–	its	Latin	alphabet
equivalent.	Similarly	in	Chinese,	text	written	in	the	“Mandarin”	alphabet	can	be
annotated	with	“Pinyin”	–	its	Latin	alphabet	equivalent.

HTML	Ruby	annotation	is	entirely	enclosed	between	root	<ruby>	</ruby>	tags.
This	element	may	then	enclose	the	Eastern	text	within	<rb>	</rb>	tags	(Ruby
base)	and	the	pronunciation	between	<rt>	</rt>	(Ruby	text)	tags.	Optionally,	an
English	language	equivalent	may	be	provided	within	<rtc>	</rtc>	tags.

Create	an	HTML	document	type

ruby.html

In	the	body	section,	insert	an	element	for	Japanese	text	with	its
appropriate	pronunciation	annotation
<ruby>

<!--	Japanese	Kanji	text.	-->
<rb>	</rb>
<!--	Romaji	annotation.	-->
<rt>tō	kyō</rt>
<!--	English	equivalent	text.	-->
<rtc>Tokyo</rtc>

</ruby>

Next,	insert	an	element	for	Chinese	text	with	its	appropriate
pronunciation	annotation
<ruby>

<!--	Chinese	Mandarin	text.	-->
<rb>	</rb>
<!--	Pinyin	annotation.	-->
<rt>běi	jīng</rt>
<!--	English	equivalent	text.	-->
<rtc>Beijing</rtc>

</ruby>

Save	the	HTML	document	then	open	it	in	your	browser	to	see	the	text
and	ruby	annotations

Don’t	confuse	Ruby	annotation	with	the	unconnected	Ruby	programming
language.

Create	Hyperlinks
When	the	internet	carried	only	text	content,	“hypertext”	provided	the	ability	to
easily	access	related	documents	and	was	fundamental	to	the	creation	of	the
World	Wide	Web.	Today,	images	can	also	be	used	for	this	purpose	so	any
navigational	element	of	a	web	page	is	now	referred	to	as	a	“hyperlink”	(or
simply	as	a	“link”).

Hyperlinks	are	enclosed	between	<a>		anchor	tags,	which	specify	the	target
URL	to	an	href	(hypertext	reference)	attribute	in	the	opening	tag.	Optionally,	the
<a>	tag	can	also	include	a	title	attribute	to	specify	text	to	display	in	a	“tooltip”
that	will	appear	when	the	user	places	the	cursor	over	the	hyperlink.

The	web	browser	will	display	a	hyperlink	in	a	manner	that	distinguishes	it	from
regular	text	–	typically,	hypertext	gains	an	underline	and	image-based	hyperlinks
gain	a	colored	border.

Each	web	page	hyperlink	is	sensitive	to	three	interactive	states:

• Hover	–	gaining	focus,	the	cursor	is	placed	over	the	hyperlink.

• Active	–	retrieving	the	linked	resource,	the	user	clicks	the	hyperlink.

• Visited	–	the	linked	resource	has	previously	been	retrieved.

Style	rules	can	be	used	to	emphasize	each	hyperlink	state:

Create	an	HTML	document

link.html

Next,	add	a	link	to	a	style	sheet	in	the	head	section

<link	rel=”stylesheet”	href=”link.css”>

Now,	in	the	body	section,	insert	a	hyperlink	to	a	target	page	–	including
tooltip	advice
<a	href=”link-target.html”
title=”A	hyperlink	to	a	target	page”>Visit	Target

link-target.html

Save	the	HTML	document,	then	create	a	similar	second	document	that
links	the	same	style	sheet	and	contains	a	hyperlink	targeting	the	first
document
<a	href=”link.html”
title=”A	hyperlink	to	return”>Return

Save	the	second	HTML	document	alongside	the	first,	then	create	a	style
sheet	to	emphasize	each	hyperlink	state
a:hover	{	background	:	Yellow	;	}
a:active	{	background	:	Red	;	color	:	White	;	}
a:visited	{	background	:	Aqua	;	}

link.css

Save	the	style	sheet	alongside	the	two	HTML	documents,	then	open	the
first	page	in	your	browser	to	see	the	hyperlink	in	its	default	state

Place	the	cursor	over	the	hyperlink	to	see	the	hyperlink	in	its	hover	state

Hold	down	the	left	mouse	button	on	the	hyperlink	to	see	the	hyperlink	in
its	active	state

Release	the	mouse	button	to	load	the	target	page

Click	the	hyperlink	in	the	target	page	to	reload	the	first	page

See	that	the	hyperlink	on	the	first	page	is	now	in	its	visited	state

If	you	click	the	link	to	load	the	target	page	again,	the	browser	recognizes
it	has	been	previously	visited	from	the	first	page.

Access	Keys

There	are	three	ways	to	access	the	target	of	a	hyperlink:

• Pointer	–	a	mouse	or	similar	device	places	a	screen	pointer	over	a	hyperlink,
then	the	user	clicks	to	access	its	target.

• Tab	–	repeatedly	hit	the	Tab	key	to	successively	focus	on	each	hyperlink	in
turn,	then	hit	Return	to	access	the	target	of	the	currently	selected	hyperlink.

• Access	Key	–	hit	a	designated	character	key	to	focus	on	a	particular
hyperlink,	then	hit	Return	to	access	its	target.

A	designated	character	key	is	specified	for	a	hyperlink	by	the	accesskey	attribute
of	an	<a>	anchor	tag.	The	method	to	utilize	the	designated	key	generally	requires
the	user	to	press	Alt	+	accesskey	with	most	web	browsers,	such	as	Google
Chrome,	but	it’s	Alt	+	Shift	+	accesskey	with	Firefox.

Create	an	HTML	document

keys-home.html

Next,	add	a	style	sheet	in	the	head	section	to	remove	default	hyperlink
styles
<style>
a												{	text-decoration	:	none	;	color	:	Black	;	}
a:focus	{	background	:	Red	;	color	:	White	;	}
</style>

Now,	in	the	body	section,	insert	two	hyperlinks	that	designate	different
numeric	access	key	characters

Home	Page	|

Catalog	Page

keys-catalog.html

Save	the	HTML	document	then	create	a	similar	second	document
containing	the	same	two	hyperlinks	–	but	without	the	style	sheet	that
removes	default	styles

Home	Page	|

Catalog	Page

Save	the	second	HTML	document	alongside	the	first,	then	open	the	first
web	page	in	your	browser	to	see	the	hyperlinks	without	their	default
styles

Hit	the	Tab	key	repeatedly	until	the	second	hyperlink	receives	focus,
then	hit	Return	to	follow	that	link

Press	the	access	key	combination	and	number	1	key	(e.g.	Alt	+	1)	then	hit
Return	to	follow	the	first	hyperlink

Removing	the	default	hyperlink	styles	means	they	are	no	longer	easily
recognizable	as	links	–	so	it	is	best	avoided	unless	some	other	indication
makes	the	user	aware	they	can	be	used	for	navigation	purposes.

Mac	users	should	press	CMD	+	accesskey	with	their	Safari	browser.

Fragment	Links
Hyperlinks	can	target	a	specific	point	in	a	document	that	has	been	created	with	a
“fragment”	identifier	–	an	element	with	a	unique	identifying	name	assigned	to	an
id	attribute	in	its	opening	tag.	Within	the	hyperlink,	the	fragment	identifier	is
specified	to	an	href	attribute	in	the	opening	<a>	tag	prefixed	by	a	#	hash
character.	For	example,	the	tag		targets	an	element	within	the	same
document	that	contains	the	unique	fragment	identifier	name	of	“top”.

A	hyperlink	can	also	target	a	specific	point	in	a	different	document	using	the
document’s	URL,	followed	by	a	#	hash	character,	then	the	fragment	identifier.
For	example,	the	tag		targets	an	element	within	a
document	named	“index.html”	that	contains	the	unique	fragment	identifier	name
of	“top”.

Following	a	hyperlink	to	a	fragment	identifier	displays	the	document	from	the
point	where	the	fragment	identifier	appears:

Create	an	HTML	document

frag.html

Within	the	body	section,	insert	two	hyperlinks	that	contain	fragment
identifiers	and	also	target	different	fragments
Skip	to	Page	Foot	|

Skip	to	Next	Page	Foot

Next,	in	the	body,	insert	a	paragraph	representing	content,	followed	by	a
hyperlink	containing	a	fragment	identifier	that	targets	the	first	hyperlink
in	the	document
<p	style=”height:700px;background:Yellow”></p>
Skip	to	Page	Head

frag-next.html

Save	the	HTML	document	then	create	a	second	similar	document	with
hyperlinks	both	above	and	below	content
Skip	to	Page	Foot
<p	style=”height:700px;background:Red”>Content...</p>

Skip	to	Page	Head	|

Skip	to	Previous	Page	Head

Save	the	second	HTML	document	alongside	the	first,	then	open	the	first
page	in	your	browser	and	click	the	first	hyperlink	to	go	to	the	bottom	of
this	page

Next,	click	the	hyperlink	to	return	to	the	top	of	this	page

Now,	click	the	second	hyperlink	to	go	to	the	bottom	of	the	next	page

The	#	hash	character	is	used	in	HTML	to	target	fragments	and	to	specify
hexadecimal	color	values,	and	in	CSS	to	select	elements	by	their	id
attribute	for	styling.	Hexadecimal	color	values	specify	Red,	Green,	Blue
components	that	make	up	the	color	–	for	example,	the	color	Red	is
hexadecimal	#FF0000.

At	the	end	of	lengthy	pages	include	a	hyperlink	to	a	fragment	at	the	top	of
the	page	so	the	user	need	not	scroll	back	up.

Protocol	Links
The	href	attribute	of	a	hyperlink	will	typically	target	a	resource	using	the
HyperText	Transfer	protocol	(http:	or	secure	https:)	but	it	may	also	target
resources	using	other	protocols.

Script	functions	can	be	called	with	the	javascript:	protocol,	and	email	clients	can
be	invoked	by	the	mailto:	protocol:

Create	an	HTML	document

protocol.html

Within	the	body	section,	insert	an	image	of	a	chart

Next,	insert	a	paragraph	containing	two	hyperlinks	that	target	different
protocols
<p	id=”links”>
Show/Hide	Chart

Email	Wendy
</p>

Now,	add	a	style	sheet	with	a	rule	to	hide	the	image,	and	a	rule	to	style
the	paragraph
<style>

img#chart	{	visibility	:	hidden	;	height	:	0px	;	}
p#links	{	padding	:	5px	;	border	:	1px	solid	;

float	:	left	;	width	:	200px	;	}
</style>

Finally,	add	a	script	to	alternately	reveal	and	hide	the	image	whenever
the	first	hyperlink	gets	clicked

<script>

function	toggle()	{
const	chart	=	document.getElementById(‘chart’)
let	hid	=	(chart.style.visibility	!==	‘visible’)
chart.style.visibility	=	(hid)	?	‘visible’	:	‘hidden’
chart.style.height	=	(hid)	?	‘auto’	:	‘0px’

}

</script>

This	script	first	examines	the	current	visibility	status	of	the	image
element,	then	reverses	it.

Save	the	HTML	document,	then	open	it	in	your	browser	and	click	on	the
first	link	to	reveal	the	chart	image

Click	on	the	first	hyperlink	to	hide	the	chart	image	again

Click	on	the	second	hyperlink	to	launch	your	default	client	email
application	–	ready	to	send	a	message

The	mailto:	protocol	automatically	adds	the	email	address	of	the
recipient	in	the	“To”	field	of	the	email	client.

Summary
• Paragraph	<p>	elements	can	include	
	line	break	tags,	and	paragraphs	can

be	separated	by	<hr>	horizontal	ruled	lines.

• Long	quotations	may	be	enclosed	within	a	<blockquote>	flow	element,	and
short	quotations	within	a	<q>	phrasing	element.

• The		and		phrasing	elements	are	preferred	over	the		and	<i>
phrasing	elements	to	emphasize	text.

• Side	comments	can	be	enclosed	within	a	<small>	element	and	the	<ins>	and
	elements	used	to	indicate	replaced	text.

• The	<s>	element	denotes	superseded	content,	and	the	<mark>	element	is	used
to	highlight	content	for	reference.

• The	<u>	element	denotes	different	text,	and	the	<wbr>	element	can	be	used	to
suggest	an	appropriate	break	point.

• To	avoid	misalignment,	tab	spacing	should	be	avoided	when	creating
preformatted	text	for	inclusion	within	a	<pre>	element.

• Superscript	and	subscript	can	be	included	using	character	entities	or	using	the
<sup>	and	<sub>	elements.

• Program	code	can	be	included	in	an	HTML	document	using	the	<code>,	<var>,
and	<samp>	elements.

• Machine-readable	code	can	be	specified	to	a	value	attribute	of	the	<data>	tag
and	to	a	datetime	attribute	of	the	<time>	tag.

• The	<abbr>,	<cite>,	<dfn>,	and	<kbd>	elements	provide	advice.

• Many	elements	can	include	a	title	attribute	to	provide	tooltips.

• The	<bdi>	and	<bdo>	bi-directionals	elements	can	be	used	to	surround	items	of
text	written	in	a	language	read	right-to-left.

• Ruby	annotation	uses	<ruby>,	<rb>,	<rt>,	<rp>,	and	<rtc>	elements	to	provide
pronunciation	aid	for	Eastern	languages.

• The	<a>	tag	can	create	hyperlinks	to	other	web	pages,	page	fragments,	or
protocols	such	as	javascript:	and	mailto:.

4

Write	Lists	and	Tables

This	chapter	demonstrates	how	to	display	items	in	lists	and	in	table	cells.

Unordered	Lists
Ordered	Lists

Description	Lists
Basic	Table
Span	Cells
Enhance	Tables

Control	Columns
Summary

Unordered	Lists
Unordered	lists,	where	the	sequence	of	list	items	is	not	important,	typically	place
a	bullet	point	before	each	item	to	differentiate	list	items	from	regular	text.

In	HTML,	unordered	lists	are	created	with			tags,	which	provide	a
container	for	list	items.	Each	list	item	can	be	created	using			tags	to
enclose	the	item,	or	optionally	just	using		to	precede	the	item	–	either	form	of
	element	validates	as	correct	HTML.	An	unordered	list		element	can
contain	numerous	list	item		elements.

The	bullet	point	that	differentiates	unordered	list	items	from	regular	text	may	be
one	of	these	three	marker	types:

• Disc	–	a	filled	circular	bullet	point	(the	default	style).

• Circle	–	an	unfilled	circular	bullet	point.

• Square	–	a	filled	square	bullet	point.

A	style	rule	can	specify	any	one	of	the	above	values	to	the	unordered	list’s	list-
style-type	property,	or	a	none	value	can	be	specified	to	that	property	to	suppress
bullet	points.

Each	HTML	list	also	has	a	list-style-image	property	that	can	specify	the	URL	of
an	image	to	be	used	as	the	list’s	bullet	point.	This	will	appear	in	place	of	any	of
the	marker-type	bullet	points.	Where	the	web	browser	cannot	use	the	specified
image,	the	marker	specified	to	its	list-style-type	property	will	be	used,	or	when	no
marker	has	been	specified,	the	default	will	be	used.

Create	an	HTML	document

ulist.html

Within	the	body	section,	insert	an	unordered	list	that	will	display	the
default	disc	bullet	points

HTML
Cascading	Style	Sheets
JavaScript

Next,	insert	an	unordered	list	that	will	display	the	circle	bullet	points
<ul	style=”list-style-type:circle”>
C	Programming
C++	Programming
C#	Programming

Now,	insert	an	unordered	list	that	will	display	the	square	bullet	points
<ul	style=”list-style-type:square”	>
BashPHPPython

Finally,	insert	an	unordered	list	that	will	display	an	image	as	bullet	points
<ul	style=”list-style-image:url(ulist-go.png)”	>
Access
Excel	VBA
Visual	Basic

ulist-go.png
21px	x	21px

Save	the	HTML	document,	then	open	it	in	your	browser	to	see	the
unordered	list	bullet	points

Note	that	in	CSS	terms,	the	lists	are	written	in	a	content	box	with	their
bullet	points	drawn	in	its	left	padding	area.

Ordered	Lists
Ordered	lists,	where	the	sequence	of	list	items	is	important,	number	each	item	to
differentiate	list	items	from	regular	text.

In	HTML,	ordered	lists	are	created	with			tags,	which	provide	a	container
for	list	items.	As	with	unordered	lists,	each	list	item	can	be	created	using		
tags	to	enclose	the	item,	or	optionally	just	using		to	precede	the	item	–	either
form	of		element	validates	as	correct	HTML.	An	ordered	list		element	can
contain	numerous	list	item		elements.

The	automatic	numbering	that	differentiates	ordered	list	items	from	regular	text
may	be	one	of	these	six	numbering	types:

• Decimal	–	traditional	numerals	(the	default	style).

• Roman	–	classical	numerals.

• Latin	–	traditional	alphabetical	lettering.

• Greek	–	classical	alphabetical	lettering.

• Georgian	–	traditional	Georgian	numbering.

• Armenian	–	traditional	Armenian	numbering.

A	style	rule	can	specify	any	of	the	above	numbering	types	to	the	list’s	list-style-
type	property	with	the	following	values:

Type Value

Decimal decimal	or	decimal-leading-zero

Roman lower-roman	or	upper-roman

Latin lower-latin	or	upper-latin
lower-alpha	or	upper-alpha

Greek lower-greek

Georgian georgian

Armenian armenian

Additionally,	a	none	value	can	be	specified	to	suppress	numbering.	List	item
numbering	will	normally	begin	at	one	but	a	different	start	point	can	be	specified
to	a	start	attribute	in	the		tag.

When	no	numbering	type	has	been	specified,	the	default	will	be	used.

Create	an	HTML	document

olist.html

Within	the	body	section,	insert	an	ordered	list	that	will	display	default
numbering

HTML
Cascading	Style	Sheets
JavaScript

Next,	insert	an	ordered	list	that	will	display	Roman	numbering
<ol	style=”list-style-type:upper-roman”>
C	Programming
C++	Programming
C#	Programming

Now,	insert	an	ordered	list	that	will	begin	numbering	at	one	hundred

(100)
<ol	start=”100”	>
BashPHPPython

Save	the	HTML	document,	then	open	it	in	your	browser	to	see	the
ordered	list	numbering

As	with	the	markers	in	unordered	lists,	numbering	is	drawn	in	the	left
padding	area	of	the	list’s	content	box.

Description	Lists
A	description	list	is	a	unique	type	of	list	in	which	each	list	item	has	two	parts	–
the	first	part	being	a	term,	and	the	second	part	being	a	description	of	the	term	in
the	first	part.	This	is	referred	to	as	a	name/value	pair.	For	example,	a	name/value
pair	for	the	term	“sun”	could	be	“sun/the	star	at	the	center	of	our	solar	system”.

In	HTML,	description	lists	are	created	with	<dl>	</dl>	tags,	which	provide	a
container	for	list	items.	Each	list	item	term	is	contained	between	<dt>	</dt>
definition	term	tags,	and	each	list	item	description	is	contained	between	<dd>
</dd>	definition	description	tags.	Optionally,	the	</dt>	and	</dd>	closing	tags	may
be	omitted	–	either	form	of	<dt>	and	<dd>	element	is	valid.

Each	list	item	in	a	description	list	can	contain	multiple	<dt>	definition	term
elements	and	multiple	<dd>	definition	description	elements	–	to	allow	a	single
term	to	have	multiple	descriptions,	or	multiple	terms	to	have	a	single	description.
Typically,	browsers	display	the	definition	descriptions	inset	from	their	terms.

Description	lists	are	also	useful	to	contain	a	series	of	questions	and	related
answers,	or	any	other	groups	of	name/value	data.

Create	an	HTML	document

dlist.html

Within	the	body	section,	insert	a	description	list	containing	two	question
and	answer	name/value	pairs
<dl>
<dt>What	is	HTML?</dt>
<dd>The	HyperText	Markup	Language</dd>

<dt>What	is	it	used	for?</dt>
<dd>Web	page	structure.</dd>

</dl>

Next,	in	the	body	section,	insert	a	description	list	describing	the	use,
pronunciation,	and	meaning	of	a	term
<dl>
<dt><dfn>Homonym</dfn></dt>
<dd	class=”grammar”>noun</dd>
<dd	class=”spoken”>[hom-uh-nim]</dd>
<dd>a	word	the	same	as	another	in	sound	and	spelling	but	different	in
meaning</dd>
</dl>

Now,	insert	a	description	list	describing	the	use,	pronunciation,	and
several	meanings	of	a	term
<dl>
<dt><dfn>Mouse</dfn></dt>
<dd	class=”grammar”>noun</dd>
<dd	class=”spoken”>[mous]</dd>
<dd>a	small	animal	of	various	rodent	families</dd>
<dd>a	palm-sized	button-operated	device	used	to	move	a	computer	cursor</dd>
<dd>a	quiet,	timid	person</dd>
</dl>

Add	a	style	sheet	to	color	the	question	and	definition	terms	in	the	lists,
and	to	color	some	specific	descriptions
<style>
dt	{	color	:	Blue	;	}
dfn	{	color	:	Red	;	font-size	:	20pt	;	}
dd.grammar	{	color	:	Green	;	}
dd.spoken	{	color	:	Purple	;	}
</style>

Save	the	HTML	document,	then	open	it	in	your	browser	to	see	the
name/value	pairs

The	<dt>	element	alone	does	not	indicate	its	content	is	a	term	being
defined	–	a	nested	<dfn>	element	must	be	used	for	that	purpose.

Do	not	use	a	definition	list	to	mark	up	dialog	–	use	paragraphs	to	mark	up
each	piece	of	dialog	instead.

Basic	Table
Data	is	often	best	presented	in	tabular	form,	arranged	in	rows	and	columns	to
logically	group	related	items,	so	it	is	easily	understood.

In	HTML,	tables	are	created	with	<table>	</table>	tags,	which	provide	a	container
for	table	rows.	Each	table	row	is	created	with	<tr>	</tr>	tags,	which	provide	a
container	for	a	line	of	table	data	cells.	Each	table	data	cell	is	created	with	<td>
</td>	tags,	which	enclose	the	actual	data	to	be	presented.	Optionally,	the	</td>	and
</tr>	closing	tags	may	be	omitted	–	either	form	of	<td>	and	<tr>	element	is	valid.

A	<table>	element	will	typically	contain	numerous	<tr>	elements	to	create	a	table
displaying	multiple	rows	of	data.	Similarly,	each	<tr>	element	will	typically
contain	numerous	<td>	elements	to	create	a	table	of	multiple	columns	of	data.	It
is	important	to	note,	however,	that	each	<tr>	row	in	the	table	must	contain	the
exact	same	number	of	<td>	cells	–	so,	for	example,	if	the	first	<tr>	row	contains
five	<td>	cells,	all	<tr>	rows	must	contain	five	<td>	cells.

Create	an	HTML	document

table.html

Within	the	body	section,	insert	a	table	element
<table>
<!--	Table	rows	to	go	here.	-->
</table>

Now,	within	the	table	element,	insert	three	table	rows	–	that	each	contain
three	table	data	cells
<tr>	<td>Cell	1.1	<td>Cell	1.2	<td>Cell	1.3	</tr>

<tr>	<td>Cell	2.1	<td>Cell	2.2	<td>Cell	2.3	</tr>
<tr>	<td>Cell	3.1	<td>Cell	3.2	<td>Cell	3.3	</tr>

Add	a	style	sheet	to	set	the	table	width	and	border,	cell	borders,	and
borders	of	headings	that	will	be	added	later
<style>
table	{	width	:	500px	;	border	:	5px	solid	Black	;	}
td,th	{	border	:	1px	solid	Black	;	}
</style>

Omit	the	closing	</td>	cell	tags	but	include	the	closing	</tr>	tags	to	more
clearly	denote	the	end	of	each	table	row.

Save	the	HTML	document,	then	open	it	in	your	browser	to	see	a	basic
table

A	table	title	can	be	specified	with	<caption>	</caption>	tags,	and	row	and	column
headings	can	be	added	between	<th>	</th>	tags.

Immediately	following	the	opening	table	tag,	insert	a	caption	title
<caption>A	Basic	Table</caption>

Next,	insert	a	new	row	of	four	column	headings
<tr><th><th>Column	1<th>Column	2<th>Column	3</tr>

Now,	insert	a	heading	at	the	start	of	each	following	row
<tr><th>Row	1<td>Cell	1.1<td>Cell	1.2<td>Cell	1.3</tr>
<tr><th>Row	2<td>Cell	2.1<td>Cell	2.2<td>Cell	2.3</tr>
<tr><th>Row	3<td>Cell	3.1<td>Cell	3.2<td>Cell	3.3</tr>

Save	the	edited	HTML	document,	then	refresh	your	browser	to	view	the
additions

If	a	<caption>	element	is	to	be	included	it	must	immediately	follow	the
opening	<table>	tag.

The	closing	</th>	tag	is	optional	but	the	number	of	opening	<th>
headings	must	exactly	match	the	number	of	rows	and	columns.

Subsequent	examples	in	this	chapter	build	upon	this	simple	table

example	as	more	table	features	are	introduced.

Span	Cells
An	individual	table	cell	can	be	combined	with	others	vertically	to	span	down
over	multiple	rows	of	a	table.

The	number	of	rows	to	be	spanned	is	specified	to	a	rowspan	attribute	in	the
spanning	cell’s	<td>	tag.	Cells	in	the	rows	being	spanned	must	then	be	removed
to	maintain	the	table	symmetry.

Make	a	copy	of	the	table.html	document,	created	in	the	previous	example
here,	and	rename	it	“rowspan.html”

rowspan.html

Change	the	document	and	table	titles
<title>Row	Spanning	Example</title>

<caption>A	Table	Spanning	Rows</caption>

In	the	table	data	element	containing	the	text	“Cell	1.1”,	insert	an	attribute
in	its	opening	tag	and	edit	its	content
<td	rowspan=”2”>Cell	1.1+2.1</td>

Next,	delete	the	table	data	element	containing	the	text	“Cell	2.1”	–	as	this
cell	is	now	spanned

Now,	add	rules	to	the	style	sheet	style	to	color	the	background	of	cells
that	span	rows
td[rowspan=”2”]	{	background	:	Pink	;	}

td[rowspan=”3”]	{	background	:	HotPink	;	}

Save	the	HTML	document,	then	open	it	in	your	browser	to	see	the	cell
spanning	two	rows	in	Column	1

Next,	insert	an	attribute	into	the	table	data	element	containing	the	text
“Cell	2.2”	and	edit	its	content
<td	rowspan=”2”>Cell	2.2+3.2</td>

Now,	delete	the	table	data	element	containing	the	text	“Cell	3.2”	–	as	this
cell	is	now	spanned

Save	the	edited	HTML	document,	then	refresh	your	browser	to	see	the
cell	spanning	two	rows	in	Column	2

Next,	insert	an	attribute	into	the	table	data	element	containing	the	text
“Cell	1.3”	and	edit	its	content
<td	rowspan=”3”>Cell	1.3+2.3+3.3</td>

Now,	delete	the	table	data	elements	containing	the	text	“Cell	2.3”	and
“Cell	3.3”	–	as	these	cells	are	now	spanned

Save	the	edited	HTML	document	then	refresh	your	browser	to	see	the
cell	spanning	three	rows	in	Column	3

Notice	that	by	default	text	in	each	cell	is	left-aligned	and	horizontally
centered	in	merged	cells.

Enhance	Tables
Tables	can	be	enhanced	by	the	addition	of	special	header	and	footer	rows	above
and	below	the	regular	table	content,	which	provide	additional	table	information.

In	HTML,	table	header	information	is	contained	between	<thead>	</thead>	tags,
and	table	footer	information	is	contained	between	<tfoot>	</tfoot>	tags.	When	a
table	has	a	<thead>	and/or	a	<tfoot>	element,	all	regular	table	rows	must	be
enclosed	between	<tbody>	</tbody>	tags.

In	long	tables,	rows	can	be	grouped	into	separate	table	body	sections	using
multiple	<tbody>	elements.	When	these	are	printed,	each	paper	page	can	repeat
the	table	header	and	footer	information.

It	is	important	to	note	that	a	<thead>	element	must	appear	before	the	first	<tbody>
element	within	the	<table>	element,	but	after	the	<caption>	element	if	one	is
present.

Make	a	copy	of	the	table.html	document,	created	here,	and	rename	it
“enhance.html”

enhance.html

Change	the	document	and	table	titles
<title>Enhanced	Table	Example</title>

<caption>An	Enhanced	Table</caption>

Add	rules	to	the	style	sheet	to	style	a	table	header,	a	second	table	body

heading,	and	a	final	table	footer
thead	{	background	:	Pink	;	}
th.next	{	background	:	DeepPink	;	color	:	White	;	}
tfoot	{	background	:	HotPink	;	}

Immediately	after	the	caption,	insert	a	table	header	containing	a	single
row	that	spans	all	four	columns
<thead>
<tr><td	colspan=”4”>Header	Information</tr>
</thead>

After	the	header,	add	a	table	body	element	to	enclose	all	the	regular
existing	table	rows
<tbody>
<!--	Existing	row	elements	go	here.	-->
</tbody>

After	the	table	body	element,	insert	a	second	table	body	element
containing	four	more	table	rows
<tbody>

<tr>	<th	colspan=”4”	class=”next”>Next	section</tr>
<tr>
<th>Row	4<td>Cell	4.1<td>Cell	4.2<td>Cell	4.3</tr>
<tr>
<th>Row	5<td>Cell	5.1<td>Cell	5.2<td>Cell	5.3</tr>
<tr>
<th>Row	6<td>Cell	6.1<td>Cell	6.2<td>Cell	6.3</tr>

</tbody>

After	the	second	table	body,	insert	a	table	footer	containing	a	single	row
that	spans	all	four	columns
<tfoot>
<tr><td	colspan=”4”>Footer	Information</tr>
</tfoot>

Save	the	HTML	document,	then	open	it	in	your	browser	to	see	the
enhanced	table

Table	headers	and	footers	should	only	contain	information	–	all	table	data
should	appear	in	the	table	body.

Control	Columns
Where	a	table	simply	has	an	overall	width	specified	by	a	style	rule,	the	browser
will	by	default	calculate	the	width	of	each	column	according	to	its	content	–
columns	with	broad	content	will	be	wider	than	columns	with	slender	content.
Greater	control	over	column	width	can	be	achieved	using	<col>	tags	to	represent
individual	columns,	so	rules	can	specify	their	size	and	appearance.

A	single	<col>	element	can	also	represent	multiple	columns	by	including	a	span
attribute	to	specify	a	number	of	columns.	So,	a	style	rule	specifying	a	column
width	will	be	applied	to	all	the	columns	that	<col>	element	represents.
Alternatively,	the	<th>	or	<td>	tags	can	include	a	colspan	attribute	to	specify	a
number	of	columns	to	span.

Optionally,	<col>	elements	may	be	enclosed	between	<colgroup>	</colgroup>	tags
to	allow	styling	of	both	column	groups	and	individual	columns.

Create	an	HTML	document

column.html

Within	the	body	section,	insert	a	table	element	that	includes	a	caption
<table>
<caption>Breakfast	Flights</caption>

<!--	Table	content	to	go	here.	-->

</table>

Next,	in	the	table,	insert	a	column	group	that	includes	a	class	name	for
styling	and	contains	a	single	column
<colgroup	class=”sidebar”>
<col>
</colgroup>

Now,	insert	two	more	column	groups	that	include	class	names	for	both
group	styling	and	individual	styling
<colgroup	class=”info”>
<col	class=”stripe”>	<col>	<col	class=”stripe”>
</colgroup>

<colgroup	class=”info”>
<col>	<col	class=”stripe”>
</colgroup>

The	<col>	tag	is	a	single	tag	–	it	does	not	have	a	matching	closing	tag.

After	the	column	groups,	insert	a	table	header,	a	table	body,	and	a	table
footer	–	each	with	six	columns
<thead><tr><th	colspan=”6”><!--	Header.	--></thead>

<tbody><!--	Rows	with	six	cells	each.	--></tbody>

<tfoot><tr><td	colspan=”6”><!--	Footer.	--></tfoot>

Add	a	style	sheet	with	rules	to	specify	the	appearance	of	the	table,	and	its
header,	footer,	and	data	cells
</style>
table	{	width	:	500px	;	border-collapse	:	collapse	;	}
tbody	th	{	background	:	DeepPink	;	color	:	White	;	}
tbody	td	{	padding	:	3px	;	text-align	:	center	;	}
tfoot	{	font-size	:	small	;	}
</style>

Next,	add	rules	to	specify	the	width	of	each	column
colgroup.sidebar	col	{	width	:	70px	;	}

colgroup.info	col	{	width	:	80px	;	}

Now,	add	rules	to	style	groups	and	individual	columns
colgroup.info	{	border-left	:	2px	solid	White	;	}
colgroup	col.stripe	{	background	:	Pink	;	}

Save	the	HTML	document,	then	open	it	in	your	browser	to	see	distinct
column	groups

The	•	character	entity	is	used	in	this	table	footer	to	create	bullet
points.

Summary
• The	HTML		element	creates	an	unordered	bullet	point	list	that	contains

individual	list	items	within		elements.

• A	list-style-type	property	can	specify	that	unordered	list	items	should	have	a
disc,	circle,	or	square	bullet	point,	or	none.

• A	list-style-image	property	can	specify	the	URL	of	an	image	that	should	appear
in	place	of	list	item	bullet-points.

• The		element	creates	an	ordered	numerical	list	that	contains	individual	list
items	within		elements.

• A	list-style-type	property	can	specify	how	ordered	list	items	should	be
numbered,	such	as	decimal,	upper-latin,	or	none.

• The	<dl>	element	creates	a	definition	list	containing	terms	in	<dt>	elements,
and	their	descriptions	in	<dd>	elements.

• The	HTML	<table>	element	creates	a	table,	and	may	optionally	first	enclose	a
<caption>	element	to	title	the	table.

• Each	table	row	is	created	with	a	<tr>	element	to	contain	numerous	<th>
heading	elements	and	<td>	data	elements.

• Table	cells	can	span	down	other	cells	using	the	rowspan	attribute,	and	cells	to
the	right	using	the	colspan	attribute.

• Adding	<thead>	and	<tfoot>	elements	immediately	after	the	<caption>	element
enhances	a	table	with	a	header	and	footer.

• Tables	that	have	a	header	and	footer	must	also	enclose	all	regular	table	rows
within	a	<tbody>	element.

• Table	columns	can	be	grouped	using	a	<colgroup>	element	for	styling.

• Each	table	column	can	be	represented	by	a	<col>	element	so	it	can	be
individually	styled.

5

Incorporate	Media	Content

This	chapter	demonstrates	how	to	include	images	and	other	media	in	page	content.

Add	Images
Image	Maps

Reference	Figures
Select	Pictures
Embed	Objects
Embed	Vectors

Embed	Frames
Add	Audio
Add	Video
Indicate	Progress

Use	Templates
Insert	Slots
Employ	Dialogs
Paint	Canvas

Summary

Add	Images

The	ability	to	add	images	to	HTML	document	content	introduces	lots	of	exciting
possibilities.	An	image	is	easily	added	to	the	document	using	the		tag,
which	should	preferably	always	include	these	attributes:

• A	src	attribute	is	required	to	specify	the	image	location	URL,	by	either	its
absolute	or	relative	path.

• A	width	attribute	is	recommended	to	specify	the	pixel	width	of	the	area	the
image	will	occupy	on	the	page.

• A	height	attribute	is	recommended	to	specify	the	pixel	height	of	the	area	the
image	will	occupy	on	the	page.

• An	alt	attribute	is	recommended	to	specify	text	describing	the	image,	for
occasions	when	the	image	cannot	be	loaded.

The	values	assigned	to	the	width	and	height	attributes	instruct	the	web	browser	to
create	a	content	area	on	the	web	page	of	that	size.	This	need	not	be	the	actual
dimensions	of	the	image,	as	the	web	browser	can	render	the	image	in	another
specified	size.	Care	must	be	taken	to	avoid	distortion	by	ensuring	the	dimensions
are	scaled	in	proportion	to	the	actual	image	size.	Additionally,	images	should
only	be	scaled	down,	as	scaling	up	often	results	in	pixelation	–	where	individual
pixels	are	visible	to	the	eye.	It	is	inefficient,	however,	to	rely	upon	the	browser
to	scale	images	that	are	not	to	be	displayed	full	size,	as	this	requires
downloading	unnecessarily	larger	files.	It	is	better	to	adjust	the	image	size	to	the
actual	dimensions	it	will	occupy	on	the	web	page	using	a	graphics	editor,	such	as
Adobe	Photoshop,	so	it	will	download	and	display	faster.

Original	file	size

Reduced	to	33%

The	optimum	file	type	for	web	bitmap	graphics	is	the	popular	non-proprietary
Portable	Network	Graphics	(PNG)	format,	which	produces	compact	files	and
supports	transparency.

Attributes	in	HTML	tags	can	appear	in	any	order.

Avoid	the	BMP	bitmap	file	format	for	web	graphics	–	saving	the	original
image	shown	here	as	fish.bmp	creates	a	file	size	of	790KB!

Create	an	HTML	document

image.html

Within	the	body	section,	insert	three	image	elements	–	to	display	a
graphic	at	full	size	plus	two	scaled	versions

<img	src=”image-fish.png”
width=”200”	height=”150”	alt=”Fish”>

<img	src=”image-fish.png”
width=”150”	height=”112”	alt=”Fish”>

<img	src=”image-fish.png”
width=”100”	height=”75”	alt=”Fish”>

Save	the	HTML	document	then	open	it	in	your	browser	to	see	the	full-
size	image	and	the	two	scaled	versions

image-fish.png
200px	x	150px

Now,	insert	this	attribute	into	each	image	element
style=”background:Aqua”

Refresh	your	browser	to	see	the	colored	backgrounds

Image	Maps
A	single	image	can	target	multiple	hyperlink	resources	if	an	image	“map”	is
added	to	define	“hot	spot”	areas	for	each	hyperlink.	To	use	an	image	map,	the
	tag	must	include	a	usemap	attribute	to	specify	a	map	name,	prefixed	by	a	#
hash	character.	The	image	map	itself	is	contained	between	<map>	</map>	tags,
and	its	name	is	specified	by	a	name	attribute	in	the	opening	<map>	tag.

Each	area	of	the	image	that	is	to	become	a	hyperlink	hot	spot	is	defined	by	four
attributes	of	an	<area>	tag	within	the	<map>	element.	The	shape	attribute	specifies
its	shape	as	rect	(rectangle),	circle,	or	poly	(polygon),	and	the	coords	attribute
specifies	a	comma-separated	list	of	its	x-axis	and	y-axis	coordinates:

Shape Coordinates

rect top-left	x,	top-left	y,	bottom-right	x,	bottom-right	y

circle center	x,	center	y,	radius

poly x1,	y1,	x2,	y2,	x3,	y3,	etc.	–	one	pair	for	each	point.	The	first	and	final	point
must	have	identical	coordinates	to	complete	the	shape

Additionally,	each	<area>	tag	must	have	an	href	attribute,	to	specify	the
hyperlink’s	URL	target,	and	an	alt	attribute	to	specify	alternative	text	to	be
displayed	when	images	are	not	enabled.

Create	an	HTML	document

map.html

Within	the	body	section,	insert	an	image	and	map	element

<map	name=”search”>

<!--	Areas	to	go	here.	-->

</map>

map.png
400px	x	200px

Within	the	map	element,	define	a	rectangular	hot	spot	covering	the	top-
left	quarter	of	the	image	–	from	a	top-left	point	at	xy:0,0	to	a	bottom-
right	point	at	xy:200,100
<area	shape=”rect”	coords=”0,0,200,100”

href=”https://www.bing.com”
alt=”Bing	Panel”	title=”Link	to	Bing”>

Now,	in	the	map	element,	define	three	hot	spots	of	the	same	size
covering	the	other	three	quarters	of	the	image
<area	shape=”rect”	coords=”200,0,400,100”

href=”https://www.ask.com”
alt=”Ask	Panel”	title=”Link	to	Ask”>

<area	shape=”rect”	coords=”0,100,200,200”
href=”https://www.google.com”
alt=”Google	Panel”	title=”Link	to	Google”>

<area	shape=”rect”	coords=”200,100,400,200”
href=”https://www.yahoo.com”	alt=”Yahoo	Panel”
title=”Link	to	Yahoo”>

Save	the	HTML	document,	then	open	it	in	your	browser	to	see	the
tooltips	describe	each	hot	spot	that	you	can	click	to	open	its	associated
target

Do	not	leave	any	spaces	in	the	comma-separated	list	of	coordinates.

Validation	will	fail	unless	each	<area>	tag	includes	an	alt	attribute.

Reference	Figures
With	the	latest	HTML	specifications,	the	web	page	author	now	has	additional
means	by	which	to	insert	images	into	a	web	page.	An		tag	can	be	nested
within	a	<figure>	</figure>	element	to	embed	an	image	that	is	related	to	the	main
text	content	but	whose	removal	would	not	disrupt	the	text’s	meaning.

As	the	nested	image,	in	effect,	is	now	self-contained	as	a	“figure”	it	can	be
positioned	away	from	the	text	if	desired,	and	referenced	by	a	caption	within	a
nested	<figcaption>	</figcaption>	element:

Create	an	HTML	document

figure.html

Within	the	body	section,	insert	a	heading
<h1>Web	Development	Stacks</h1>

Next,	insert	a	captioned	figure
<figure	id=“front-stack”	>

<img	src=”figure-front.png”	alt=”Front-end”
width=”160”	height=”145”>

<figcaption	class=”reference”>
Figure	1:Front-end	Technologies
</figcaption>

</figure>

Now,	insert	text	content	that	makes	reference	to	the	previous	captioned

figure
<p>Front-end	development,	also	known	as	client	side	development,	is	the	practice
of	producing	HTML	documents,	CSS	style	sheets,	and	JavaScript	script	code
(Figure	1)
for	a	website	or	Web	Application	-	so	a	user	can	see	and	interact	with	them
directly.</p>

Insert	a	second	captioned	figure
<figure	id=“back-stack”	>

<img	src=”figure-back.png”	alt=”Back-end”
width=”160”	height=”128”	>

<figcaption	class=”reference”	>
Figure	2:Back-end	Technologies
</figcaption>

</figure>

Always	refer	to	figures	only	by	their	label	–	avoid	using	reference	terms
like	“in	the	figure	on	the	right”	so	the	document	layout	can	be	easily
changed	without	creating	confusion.

Now,	insert	text	content	that	makes	reference	to	the	second	captioned
figure
<p>Back-end	development,	also	known	as	server-side	development,	is	the
practice	of	producing	complex	websites	using	programming	languages	such	as
SQL,	Java,	PHP,	or	.NET	(Figure	2)	to	provide
features	beyond	front-end	capabilities.</p>

Add	a	style	sheet	to	position	each	captioned	figure	and	to	specify	some
font	styles
<style>
figure#front-stack{	float	:left	;	margin-top	:0px	;	}
figure#back-stack	{	float	:right	;	margin-top	:0px	;	}
.reference	{	color	:	Red	;	font-weight:bold	;	}
p:first-letter	{	font-size	:xx-large	;	}
</style>

Save	the	HTML	document	and	style	sheet	then	open	the	web	page	in
your	browser	to	see	the	captioned	figures

You	can	discover	more	about	back-end	technologies	with	the	companion
books	in	this	series	on	SQL,	Java,	PHP,	Python,	and	MySQL	at
www.ineasysteps.com

http://www.ineasysteps.com

Select	Pictures
As	web	content	is	increasingly	being	accessed	on	small	handheld	devices,	the
latest	HTML	specifications	allow	the	web	page	author	to	specify	alternative
images	to	be	displayed	on	the	web	page	according	to	the	size	of	the	device
screen.

A	<picture>	</picture>	element	is	used	to	contain	multiple	image	sources	from
which	the	browser	can	select	the	most	appropriate	size.	Each	image	source	is
specified	to	the	srcset	attribute	of	a	nested	<source>	element,	and	the	minimum
screen	width	suitable	for	that	image	is	specified	to	its	media	attribute.	The
assignment	requires	an	unusual	syntax	that	states	the	size	to	a	min-width	property
within	()	parentheses	–	for	example,	to	specify	that	an	image	is	suitable	for
display	only	on	devices	whose	screen	width	exceeds	500	pixels	with	media=”(min-
width	:	500px)”.

Usefully,	the	<picture>	</picture>	element	can	enclose	a	final	regular	
element	to	specify	the	image	to	be	displayed	on	older	web	browsers	that	do	not
support	this	selection	feature:

Create	an	HTML	document

picture.html

Within	the	body	section,	insert	a	container	element
<picture>

<!--	Image	sources	to	be	inserted	here	-->

</picture>

Next,	insert	an	image	source	for	display	only	on	devices	whose	screen
width	exceeds	500	pixels
<source	media=”(min-width	:	500px)”

srcset=”picture-large.png”	>

Now,	insert	an	image	source	for	display	only	on	smaller	devices	whose
screen	width	exceeds	200	pixels
<source	media=”(min-width	:	200px)”

srcset=”picture-small.png”	>

Finally,	insert	an	image	source	for	display	only	on	older	browsers	that	do
not	support	the	selection	feature
<img	alt=”Regular	Guy”

src=”picture-medium.png”
width=”250”	height=”250”>

The	<source>	element	does	not	require	a	closing	tag.	It	is	also	used
within	the	<audio>	element	(see	here),	and	with	the	<video>	element
(see	here).

Save	the	HTML	document,	then	open	it	in	various	browsers	to	see	an
appropriately-sized	image

The	images	in	this	example	have	these	sizes:	large	–	500px	x	500px
medium	–	250px	x	250px	small	–	125px	x	125px

If	you	examine	the	browser	cache	you	should	see	that	it	has	only
efficiently	downloaded	the	appropriate	image	to	be	displayed,	not	all
images.

Embed	Objects

An	external	resource	can	be	embedded	into	an	HTML	document	using	<object>
</object>	tags	to	define	the	resource.	When	the	resource	is	an	image	it	will	be
treated	much	like	those	specified	by		elements,	otherwise	a	plugin	may	be
sought	to	process	the	resource.	The	<object>	element	can	specify	the	resource’s
URL	to	its	data	attribute,	and	the	resource	type	to	its	type	attribute.	The	resource
type	must	be	a	valid	MIME	type	describing	the	resource.

MIME	Type Object	File	Format

image/png PNG	image	resource

image/jpeg JPG,	JPEG,	JPE	image	resource

image/gif GIF	image	resource

image/svg+xml SVG	vector	image	resource

text/plain TXT	regular	plain	text	resource

text/html HTM,	HTML	markup	text	resource

application/pdf PDF	portable	document	resource

application/msword DOC	Word	document	resource

application/x-java-applet CLASS	Java	applet	resource

audio/x-wav WAV	sound	resource

audio/mpeg MP3	music	resource

video/mp4 MP4	video	resource

video/x-mpeg MPEG,	MPG,	MPE	video	resource

video/x-msvideo AVI	video	resource

video/x-msv-wmv WMV	Windows	video	resource

video/quicktime MOV	Quicktime	video	resource

This	table	lists	some	popular	MIME	types.	Further	details	can	be	found
on	the	W3C	website	at	www.w3.org

Each	<object>	element	can	specify	dimensions	in	which	to	display	visual	content
using	its	width	and	height	attributes.	Where	the	resource	is	an	image,	the	<object>
element	can	also	include	a	usemap	attribute	to	specify	the	name	of	an	image	map,
just	like	those	produced	for	an		element.

Optionally,	fallback	text	can	be	included	between	the	<object>	</object>	tags	that
will	only	be	displayed	by	the	browser	in	the	event	that	the	resource	cannot	be
embedded	within	the	document	–	for	example,	when	an	appropriate	plugin
cannot	be	found.

All	<object>	elements	must	contain	at	least	one	data	attribute	or	one
type	attribute.

Create	an	HTML	document

object.html

Within	the	body	section,	insert	a	paragraph	wrapper
<p>This	is	text	in	the	main	document	that...

<!--	Resource	object	to	be	embedded	here.	-->

http://www.w3.org

...continues	around	an	embedded	resource.</p>

object-chart.pdf
(external	resource)

Within	the	paragraph,	insert	a	PDF	object	to	embed
<object	data=”object-chart.pdf”	type=”application/pdf”

width=”500”	height=”350”>
[PDF	Document	-	May	require	the	Adobe	Reader	plugin]
</object>

Save	the	HTML	document	alongside	the	specified	resource	file	then	open
the	web	page	in	your	browser	to	see	the	embedded	object

If	you	can	disable	PDF	support	then	re-open	this	example	you	will	see
the	fallback	text	appear	in	place	of	the	embedded	PDF	document.

Embed	Vectors
The	HTML	<embed>	element	allows	you	to	integrate	an	external	resource	for
interaction	with	the	HTML	document.

Web	browsers	that	support	modern	HTML	also	support	Scalable	Vector
Graphics	(SVG).	Unlike	bitmap	graphic	formats	such	as	PNG,	which	store	their
graphic	information	as	the	color	of	each	pixel,	vector	graphics	store	the	graphic
information	as	a	series	of	“paths”.	This	is	a	highly	efficient	way	to	describe
graphics.

Most	importantly,	vector	graphics	can	be	scaled	without	loss	of	fidelity.	This
means	that	they	can	be	infinitely	enlarged	without	suffering	the	pixelation
experienced	when	enlarging	bitmap	images,	such	as	those	in	PNG,	JPG,	or	GIF
file	formats.

SVG	Vector	x	3

PNG	Bitmap	x	3

SVG	is	not	actually	part	of	HTML	but	is	a	specification	based	on	the	eXtensible
Markup	Language	(XML),	so	it	describes	vector	images	in	text	files.	These	can
be	created	manually	but	it’s	far	simpler	to	use	a	vector	graphics	editor	such	as
Adobe	Illustrator.

SVG	images	can	be	zoomed	without	loss	of	definition	and	can	be	printed	in	high
quality	without	loss	of	resolution.

SVG	files	can	also	be	scripted.	Adding	JavaScript	functionality	to	a	static	vector
image	makes	it	possible	to	create	interactive	SVG	objects.	This	means	that	every
element	and	every	attribute	within	an	SVG	file	can	be	animated.

Both	static	SVG	images	and	interactive	SVG	objects	can	be	embedded	in	HTML
by	specifying	the	MIME	type	of	“image/svg+xml”	to	the	<embed>	element’s	type
attribute.

Static	SVG	images	can	alternatively	be	embedded	using	the	
element	–	just	like	any	other	image.

Create	an	HTML	document

vector.html

In	the	body	section,	insert	an	element	to	embed	an	interactive	scalable
vector	graphic
<embed	src=”vector-picker.svg”	type=”image/svg+xml”

width=”280”	height=”200”	>

vector-picker.svg
(external	resource)

Save	the	HTML	document	alongside	the	SVG	file,	then	open	the	web
page	in	your	browser	to	see	the	embedded	interactive	scalable	vector
graphic

Pick	a	color	by	clicking	any	circled	color	sample	in	the	image	to	interact
with	the	vector	graphic

You	can	examine	how	JavaScript	has	been	incorporated	into	this	SVG
document	by	downloading	the	examples	archive	from:
www.ineasysteps.com/resource-centre/downloads

http://www.ineasysteps.com/resource-centre/downloads

Embed	Frames
External	resources	can	be	embedded	in	an	HTML	document	within	an	“inline
frame”	using	<iframe>	</iframe>	tags.	These	create	a	fixed	area	on	the	page	in
which	to	display	the	embedded	resource.	The	inline	frame’s	dimensions	must	be
specified	to	the	<iframe>	element’s	width	and	height	attributes,	and	the	URL	of	the
external	resource	to	its	src	attribute.	Where	the	dimensions	of	the	external
resource	exceed	those	of	the	inline	frame,	the	browser	automatically	adds	scroll
bars	so	the	user	can	view	the	entire	content.

Each	<iframe>	element	may	also	optionally	contain	a	name	attribute	to	specify	a
unique	identifier	for	that	frame.	This	allows	hyperlinks	to	then	load	the	URL
specified	to	their	href	attribute	into	the	inline	frame	(rather	than	replace	the	entire
page)	by	assigning	the	frame	name	to	a	target	attribute	in	the	<a>	element.	For
example,	a	hyperlink	could	target	an	inline	frame	named	“topbox”	with	.

Typically,	inline	frames	are	useful	to	provide	supplemental	content	while
maintaining	a	compact	page	format.

Create	an	HTML	document

iframe.html

Within	the	body	section,	insert	an	article	containing	a	heading	and
descriptive	paragraph,	and	with	a	specified	class	name	for	positional
styling	purposes
<article	class=“left220”>

<h3>Concept	Cars</h3>
<p>Many	of	the	creative	and	innovative	concept	cars	premiered	at	the	recent
motor	show	left	the	audience	in	eager	anticipation	of	their	production.</p>

</article>

Next,	in	the	body,	as	an	aside,	insert	an	inline	frame	to	load	a	document
containing	relevant	text	and	illustrative	photographs	positioned
horizontally	side-by-side
<aside>

<iframe	src=”concept.html”	width=”300”	height=”220”>

</iframe>

</aside>

concept.html
(external	resource)

Now,	add	a	style	sheet	to	size	the	article	and	position	it	to	the	left	of	the
inline	frame
<style>
article.left220	{	width	:200px;	float	:left;

margin-right	:10px	;	}
</style>

Save	the	HTML	document	alongside	the	external	resource,	then	open	it
in	your	browser	to	see	the	article	and	the	inline	frame	content

Drag	the	scrollbar	to	advance	through	the	content

A	fallback	message	can	be	provided	between	the	<iframe>	</iframe>
tags	to	be	displayed	when	inline	frame	support	is	disabled.

Embedding	documents	within	inline	frames	is	particularly	favored	on

property	websites	to	accompany	property	descriptions	with	photographs
in	a	compact	page	format.

Add	Audio
External	audio	resources	such	as	MP3	music	files	can	be	embedded	in	an	HTML
document	using	<audio>	</audio>	tags.

The	<audio>	element	can	include	an	src	attribute	to	specify	the	URL	of	the	audio
resource	to	embed,	and	may	include	additional	attributes	to	determine	how	the
audio	resource	will	be	used:

• autoplay	–	a	boolean	attribute	that	specifies	the	browser	should	immediately
begin	playing	the	audio	resource.

• loop	–	a	boolean	attribute	that	specifies	the	browser	should	play	the	audio
resource	repeatedly.

• controls	–	a	boolean	attribute	that	specifies	the	browser	should	display	user
controls	to	start	or	stop	the	audio	playing.

• preload	–	accepts	values	of	“auto”	or	“none”	to	suggest	the	browser	should
load	the	audio	resource	so	it	is	ready	to	play.

Boolean	attributes,	like	the	autoplay,	loop,	and	controls	attributes,	need	have	no
assigned	value	–	their	presence	alone	within	the	element	is	sufficient	for	the
browser	to	understand	their	purpose.

A	boolean	value	can	be	only	True	or	False.	By	default,	attributes	that
represent	boolean	values	are	True	unless	they	are	assigned	a	value	of
False.

Browsers	rely	upon	an	in-built	“codec”	(coder-decoder)	to	decode	audio
resources	so	they	can	be	played.	Sadly,	not	all	browsers	incorporate	the	same

audio	codec:

• Advanced	Audio	Coding	(AAC)	–	codec	“mp4a.40.2”	supported	by	modern
browsers	such	as	Google	Chrome,	Firefox,	and	Microsoft	Edge	for	MP3
audio.

• Ogg	audio	–	codec	“vorbis”	supported	by	other	browsers	for	audio	files	in
OGG	format.

This	inconsistency	therefore	requires	audio	resources	to	be	encoded	twice	for
playback	across	all	browsers.	Two	<source>	elements	may	be	nested	within	an
<audio>	element	for	this	purpose,	rather	than	specifying	a	single	resource	URL	to
an	src	attribute	in	the	<audio>	tag.	For	each	file	format,	the	<source>	elements	can
then	specify	their	resource	URL	to	an	src	attribute,	and	their	MIME	type	to	a	type
attribute.	The	browser	will	only	load	the	supported	audio	resource	for	playback.

A	fallback	message	can	be	included	between	the	<audio>	</audio>	tags
to	be	displayed	when	audio	playback	support	is	disabled.

Create	an	HTML	document

audio.html

In	the	body	section,	insert	an	element	to	embed	an	audio	resource	in	the
MP3	format	for	automatic	playback
<audio	src=”audio.mp3”	autoplay	>
[Fallback	Message]
</audio>

Save	the	HTML	document	then	open	the	web	page	to	hear	automatic
audio	playback	in	supported	browsers

Next,	replace	both	previous	attributes	with	one	to	display	user	controls
for	audio	playback
<audio	controls>

<!--	Sources	to	be	inserted	here.	-->

</audio>

Now,	in	the	audio	element,	insert	elements	to	specify	audio	resources	to
be	embedded	for	all	browsers
<source	src=”audio.mp3”	type=”audio/mpeg”	>
<source	src=”audio.ogg”	type=”audio/ogg”	>

audio.mp3

audio.ogg

(external	resources)

Save	the	HTML	document	again,	then	open	the	web	page	in	any	browser
and	use	the	controls	to	hear	playback

Avoid	automatic	audio	playback	on	websites	as	many	users	detest	the
autoplay	feature.

Add	Video
External	video	resources	such	as	MP4	video	files	can	be	embedded	in	an	HTML
document	using	<video>	</video>	tags.

To	determine	how	the	video	resource	will	be	used,	the	<video>	element	can
include	src,	autoplay,	loop,	controls,	and	preload	attributes,	just	like	the	<audio>
element	in	the	previous	example	here.	Additionally,	the	dimensions	of	the	area
in	which	to	display	the	video	on	the	page	can	be	specified	to	width	and	height
attributes.

There	are	two	main	video	compression	standards:

• Advanced	Video	Coding	(AVC)	–	a	patented	standard	that	is	also	known	as
H.264	or	MPEG-4	(.mp4	files).

• WEBM	video	–	a	royalty-free	alternative	to	the	patented	H.264	and	MPEG-4
standard	(.webm	files).

Video	resources	can	be	encoded	in	each	format	for	playback	across	all	browsers
and	embedded	using	<source>	elements	nested	within	a	<video>	element.	For	each
file	format,	the	<source>	elements	can	then	specify	their	resource	URL	to	an	src
attribute,	and	the	MIME	type	of	each	video	file	can	be	specified	to	the	type
attribute.	The	browser	will	only	load	the	supported	video	resource	for	playback.

A	<track>	tag	may	be	nested	within	a	<video>	element	to	specify	the	location	of	a
Web	Video	Text	Tracks	(WebVTT)	subtitles	file	to	its	src	attribute.	This	may
include	a	kind	attribute	to	describe	the	track	and	srclang	to	describe	the	language.
The	tag	must	also	include	a	boolean	default	attribute	to	use	the	specified	file.

You	can	discover	more	about	the	WebVTT	subtitle	format	online	at
www.w3.org/TR/webvtt1

http://www.w3.org/TR/webvtt1

The	subtitles	file	begins	with	WEBVTT.	Start	and	end	timing	cues	are	added	on
new	lines	in	the	format	HH:MM:SS.sss	and	separated	by	-->.	The	associated
subtitle	caption	appears	on	a	new	line	below	each	timing	cue,	like	this:

WEBVTT

00:00:01.000	-->	00:00:04.000
Playing	Guitar	with	“HTML	in	easy	steps”

00:00:05.000	-->	00:00:06.000
Thanks	for	watching

video.vtt

Note	that	the	milliseconds	are	separated	by	a	period	(full	stop)	–	not	a
colon.

Create	an	HTML	document

video.html

In	the	body	section,	insert	an	element	to	display	user	controls	for	video
playback
<video	controls	>
<!--	Sources	to	be	inserted	here.	-->
[Fallback	Message]
</video>

Next,	in	the	video	element,	insert	elements	to	embed	a	video	resource	and
to	specify	a	subtitle	file
<source	src=”video.mp4”	type=”video/mp4”	>
<source	src=”video.webm”	type=”video/webm”	>
<track	src=”video.vtt”

kind=”subtitles”	srclang=”en”	default>

video.mp4

video.webm

(external	resources)

Save	the	HTML	document	then	open	the	web	page	in	any	browser	and
use	the	controls	to	see	video	playback

This	short	video	displays	a	subtitle	for	4	seconds	then	later	displays	a
second	subtitle.

Indicate	Progress
If	you	prefer	not	to	provide	the	browser’s	standard	controls	for	playback	of
audio	or	video,	the	controls	attribute	can	be	omitted	from	the	<audio>	and	<video>
tags.	The	JavaScript	play()	and	pause()	methods	of	an	embedded	media	object
can	then	be	called	to	control	playback	from	an	onclick	event-handler	script
function.

A	visual	indicator	of	media	playback	can	be	displayed	using	a	<progress>
</progress>	element	to	present	a	“progress	bar”.	Within	the	<progress>	tag,	a	value
attribute	determines	the	extent	of	progress	towards	completion.	This	can	be
dynamically	updated	in	synchronization	with	media	playback	from	an
ontimeupdate	event-handler	script	function.

Embedded	media	objects	have	a	currentTime	property,	which	stores	the	elapsed
time	since	playback	began,	and	a	duration	property	that	stores	total	playback
time.	These	can	be	used	to	calculate	playback	progress	as	a	percentage:

Create	an	HTML	document

progress.html

In	the	body	section,	insert	elements	to	embed	an	audio	resource	for
manual	playback
<audio	id=”snd”>

<source	src=”audio.mp3”	type=”audio/mpeg”	>
<source	src=”audio.ogg”	type=”audio/ogg”	>
[Fallback	Message]

</audio>

audio.mp3

audio.ogg

(external	resources)

Next,	insert	an	image	button	to	control	payback
<img	id=”ctl”	src=”progress-button.png”

width=”32”	height=”32”	alt=”Control”	>

Now,	insert	elements	to	present	a	visual	indicator	and	calculated
percentage	as	playback	proceeds
<progress	id=”bar”	value=”0”></progress>

[Audio]

Include	an	id	attribute	in	the	<audio>	tag	to	reference	the	media	from
script,	and	in	all	other	tags	the	script	needs	to	reference.

Add	a	script	with	a	function	to	initialize	variables	when	the	HTML
document	has	loaded
<script>
(function	()	{

const	snd	=	document.getElementById(‘snd’)
const	ctl	=	document.getElementById(‘ctl’)
const	bar	=	document.getElementById(‘bar’)
const	num	=	document.getElmentById(‘num’)
let	run	=	true

/*	Event-handler	functions	go	here.	*/

})	()
</script>

Insert	a	function	to	control	playback
ctl.onclick	=	function()	{
(run)	?	snd.play()	:	snd.pause()
run	=	!run	}

Insert	a	function	to	display	playback	progress
snd.ontimeupdate	=	function()	{
bar.value	=	(snd.currentTime	/	snd.duration)
num.innerHTML	=	Math.floor(100	*	bar.value)	+	‘%’	}

Save	the	HTML	document,	then	open	it	in	a	browser	and	click	the	button
to	see	playback	progress

The	control	will	play	or	pause	playback	according	to	the	Boolean	value	of
the	run	variable.

The	currentTime	and	duration	properties	store	time	in	seconds	as
floating-point	values,	so	need	to	be	rounded	down	with	Math.floor().

Use	Templates
The	HTML	<template>	</template>	element	allows	you	to	include	content	that	is
not	be	displayed	on	the	page	immediately	when	the	web	page	loads	into	the
browser.

Content	that	is	stored	inside	a	<template>	element	can	be	loaded	later	using
JavaScript	to	display	the	content	on	the	web	page.	This	is	useful	when	you	have
content	that	may	be	added	repeatedly.

Template	content	is	a	“DocumentFragment”	object	that	the	script	can	copy.	The
copy	can	then	be	appended	as	a	“child”	element	of	existing	content.	A	script	can
also	remove	child	elements	from	content.

Create	an	HTML	document

template.html

Within	the	body	section,	add	two	paragraphs	that	will	call	script
functions	when	clicked
<p	id=”hotel”	style=”cursor:pointer”

onclick=”addStar(this)”>Hotel	Mistrale</p>

<p	id=”clear”	style=”cursor:pointer”
onclick=”removeStars()”>Clear</p>

Next,	add	template	content	that	will	be	appended	to	existing	content	by	a
script	function
<template>

</template>

star.png32px	x	32px
(gray	area	is	transparent).

Now,	add	a	script	function	to	copy	the	template	content	and	append	it	to
the	first	paragraph	when	clicked
<script>

function	addStar(hotel)	{
const	temp	=	document.getElementById(‘star’)
const	copy	=temp.content.cloneNode(true)
hotel.appendChild(copy)

}

//	Second	function	to	be	inserted	here.

</script>

Then,	insert	a	function	to	remove	all	child	elements	from	the	first
paragraph	when	the	second	paragraph	is	clicked
function	removeStars()	{
const	hotel	=	document.getElementById(‘hotel’)
while	(hotel.ChildElementCount	>	0)
{
hotel.removeChild(hotel.lastChild)
}

}

Save	the	HTML	document	alongside	the	star	image,	then	open	it	in	your
browser	and	click	to	add/remove	content

Before	the	<template>	tag	was	introduced	into	HTML,	the	script	would
have	to	create	the	HTML	child	element	content,	but	using	a	template	is
much	more	convenient.

Insert	Slots
The	<template>	element,	demonstrated	in	the	previous	example	here,	can	only
append	the	content	defined	within	the	template	element.	A	template	can	be	made
more	flexible,	however,	by	including	HTML	<slot>	</slot>	elements	within	the
<template>	element,	whose	content	can	differ	in	each	instance	of	the	template.

The	<slot>	</slot>	tags	can,	optionally,	enclose	default	text,	but	the	opening	<slot>
tag	must	include	a	name	attribute	that	will	identify	that	slot	as	a	placeholder
within	the	template.

The	<slot>	element	placeholders	are	filled	with	content	by	including	a	slot
attribute	within	an	HTML	element	that	nominates	the	matching	name	attribute
value	of	the	slot.	JavaScript	can	then	be	used	to	append	the	combined	template
and	slot	content	to	the	web	page.

Create	an	HTML	document

slot.html

Within	the	body	section,	add	two	divisions	that	each	enclose	three	spans
nominating	the	same	three	slots
<div	class=”homonym”>
Air
A	lilting	tune
What	we	breathe
</div>

<div	class=”homonym”>
Current
A	flow	of	water

Up	to	date
</div>

Next,	add	a	template	of	a	description	list	whose	terms	and	descriptions
provide	the	nominated	slots
<template	id=”list-template”>
<dl>
<dt><slot	name=”word”>Term</slot>
<dd><slot	name=”def-1”>1st	Definition</slot>
<dd><slot	name=”def-2”>2nd	Definition</slot>
</dl>
<style>
dl	{	width	:250px	;	border	:1px	solid	;	}
dt	{	background	:Orange	;	color	:White	;	}
</style>
</template>

The	style	sheet	must	be	included	in	the	template	or	its	rules	will	not	be
applied	to	the	template’s	elements.

Now,	add	a	script	to	combine	the	list	template	with	the	text	content	of	the
nominated	slots	when	the	page	loads
<script>

(function	()	{
const	homs	=

document.getElementsByClassName(‘homonym’)
const	temp	=	document.getElementById(‘list-template’)

if(‘attachShadow’	in	homs[0])
{
let	i,	copy,	shadow

for(i	=	0	;	i	<	homs.length	;	i++)
{
copy	=	temp.content.cloneNode(true)
shadow	=	homs[i].attachShadow({	mode:	’closed’	})
shadow.appendChild(copy)
}

}

})	()

</script>

Save	the	HTML	document,	then	open	it	in	your	browser	to	see	the
combined	template	and	slot	content

Strictly	speaking,	this	example	creates	a	“Shadow	Document	Object
Model”	(ShadowDOM)	that	the	script	then	appends	to	the	original
document.	The	closed	mode	simply	prevents	scripting	access	to	the
ShadowDOM	via	the	shadowRoot	property	of	the	HTML	element.

The	slot	attribute	can	only	appear	in	these	HTML	tags:
<article>
<aside>
<blockquote>
<body>
<div>
<footer>

<h1-6>
<header>
<main>
<nav>
<p>
<section>

Employ	Dialogs
You	can	create	a	“modal”	dialog,	to	which	the	user	must	respond	before
regaining	access	to	the	web	page,	by	enclosing	the	dialog’s	content	between
<dialog>	</dialog>	tags.

A	modal	dialog	appears	on	a	layer	above	all	other	page	content	and	can	contain
all	types	of	content	(text,	images,	etc.),	but	must	provide	some	means	of	closing
the	dialog	to	return	to	the	page.	Typically,	this	will	be	provided	by	including	one
or	more	buttons	on	the	modal	dialog	that	will	execute	a	script	function	when
clicked	to	perform	some	action	and	to	close	the	dialog.

A	clickable	button	can	be	added	to	a	web	page	or	modal	dialog	with	a	<button>
element.	Text	between	<button>	and	</button>	tags	will	appear	on	the	button	as	its
label.	The	opening	<button>	tag	can	include	an	onclick	attribute	to	nominate	a
script	function	to	be	called	when	the	button	is	clicked.	Alternatively,	the	script
can	dynamically	add	an	“event	listener”	for	each	button	to	recognize	when	the
user	clicks	a	button	–	creating	a	“click	event”.

Create	an	HTML	document

dialog.html

Within	the	body	section,	add	a	button	and	an	empty	paragraph	that	each
have	a	unique	id	for	scripting
<button	id=”show”>Show	Dialog</button>
<p	id=”info”></p>

Next,	add	a	dialog	containing	text,	an	image,	and	two	buttons	that	each

have	a	unique	id	for	scripting
<dialog	id=”dlog”>

Your	Choices

<img	src=”dialog-qmark.svg”
height=”64”	width=”64”	alt=”Question	Mark”>

<button	id=”cncl”>Cancel</button>
<button	id=”conf”>Confirm</button>

</dialog>

dialog-qmark.svg

Now,	add	a	script	to	add	event	listeners	and	event	handler	functions	for
each	button
<script>

(function	()	{
const	dlog	=	document.getElementById(‘dlog’)
const	info	=	document.getElementById(‘info’)
const	show	=	document.getElementById(‘show’)
const	cncl	=	document.getElementById(‘cncl’)
const	conf	=	document.getElementById(‘conf’)

show.addEventListener(‘click’,	function	()	{
dlog.showModal()
info.innerText	=	‘Modal	Dialog	Open’	})

cncl.addEventListener(‘click’,	function	()	{
dlog.close()
info.innerText	=	‘Modal	Dialog	Canceled’	})

conf.addEventListener(‘click’,	function	()	{
dlog.close()
info.innerText	=	‘Modal	Dialog	Confirmed’	})

})	()

</script>

Save	the	HTML	document,	then	open	it	in	your	browser	and	click	the

button	to	see	the	modal	dialog

Although	the	onclick	and	addEventListener	techniques	are	both
correct,	there	are	advantages	in	preferring	event	listeners.	It	cleanly
separates	script	from	HTML	code	and,	unlike	onclick,	it	allows	you	to
have	multiple	listeners	for	the	same	event.

In	Firefox	you	may	have	to	open	about:config	and	set
dom.dialog_element	to	enabled	to	see	the	modal	dialog.

Paint	Canvas
The	HTML	<canvas>	</canvas>	tags	create	a	bitmap	canvas	area	on	the	page	in
which	JavaScript	can	paint	shapes,	text,	and	images.	By	default,	the	canvas	area
is	300	pixels	wide	and	150	pixels	high	but	other	dimensions	can	be	specified	to
the	<canvas>	element’s	width	and	height	attributes.	Optionally,	fallback	text	can	be
included	between	the	<canvas>	</canvas>	tags	that	will	only	be	displayed	by
browsers	that	do	not	support	the	canvas	area.

In	order	to	use	the	canvas,	a	script	must	first	create	a
“CanvasRenderingContext2D”	object.	This	snappily-named	context	object
provides	all	the	methods	and	properties	needed	to	paint	shapes	and	text	in	the
canvas	area.	The	context	object	is	created	using	a	getContext()	method	of	the
canvas	itself.	For	example,	for	a	<canvas>	element	with	an	id	of	“canvas”,	like
this:

const	ctx	=	document.getElementById(‘canvas’).getContext(‘2d’)

Values	can	then	be	assigned	to	the	context	object’s	many	properties	and	calls
made	to	its	many	methods	to	paint	on	the	canvas,	such	as	these	basic	properties
and	methods	listed	below:

Property Sets

fillStyle fill	color	(default	Black)

strokeStyle stroke	color	(default	Black)

lineWidth stroke	width	(default	1)

font font	size	and	face	(default	10px	sans-serif)

Method Paints

fillRect() a	filled	rectangle

strokeRect() an	unfilled	rectangle

fillText() filled	text

strokeText() unfilled	text

A	canvas	can	be	repainted	at	frequent	intervals	by	a	script	to	create	animations,
and	a	canvas	can	be	used	to	create	interactive	games.	In	fact,	the	possibilities
provided	by	a	canvas	are	almost	limitless,	so	a	comprehensive	exploration	of	the
canvas	element	could	fill	another	book.	The	example	listed	opposite	merely
gives	a	brief	introduction	to	the	canvas	element	using	the	basic	properties	and
methods	in	the	table	above.

You	can	discover	more	about	the	canvas	element’s	properties	and
methods	online	in	the	HTML	Living	Standard	specifications	at
html.spec.whatwg.org/multipage/canvas.html

Create	an	HTML	document	with	a	canvas	element
<canvas	id=”canvas”	width=”500”	height=”150”>
[Fallback	Text]</canvas>

canavas.html

Add	a	script	with	a	self-invoking	function	that	begins	by	initializing	a
context	object	and	setting	two	properties
<script>
(function	()	{
const	ctx	=
document.getElementById(‘canvas’).getContext(‘2d’)
ctx.lineWidth	=	2
ctx.font	=	‘5em	Fantasy’

//	Statements	to	be	inserted	here.

http://html.spec.whatwg.org/multipage/canvas.html

})	()
</script>

Next,	insert	statements	to	fill	and	stroke	the	entire	canvas
ctx.fillStyle	=	‘Bisque’
ctx.fillRect(0,	0,	500,	150)
ctx.strokeStyle	=	‘Red’
ctx.strokeRect(0,	0,	500,	150)

Now,	insert	statements	to	fill	and	stroke	some	text
ctx.fillStyle	=	‘Orange’
ctx.fillText(‘HTML	Canvas’,	30,	100)
ctx.strokeStyle	=	‘Black’
ctx.strokeText(‘HTML	Canvas’,	30,	100)

These	arguments	specify	the	X,Y	coordinates	of	the	top-left	corner	of	the
rectangle,	followed	by	width	and	height	sizes.	These	arguments	specify
the	text	and	X,Y	coordinates	of	the	top-	left	corner	of	the	text.

Save	the	HTML	document,	then	open	it	in	your	browser	to	see	the	fills
and	strokes	painted	onto	the	canvas

Summary
• 	The		tag	places	an	image	on	the	web	page,	and	should	preferably

always	include	src,	width,	height,	and	alt	attributes.

• The	<map>	</map>	tags	enclose	<area>	elements,	to	define	the	areas	of	an
image	map,	and	must	include	a	name	attribute.

• The	<figure>	and	<figcaption>	tags	can	be	used	to	embed	a	captioned	reference
image	within	an	HTML	document.

• A	<picture>	element	can	contain	several	<source>	tags	to	provide	a	variety	of
image	sizes	for	different	screen	widths.

• The	<object>	</object>	tags	can	be	used	to	embed	external	resources	within	an
HTML	document.

• External	resources	can	be	embedded	into	an	inline	frame	with	an	<iframe>
element	that	sets	the	size	of	a	display	area.

• External	audio	resources	can	be	embedded	into	an	HTML	document	using
<audio>	</audio>	tags,	and	external	video	resources	can	be	embedded	using
<video>	</video>	tags.

• A	<video>	element	can	contain	a	nested	<track>	element	to	specify	a	subtitle
file	in	the	WebVTT	format.

• The	<progress>	element	can	be	used	to	provide	a	visual	indicator	of	media
playback.

• The	<template>	element	can	designate	a	group	of	elements	that	can	be	cloned
to	dynamically	write	content.

• A	template	can	include	<slot>	</slot>	elements	whose	content	can	differ	in
each	instance	of	the	template.

• The	<dialog>	</dialog>	tags	create	a	modal	dialog	on	a	layer	above	all	other
page	content.

• The	<button>	</button>	tags	create	a	clickable	button.

• The	<canvas>	element	can	be	used	to	add	graphics,	animations,	and
interactive	games	onto	a	web	page.

6

Create	a	Local	Domain

This	chapter	demonstrates	how	to	install	and	configure	a	web	server	on	your	PC.

Install	Abyss
Install	Python

Configure	Abyss
Echo	Script
Test	Environment
Summary

Install	Abyss
It	is	useful	to	have	a	web	server	installed	on	your	system	for	web	page
development.	There	are	several	free	web	servers	available,	such	as	the	Abyss
Web	Server	X1	from	Aprelium.

Launch	your	web	browser	and	visit	aprelium.com

Click	the	Downloads	menu	item,	then	choose	Free	Download	and
download	the	installer	for	your	system

Run	the	installer,	accept	the	license	agreement,	and	choose	options	–
such	as	64-bit	version,	SSL	Support,	and	Start	Menu	Shortcuts

http://www.aprelium.com

Accept	the	suggested	installation	location	and	click	the	Install	button

There	are	versions	of	Abyss	for	Windows,	macOS,	and	Linux.

On	a	Windows	system,	double-click	on	the	downloaded	.exe	file	to	run
the	installer.

Choose	how	you	prefer	the	web	server	to	be	started	–	such	as	Install	as	a
Windows	Service	to	continuously	run	in	the	background	automatically

Click	the	OK	button	to	open	the	Abyss	Web	Server	Console

Select	your	language	(English),	then	enter	a	memorable	login	name	and
password	–	you	will	need	these	later!

Click	the	OK	button	to	save	your	credentials,	then	click	the	next	OK
button	to	see	that	the	web	server	is	running

Now,	type	localhost	into	your	browser’s	address	field,	then	hit	Return	to
see	a	default	index	web	page	appear

If	your	system	has	limited	resources	you	may	prefer	to	start	the	web
server	manually	whenever	you	need	it.

The	default	page	is	a	file	named	index.html	located	in	a	folder	named
htdocs	at	the	location	where	you	installed	Abyss.	This	folder	is	where
you	will	place	your	web	pages	during	development.

Install	Python
A	web	server	can	run	server-side	scripts	that	respond	to	requests	made	from	a
web	browser.	The	most	popular	server-side	scripting	languages	include	PHP,
ASP.NET,	Ruby,	Perl,	and	Python.

In	order	to	enable	server-side	scripting	for	the	Abyss	Web	Server	installed	on
your	PC,	you	must	first	install	the	interpreter	for	a	server-side	scripting	language
–	such	as	Python.

Launch	your	web	browser	and	visit	activestate.com

Sign	in	(or	create	an	account	and	sign	in),	then	select	Featured	Projects
&	Languages	and	download	the	latest	Python	build	installer	for	your
system

Run	the	installer,	then	click	Next	to	begin	setup

Click	Next	to	accept	the	license	agreement

http://www.activestate.com

Click	Next	to	accept	the	suggested	installation	location	and	all	options

Python	is	available	for	free	and	there	is	no	charge	for	creating	an	account
at	ActiveState.

The	suggested	installation	folder	name	may	include	a	version	number,
but	you	can	change	it	to	C:\Python\.

Now,	click	the	Install	button	on	the	next	dialog	to	begin	the	installation
process	–	sit	back,	this	will	take	a	while

When	installation	has	completed,	click	the	Finish	button	to	close	the
installer

Now,	open	a	Command	Prompt	or	Terminal	window,	then	type	python
and	hit	Return	to	open	the	Python	Console	–	where	you	can	interact
with	the	interpreter

At	the	Python	Console	prompt,	precisely	type	this	line	of	Python	code
and	hit	Return	to	see	the	location	of	the	interpreter	“python.exe”	on	your
system
import	sys	;	print(sys.executable)

Installation	is	lengthy	because	the	installer	dynamically	compiles	C
source	code	as	it	runs.

You	can	find	the	Command	Prompt	launcher	in	the	Windows	System
folder	on	the	Windows	10	Start	menu.

Note	the	interpreter	location,	as	you	will	need	it	to	configure	Abyss	for
Python	scripting.

Configure	Abyss
In	order	for	the	Abyss	Web	Server	to	execute	Python	server-side	scripts	it	must
be	configured	to	know	the	location	on	your	system	of	the	Python	interpreter
(python.exe)	and	to	recognize	that	files	with	the	file	extension	of	.py	are	Python
scripts.

With	the	Abyss	Web	Server	running,	launch	your	web	browser	and	type
localhost:9999	into	the	address	field	then	hit	Return	to	open	the	Abyss
Web	Server	Console

Enter	your	credentials,	then	click	the	Configure	button

Now,	click	the	Scripting	Parameters	icon

A	“Scripting	Parameters”	page	will	now	appear	–	check	the	Enable
Scripts	Execution	box

Now,	click	the	Add	button	in	the	Interpreters	table

The	domain	name	localhost	is	an	alias	for	the	IP	(Internet	Protocol)
address	127.0.0.1	–	so	you	could	enter	127.0.0.1:9999	to	open	the
Abyss	Web	Server	Console.

	An	“Interpreters”	page	will	now	appear	–	set	the	Interface	field	to
CGI/ISAPI

Now,	click	the	Browse	button	in	the	Interpreter	field,	and	go	to	the
Python	folder	and	select	the	python.exe	file

Check	the	Use	the	associated	extensions	to	automatically	update	the
Script	Paths	box

Now,	click	the	Add	button	in	the	Associated	Extensions	field	and	enter
py	in	the	Extension	field

Click	the	OK	button,	and	click	OK	again,	then	click	the	Restart	button
to	apply	the	new	configuration

CGI	(Common	Gateway	Interface)	and	ISAPI	(Internet	Server	Application
Programming	Interface)	allow	data	to	be	transferred	between	the	web
server	and	a	script	interpreter.

Your	selections	should	look	similar	to	those	shown	here.

Echo	Script
Having	configured	the	Abyss	Web	Server	for	the	Python	interpreter,	and	for
script	files	with	the	.py	file	extension,	you	can	now	create	a	Python	script	to	be
executed	in	response	to	a	request	from	your	web	browser.

Many	requests	send	data	as	key=value	pairs	to	the	web	server,	so	a	Python	script
could	simply	echo	the	pairs	in	an	HTML	response	that	places	the	keys	and
values	in	a	table.

Open	a	plain	text	editor,	such	as	Windows’	Notepad	app,	then	type	an
instruction	at	the	beginning	of	the	first	line	to	use	a	special	Python
module	for	server-side	scripting
import	cgi

echo.py

	Next,	assign	all	key=value	pairs	to	a	variable,	using	a	function	supplied
by	the	special	Python	module
form	=	cgi.FieldStorage()

Now,	use	the	Python	built-in	print()	function	to	write	the	HTML	headers
that	will	be	sent	to	the	browser
print(‘Content-Type:text/html;	charset=utf-8’)

The	headers	must	be	separated	from	content,	so	add	this	line	to	write	two
carriage	return	and	newline	characters
print(‘\r\n\r\n’)

Start	writing	the	HTML	document	with	a	type	declaration,	title,	and	style
sheet
print(‘‘‘<!DOCTYPE	HTML>
<html><title>Web	Server	Response</title>
<style>tr,th,td{border:2px	solid	Gray}</style>’’’)

Next,	begin	a	table	with	two	header	cells
print(‘<table	style=”width:500px”><tr><th>Key<th>Value’)

Then,	add	a	loop	to	write	any	keys	and	values	in	table	cells
for	i	in	form.keys()	:
key	=	str(i)
val	=	str(form.getvalue(key))
print(‘<tr><td>’	+	key	+	‘<td>’	+	val)

Indentation	is	used	in	Python	to	group	statements,	instead	of	curly
brackets,	so	these	three	lines	must	be	indented	alike.

Finally,	add	these	lines	to	complete	the	table,	to	display	the	server	icon,
and	to	complete	the	HTML	document
print(‘‘‘</tr></table>
</html>’’’)

Ensure	that	your	script	looks	like	the	screenshot	above

Save	the	file	as	echo.py	in	the	htdocs	folder	of	the	Abyss	Web	Server
location	on	your	system	–	typically	on	Windows	this	is	C:\Abyss	Web
Server\htdocs

With	the	Abyss	Web	Server	running,	open	your	browser	then	type
localhost/echo.py	into	the	address	field	and	hit	Return	to	see	the	script
respond	with	an	empty	table

You	can	discover	more	about	Python	scripting	with	the	companion	book
in	this	series:	Python	in	easy	steps.

http://ineasysteps.com/products-page/all_books/python-easy-steps-2nd-edition/

The	echo.py	script	is	used	throughout	Chapter	7	to	demonstrate	HTML
form	submission	to	the	Abyss	Web	Server.

Test	Environment
Now,	with	the	Abyss	Web	Server	installed	and	configured	to	execute	the	Python
script	here,	the	environment	can	be	tested	by	sending	data	from	the	browser	to
the	server.

Data	can	be	sent	to	the	server	by	appending	a	“query	string”	to	the	URL	of	the
Python	script.	This	begins	with	a	?	question	mark	separator	followed	by	a
key=value	pair	–	for	example,	to	send	a	single	pair	with	http://localhost/echo.py?
Forename=Mike.

Multiple	key=value	pairs	can	be	sent	to	the	server	with	each	pair	separated	by	an
&	ampersand	character	in	the	query	string,	such	as	http://localhost/echo.py?
Forename=Mike&Surname=McGrath.

The	data	can	be	sent	by	entering	the	URL	and	query	string	directly	into	the
browser’s	address	field.	It	can	also	be	sent	from	a	hyperlink	that	targets	the	URL
and	query	string,	or	from	JavaScript	that	sets	location	to	the	URL	and	query
string.

Create	an	HTML	document

query-string.html

Next,	within	the	body	section,	add	a	hyperlink	to	send	data	to	the	Python
script

Styling	Web	Pages

	Now,	add	a	button	in	the	body	section
<button	id=”sender”>Scripting	Web	Pages</button>

	Finally,	add	a	script	to	send	data	to	the	Python	script	when	the	user
clicks	the	button
<script>

(function	()	{
const	sender	=	document.getElementById(‘sender’)
sender.addEventListener(‘click’	,	function	()	{
location=’http://localhost/echo.py?JavaScript=Function’	})

})	()

</script>

	Save	the	HTML	document	in	the	server’s	htdocs	folder,	then	open	it	in
your	browser	and	use	the	browser’s	address	field,	hyperlink,	or	button	to
send	data

The	Python	script	is	performing	as	expected.	Add	more	key=value	pairs
to	the	query	string	(each	pair	separated	by	an	&)	to	see	the	response	add
further	rows	to	the	table.

Summary
• 	The	free	Abyss	Web	Server	X1	can	be	installed	on	your	own	PC	for	web

development.

• Abyss	can	be	started	manually	or	set	to	continuously	run	in	the	background
automatically.

• When	Abyss	is	running	it	provides	a	domain	named	localhost	that	is	an	alias
for	the	IP	address	127.0.0.1.

• A	web	server	can	call	upon	an	interpreter	to	execute	server-side	scripts	that
respond	to	requests	from	a	web	browser.

• The	most	popular	server-side	scripting	languages	include	PHP,	ASP.NET,
Ruby,	Perl,	and	Python.

• When	Python	is	installed	you	can	directly	interact	with	its	interpreter
(python.exe)	via	the	Python	Console.

• Abyss	must	be	configured	to	know	the	location	of	the	Python	interpreter
(python.exe)	and	to	recognize	that	files	with	the	file	extension	of	.py	are
Python	scripts.

• The	URL	localhost:9999	and	user	credentials	are	needed	to	open	the	Abyss
Web	Server	Console.

• The	CGI/ISAPI	interfaces	allow	data	to	be	transferred	between	the	web
server	and	a	script	interpreter.

• The	Abyss	Web	Server’s	location	on	your	system	contains	a	htdocs	folder
that	is	recognized	by	the	localhost	domain.

• HTML	documents,	server-side	scripts,	and	other	resource	files	should	be
placed	in	the	Abyss	htdocs	folder.

• Data	can	be	sent	to	a	web	server	by	appending	a	query	string	to	a	requested
URL.

• Query	strings	begin	with	a	?	question	mark	separator.

• Query	strings	contain	one	or	more	key=value	pairs,	with	each	pair	separated
by	an	&	ampersand	character.

• A	Python	server-script	can	echo	data	sent	to	it	from	a	browser	request	within

a	web	server	response.

7

Produce	Input	Forms

This	chapter	demonstrates	how	to	include	forms	to	submit	data	to	a	web	server.

Submit	Text
Input	Types

Text	Areas
Check	Boxes
Hide	Data
Upload	Files

Push	Buttons
Image	Buttons
Add	Logos
Select	Options

Datalist	Options
Label	Controls
Summary

Submit	Text
Web	page	forms	are	built	from	HTML	elements	that	send	data	to	a	web	server.
Each	element	includes	a	name	attribute	and	a	value	attribute	so	the	data	assigned
to	these	attributes	can	be	processed	as	key=value	pairs.	For	example,	where	an
element’s	name	attribute	is	assigned	“Brand”	and	its	value	attribute	is	assigned
“Ford”,	the	key=value	pair	represents	the	data	as	Brand=Ford.

Form	elements	are	enclosed	between	<form>	</form>	tags.	Each	opening	<form>
tag	should	include	a	method	attribute,	specifying	which	HTTP	method	is	to	be
used	to	submit	the	form,	and	an	action	attribute	specifying	the	URL	of	a	server-
side	script	that	is	to	be	used	to	process	the	submitted	data.

The	method	attribute	can	be	assigned	values	of	“GET”	or	“POST”.	Submission
via	the	preferred	GET	method	appends	the	data	to	the	URL,	whereas	submission
via	the	POST	method	encodes	the	data	differently	and	can	be	used	when	the	GET
method	fails.

Typically,	an	HTML	form	will	have	a	“Submit”	button	that	the	user	clicks	to
send	the	data	for	processing.	This	is	created	by	assigning	the	value	“submit”	to	a
type	attribute	of	an	<input>	tag.	Additionally,	this	tag	may	include	name	and	value
attributes	to	submit	data	assigned	to	them	as	a	name=value	pair.

An	HTML	form	can	provide	text	boxes	where	the	user	can	input	data	for
submission.	These	are	created	by	assigning	the	value	“text”	to	the	type	attribute
of	an	<input>	tag,	and	a	name	to	its	name	attribute.	The	data	in	the	text	box	is	sent
as	the	value	associated	with	the	text	box	name	as	a	key=value	pair.	Optionally,
the	<input>	tag	can	include	a	value	attribute	to	specify	a	default	value.	A	text	box
for	the	input	of	a	password	is	created	by	assigning	the	value	“password”	to	the
type	attribute	of	an	<input>	tag.	This	functions	like	any	other	text	box,	but	it	does
not	display	its	contents	as	readable	text.	Both	text	and	password	<input>	elements
can	optionally	include	these	other	attributes:

• size	–	the	width	of	the	text	box	in	average	character	widths.

• minlength	and	maxlength	–	permissible	number	of	characters.

• min	and	max	–	permissible	range	of	numeric	values.

• placeholder	–	provides	a	data	entry	hint	to	the	user.

• readonly	–	the	default	value	in	the	text	box	cannot	be	changed.

• disabled	–	the	text	box	is	grayed	out	and	will	not	be	submitted.

Data	sent	by	the	GET	method	is	attached	to	the	request	as	a	query
string,	so	may	be	visible	in	the	browser’s	address	field	in	the	web	server’s
response.	You	can	submit	by	the	POST	method	to	prevent	this	for
sensitive	data.

	Create	an	HTML	document	containing	a	form	to	send	data	to	a	server-
side	script	using	the	GET	method
<form	method=”GET”	action=”http://localhost/echo.py”	>
<!--	Form	components	to	go	here.	-->
</form>

textbox.html

Now,	in	the	form	element,	insert	text	inputs	and	a	submission	button	–
whose	value	will	appear	on	the	button
<dl>
<dt>User	Name:
<dd><input	type=”text”	name=”Name”>
<dt>Password:
<dd><input	type=”password”	name=”Pwd”>
<dt>Zip	Code:
<dd><input	type=”text”	name=”Zip”

size=”5”	maxlength=”5”>
</dl>
<input	type=”submit”	name=”Form”	value=”Sender”>

Save	the	HTML	document	in	the	Abyss	htdocs	folder,	then	open	it	in
your	browser	and	submit	some	data

The	examples	in	this	chapter	send	form	data	to	the	server-side	script
created	here.

Notice	that	the	data	in	the	response	is	not	necessarily	in	the	same	order
as	the	form	input	elements.

Input	Types
An	HTML	form	<input>	tag	can	enforce	its	completion	by	including	the	required
keyword.	It	can	also	control	what	the	user	is	permitted	to	submit	by	the	value
assigned	to	its	type	attribute.	Many	of	the	input	types	listed	in	the	table	below
prohibit	submission	of	the	form	if	the	user	enters	a	value	that	is	not	permitted
and	issue	an	error	notice.	Some	also	provide	special	controls	that	allow	the	user
to	easily	select	a	permitted	value.

Type Permitted	input

text String	of	text

password String	of	text	(obscured	by	browser)

url Valid	URL	protocol	and	domain	address

email Valid	email	address

date Date	in	mm/dd/yyyy	format

month Month	and	year

week Week	number	and	year

time Time	in	HH:MM	format

datetime-local Date	and	time	as	mm-dd-yy	HH:MM

number Numeric	integer	value

range Numeric	integer	value	(slider)

color Color	in	#RRGGBB	hexadecimal	format

file File	path	address	(browse)

Create	an	HTML	document	containing	a	form	with	a	submit	button
<form	method=”GET”	action=”http://localhost/echo.py”	>
<!--	Input	elements	to	go	here.	-->

<p><input	type=”submit”	value=”Submit	Form”></p>
</form>

input-types.html

Now,	in	the	form,	insert	four	controlling	input	elements
Color:	<input	type=”color”	name=”color”>
Range:
<input	type=”range”	name=”range”	min=”1”	max=”10”>
Time:	<input	type=”time”	name=”time”>	

URL:
<input	type=”url”	name=”url”	size=”54”required	>

Save	the	HTML	document	in	the	Abyss	htdocs	folder,	then	try	to	submit
the	form	to	see	it	fail

Enter	a	valid	URL	into	the	url	type	input	field

Now,	enter	permitted	values	using	the	special	controls	for	the	other
inputs,	then	submit	the	form	successfully

Notice	that	special	characters	are	converted	to	percentage	Unicode
values	in	the	query	string.	Here	the	#	symbol	is	converted	to	its	Unicode
value	%23.

Text	Areas
An	HTML	form	can	provide	a	multi-line	text	field	where	the	user	can	input	data
for	submission	to	the	web	server	for	processing.	These	are	created	by	<textarea>
</textarea>	tags	that	may	enclose	default	text	content.

The	<textarea>	tag	should	include	a	name	attribute	that	will	be	associated	with	the
element’s	content	upon	submission	as	a	key=value	pair.	Additionally,	this	tag
must	include	a	rows	attribute,	to	specify	the	number	of	visible	text	lines,	and	a
cols	attribute	to	specify	the	field	width	in	average	character	widths.	Optionally,	it
may	also	include	a	readonly	attribute	to	prevent	the	user	editing	its	content.

When	submitting	large	bodies	of	text	you	must	be	aware	of	some	limitations	of
the	GET	method.	This	varies	by	browser,	but	may	only	allow	the	URL	to	append
up	to	around	200	characters.	The	POST	method	provides	much	larger	capacity	as
the	text	is	sent	as	“Form	Data”	along	with	the	HTTP	header,	not	simply
appended	to	the	URL:

Create	an	HTML	document	with	a	form	element	containing	a	submit
button	to	send	form	data	by	the	POST	method
<form	method=”POST”	action=”http://localhost/echo.py”	>

<!--	Text	area	element	to	go	here.	-->

<p><input	type=”submit”	value=”Submit	Form”></p>

</form>

textarea.html

Now,	in	the	form	element,	insert	a	text	input	area	that	has	10	rows	and	is
65	average	character	widths	wide
<textarea	name=”The	Future	Web”

rows=”8”	cols=”70”>
</textarea>

Save	the	HTML	document	in	the	Abyss	htdocs	folder,	then	open	the	web
page	in	your	browser,	enter	some	data,	and	submit	the	form

Unlike	a	text	<input>	element,	the	<textarea>	element	has	no	value
attribute	–	as	its	content	is	treated	as	its	value.

The	text	is	not	appended	to	the	URL,	so	examine	the	response	headers	to
see	it	has	been	sent	as	“Form	Data”

The	average	character	width	may	vary	between	browsers	–	so	the
physical	size	of	the	text	area	field	may	vary	too.

You	can	use	the	Developer	Tools	in	the	Google	Chrome	web	browser	to
examine	response	headers.	Hit	F12	then	choose	the	Network	tab	and
select	the	echo.py	item	in	the	left	pane.

Check	Boxes
An	HTML	form	can	provide	a	visual	checkbox	“on/off”	switch	that	the	user	can
toggle	to	include	or	exclude	its	associated	data	for	submission	to	the	server.
When	the	box	is	checked,	the	switch	is	set	to	“on”	and	its	key=value	pair	will	be
submitted.

A	checkbox	is	created	by	assigning	the	value	“checkbox”	to	the	type	attribute	of
an	<input>	tag.	This	tag	must	also	include	a	name	attribute	and	a	value	attribute	to
specify	the	key=value	pair	values.	Optionally,	this	tag	may	also	include	a
boolean	checked	attribute	to	set	the	initial	state	of	the	switch	to	“on”	–	so	a	check
mark	will	automatically	appear	in	the	checkbox.	Checkbox	names	may	be
individually	unique,	or	several	checkboxes	can	share	a	common	name	to	allow
the	user	to	select	multiple	values	for	the	same	named	property.	In	this	case,	the
selected	values	are	returned	by	the	server	as	a	comma-separated	list	where
key=value,value,value.

A	“radio	button”	is	similar	to	a	checkbox	but	is	created	by	assigning	the	value
“radio”	to	the	type	attribute	of	an	<input>	tag.	Unlike	checkboxes,	radio	buttons
that	share	a	common	name	are	mutually	exclusive,	so	when	one	radio	button	is
selected,	all	others	in	that	group	are	automatically	switched	off.

Multiple	checkboxes	and	radio	buttons	can	be	visually	grouped	by	surrounding
their	<input>	elements	with	<fieldset>	</fieldset>	tags.	These	may	also	contain
<legend>	</legend>	tags	to	state	a	common	group	name:

Create	an	HTML	document	with	a	form	element	containing	a	submit
button
<form	method=”GET”	action=”http://localhost/echo.py”	>

<!--	Checkbox	and	radio	buttons	to	go	here.	-->

<p><input	type=”submit”></p>
</form>

checkbox.html

Now,	in	the	form	element,	insert	a	paragraph	containing	two	checkboxes
<p>Send	details
<input	type=”checkbox”	name=”Send”	value=”Details”>
Send	prices
<input	type=”checkbox”	name=”Send”	value=”Prices”>
</p>

The	checked	attribute	need	have	no	assigned	value	–	its	presence	sets
the	switch	to	“on”	and	its	absence	leaves	the	switch	in	its	“off”	state.

Next,	in	the	form	element,	insert	a	fieldset	with	a	legend
<fieldset>
<legend>What	kind	of	language	is	HTML?</legend>

<!--	Radio	buttons	to	go	here.	-->

</fieldset>

Then,	in	the	fieldset,	insert	radio	buttons	with	one	selected
Scripting	<input	type=”radio”

name=”Definition”	value=”Scripting”>	

Markup	<input	type=”radio”

name=”Definition”	value=”Markup”>	

Programming	<input	type=”radio”
name=”Definition”	value=”Programming”checked>

Save	the	HTML	document	in	the	Abyss	htdocs	folder,	then	open	the	web
page,	check	both	checkboxes,	select	the	correct	radio	button	answer,	and
submit	the	form

The	<fieldset>	element	only	groups	the	related	elements	it	encloses	for
visual	presentation	–	it	does	not	associate	them	programmatically.

Check	only	one	checkbox	and	submit	the	form	to	see	only	the	checkbox’s
name	and	value	are	sent	to	the	web	server.

Hide	Data
An	HTML	form	can	provide	hidden	elements	that	create	no	visible	controls	but
allow	additional	data	to	be	submitted	to	the	server.	Hidden	form	data	is	created
by	assigning	the	value	“hidden”	to	the	type	attribute	of	an	<input>	tag.	This	tag
must	also	include	a	name	attribute,	and	may	include	a	value	attribute	to	specify
static	data	that	will	be	submitted	as	a	name=value	pair.	Optionally,	the	<input>
tag	may	include	an	id	attribute	and	omit	the	value	attribute	so	its	value	can	be
specified	by	script.

Hidden	form	data	can	also	be	used	to	perform	a	calculation	and	dynamically
display	the	result	in	an	<output>	</output>	element.	The	<output>	tag	must	include
an	id	attribute	and	a	for	attribute	for	reference	in	script.	The	for	attribute	can
specify	multiple	element	identities	as	a	space	separated	list.	These	can	be	used	in
an	assignment	to	the	<form>	tag’s	oninput	attribute	to	perform	a	calculation	whose
result	will	appear	in	the	<output>	</output>	element	–	but	will	not	be	submitted	to
the	server:

Create	an	HTML	document	containing	an	image	displaying	an	item	with
sale	price	details
<img	src=”hidden-sale.png”

width=”200”	height=”120”	alt=”Sale”>

hidden.html

Next,	insert	a	form	element
<form	method=”GET”	action=”http://localhost/echo.py”	>

<!--	Hidden	data,	input,	and	output	to	go	here	-->

<input	type=”submit”	name=”Offer”
value=”Buy	Teddy	Bears”>

</form>

Within	the	form	element,	insert	a	visible	input	element	for	user-entered
data
Qty	(60	Available)	<input	type=”number”	id=”qty”
name=”Quantity”	min=”1”	max=”60”>

Now,	in	the	form	element,	insert	an	invisible	element	for	hidden	data	and
an	element	to	display	a	calculated	result
<input	type=”hidden”	id=”price”

name=”Unit	Price”	value=”24.99”>
<output	name=”sum”	for=”qty	price”></output>	

Hidden	data	elements	can	be	useful	to	maintain	user	data	across	a
website	–	a	user	name	entered	on	the	first	page	can	be	recalled	on	any
other	page.

Then,	insert	another	attribute	in	the	<form>	tag
oninput=”sum.value=multiply(qty,	price)”

Add	a	script	to	perform	the	calculation
<script>

function	multiply(q,p)	{

let	result=parseFloat(q.value)	*	parseFloat(p.value)

if	(isNaN(result)	||	result	<	1)	return	‘	‘
else	return	‘Total:	$’	+	result.toFixed(2)

}

</script>

Save	the	HTML	document	in	the	Abyss	htdocs	folder,	then	open	the	web
page	in	your	browser,	enter	data,	and	submit	the	form

JavaScript	is	case-sensitive	so	you	must	use	the	correct	case	when
copying	script	examples.

The	hidden	form	<input>	data	gets	submitted	to	the	server,	but	the
<output>	element	merely	displays	the	result	of	the	calculation.

Upload	Files
An	HTML	form	can	provide	a	file	selection	facility,	which	calls	upon	the
operating	system’s	“Choose	File”	dialog,	to	allow	the	user	to	browse	their	local
file	system	and	select	a	file.

A	file	selection	facility	is	created	by	assigning	the	value	“file”	to	the	type
attribute	of	an	<input>	tag	and	a	name	to	its	name	attribute.	This	element	produces
a	text	field	and	a	“Browse”	button	to	launch	the	Choose	File	dialog.	After	a	file
has	been	selected,	its	full	path	appears	in	the	text	field.	When	the	form	is
submitted,	the	element	name	and	the	selected	file’s	name	are	sent	to	the	web
server	as	a	name=value	pair.

Where	a	selected	file	is	to	be	uploaded	to	the	web	server,	the	<form>	tag	must
include	an	enctype	attribute	specifying	the	encoding	type	as	“multipart/form-
data”.	Also,	its	method	attribute	must	specify	the	POST	method	–	because	Form
Data	cannot	be	appended	to	a	URL	using	the	GET	method:

Create	an	HTML	document	with	a	form	element	containing	a	submit
button	to	send	form	data	by	the	POST	method	and	specify	the	encoding
type	for	Form	Data
<form	method=”POST”

action=”http://localhost/upload.py”
enctype=”multipart/form-data”	>

<!--	File	input	element	to	go	here.	-->

<input	type=”submit”>
</form>

upload.html

In	the	form	element,	insert	a	file	element	and	a	line	break
<input	type=”file”	name=”Upload”	size=”70”	>	

Save	the	HTML	document	in	the	Abyss	htdocs	folder,	then	open	the	web
page	in	your	browser,	select	a	file	on	your	system,	and	submit	the	form

Look	in	the	Abyss	htdocs	folder	to	see	a	copy	of	the	selected	file	is	now
placed	there

This	example	uses	a	Python	script	named	upload.py	placed	in	the	Abyss
htdocs	folder.	This	script	is	provided	in	the	download	archive	for	this
book,	which	is	freely	available	from	www.ineasysteps.com/resource-
centre/downloads

http://www.ineasysteps.com/resource-centre/downloads

Push	Buttons
An	HTML	form	can	provide	push	buttons	for	scripting	purposes.	When	the	user
pushes	a	button,	a	“click	event”	occurs	to	which	a	script	function	can	respond.
This	allows	the	user	to	dynamically	interact	with	the	form,	and	can	be	used	to	set
attribute	values.	When	a	script	designates	a	function	to	be	called,	whenever	a
button	gets	pushed	it	is	said	to	attach	a	“behavior”	to	that	button.	A	push	button
is	created	by	specifying	a	“button”	value	to	the	type	attribute	of	an	<input>	tag,
and	should	also	include	an	id	attribute	so	the	script	can	easily	identify	that
element.	Text	assigned	to	the	button’s	value	attribute	will	appear	on	the	face	of
the	button.

Additionally,	any	HTML	form	can	be	returned	to	its	original	state	by	pushing	a
reset	button	that	is	created	by	specifying	a	“reset”	value	to	the	type	attribute	of	an
<input>	tag:

Create	an	HTML	document	with	a	form	element	containing	a	reset
button,	a	push	button,	and	a	submit	button
<form	method=”GET”	action=”http://localhost/echo.py”	>

<!--	Fieldset	to	go	here.	-->

<input	type=”reset”	value=”Reset	Form”>
<input	type=”button”	value=”Choose	For	Me”	id=”btn”>
<input	type=”submit”	value=”Submit	Form”>

</form>

button.html

Within	the	form	element,	insert	a	fieldset	containing	a	legend	and	a
checkbox	group
<fieldset>

<legend>Pizza	Toppings</legend>

<input	id=”pepperoni”	type=”checkbox”
name=”Toppings”	value=”Pepperoni”>Pepperoni	|

<input	id=”mushroom”	type=”checkbox”
name=”Toppings”	value=”Mushroom”>Mushroom	|

<input	id=”bbqsauce”	type=”checkbox”
name=”Toppings”	value=”BBQ	Sauce”>BBQ	Sauce

</fieldset>

Add	a	script	that	attaches	a	behavior	to	the	push	button
<script>
(function	()	{

const	pep	=	document.getElementById(‘pepperoni	‘)
const	btn	=	document.getElementById(‘btn	‘)

btn.addEventListener(‘click’	,	function	()	{
pep.checked	=	true	})

})	()
</script>

Save	the	HTML	document	in	the	Abyss	htdocs	folder,	then	open	the	web
page	in	your	browser,	and	push	the	button	to	check	a	box

Now,	push	the	reset	button	to	clear	the	form,	then	check	the	other	two
boxes	and	submit	the	form

The	mere	presence	of	a	Boolean	checked	attribute	in	an	HTML	element
checks	the	box,	but	in	script	the	box’s	checked	property	needs	to	be
assigned	a	true	value	to	check	the	box.

Image	Buttons
An	HTML	form	can	use	an	image	button	to	submit	the	form,	in	place	of	a
regular	submit	button.	An	image	button	is	created	by	specifying	an	“image”
value	to	the	type	attribute	of	an	<input>	tag	and	including	an	alt	attribute.	When	a
form	is	submitted	by	an	image	button,	the	XY	coordinates	of	the	point	at	which
the	click	occurred	are	automatically	submitted	as	key=value	pairs	along	with	the
rest	of	the	form	data.

Additionally,	a	regular		tag	can	be	used	as	an	image	button	by	attaching	a
behavior	with	script.	Where	the	behavior	is	to	submit	a	form,	the	script	function
can	usefully	incorporate	validation	–	for	example,	to	ensure	a	user-entered	email
address	is	in	the	expected	format:

Create	an	HTML	document	with	a	form	element	containing	a	text	input
field,	which	both	have	an	identity	for	scripting
<form	id=”my-form”

method=”GET”	action=”http://localhost/echo.py”	>

Please	Supply	Your	Email	Address:
<input	id=”adr”

name=“Address”	type=“text”	size=”45”>	

<!--	Image	Buttons	to	go	here.	-->

</form>

ibutton.html

Next,	in	the	form	element,	insert	an	image	button	that	will	simply	submit
the	form
<input	type=”image”

src=”ibutton.png”
alt=”Submit	Button”
title=”Click	to	submit	form”>

Now,	in	the	form	element,	insert	an	image	button	that	will	perform
validation	then	submit	the	form
<img	id=”btn”

src=”ibutton.png”
alt=”Submit	Button”
title=”Click	to	submit	with	JavaScript	validation”>

Note	that	the	image	button	that	will	perform	validation	is	given	an	identity
so	the	script	can	attach	a	behavior	to	it.

Add	a	script	that	attaches	a	behavior	to	an	image	button
<script>
(function	()	{

const	btn	=	document.getElementById(‘btn’)
btn	.addEventListener(‘click’	,	function	()	{

const	myForm	=	document.getElementById(‘myForm’)
const	pattern	=
/^([a-zA-Z0-9_.-])+@([a-zA-Z0-9_.-])+\.([a-zA-Z])+([a-zA-Z])+/
let	adr	=	document.getElementById(‘adr’).value
if(!pattern.test(adr))	alert(‘Invalid	Email	Address’)
else	myForm.submit()
})

})	()
</script>

Save	the	HTML	document	in	the	Abyss	htdocs	folder,	then	open	it	in
your	browser,	enter	an	incomplete	email	address,	and	submit	the	form
using	each	button

When	validation	fails	using	the	button	with	scripted	behavior,	correct	the
email	address	then	click	the	validating	button	again	to	submit	the	form
successfully

The	script	in	this	example	checks	the	input	text	against	a	regular
expression	pattern	that	describes	the	format	of	any	valid	email	address.
The	pattern	must	appear	on	a	single	line	–	exactly	as	it	is	listed	here.

Submit	the	form	with	the	unscripted	image	button	to	also	see	coordinates
in	the	web	server	response.

Add	Logos
HTML	can	create	push	buttons	that	display	small	“logo”	images	using	<button>
</button>	tags.	These	tags	can	then	enclose	an		element	specifying	the	URL
of	the	logo	image,	and	text	that	will	appear	on	the	face	of	the	button.

Each	<button>	tag	should	include	a	type	attribute	to	specify	whether	the	button	is
simply	a	scripting	“button”	type,	a	“submit”	form	type,	or	a	“reset”	form	type.
Scripting	buttons	can	include	an	onclick	attribute	in	the	<button>	tag	to	specify	the
function	to	be	called	when	the	button	gets	clicked,	or	directly	specify	a	snippet
of	script	to	execute:

Create	an	HTML	document	with	a	form	element	containing	a	fieldset
with	a	legend	and	a	text	input	field
<form	method=”GET”	action=”http://localhost/echo.py”>

<fieldset>

<legend>Favorite	Color</legend>
<input	type=”text”	name=”Color”>

<!--	Logo	Buttons	to	go	here.	-->

</fieldset>

</form>

logo.html

In	the	fieldset,	insert	a	scripting	logo	button	specifying	a	snippet	of	script

to	execute	when	that	button	gets	clicked
<button	type=”button”
onclick=”alert(‘Enter	your	favorite	color	in	the	text	box’)”>

<!--	Logo	Image	and	Face	Text	to	go	here.	-->

</button>

Now,	within	the	button	element,	insert	an	image	element	and	text	that
will	appear	on	the	face	of	the	button
Help

Next,	add	a	button	element	to	submit	the	form
<button	type=”submit”>

Submit</button>

Finally,	add	a	button	element	to	reset	the	form
<button	type=”reset”>
Reset</button>

Save	the	HTML	document	in	the	Abyss	htdocs	folder,	then	open	it	in
your	browser	and	click	the	“Help”	button

Enter	a	color	in	the	text	box,	then	click	the	reset	logo	button	to	clear	the
text	box

Enter	a	color	in	the	text	box	again,	then	submit	the	form

You	can	specify	a	default	value	for	a	text	input	to	the	value	attribute	of	its
<input>	tag.

Select	Options
An	HTML	form	can	provide	a	select	option	list,	from	which	the	user	can	select
one	option	to	include	its	associated	data	for	submission	to	the	server.

A	select	option	list	is	created	using	<select>	</select>	tags.	The	opening	<select>
tag	must	include	a	name	attribute	specifying	a	list	name.	The	<select>	element
encloses	<option>	</option>	tags	that	define	each	option.	Each	opening	<option>	tag
must	include	a	value	attribute	specifying	an	option	value.	When	the	form	is
submitted,	the	list	name	and	the	selected	option	value	are	sent	to	the	server	as	a
name=value	pair.

Optionally,	one	<option>	tag	may	also	include	a	boolean	selected	attribute	to
automatically	select	that	option,	and	the	<option>	elements	may	be	grouped	by
enclosure	in	<optgroup>	</optgroup>	tags.	The	opening	<optgroup>	tag	may	specify
an	option	group	name	to	a	label	attribute.

A	select	option	list	will	normally	appear	as	a	single-line	dropdown	list	unless	a
size	attribute	is	included	in	the	<select>	tag	to	specify	the	number	of	rows	to	be
visible:

Create	an	HTML	document	with	a	form	element	containing	a	submit
button
<form	method=”GET”	action=”http://localhost/echo.py”	>

<!--	Select	option	lists	to	go	here.	-->

<p>
<input	type=”submit”>
</p>

</form>

select.html

Now,	in	the	form	element,	insert	a	fixed	height	select	option	list	with	one
option	automatically	selected
<select	name=”HTML	List	Type	Selector	One”	size=”4”>

<optgroup	label=”List	Type	1”>
<option	value=”UL”>Unordered	List</option>
<option	value=”OL”selected>Ordered	List</option>
<option	value=”DL”>Description	List</option>
</optgroup>

</select>

Next,	in	the	form	element,	insert	a	dropdown	select	option	list	with	one
option	automatically	selected
<select	name=”HTML	List	Type	Selector	Two”>

<optgroup	label=”List	Type	2”>
<option	value=”UL”>Unordered	List</option>
<option	value=”OL”>Ordered	List</option>
<option	value=”DL”selected>Description	List</option>
</optgroup>

</select>

Save	the	HTML	document	in	the	Abyss	htdocs	folder,	then	open	it	in
your	browser

Open	the	dropdown	list	and	submit	the	form	to	see	the	default	option
values	get	submitted

Always	include	a	selected	attribute	to	automatically	select	one	option	in
each	option	list	–	to	provide	a	default	choice.

Datalist	Options
A	simple	“autocomplete”	feature	can	be	provided	for	a	text	<input>using	a
<datalist>	</datalist>	element	to	enclose	a	number	of	pre-defined	<option>	values.
The	user	may	choose	any	one	of	the	options,	or	enter	text	directly	into	the	input
field.	In	order	to	associate	the	<input>	field	with	the	list,	the	<datalist>	tag	must
include	an	id	attribute	to	specify	a	list	name.	The	same	name	must	then	be
specified	to	a	list	attribute	within	the	<input>	tag	to	create	the	association.	The
<input>	tag	must	also	include	a	name	attribute	to	send	to	the	server	as	usual.

Create	an	HTML	document	with	a	form	element	containing	a	submit
button
<form	method=”GET”	action=”http://localhost/echo.py”>

<!--	Form	data	list	and	input	field	to	go	here.	-->

<p><input	type=”submit”	value=”Submit	Form”></p>
</form>

datalist.html

Next,	insert	a	data	list	of	pre-defined	options	with	a	specified	id	name
<datalist	id=”browsers”>

<option	value=”Google	Chrome”>
<option	value=”Firefox”>
<option	value=”Internet	Explorer”>
<option	value=”Opera”>
<option	value=”Safari”>
<option	value=”Microsoft	Edge”>

</datalist>

Now,	insert	a	label	that	contains	text	and	an	input	field	that	is	associated
with	the	data	list	above
<label>
Choose	your	browser	from	this	list:
<input	list=”browsers”	name=”myBrowser”>
</label>

Save	the	HTML	document	in	the	Abyss	htdocs	folder,	then	open	the	web
page	in	your	browser

The	key=value	pair	submitted	to	the	server	is	the	specified	list	name	and
the	input	value	selected	from	the	options	or	entered	directly	by	the	user.

Select	the	input	field	to	see	the	pre-defined	options	appear	in	a	dropdown
list

Select	any	option	from	the	dropdown	list,	or	type	your	own	text	into	the
input	field	to	create	a	value

Submit	the	form	to	send	the	input	field	name	and	your	chosen	value	to
the	server

You	may	need	to	doubleclick	the	input	field	to	override	your	browser’s
own	autocomplete	suggestions.

Label	Controls
Text	that	is	to	be	associated	with	an	HTML	form	control	can	be	enclosed
between	<label>	</label>	tags.	The	opening	<label>	tag	can	include	a	for	attribute	to
specify	the	value	assigned	to	the	control’s	id	attribute	to	make	the	association.

Alternatively,	the	<label>	element	can	simply	enclose	both	the	text	and	the
control	element	to	make	the	association.	This	allows	styling	to	be	applied	to	the
entire	label	–	including	the	text	and	control.	Often	this	is	useful	to	distinguish	the
control	associated	with	particular	text.

Additionally,	each	form	control	element	may	include	a	tabindex	attribute	to
specify	its	tabbing	order	within	the	document	as	a	unique	value	between	0	and
32,767.	Using	the	tab	key,	the	user	can	then	navigate	through	the	document
starting	at	the	lowest	tabindex	value	and	proceeding	through	successively	higher
values:

Create	an	HTML	document	with	a	form	element	containing	a	fieldset
with	a	legend
<form	method=”GET”	action=”http://localhost/echo.py”>
<fieldset>	<legend>Toolbox</legend>
<!--	Form	Controls	to	go	here.	-->
</fieldset>
</form>

label.html

Now,	in	the	fieldset,	insert	labels	that	each	contain	text	and	a	checkbox
with	a	specified	tab	order
<label>Hammer
<input	type=”checkbox”	name=”Toolbox”

value=”Hammer”	tabindex=”2”	checked></label>
<label>Screwdriver
<input	type=”checkbox”	name=”Toolbox”

value=”Screwdriver”	tabindex=”3”	></label>
<label>Wrench
<input	type=”checkbox”	name=”Toolbox”

value=”Wrench”	tabindex=”4”	checked></label>
<label>Drill
<input	type=”checkbox”	name=”Toolbox”

value=”Drill”	tabindex=”5”></label>
<label>Saw
<input	type=”checkbox”	name=”Toolbox”

value=”Saw”	tabindex=”6”	checked></label>

Next,	insert	a	logo	submit	button	–	in	first	tab	place
<button	type=”submit”	tabindex=”1”>
Submit</button>

A	form	“control”	is	any	<input>,<button>,	or	<textarea>	element.	A
tabindex	attribute	can	be	included	in	these	tags	and	also	in	any	<a>,
<area>,	<object>,	or	<select>	tag.

Save	the	HTML	document	in	the	Abyss	htdocs	folder,	then	open	it	in
your	browser	to	see	the	text-control	association	is	unclear

Edit	the	HTML	document	to	add	a	class	attribute	to	each	alternate	label
tag	for	styling	purposes
<label	class=”hilite”>

Add	a	style	sheet	with	a	rule	to	distinguish	the	labels

<style>
label.hilite	{	background	:	Red	;	color	:	White	;	}
</style>

Save	the	HTML	document	again,	then	open	the	web	page	to	see	that	the
text-control	association	is	now	clear.	Use	the	tab	key	to	move	between
controls	and	the	space	bar	to	select	checkboxes,	then	submit	the	form

Summary
• HTML	forms	submit	data	to	the	web	server	as	key=value	pairs	for	processing

by	a	specified	server-side	script.

• All	form	component	elements	are	enclosed	between	<form>	</form>	tags,
which	must	include	an	action	attribute,	to	specify	the	URL	of	the	processing
script,	and	a	method	attribute	to	specify	the	submission	method	as	GET	or
POST.

• Each	<input>	tag’s	type	attribute	specifies	its	component	type,	such	as	“text”,
“password”,	“checkbox”,	“radio”,	etc.

• An	<input>	tag	can	include	name	and	value	attributes	to	specify	data	for
submission	as	a	key=value	pair.

• An	<input>	tag	can	enforce	its	completion	by	including	the	required	keyword,
but	many	automatically	prohibit	submission	if	the	user	enters	a	value	that	is
not	permitted.

• A	multi-line	text	field	is	created	by	<textarea>	</textarea>	tags	that	require	rows
and	cols	attributes	to	specify	its	size.

• Radio	button	and	checkbox	inputs	only	submit	their	name	and	value	attribute
data	if	they	are	checked.

• Forms	can	contain	“hidden”	elements	that	allow	static	or	script-generated
data	to	be	submitted	to	the	server	for	processing.

• When	a	form	is	to	upload	files,	the	<form>	tag	must	include	an	enctype
attribute	specifying	encoding	as	“multipart/form-data”.

• A	form	may	be	submitted	by	a	regular	submit	<input>	element,	by	an	image
<input>	element,	or	by	a	<button>	element.

• Logo	images	can	be	added	to	the	button	face	by	enclosing	an		element
between	<button>	</button>	tags.

• An	option	list	is	created	by	enclosing	a	number	of	<option>	elements	between
<select>	</select>	tags.

• Option	lists	can	be	enclosed	between	<optgroup>	</optgroup>	tags	that	can
specify	an	option	group	name	to	a	label	attribute.

• An	<input>	tag	can	include	a	list	attribute	to	associate	it	with	the	id	of	a
<datalist>	element	to	provide	pre-defined	options.

• Each	form	control	can	be	enclosed	between	<label>	</label>	tags	to	visually
group	them	with	text	for	styling	purposes.

8

Get	Started	in	CSS

This	chapter	is	an	introduction	to	the	exciting	world	of	Cascading	Style	Sheets	(CSS),	and	demonstrates

how	to	create	and	apply	style	rules	to	HTML	documents.

Meet	CSS
Create	Rules

Apply	Rules
Select	Type
Select	Class
Select	Identity

Select	Relatives
Select	Attributes
Weigh	Importance
Paint	Colors

Set	Backgrounds
Summary

Meet	CSS
Cascading	Style	Sheets	(CSS)	is	a	language	used	to	control	the	presentation	of
elements	within	HyperText	Markup	Language	(HTML)	documents.	Presentation
is	specified	by	“styles”	that	may	be	assigned	“inline”	to	HTML	element	style
attributes,	or	by	“rules”	within	<style>	</style>	tags	in	the	HTML	document’s
head	section,	or	as	rules	within	separate	style	sheets.	Each	style	rule	selects
specified	elements	then	applies	specified	styles	to	them.

CSS	was	created	by	the	World	Wide	Web	Consortium	(W3C)	to	regain	control
of	document	markup	as	HTML	grew	from	the	initial	few	“tags”	that	merely
defined	the	structural	elements	of	a	document	–	headings,	paragraphs,
hyperlinks,	lists,	etc.	As	further	tags	were	added	controlling	images,	text	color,
font	size	and	background	color,	it	became	recognized	that	the	source	code	of
many	web	pages	often	contained	a	great	deal	of	markup	for	very	little	actual
content.

The	W3C	offered	a	solution	to	regain	control	of	document	markup	by	separating
their	structural	and	presentational	aspects.	HTML	tags	would	continue	to	control
the	structure	but	presentational	aspects	would	now	be	controlled	by	“style	rules”
written	in	the	Cascading	Style	Sheets	(CSS)	language.	Besides	distinguishing
between	structural	and	presentational	aspects	of	a	document,	the	CSS	solution
brings	these	additional	benefits:

• Easier	maintenance	–	a	single	style	sheet	can	control	multiple	HTML
documents,	so	changing	appearance	across	an	entire	website	is	possible	by
editing	just	one	style	sheet.

• Smaller	file	sizes	–	removal	of	all	presentational	markup	from	HTML
produces	smaller	files,	which	download	faster.

• Greater	control	–	margins,	borders,	padding,	background	color	and

background	images	to	any	HTML	element,	and	the	appearance	of	certain
parts	of	the	interface,	such	as	the	cursor,	can	now	be	specified.

The	latest	CSS	specification	(CSS3)	is	divided	into	modules	that	allow
enhancements	such	as	rounded	borders,	drop-shadows,	gradient	color-fills	and
animation	effects	–	these	and	more	are	demonstrated	by	example	in	this	book.

The	W3C	is	an	international	consortium	whose	members	work	together
to	develop	web	standards.	The	CSS	home	page	can	be	found	on	the
W3C	website	at	www.w3.org/Style/CSS

The	term	“Cascading”	in	CSS	describes	the	manner	in	which	style	rules	can	fall
from	one	style	sheet	to	another.	The	cascade	determines	which	style	rule	will
have	precedence	over	others	and	be	the	one	applied	to	the	selected	HTML
element.

There	are	three	basic	types	of	style	sheet	that	can	specify	style	rules	to	be
applied	to	HTML	elements:

• Browser	(default)	style	sheet	–	browsers	employ	an	intrinsic	set	of	style
rules	that	they	apply	to	all	web	pages	by	default.	These	vary	slightly	between
different	browsers	but	all	have	common	features	such	as	black	text	and	blue
hyperlinks.

• User	style	sheet	–	some	browsers	allow	the	user	to	specify	their	own
appearance	preferences,	which	effectively	creates	a	custom	style	sheet	that
overrides	the	browser’s	default	style	sheet.

• Author	style	sheet	–	where	the	HTML	document	specifies	a	style	sheet
created	by	the	web	page	author,	the	browser	will	apply	the	style	rules	it
contains,	overriding	both	the	user	style	sheet	and	the	default	browser	style
sheet.

http://www.w3.org/Style/CSS

So	the	cascade	means	that	the	browsers	will	typically	apply	the	style	rules	in	an
author	style	sheet,	if	present,	otherwise	it	will	apply	the	style	rules	in	a	user	style
sheet,	if	present,	otherwise	it	will	apply	the	style	rules	in	the	browser’s	style
sheet	by	default.

CSS	is	the	universally	accepted	style	sheet	language	that	is	recognized
by	all	modern	web	browsers.

Final	precedence	of	style	rules	that	target	the	same	element	is
determined	by	their	“specificity”	weight	–	see	here.

Create	Rules

In	CSS	each	style	rule	is	comprised	of	two	main	parts:

Selector	–	specifying	which	element/s	of	the	HTML	document	are	the
target	of	that	rule.

Declaration	Block	–	specifying	how	properties	of	the	selected	target
element	should	be	styled.

A	style	rule	(or	“style	rule	set”)	begins	with	the	selector,	followed	by	the
declaration	block	within	a	pair	of	curly	brackets	(braces).	The	braces	contain	one
or	more	declarations	that	each	specify	a	property	and	a	valid	value	for	that
property,	as	in	this	example:

Typically,	the	selector	targets	(selects)	a	particular	HTML	element	for	styling	–
such	as	all	<h1>	heading	elements	in	the	document	using	the	style	rules	example
above.

The	declaration	block	in	the	example	above	contains	two	declarations	to	specify
the	foreground	and	background	colors	of	the	selected	target	elements.	The	CSS
color	property	is	assigned	a	Blue	value	–	so	each	<h1>	heading	element	will	have
blue	foreground	text.	Similarly,	the	CSS	background	property	is	assigned	a	Yellow
value	–	so	each	<h1>	heading	element	will	have	a	yellow	background.

Notice	how	the	CSS	declaration	uses	a	:	colon	character	to	assign	a	value	to	a
property.	Notice	also	that	each	declaration	is	terminated	by	a	;	semi-colon
character.

Strictly	speaking,	the	final	declaration	in	the	declaration	block	does	not	need	to

be	terminated	by	a	semicolon	but	most	web	page	authors	prefer	to	habitually
terminate	all	CSS	declarations	–	so	they	need	not	remember	to	add	a	separating
semicolon	when	adding	further	declarations	to	an	existing	style	rule	set.

The	background	property	is	a	“shorthand”	property	for	background-
color	and	several	other	CSS	properties	that	are	described	here.

When	creating	a	new	CSS	style	rule,	the	author	must	initially	specify	a
selector	to	target	the	HTML	element	to	which	the	rule	will	be	applied	–
the	CSS	selector	is	everything	that	appears	before	the	opening	brace	of
the	declaration	block
h1

rules.html

Next,	the	declaration	block	must	be	created	by	adding	a	pair	of	braces
after	the	selector
h1	{			}

Now,	a	declaration	can	be	inserted	within	the	declaration	block	to	assign
a	value	to	a	property
h1	{	color	:	Blue	;	}

A	second	declaration	can	then	be	added	within	the	declaration	block,
separated	from	the	first	by	a	semicolon
h1	{	color	:	Blue	;	background	:	Yellow	;	}

The	style	rule	set	is	now	complete	but	can	also	be	applied	to	another
HTML	element	by	extending	the	selector	to	become	a	comma-separated
list
h1,	h2	{	color	:	Blue	;	background	:	Yellow	;	}

Further	style	rule	sets	can	then	be	added	below	the	first	style	rule	set	to
target	other	elements
h1,	h2	{	color	:	Blue	;	background	:	Yellow	;	}
p									{	color	:	Red	;	}

Whitespace	(spaces,	tabs,	line	feeds,	and	carriage	returns)	is	permitted
within	style	rules	to	allow	the	author	to	format	the	style	rules	to	their	own
preference.

Style	rule	sets	with	fewer	than	four	declarations	are	written	on	a	single
line,	otherwise	they	are	written	across	multiple	lines	for	clarity	–	typically
the	selector	and	{	opening	brace	will	appear	on	the	first	line,	followed	by
declarations	on	individual	lines,	then	the	}	closing	brace	on	the	final	line.
Code	is	listed	in	this	book	more	concisely	formatted	due	to	limited	page
space.

Apply	Rules
A	style	sheet	is	simply	a	collection	of	style	rules	to	be	applied	to	an	HTML
document.	An	internal	style	sheet	can	be	created	by	inserting	the	style	rules
between	<style>	and	</style>	tags	in	the	head	section	of	the	HTML	document.

Additionally,	the	head	section	of	each	HTML	document	should	include	a	<meta>
tag	to	set	up	the	“viewport”	for	the	page.	This	tag	determines	the	visible	area	of
the	web	page	to	suit	the	device	on	which	the	page	is	being	viewed,	and	looks
exactly	like	this:

<meta	name=”viewport”
content=”width=device-width,	initial-scale=1.0”	>

• The	width=device-width	part	sets	the	width	of	the	page	to	match	the	screen-
width	of	the	viewing	device.

• The	initial-scale=1.0	part	sets	the	initial	zoom	level	of	the	browser	to	100%
when	the	web	page	is	first	loaded.

The	viewport’s	<meta>	tag	does	not	need	to	be	spread	across	two	lines.
It	is	shown	like	that	here	due	to	space	constraints.

Open	a	plain	text	editor	(such	as	Windows’	Notepad	app)	then	create	an
HTML	document	containing	heading,	sub-heading,	and	paragraph
elements
<!DOCTYPE	HTML>
<html	lang=”en”>
<head>
<meta	charset=”UTF-8”>
<meta	name=”viewport”

content=”width=device-width,	initial-scale=1.0”	>

<title>Apply	Style	Rules</title>
<!--	Internal	style	sheet	to	be	inserted	here.	-->
</head>
<body>
<h1>Heading</h1>
<h2>Sub-heading</h2>
<p>Paragraph	</p>
</body>
</html>

apply.html

In	the	document’s	head	section,	insert	an	internal	style	sheet	containing
style	rules	for	the	heading	element
<style>
h1								{	color	:	Blue	;	background	:	Yellow	;	}
</style>

Save	the	HTML	file	then	open	it	in	your	web	browser	to	see	the	internal
style	sheet	rules	applied	to	the	heading

Style	rules	can	also	be	applied	by	assigning	“inline”	properties	and	values	to	the
style	attribute	of	an	element:

Edit	the	sub-heading	tag	to	add	an	inline	rule	set
<h2	style=”color	:	White	;	background	:	Green	;”	>

Style	rules	can	also	be	applied	from	an	external	style	sheet:

Open	a	plain	text	editor,	then	type	the	style	rules	below	and	save	it	as	an
external	style	sheet	named	“external.css”

p	{	color	:	Yellow	;	background	:	Red	;	}

external.css

Edit	the	HTML	file	to	link	the	external	style	sheet	by	inserting	this	tag	in
the	document’s	head	section
<link	rel=”stylesheet”	href=”external.css”	type=”text/css”>

Save	the	HTML	file	then	reopen	it	in	your	web	browser	to	see	the	inline
and	external	style	sheet	rules	applied

Inline	rules	may	override	rules	specified	by	other	style	sheets,	as	inline
rules	are	the	last	to	be	applied	by	the	browser.

External	style	sheets	are	great	to	maintain	consistent	styles	across
multiple	web	pages,	so	authors	can	change	a	single	rule	that	will	be
instantly	applied	across	all	pages.	Internal	style	sheets	are	used	by	most

examples	in	this	book	so	that	each	HTML	document	is	a	standalone
example.

Select	Type
The	selector	part	of	a	style	rule	selects	elements	in	an	HTML	document	to	be
styled	according	to	the	values	specified	in	that	rule’s	declaration	block.

A	“type”	selector	selects	all	elements	in	the	page	that	match	the	selector.
Multiple	elements	can	be	selected	by	a	type	selector	that	specifies	a	comma-
separated	list	of	element	types.

Create	an	HTML	document	containing	a	heading	and	an	unordered	list	of
hyperlinks	within	a	division	container
<div>
<h1>Large	Heading</h1>

Google
Yahoo
MediaFire

</div>

type.html

Add	a	style	sheet	with	a	style	rule	setting	the	width	of	the	container
element	at	half	the	page	width
<style>
div	{	width	:	50%	;	}
</style>

Add	style	rules	setting	the	background	color	of	all	hyperlinks,	the
heading,	and	list	elements
a	{	background	:	Yellow	;	}
h1,	ul	{	color:	White	;	background	:	Blue	;	}

Save	the	HTML	file	then	open	the	web	page	in	a	browser	to	see	the
elements	styled	by	type	selectors

Remember	that	there	must	be	a	comma	between	the	element	types	in	a
selector	targeting	multiple	element	types.

The	CSS	*	universal	selector	can	be	used	to	select	elements	of	all	types	within
an	HTML	document	–	as	if	it	was	a	selector	listing	all	element	types	as	a
comma-separated	list:

Add	a	style	rule	with	a	universal	selector	to	make	all	text	italic,	then	save
the	HTML	file	again	and	refresh	the	browser	to	see	both	heading	and	list
text	become	italic
*	{	font-style	:	italic	;	}

The	*	universal	selector	can	also	be	used	to	select	elements	of	any	type

contained	within	a	specified	element	type:

Add	a	style	rule	with	a	universal	selector	to	add	a	2-pixel	wide	border
around	all	elements	within	the	“div”	container,	then	save	the	HTML	file
once	more	and	refresh	the	browser	to	see	borders	around	the	elements
div	*	{	border	:	2px	solid	Red	;	}

You	will	discover	many	more	CSS	font	properties	in	Chapter	10	of	this
book.

The	div	*	selector	selects	elements	of	all	types	within	the	div	container,
but	not	the	<div>	element	itself.

Select	Class
As	an	alternative	to	selecting	elements	by	type,	a	class	selector	can	select	HTML
elements	that	contain	a	class	attribute	that	has	been	assigned	a	value	matching
the	selector.	The	class	selector	begins	with	a	.	period	character	followed	by	the
class	value	to	match.	This	is	especially	useful	to	apply	the	style	rule	across	a
number	of	specific	elements	of	different	type.

Additionally,	a	class	selector	can	be	combined	with	a	type	selector	to	select
specific	instances	of	a	class.	In	this	case,	the	selector	first	specifies	the	element
type,	followed	by	a	.	period	character	and	the	class	value	to	match:

Create	an	HTML	document	containing	a	paragraph	and	two	spanned
words	–	which	all	have	a	common	class	value
<p	class=”frame”>You	can	fool	all	the	people
some	of	the	time,	and
some	of	the	people	all	the	time,	but	you	cannot	fool
all	the	people	all	the	time.</p>

class.html

Add	a	style	sheet	with	a	style	rule	drawing	red	borders	around	each
element	using	the	class	value
<style>
.frame	{	border	:	2px	solid	Red	;	}
</style>

Now,	add	a	style	rule	overriding	the	previous	one	for	the	paragraph
element	only	–	to	draw	a	blue	border	around	the	paragraph	and	to	set	its
width
p.frame	{	border	:	2px	solid	Blue	;	width	:	50%	;	}

Save	the	HTML	document	then	open	the	web	page	in	a	browser	to	see

elements	styled	by	the	class	selectors

If	two	rules	select	the	same	element,	the	lower	rule	in	the	style	sheet	will
be	applied.	But	it	doesn’t	matter	in	which	order	these	rules	appear	in	the
style	sheet.	The	class	selector	that	is	combined	with	the	type	selector	will
be	applied	as	it	is	more	specific.	See	here	to	discover	how	specificity	is
calculated.

Select	Identity
Similar	to	a	class	selector,	an	identity	selector	can	select	HTML	elements	that
contain	an	id	attribute	that	has	been	assigned	a	value	matching	the	selector.	The
identity	selector	begins	with	a	#	hash	character	followed	by	the	id	value	to	match.
This	is	mostly	useful	to	apply	the	style	rule	to	one	specific	element,	as	each	id
attribute	value	must	be	unique	within	the	HTML	document.

Optionally,	an	identity	selector	can	be	combined	with	a	type	selector	simply	to
identify	the	element	type.	In	this	case,	the	selector	first	specifies	the	element
type,	followed	by	a	hash	character	and	the	id	value	to	match:

Create	an	HTML	document	containing	a	paragraph	and	two	spanned
phrases	–	which	all	have	a	unique	id	value
<p	id=”para1”>You	may	only	be	someone
in	the	world

but	to	someone	else	you	may
be	the	world</p>

identity.html

Add	a	style	sheet	with	style	rules	painting	colored	backgrounds	behind
the	text	in	each	span	element
<style>
#span1	{	color	:	White	;	background	:	Red	;	}
#span2	{	color	:	White	;	background	:	Lime	;	}
</style>

Now,	add	a	style	rule	to	paint	a	colored	background	behind	the	rest	of	the
paragraph	and	to	set	its	width
p#para1	{	background	:	Yellow	;	width	:	70%	;	}

Save	the	HTML	document	then	open	the	web	page	in	a	browser	to	see
elements	styled	by	the	identity	selectors

If	a	class	selector	and	an	identity	selector	both	attempt	to	style	the	same
property	of	one	element,	the	identity	selector	value	would	be	applied	as	it
has	greater	importance.	See	here	for	more	on	how	selectors	rate
importance.

Select	Relatives
In	addition	to	selecting	target	elements	by	type,	class	or	identity	(as	described
here),	CSS	allows	selectors	to	be	combined	to	select	elements	relative	to	other
elements	in	the	HTML	document.	These	“combinators”	provide	four	options:

Descendant	Selector	(space)
This	selects	all	elements	that	are	descendants	of	a	parent	element.	The	CSS
selector	first	specifies	the	parent	element,	then	a	space,	followed	by	the
descendant	element.	For	example,	to	select	all	<p>	paragraph	elements	within	a
<div>	division	element	at	any	level	of	descendancy:

div	p	{	}

Child	Selector	(>)
This	selects	all	elements	that	are	children	of	a	parent	element.	The	CSS	selector
first	specifies	the	parent	element,	then	a	>	angled	bracket	character,	followed	by
the	child	element.	For	example,	to	select	all	<p>	paragraph	elements	whose	direct
parent	is	a	<div>	division	element:

div	>	p	{	}

A	child	selector	will	target	all	child	elements	of	the	parent	–	even	if	there
are	other	element	levels	between	them.

Adjacent	Sibling	Selector	(+)
This	selects	all	elements	that	are	adjacent	siblings	immediately	following	a
parent	element.	The	CSS	selector	first	specifies	the	parent	element,	then	a	+	plus

character,	followed	by	the	sibling	element.	For	example,	to	select	all	<p>
paragraph	elements	that	are	placed	immediately	after	each	<div>	division
element:

div	+	p	{	}

General	Sibling	Selector	(~)
This	selects	all	elements	that	are	siblings	immediately	following	a	parent
element.	The	CSS	selector	first	specifies	the	parent	element,	then	a	~	tilde
character,	followed	by	the	sibling	element.	For	example,	to	select	all	<p>
paragraph	elements	that	follow	a	<div>	division	element:

div	~	p	{	}

Sibling	elements	must	have	the	same	parent.	Adjacent	siblings	must
immediately	follow	the	parent	element,	but	general	siblings	are	all	those
contained	directly	within	the	parent.

Create	an	HTML	document	containing	a	heading,	several	divisions	and
paragraphs,	plus	an	aside	element
<h3>Heading</h3>
<div>Content</div>	<div>More	content</div>

<div>	<p>Para	1</p>	<p>Para	2</p>
<aside>	<p>Para	3</p>	</aside>

</div>

relative.html

Add	a	style	sheet	with	style	rules	selecting	all	paragraphs,	and	only	the
division	element	that	immediately	follows	the	heading	element
<style>
div	p	{	color	:	White	;	background	:	Blue	;	}
h3	+	div	{	background	:	Yellow	;	}

</style>

Save	the	HTML	document	then	open	the	web	page	in	a	browser	to	see
elements	styled	by	the	relative	selectors

Edit	the	style	rules	to	select	only	paragraphs	whose	direct	parent	is	a
division	element,	and	all	division	elements	that	follow	the	heading
element
div	>	p	{	color	:	White	;	background	:	Blue	;	}
h3	~	div	{	background	:	Yellow	;	}

Save	the	HTML	document	once	more,	then	refresh	the	browser	to	see	the
changes

You	can	specify	more	than	one	descendant	to	further	refine	a
descendant	selector,	such	as	div	p	span	{	}

Select	Attributes
In	addition	to	selecting	target	elements	by	type,	class,	identity	or	by	relationship
(as	described	here)	CSS	selectors	can	target	HTML	elements	that	have	specific
attributes	or	particular	attribute	values.	Attribute	selectors	have	seven	options:

Attribute	Name	Selector	[attribute]
This	selects	all	elements	that	have	a	specified	attribute,	by	stating	an	element
followed	by	an	attribute	name	in	[]	brackets:

ol[attribute]

Attribute	Value	Selector	[attribute=“value”]
This	selects	all	elements	that	have	a	specified	attribute	and	a	specified	value,
stated	within	the	[]	brackets:

li[class=”value”]

Attribute	Value	Item	Selector	[attribute~=“value”]
This	selects	all	elements	that	have	a	specified	attribute	and	a	list	of	values	that
contain	a	specified	word:

li[class~=”item”]

Attribute	First	Word	Selector	[attribute|=“value”]
This	selects	all	elements	that	have	a	specified	attribute	and	a	value	that	begins
with	a	specified	word:

li[class|=”word”]

Attribute	Substring	Selector	[attribute*=“value”]
This	selects	all	elements	that	have	a	specified	attribute	and	a	value	that	includes
a	specified	substring	anywhere	in	a	value	or	list:

li[class*=”substring”]

Attribute	First	Substring	Selector	[attribute^=“value”]
This	selects	all	elements	that	have	a	specified	attribute	and	a	value	that	begins
with	a	specified	substring	anywhere	in	a	value	or	list:

li[class^=”substring”]

Attribute	Final	Substring	Selector	[attribute$=“value”]
This	selects	all	elements	that	have	a	specified	attribute	and	a	value	that	ends	with
a	specified	substring	anywhere	in	a	value	or	list:

li[class$=”substring”]

The	first	word	selector	will	only	select	the	element	if	the	attribute	value	is
a	single	whole	word	or	hyphenated	–	for	example,	selecting
[class=”top”]	with	values	of	“topcat”,	or	“top-cat”.

Create	an	HTML	document	containing	an	ordered	list	in	which	all
elements	include	attributes
<ol	id=”list”>
<li	class=”reptile”>Alligator
<li	class=”domestic	animal”>Dog
<li	class=”animal	wild”>Tiger
<li	class=”cat-family”>Lion
<li	class=”sea	fish”>Barracuda
<li	class=”topcat”>Cartoon
<li	class	=”domestic	bird”>Budgerigar

attribute.html

Add	a	style	sheet	with	a	style	rule	that	selects	the	list	element	by	its
attribute
<style>
ol[id]	{	border	:	2px	solid	Red	;	}
</style>

Now,	add	style	rules	that	select	all	the	list	items	by	their	attribute	values
li[class=”reptile”]			{	background	:	Red	;	}
li[class~=”animal”]	{	background	:	Blue	;	}
li[class|=”cat”]						{	background	:	Green	;	}
li[class*=”fi”]										{	background	:	Yellow	;	}
li[class^=”top”]						{	background	:	Orange	;	}
li[class$=”ird”]							{	background	:	Purple	;	}

Save	the	HTML	document	then	open	the	web	page	in	a	browser	to	see
elements	styled	by	the	attribute	selectors

The	value	specified	to	the	three	substring	selectors	does	not	need	to	be	a
whole	word.

Weigh	Importance
Where	more	than	one	style	rule	targets	properties	of	the	same	element,	the	CSS
cascade	evaluates	their	importance	by	examining	their	selector’s	“specificity”	–
to	consider	how	specifically	each	one	targets	the	element	to	determine	their
relative	importance.

There	are	four	categories	that	define	the	importance	of	a	selector.	These	are,	in
descending	order	of	importance,	as	follows:

• Inline:	a	style	rule	declared	to	the	style	attribute	directly	within	an	element	–
for	example,	style=”color:White;”.

• Identity:	a	selector	that	targets	the	id	attribute	of	an	element	–	for	example,
h2#header.

• Class,	Attribute:	a	selector	that	targets	the	class	or	[attribute]	of	an	element	–
for	example,	h2.head.

• Element:	a	selector	that	targets	the	type	of	an	element	by	name	–	for
example,	h2.

The	specificity	evaluation	process	awards	points	for	each	selector	component,
which	get	stored	in	four	weight	“registers”	for	later	comparison	against	the
specificity	value	of	conflicting	selectors.	So	the	specificity	value	can	be
expressed	as	a	comma-separated	list	–	in	which	0,0,0,0	is	a	zero	specificity	value.
The	selector	component	points	are	awarded	like	this:

• For	inline	style	attribute	declarations,	add	1,0,0,0.

• For	each	id	attribute	in	the	selector,	add	0,1,0,0.

• For	each	class	attribute	in	the	selector	or	attribute	value	selection,	add	0,0,1,0.

• For	each	element	(or	pseudo-element)	in	the	selector,	add	0,0,0,1.

If	two	selectors	have	the	same	specificity	weight	rating,	the	“latest	rule	counts”
so	the	lower	rule	in	the	style	sheet	will	be	applied.

Embedded	style	sheet	rules	take	precedence	over	those	in	external	style
sheets,	and	the	*	universal	selector	has	a	zero	specificity	value	of	0,0,0,0.

Pseudo	elements	are	described	here.

Create	an	HTML	document	containing	three	headings
<h2	style=”color:White;”	>Element	Style</h2>

<h2	id=”header”>Identity	Style</h2>

<h2	class=”head”>Class	Style</h2>

specificity.html

Add	a	style	sheet	with	a	style	rule	that	selects	all	heading	elements	by
type
<style>
h2	{	color	:	Yellow	;	}
</style>

Now,	add	style	rules	that	each	target	the	heading	elements’	background
property	in	different	ways
h2										{	background	:	Red	;	}															/*	0,0,0,1	*/
body	h2	{	background	:	Blue	;	}														/*	0,0,0,2	*/

#header					{	background	:	Green	;	}							/*	0,1,0,0	*/
h2#header	{	background	:	Red	;	}											/*	0,1,0,1	*/

h2.head										{	background	:	Red	;	}							/*	0,0,1,1	*/

body	h2.head	{	background	:	Green	;	}			/*	0,0,1,2	*/

The	/*	*/	syntax	may	be	used	to	add	single	and	multi-line	comments
within	a	CSS	style	sheet.

Save	the	HTML	document	then	open	the	web	page	in	a	browser	to	see
the	elements	styled	after	considering	specificity	to	rate	their	importance

See	that	the	first	heading’s	color	is	applied	from	the	inline	declaration	–
overriding	the	type	selector	in	the	style	sheet.	Each	heading’s
background	is	applied	by	the	rule	with	most	weight	points.

Paint	Colors

Web	browsers	recognize	all	the	color	names	listed	in	these	tables.	You	can	use
these	names	in	CSS	rules	to	set	the	color	of	HTML	elements.	The	names	are	not
case-sensitive	so	they	may	also	be	written	in	all	lowercase	letters	–	for	example,
background	:	aqua	;.

Colors	can	also	be	written	as	the	Red,	Green,	Blue	components	that
make	up	the	color	–	for	example,	the	color	red	is	rgb(255,	0,	0).
Alternatively,	colors	can	be	written	as	hexadecimal	numbers	–	for
example,	the	color	red	is	hexadecimal	#FF0000,	which	is	Red	FF
(decimal	255),	00	(decimal	0)	Green,	and	00	(decimal	0)	Blue.

Colors	can	also	be	written	as	their	Hue,	Saturation,	Lightness	(HSL)
values	–	for	example,	the	color	full	red	is	specified	as	hsl(0,	100%,	50%)

Optionally,	a	fourth	Alpha	value	can	be	added	to	the	color	specification	to
determine	the	opacity	of	the	color	–	for	example,	a	half-transparent	full
red	color	specified	as	rgba(255,	0,	0,	0.5)	or	as	hsla(0,	100%,	50%,	0.5)

Set	Backgrounds
Just	as	each	element	can	have	a	background	color	specified	to	its	background
property,	a	background	image	can	be	specified	to	its	background	property,	as	a
url(filename)	value.	Here,	the	filename	is	the	path	to	an	image	file	–	for	example,
background	:	url(bg.png)	;.

The	background	property	can	also	be	used	to	specify	both	a	background	image
and	color	as	space-separated	values	–	for	example,	background	:	LightBlue	url(
bg.png)	;.	Background	images	are	placed	on	a	layer	above	the	background’s
color	layer	so	specifying	an	image	with	transparent	areas	will	allow	the
background	color	to	shine	through	the	image.

Any	specified	background	image	will	normally	be	positioned	at	the	top-left
corner	of	the	element	and	the	browser	will,	by	default,	repeatedly	“tile”	the
image	row-by-row	across	the	element	area.	This	behavior	can	be	modified	by
assigning	different	values	to	the	background	property	where	values	of	repeat-x
restricts	the	tiling	pattern	to	one	horizontal	row	and	repeat-y	restricts	the	tiling
pattern	to	one	vertical	column.	Tiling	can	also	be	prevented	by	assigning	a	no-
repeat	value	so	that	a	single	copy	of	the	image	appears	at	the	top-left	corner	of
the	content	box.

The	position	of	a	background	image	can	be	specified	to	the	background	property
to	control	its	horizontal	position	with	values	of	left,	center,	and	right,	and	to
control	its	vertical	position	with	values	of	top,	center,	and	bottom.	Combining
horizontal	and	vertical	values	together	with	a	no-repeat	value	lets	you	set	a	single
version	of	the	image	at	a	given	position	within	the	element	area	–	for	example,
background	:	url(bg.png)	no-repeat	top	right	;.

The	background	property	has	a	scroll	value	by	default	that	relates	to	the	viewport,
not	the	element,	so	by	default	a	background	image	will	scroll	along	with	the
page.	Should	you	prefer	to	attach	a	background	page	image,	so	it	does	not	scroll
along	with	the	page,	you	can	specify	a	fixed	value	to	the	background	property	so
the	background	image	will	remain	at	a	specified	position	relative	to	the	viewport

when	the	page	gets	scrolled.

All	background	values	can	be	specified	in	a	space-separated	list	to	the
background	shorthand	property,	or	individually	to	properties	of	background-color,
background-image,	background-repeat,	background-position	and	background-
attachment.

When	choosing	a	background	image	be	sure	it	will	not	make	text	content
difficult	to	read.

Use	the	background	shorthand	property	rather	than	the	various
individual	properties	–	to	keep	the	style	sheet	more	concise.	The	list	of
values	should	appear	in	the	order	in	which	they	are	listed	here,	but
optionally	any	of	these	values	may	be	omitted.

Create	an	HTML	document	containing	two	paragraphs
<p	class=”repeat”></p>
<p	class=”repeat-y”></p>

background.html

Add	a	style	sheet	with	rules	that	set	the	dimensions	and	background
properties	of	each	paragraph
<style>
p.repeat	{	width	:	384px	;	height	:	128px	;
background	:	LightBlue	url(crab.png)	;	}

p.repeat-y	{	width	:	384px	;	height	:	128px	;	background	:

DeepSkyBlue	url(crab.png)	repeat-y	top	right	;	}
</style>

crab.png	–	64px	x	64px
Gray	areas	are	transparent.

Now,	add	a	style	rule	that	attaches	a	background	image	to	the	page	at	a
fixed	position
body	{	background	:	url(crab.png)

no-repeat	bottom	right	fixed	;	}

Save	the	HTML	document,	then	open	the	web	page	in	a	browser	to	see
the	backgrounds	–	scroll	the	page	to	see	the	fixed	page	background
image

Summary
• CSS	is	a	language	provided	by	the	W3C	to	regain	control	of	markup	by

separating	document	structure	from	presentation.

• The	cascade	allows	style	rules	to	fall	from	one	style	sheet	to	another	and
determines	which	style	rule	will	be	applied.

• Each	style	rule	comprises	a	selector	and	a	declaration	block.

• Each	declaration	specifies	a	property	and	a	value	to	be	applied	to	that
property	–	separated	by	a	:	colon	character.

• A	style	rule	set	may	contain	multiple	declarations	–	each	terminated	by	a	;
semicolon	character.

• Style	rules	can	be	specified	in	an	internal	style	sheet,	inline	to	an	HTML
element’s	style	attribute,	or	in	an	external	style	sheet.

• Type	selectors	select	all	elements	that	match	the	selector.

• Class	selectors	select	all	elements	that	contain	a	class	attribute	that	has	been
assigned	a	value	matching	the	selector.

• Identity	selectors	select	all	elements	that	contain	an	id	attribute	that	has	been
assigned	a	value	matching	the	selector.

• Relative	selectors	are	combinators	that	select	elements	relative	to	other
elements	as	descendants,	children,	or	siblings.

• Attribute	selectors	select	elements	that	have	specific	attributes	or	particular
attribute	values.

• The	cascade	evaluates	the	selector’s	specificity	to	rate	importance	by	how
specifically	each	one	targets	the	element.

• Color	values	can	be	specified	by	name,	hexadecimal	value,	Red	Green	Blue
value	or	Hue,	Saturation,	Lightness	value.

• The	background	shorthand	property	can	specify	an	element’s	background
color,	image,	repeat,	position,	and	attachment.

9

Manage	the	Box	Model

This	chapter	demonstrates	how	to	style	the	content	boxes	that	surround	all	HTML	elements.

Recognize	Boxes
Display	Inline

Define	Dimensions
Control	Borders
Add	Padding
Set	Margins

Position	Boxes
Fix	Positions
Stack	Boxes
Float	Boxes

Handle	Overflow
Layout	Pages
Summary

Recognize	Boxes
Content	on	a	web	page	is	displayed	in	a	number	of	invisible	rectangular	boxes
that	are	generated	by	the	browser.	These	content	boxes	may	be	either	“block
level”	or	“inline”.

Block-level	content	boxes	normally	have	line	breaks	before	and	after	the	box,
such	as	paragraph,	heading,	and	division	elements.

Inline	content	boxes,	on	the	other	hand,	do	not	add	line	breaks	but	are	simply
created	within	lines	of	content,	such	as	span,	emphasis,	and	hyperlink	elements.

Each	block-level	content	box	comprises	a	core	content	area	surrounded	by
optional	areas	for	padding,	border,	and	margins:

Style	rules	can	specify	values	for	the	padding,	border,	and	margin	properties	to
control	the	appearance	of	content	boxes.	These	all	apply	to	block-level	boxes	but
some	properties,	such	as	width	and	height,	do	not	apply	to	inline	boxes.
Additionally,	the	margin	and	padding	properties	of	inline	boxes	only	apply	to
either	side	of	the	content	–	not	the	areas	above	and	below	the	content.

When	the	padding,	border,	and	margin	properties	all	have	a	zero	width,	the	content
box	will	be	the	same	size	as	the	content	area,	determined	by	the	dimensions	of
the	content.

Any	padding,	border,	and	margin	areas	that	have	a	non-zero	width	are	added
outside	the	content	area,	so	the	content	size	remains	the	same	but	the	box	size

increases.

The	padding	property	extends	the	area	around	the	content	and	inherits	the
background	color	of	the	content	area.	The	border	property	extends	the	area
around	the	content	and	any	padding.	The	margin	property	extends	the	area	around
the	content,	any	padding,	and	any	border,	with	a	transparent	background.

Block-level	content	boxes	are,	by	default,	stacked	on	the	page	one
below	another.	Inline	content	boxes	appear	inside	a	block-level	box,	one
behind	another.

Content	is	the	area	filled	by	text	or	images.	Padding	is	a	transparent
area	around	the	content.	Border	surrounds	the	content	and	padding.
Margin	is	a	transparent	area	outside	the	border.

Create	an	HTML	document	with	four	simple	paragraphs,	three	with
assigned	class	attribute	values
<p>Content	Box</p>
<p	class=”pad”>Content	+	Padding</p>
<p	class=”pad	bdr”>Content	+	Padding	+	Border</p>
<p	class=”pad	bdr	mgn”>

Content	+	Padding	+	Border	+	Margin</p>

box.html

Add	a	style	sheet	with	a	rule	that	sets	the	background	color	of	the	core

content	area	and	its	width	at	300	pixels
p	{	background	:	MistyRose	;	width	:	300px	;	}

Next,	add	a	style	rule	to	add	padding	of	10	pixels	around	all	sides	of	the
content
p.pad	{	padding	:	10px	;	}

Now,	add	a	style	rule	to	add	a	border	of	5	pixels	around	all	sides	of	the
padded	content	area
p.bdr	{	border	:	5px	solid	Tomato	;	}

Finally,	add	a	style	rule	to	add	a	margin	of	20	pixels	around	all	sides	of
the	border
p.mgn	{	margin	:	20px	;	}

Save	the	HTML	document	then	open	the	web	page	in	a	browser	to	see
the	content	boxes	with	added	padding,	borders,	and	margin

The	HTML	<style>	and	</style>	tags	are	omitted	from	the	steps	in	all
further	examples	to	save	book	page	space.	Instructions	on	how	to	add
style	sheets	to	an	HTML	document	are	provided	here.

If	you	specify	the	width	and	height	of	an	element	you	only	set	the	width
and	height	of	the	content	area.	You	must	add	any	padding,	border,	and
margin	areas	to	calculate	the	total	space	occupied	by	the	element.	In	this
case,	the	total	width	occupied	by	the	element	is	300px	(width)	+	20px
(left	and	right	padding)	+	10px	(left	and	right	border)	+	40px	(left	and
right	margin)	=	370	pixels.

Display	Inline
A	web	page	relies	upon	the	creation	of	block-level	content	boxes,	to	determine
its	general	layout,	and	the	creation	of	inline	content	boxes	within	the	blocks	to
determine	its	precise	layout.

This	places	great	emphasis	on	whether	an	element	is	considered	block-level	or
inline	to	determine	the	display	format.	Generally,	the	default	display	format	for
each	element	will	be	the	most	appropriate.	For	example,	it’s	generally	desirable
to	display	list	items	on	individual	lines	in	a	block-level	list.

The	display	format	of	an	element	can	also	be	explicitly	determined	by	a	style
rule	that	assigns	the	block	or	inline	keywords	to	that	element’s	display	property.
This	means	that	content	can	be	displayed	in	a	different	format	without	changing
the	HTML	tags.	For	example,	list	items	can	be	displayed	on	a	single	line	with	a
display	:	inline	;	declaration.

Additionally,	an	inline	content-box	can	have	its	display	property	assigned	an
inline-block	value	to	allow	it	to	be	displayed	somewhat	like	a	block-level	content
box.	The	inline-block	still	appears	inline,	as	usual,	but	unlike	regular	inline
content	boxes	its	width	and	height	properties	can	be	assigned	values	to	control	its
size.

With	a	display:inline	;	declaration,	top	and	bottom	margins	and	paddings	are	not
applied	–	but	they	are	with	inline-blocks.	Additionally,	note	that	a	display	:	block	;
declaration	will	add	a	line	break	after	the	element	–	but	inline-blocks	will	not.

Assigning	a	non-default	display	type	to	an	element	only	changes	the	way
it	gets	displayed	–	in	the	document	tree	inline	elements	are	always
descendants	of	block-level	elements.

List	items	can	be	made	to	display	horizontally,	rather	than	vertically,	if
each	list	item	element	is	made	into	an	inline-block.	This	is	often	used	to
create	a	navigation	bar	of	horizontal	links	–	see	here.

Create	an	HTML	document	with	three	unordered	lists
<ul	class=”block”>

BlockBlockBlock
<ul	class=”inline”	>

InlineInlineInline
<ul	class=”inline-block”	>
Inline	BlockInline	BlockInline	Block

display.html

Add	a	style	sheet	with	rules	to	style	each	list’s	border	and	list	item
elements
ul									{	border	:	2px	solid	Tomato	;	}
ul	>	li			{	background	:	MistyRose	;	margin	:	10px	;

padding	:	5px	;	width	:	100px	;	height	:	20px	;	}

Now,	add	style	rules	to	specify	the	display	type	for	each	list’s	item
elements
ul.block	>	li	{	display	:	block	;	}
ul.inline	>	li	{	display	:	inline	;	}
ul.inline-block	>	li	{	display	:	inline-block	;	}

Save	the	HTML	document	then	open	the	web	page	in	a	browser	to	see
the	content	displayed	in	specific	formats

Inline	boxes	will	not	include	top	and	padding	or	margin	values.	Inline
Block	boxes	will	include	top	and	padding	or	margin	values.

Define	Dimensions
When	assigning	any	non-zero	value	to	a	property,	the	declaration	must	include	a
two-letter	unit	name	to	specify	which	unit	of	measurement	to	apply.	The	CSS
specification	provides	the	following	unit	names	representing	real	world
measurement:

Unit: Description: Example:

in	(inches) American	standard	unit	of	length
measurement

div	{	width	:	1in	;	}

cm	(centimeters) Metric	unit	of	length	where	2.54
centimeters	is	equivalent	to	1	inch

div	{	height	:	2.54cm	;	}

mm	(millimeters) Metric	unit	of	length	(one	tenth	of	one
centimeter)	where	25.4	millimeters	is
equivalent	to	1	inch

div	{	height	:	25.4mm	;	}

pt	(points) Typographical	unit	of	font	height	where
72	points	is	equivalent	to	1	inch

div	{	font-size	:	12pt	;	}

pc	(picas) Typographical	unit	of	font	height	where	6
picas	is	equivalent	to	1	inch

div	{	font-size	:	2pc	;	}

The	CSS	specification	also	provides	the	following	unit	names	representing
relative	values	according	to	the	viewing	device:

Unit: Description: Example:

em	(font	size) Abstract	typographical	unit	of	font	size
where	1em	is	equivalent	to	the	height	of
a	given	font

div	{	font-size	:	12pt	;	}
(1em	=	12pt)

ex	(font	size) Abstract	typographical	unit	of	font	size
where	1ex	is	equivalent	to	the	height	of
lowercase	“x”	in	a	font	(often	50%	of
1em)

div	{	font-size	:	12pt	;	}
(1ex	=	6pt)

px	(pixels) Abstract	unit	representing	the	dots	on	a
computer	monitor	where	there	are	1024
pixels	on	each	line	when	the	monitor
resolution	is	1024x768

div	{	height	:	100px	;	}

Zero	values	can	be	assigned	using	just	a	“0”	number	–	without	specifying
a	unit	name.

A	percentage	value	can	also	specify	a	relative	size	–	where	a	value	of
50%	makes	the	target	element	half	the	size	of	its	containing	element.

Create	an	HTML	document	containing	four	division	elements
<div	id=”absolute”>3in	x	½in</div>
<div	id=”container”>400px	x	150px
<div	id=”percent”>50%	x	50%</div>
<div	id=”relative”>20em	x	2em</div>

</div>

dimensions.html

Add	a	style	sheet	with	rules	to	size	an	element	by	absolute	units
div#absolute	{	width	:	3in	;	height	:	0.5in	;

background	:	Tomato	;	}

Next,	add	rules	to	size	an	element	by	monitor	resolution
div#container	{	width	:	400px	;	height	:	150px	;

background	:	MistyRose	;	}

Now,	add	rules	to	size	an	element	by	percentage
div#percent	{	width	:	50%	;	height	:	50%	;

background	:	Tomato	;	}

Then,	add	rules	to	size	an	element	relative	to	font	height
div#relative	{	width	:	20em	;	height	:	2em	;

background	:	LightSalmon	;	}

Save	the	HTML	document	then	open	the	web	page	in	a	browser	to	see
the	element	sizes

The	name	of	the	em	unit	originates	from	typography,	where	it
represented	the	width	of	the	letter	“M”	in	the	current	font	set.	It	is	different
in	CSS	though,	as	it	represents	the	height	of	the	current	font.	It	is	often
considered	good	practice	to	use	em	units	for	text	size	wherever	possible
–	for	maximum	flexibility.

Control	Borders
Each	content	box	can	have	a	border	comprising	border-width,	border-color,	and
border-style	properties.	A	value	can	be	specified	to	each	of	these	individual
properties	to	apply	a	uniform	border	to	all	four	sides	of	the	content	box,	or	a
space-separated	list	of	values	can	be	specified	to	apply	different	borders	to	each
side:

• When	two	values	are	listed,	the	first	is	applied	to	the	top	and	bottom	borders.

• When	three	values	are	listed,	the	first	is	applied	to	the	top	border,	the	second
is	applied	to	the	left	and	right	borders,	and	the	third	is	applied	to	the	bottom
border.

• When	four	values	are	listed,	they	are	applied	clockwise	to	the	top,	right,
bottom,	and	left	borders.

The	default	border-width	value	is	medium	(a	computed	value),	and	the	default
border-color	value	is	inherited	from	the	element’s	color	property,	but	the	default
border-style	is	none.	This	means	that	the	border	will	not	be	visible	until	a	value	is
assigned	–	possible	border-style	values	are	solid,	double,	dotted,	dashed,	groove,
ridge,	inset,	outset,	hidden,	and	none.

Rather	than	creating	separate	style	rules	for	the	border-width,	border-color,	and
border-style	properties,	it	is	simpler	to	use	the	CSS	shorthand	technique	that
specifies	a	value	for	each	of	these	three	properties	to	a	border	property	as	a
space-separated	list.	This	uniformly	styles	each	side	of	the	content	box	with	a
border	of	the	specified	width,	color,	and	style.	For	example,	a	style	rule
declaration	of	border	:	0.5in	dotted	Red	;	would	apply	a	half-inch	wide	red	dotted
border	to	all	four	sides	of	the	content	box.

If	it	is	desirable	to	have	different	styles,	the	borders	on	each	side	of	a	content
box	can	be	individually	styled	by	creating	rules	for	the	element’s	border-top,

border-right,	border-bottom,	and	border-left	properties.	The	CSS	shorthand
technique	can	also	be	used	with	these	properties	to	specify	a	width,	color,	and
style	for	the	individual	side	as	a	space-separated	list.	For	example,	a	style	rule
declaration	of	border-bottom	:	0.5in	red	dotted	would	apply	a	half-inch	wide	red
dotted	border	to	just	the	bottom	side	of	the	content	box.

The	outset	border	style	can	be	used	to	create	the	appearance	of	a
raised	button	–	and	the	inset	border	style	can	be	used	to	create	the
appearance	of	a	depressed	button.

Create	an	HTML	document	containing	four	paragraphs
<p	id=”no1”>Solid	-	Inherit	-	Medium</p>
<p	id=”no2”>Top:	Dotted	-	LightSalmon	-	0.5em

Bottom:	Dashed	-	DarkSalmon	-	0.5em</p>
<p	id=”no3”>Ridge	Double	-	MistyRose	-	1em</p>
<p	id=”no4”>Outset	-	Tomato	-	1em</p>

border.html

Save	the	HTML	document	then	create	a	linked	style	sheet	with	rules	to
add	a	border	that	inherits	a	color
p#no1	{	color	:	Tomato	;	border	:	solid	;	}

Next,	add	rules	with	shorthand	declarations	to	create	a	border	above	and
below	the	content	area	only
p#no2	{	border-top	:	0.5em	dotted	LightSalmon	;

border-bottom	:	0.5em	dashed	DarkSalmon	;	}

Now,	add	rules	creating	a	border	from	separate	properties
p#no3	{	border-width	:	1em	;

border-style	:	ridge	double	;
border-color	:	MistyRose	;	}

Then,	add	a	rule	creating	a	border	on	all	four	sides	using	the
recommended	CSS	shorthand	technique
p#no4	{	border	:	1em	outset	Tomato	;	}

Save	the	HTML	document	then	open	the	web	page	in	a	browser	to	see
the	borders

Notice	how	the	browser	miters	the	borders	diagonally	where	they	meet	–
this	offers	some	creative	possibilities.

Add	Padding
Each	content	box	can	have	“padding”	space	added	around	the	core	content	area
by	a	style	rule	assigning	a	value	to	the	padding	property.	A	single	value	can	be
specified	to	apply	a	uniform	padding	width	to	all	four	sides	of	the	content	area,
or	a	space-separated	list	of	values	can	be	specified	to	apply	different	padding
widths	to	each	side:

• When	two	values	are	listed,	the	first	is	applied	to	the	top	and	bottom	sides
and	the	second	is	applied	to	the	left	and	right.

• When	three	values	are	listed,	the	first	is	applied	to	the	top	side,	the	second	is
applied	to	the	left	and	right	sides,	and	the	third	is	applied	to	the	bottom	side.

• When	four	values	are	listed,	they	are	applied	clockwise	to	the	top,	right,
bottom,	and	left	sides.

The	padding	area	surrounds	the	core	content	area	and	extends	to	the	outer	edges
of	the	border	area	if	a	border	is	specified	–	right	up	to	the	beginning	of	the
margin	area.	The	element’s	background	fills	the	core	content	area	and	the
padding	area,	so	that	any	specified	background	color	gets	automatically	applied
to	both	the	core	content	area	and	the	padding	area.

The	padding	property	can	be	specified	as	a	unit	value	or	as	a	percentage	value.
When	a	percentage	is	specified,	the	padding	width	is	calculated	using	the	width
and	height	of	the	containing	element	–	and	the	padding	area	size	will	be	adjusted
if	the	size	of	the	containing	element	gets	changed.

Typically,	a	padding	area	is	specified	when	adding	a	border	to	an	element	to
increase	the	space	between	the	content	and	the	border.

If	it	is	desirable	to	have	different	padding	widths	on	each	side	of	a	content	box,
the	padding	can	be	individually	styled	by	creating	rules	for	the	element’s
padding-top,	padding-right,	padding-bottom,	and	padding-left	properties.	For	example,
style	rule	of	padding-top	:	0.5in	;	padding-bottom	:	0.5in	;	would	apply	a	half-inch

padding	area	to	top	and	bottom	sides.	Alternatively,	the	same	result	can	be
achieved	using	the	CSS	shorthand	with	a	declaration	of	padding	:	0.5in	0	0.5in	0	;.

Setting	padding	as	a	percentage	may	produce	undesirable	results	when
the	user	resizes	the	browser	window	–	you	can	specify	unit	values	to
avoid	this.

The	padding	width	for	each	side	can	always	be	set	using	the	CSS
padding	shorthand	by	setting	sides	requiring	no	padding	to	zero	–
always	use	the	shorthand.

Create	an	HTML	document	containing	three	paragraphs	that	each	include
a	span	element	and	are	separated	by	horizontal	ruled	lines
<p>Horizontally
Padded	Content.</p>	<hr>
<p>Vertically
Padded	Content.</p>	<hr>
<p>Horizontally	and	Vertically
Padded	Content.</p>

padding.html

Add	a	style	sheet	with	rules	to	color	the	paragraph	and	span	elements
p	{	background	:	LightSalmon	;	}
span	{	background	:	MistyRose	;

border	:	0.3em	dashed	Tomato	;	}

Next,	add	a	style	rule	to	add	padding	to	the	left	and	right	sides	of	the	first
span	content	box
span#pad-h	{	padding	:	0	3em	0	3em	;	}

Now,	add	a	style	rule	to	add	padding	to	the	top	and	bottom	sides	of	the
second	span	content	box
span#pad-v	{	padding	:	1em	0	1em	0	;	}

Then,	add	a	style	rule	to	add	uniform	padding	to	all	sides	of	the	third
span	element
span#pad-hv	{	padding	:	1em	;	}

Save	the	HTML	document	then	open	the	web	page	in	a	browser	to	see
the	added	padding

Notice	how	the	background	color	fills	the	content	area	and	padding	area
–	extending	right	up	to	the	outer	edge	of	the	border	area.

Set	Margins

Each	content	box	can	have	outer	transparent	“margin”	space	added	around	the
entire	content,	padding,	and	border	areas	by	a	style	rule	assigning	a	value	to	the
margin	property.	A	single	value	can	be	specified	to	apply	a	uniform	margin	width
to	all	four	sides	of	the	content	box,	or	a	space-separated	list	of	values	can	be
specified	to	apply	different	margin	widths	to	each	side:

• When	two	values	are	listed,	the	first	is	applied	to	the	top	and	bottom	sides
and	the	second	is	applied	to	the	left	and	right.

• When	three	values	are	listed,	the	first	is	applied	to	the	top	side,	the	second	is
applied	to	the	left	and	right	sides,	and	the	third	is	applied	to	the	bottom	side.

• When	four	values	are	listed,	they	are	applied	clockwise	to	the	top,	right,
bottom,	and	left	sides.

The	margin	property	has	a	default	value	of	zero	but	in	reality	the	browser	applies
its	own	intrinsic	default	values	to	allow	spacing	between	elements.	For	example,
heading	elements	always	allow	a	margin	area	before	a	following	paragraph
element.

The	margin	property	can	be	specified	as	a	unit	value,	or	as	a	percentage	value,	or
with	the	auto	keyword	to	have	the	browser	compute	a	suitable	margin.	When	the
auto	keyword	is	specified	to	an	element’s	margin	property,	the	browser	first
calculates	the	distance	to	the	left	and	right	of	that	element,	up	to	the	boundaries
of	its	containing	element,	then	divides	the	total	in	half	to	compute	the	value	of
each	side	margin.	For	example,	applying	a	margin	:	auto	;	rule	to	a	paragraph
element	of	80px	width,	that	is	contained	within	an	outer	division	element	of
400px	width,	the	browser	divides	the	total	difference	of	320px	in	half	then
applies	160px	wide	margins	to	each	side	of	the	paragraph	element	–	so	it	gets
positioned	centrally	within	the	containing	division	element.

If	it	is	desirable	to	have	different	margin	widths	on	each	side	of	a	content	box,
the	margin	can	be	individually	styled	by	creating	rules	for	the	element’s	margin-

top,	margin-right,	margin-bottom,	and	margin-left	properties.	For	example,	style	rule
declarations	of	margin-top	:	0.5in	;	margin-bottom	:	0.5in	;	would	apply	a	half-inch
margin	area	to	top	and	bottom	sides.	Alternatively,	the	same	result	can	be
achieved	using	the	CSS	shorthand	with	a	declaration	of	margin	:	0.5in	0	0.5in	0	;.

The	margin	width	for	each	side	can	always	be	set	using	the	CSS	margin
shorthand	by	setting	sides	requiring	no	margin	to	zero	–	always	use	the
shorthand.

Create	an	HTML	document	with	an	outer	division	element	that	contains
three	inner	division	elements
<div	class=”container”>	Centered	Block
<div	class=”zero”>Default	Position</div>
<div	class=”center”>Centered	Block</div>
<div	class=”offset”>Offset	Block</div>
</div>

margin.html

Add	a	style	sheet	with	rules	to	center	the	outer	division	within	the	page,
and	create	a	border	around	the	division
div.container	{	margin	:	auto	;

border	:	0.3em	dashed	Tomato	;	}

Next,	add	style	rules	to	remove	all	margins	from	the	first	inner	division,
and	to	color	its	background
div.zero	{	margin	:	0	;	width	:	10em	;

background	:	LightSalmon	;	}

Now,	add	style	rules	to	center	the	second	inner	division,	to	create	a
border,	and	to	color	its	background
div.center	{	margin	:	auto	;	border	:	0.3em	dashed	Tomato	;

width	:	10em	;	background	:	MistyRose	;	}

Then,	add	style	rules	to	add	top	and	left	margins	to	the	third	inner
division,	and	to	color	its	background
div.offset	{	margin	:	20px	0	0	20px	;

background	:	LightSalmon	;	}

Save	the	HTML	document	then	open	the	web	page	in	a	browser	to	see
the	margin	styles

The	ability	to	automatically	compute	the	margin	size	is	essential	for
centering	content.

Notice	that	margin:auto;	centers	the	block	but	not	the	text	within	that
block.	See	here	for	text	alignment	styles.

Position	Boxes
When	laying	out	the	element	content	boxes	of	a	web	page,	the	CSS	position
property	has	a	default	value	of	static	–	representing	the	normal	flow	positioning
scheme.	Assigning	a	different	value	to	an	element’s	position	property	allows	that
element’s	place	to	move	from	the	normal	flow	so	it	can	be	positioned
independently.

Alternatives	to	the	default	static	value	can	be	specified	using	the	absolute,	relative,
fixed,	and	sticky	keywords	to	specify	an	alternative	positioning	scheme	to	that	of
the	normal	flow	layout.

The	absolute,	relative,	fixed,	and	sticky	positioning	schemes	each	use	one	or	more
of	the	CSS	“offset”	properties	top,	right,	bottom,	and	left,	to	define	the	element’s
position.

When	the	position	property	is	specified	as	absolute,	the	positioning	scheme
places	the	element	at	the	specified	offset	distance	from	the	boundaries	of	its
containing	element.	For	example,	an	absolutely	positioned	division	element	with
top	and	left	values	of	100px	will	be	positioned	100	pixels	below	and	to	the	right	of
the	boundaries	of	its	containing	element.

When	the	position	property	is	specified	as	relative,	the	positioning	scheme	adjusts
the	position	of	an	element	relative	to	the	place	it	would	originally	occupy	in	the
normal	flow	layout.	For	example,	specifying	a	top	value	of	-18px	moves	the
selected	element	up,	and	specifying	a	left	value	of	100px	moves	it	to	the	right	–
but	crucially,	the	space	occupied	by	its	original	layout	position	is	preserved.
Applying	these	relative	position	values	to	a	span	element	within	a	paragraph	has
this	effect:

Notice	how	the	original	content	is	shifted	from	its	normal	flow	layout	position

into	a	newly-created	content	box	positioned	at	the	specified	distance	relative	to
its	original	position.	This	relative	position	will	be	maintained,	even	when	the
position	of	the	outer	containing	element	is	changed.

So	while	absolute	positioning	may	typically	control	the	position	of	the	outer
element,	the	relative	positioning	scheme	is	often	useful	to	control	the	position	of
nested	inner	elements.

Absolutely	positioned	elements	and	relatively	positioned	elements	move
along	with	the	rest	of	the	page	when	the	page	gets	scrolled.

Notice	how	a	negative	value	is	used	here	–	these	can	be	used	with	other
properties	too	but	may	sometimes	produce	unexpected	results.

Create	an	HTML	document	with	two	division	elements	that	each	contain
a	span	element
<div	class=”left”>
Normal	Flow	Element</div>

<div	class=”right”>
Relatively	Positioned	Element
</div>

position.html

Add	a	style	sheet	with	rules	to	specify	the	size	of	the	division	elements,
and	to	add	borders	to	all	elements

div	{	width	:	250px	;	height	:	100px	;	}
div,span	{	border	:	2px	solid	Tomato	;	}

Next,	add	style	rules	to	absolutely	position	the	division	elements
div.left	{	position	:	absolute	;	top	:	20px	;	left	:	20px	;	}
div.right	{	position	:	absolute	;	top	:	80px	;	left	:	245px	;	}

Now,	add	style	rules	to	relatively	position	a	span	element
span.offset	{	position	:	relative	;	top	:	70px	;	left	:	25px	;	}

Save	the	HTML	document	then	open	the	web	page	in	a	browser	to	see
the	division	elements	positioned	at	absolute	coordinates	on	the	page,	and
to	see	a	span	positioned	relative	to	the	borders	of	its	container

Remember	that	the	position	values	specify	the	position	of	the	top-left
corner	of	the	target	element.	Here,	it’s	offset	70	pixels	down	and	25
pixels	to	the	right.

Fix	Positions
A	fixed	positioning	scheme,	like	the	absolute	positioning	scheme,	completely
removes	the	selected	element’s	content	box	from	the	normal	flow	layout.	But
unlike	absolute	positioning,	where	offset	values	relate	to	the	boundaries	of	the
containing	element,	in	fixed	positioning	the	offset	values	relate	to	the	viewport	–
the	position	is	relative	to	the	browser	window,	not	to	any	part	of	the	document.

Usefully,	element	positions	can	be	fixed	to	emulate	a	frame-style	interface	where
some	frames	remain	at	a	constant	position	regardless	of	how	the	regular	page	is
scrolled.	For	example,	a	logo	frame	could	be	fixed	at	a	bottom	corner	of	the	page
so	it	remains	constantly	visible	even	when	the	page	is	scrolled.

A	sticky	positioning	scheme	can	also	be	used	to	ensure	an	element	remains
visible	when	the	user	scrolls	the	page.	This	initially	places	an	element	relative	to
other	elements	on	the	page	and	maintains	this	position	when	the	page	gets
scrolled	until	it	reaches	a	specified	offset	position	in	the	viewport.	At	that	point,
the	element	assumes	a	fixed	position	and	sticks	in	place.	Scrolling	back	to	the
specified	offset	position	causes	the	element	to	resume	its	relative	positioning.

As	with	fixed	positioning,	element	positions	can	be	sticky	to	emulate	a	frame-
style	interface.	For	example,	a	banner	frame	could	stick	at	the	top	of	the
viewport	so	it	remains	constantly	visible	even	when	the	page	is	scrolled.

To	use	the	sticky	positioning	scheme	you	must	specify	a	threshold	offset	position
to	at	least	one	of	the	element’s	top,	bottom,	left,	or	right	properties,	otherwise	it
will	remain	relatively	positioned	when	the	user	scrolls	the	page.

At	the	time	of	writing,	the	Safari	web	browser	does	not	support	the
position	:	sticky	;	rule.	You	must	include	a	position	:	-webkit-sticky	;
rule	for	that	browser	until	this	feature	is	implemented	in	Safari.

Create	an	HTML	document	containing	a	heading,	two	divisions,	and	a
tall	image
<h1>Fixing	Elements</h1>
<div	class=”sticky”>Sticky	Banner	Element</div>
<div	class=”fixed”>Fixed	Logo	Element</div>

fixed.html

Add	a	style	sheet	with	rules	to	specify	the	size	and	colors	of	the	division
elements
div	{	width	:	150px	;	padding	:	10px	;

background	:	Tomato	;	color	:	White	;	}

Next,	add	style	rules	to	make	the	first	division	element	stick	centered	at
the	top	of	the	page	when	scrolled
div.sticky	{	position	:	sticky	;	top	:	10px	;	margin	:	auto	;	}

Now,	add	style	rules	to	fix	the	second	division	element	at	the	bottom
right	of	the	page	when	scrolled
div.fixed	{	position	:	fixed	;	bottom	:	0px	;	right	:	0px	;	}

Save	the	HTML	document	then	open	the	web	page	in	a	browser	and
scroll	the	page	to	see	the	division	elements	remain	visible

ruler.png	–	70px	x	525px

Stack	Boxes
Changing	from	the	static	default	positioning	scheme,	by	assigning	the	absolute
value	to	the	position	property,	allows	elements	to	overlap	–	stacking	one	above
the	other	in	the	same	order	they	are	listed	in	the	HTML	code.

The	stacking	order	can	be	explicitly	specified,	however,	in	CSS	by	assigning	an
integer	value	to	the	z-index	property	of	each	element.	The	element	with	the
highest	value	appears	uppermost,	then	beneath	that	appears	the	element	with	the
next	highest	value,	and	so	on.

So	the	absolute	positioning	scheme	allows	element	position	to	be	precisely
controlled	in	three	dimensions	using	XYZ	coordinates	–	along	the	X	axis	with
the	left	and	right	offset	properties,	along	the	Y	axis	using	the	top	and	bottom	offset
properties,	and	along	the	Z	axis	using	the	z-index	stacking	order	property.

Specifying	a	value	to	the	z-index	property	of	stacked	elements	allows	you	to
control	whether	elements	should	appear	in	front	or	behind	other	elements	–
regardless	of	the	order	in	which	they	are	listed	in	the	HTML	document.

It	is	often	useful	to	stack	elements	containing	text	above	an	image	element	to

add	text	labels	to	the	image.

Create	an	HTML	document	containing	three	division	elements	and	an
image	element
<div	class=”container”>

<div	class=”btm-label”>Street	Scene</div>
<div	class=”top=label”>Paris,	1966</div>
</div>

stack.html

The	value	specified	to	the	z-index	property	to	determine	the	stacking
order	can	be	either	a	positive	integer,	such	as	1,	or	a	negative	integer,
such	as	-1.

Add	a	style	sheet	with	rules	to	position	the	outer	division	element	at	the
bottom	of	a	stack
div.container	{	position	:	absolute	;

top	:	0px	;	left	:	0px	;	z-index	:	0	;	}

Next,	add	rules	to	position	a	division	element	on	the	next	level	in	the
stack
div.top-label	{	position	:	absolute	;	color	:	Red	;

top	:	10px	;	right	:	20px	;	z-index	:	1	;	}

Now,	add	rules	to	position	a	division	element	on	the	uppermost	level	in
the	stack
div.btm-label	{	position	:	absolute	;	color	:	Red	;

bottom	:	10px	;	left	:	220px	;	z-index	:	2	;	}

Save	the	HTML	document	then	open	the	web	page	in	a	browser	to	see
the	elements	positioned	in	all	three	dimensions	to	add	text	labels	above

the	image

scene.png
500px	x	350px

Float	Boxes
The	CSS	float	property	allows	a	content	box	to	be	positioned	at	the	side
boundary	of	its	containing	element	–	using	the	left	or	right	keywords	to	specify
the	preferred	side.	Typically,	this	feature	is	used	to	flow	text	around	images	that
have	been	floated	to	the	side	of	a	containing	paragraph	element.

You	can	also	explicitly	prevent	text	flowing	alongside	a	floated	content	box
using	the	CSS	clear	property	–	specifying	left,	right,	or	both	keywords	to
determine	which	side	must	be	clear,	so	that	text	will	begin	below	the	floated
content	box.

Create	an	HTML	document	containing	three	paragraphs	and	two	images
<p>Massive	acceleration	-	the	forbidden	fruit!	It’s	easy	to	avoid	such	unlawful

activities	in	a	normal	vehicle.	But	there	is	an	evil	serpent;	a	Viper	that	tempts	you
to	take	a	bite	out	of	the	asphalt.	With	a	tasty	500-hp	V10	powering	a	mere	3,300-lb
roadster,	the	Dodge	Viper	SRT-10	tricks	you	into	playing	music	with	the	loud
pedal.</p>

<p>This	car	is	too	excessive,	too	epic	for	most	people	to	use	on	a	daily	basis.

But	for	otherwise	nice	couples	who	need	only	two	seats	this	is	the	car	that	will
shame	those	who	come	up	against	them.</p>

<p	class=”clear”>If	you	can	afford	to...
Buy	one.	You’ll	like	it.</p>

float.html

viper-front.png
150px	x	128px

viper-rear.png
155px	x	115px

Add	a	style	sheet	with	a	rule	to	color	all	paragraph	backgrounds
p	{	background	:	LightSalmon	;	}

Next,	add	style	rules	to	float	the	first	image	to	the	right	side	of	its
containing	paragraph	element	and	add	a	border
img[src=”viper-front.png”]	{

float	:	right	;	border	:	2px	dashed	Tomato	;	}

Now,	add	style	rules	to	float	the	second	image	to	the	left	side	of	its
containing	paragraph	element	and	add	a	border
img[src=”viper-rear.png”]	{

float	:	left	;	border	:	2px	dashed	Tomato	;	}

Save	the	HTML	document	then	open	the	web	page	in	a	browser	to	see
the	floated	images

Edit	the	style	sheet	to	add	a	rule	that	prevents	the	final	paragraph	flowing
alongside	the	second	floated	image

p.clear	{	clear	:	both	;	}

Save	the	HTML	document	again	and	refresh	the	browser	to	see	the	final
paragraph	is	now	below	the	second	image

Floated	content	boxes	are	not	removed	from	normal	flow	layout	but
merely	repositioned	within	it	–	the	space	at	their	original	position	gets
filled	with	surrounding	content.

With	CSS	any	element	can	be	floated	to	the	side	of	its	containing
element	by	setting	its	float	property.

Handle	Overflow
Although	CSS	provides	many	controls	to	specify	the	precise	size	and	position	of
content	boxes,	there	is	no	guarantee	that	their	content	will	fit	neatly	within	their
boundaries	in	all	circumstances.	For	example,	consider	the	effect	of	increasing
the	font	size	of	text	content	that	fits	snugly	within	a	block-level	content	box	–
the	text	may	then	“overflow”	outside	the	box	boundaries.

Overflowing	content	is	generally	visible	by	default,	but	the	CSS	overflow	property
can	specify	alternative	handling	behaviors	using	the	hidden	or	scroll	keywords.
With	overflow	:	hidden	;	the	overflowing	content	will	be	invisible,	but	with
overflow	:	scroll	;	the	browser	will	provide	horizontal	and	vertical	scrollbars	that
the	user	can	use	to	view	the	overflowing	content.

You	can	control	whether	the	browser	provides	only	a	horizontal	scrollbar,	or
only	a	vertical	scrollbar,	for	the	user	to	view	hidden	content	with	overflow-x	and
overflow-y	properties.	These	accept	a	value	of	hidden	to	hide	the	individual
scrollbar,	or	a	value	of	scroll	to	provide	an	individual	scrollbar.	For	example,
with	the	style	rule	overflow-x	:	hidden	;	the	horizontal	scrollbar	is	not	provided,
whereas	overflow-y	:	scroll	;	provides	a	vertical	scrollbar.

Text	content	will	normally	wrap	to	the	next	line	within	a	block-level	content	box
at	word	breaks,	as	the	whitespace	property	is	set	to	normal	by	default.	You	can,
however,	disable	text	wrapping	with	a	whitespace	:	nowrap	;	style	rule.	As
overflowing	content	is	generally	visible	by	default,	the	text	will	then	appear	on	a
single	line	extending	beyond	the	boundary	of	the	content	box.

The	overflow	property	is	only	effective	for	block	elements	that	have	a
specified	height,	otherwise	the	block	will	automatically	accommodate	the

content.

If	it	is	undesirable	to	display	overflowing	text,	you	can	hide	it	with	the	overflow	:
hidden	;	rule	as	with	other	content.	Additionally,	you	can	specify	how
overflowing	text	is	treated	with	a	style	rule	using	a	text-overflow	property.	This
can	accept	a	clip	value,	which	truncates	the	text	characters	without	regard	to
word	breaks,	or	it	can	accept	an	ellipsis	value,	which	replaces	the	final	truncated
letters	with	an	...	ellipsis	–	to	indicate	that	text	has	overflowed.

Create	an	HTML	document	with	six	division	elements
<div	class=“vis”></div>
<div	class=“hid”></div>
<div	class=“scr”></div>
<div	class=“ver”></div>
<div	class=“hor”></div>
<div	class=“txt”>CSS	for	Cascading	Style	Sheets</div>

overflow.html

Add	a	style	sheet	with	rules	that	specify	the	block	type	and	size	of	the
divisions	–	as	less	than	the	image	size
div	{	display	:	inline-block	;	width	:	80px	;	height	:	130px	;
border	:	2px	dashed	Tomato	;	margin-right	:	60px	;	}

Next,	add	style	rules	to	handle	the	image	overflow
div.vis	{	overflow	:	visible	;	}
div.hid	{	overflow	:	hidden	;	}
div.scr	{	overflow	:	scroll	;	}

berry.png

100px	x	130px

Now,	add	style	rules	to	control	individual	scrollbars
div.ver	{	width	:	120px	;

overflow-x	:	hidden	;	overflow-y	:	scroll	;	}
div.hor	{	height	:	150px	;

overflow-x	:	scroll	;	overflow-y	:	hidden	;	}

Then,	add	style	rules	to	handle	the	text	overflow
div.txt	{	white-space	:	nowrap	;

overflow	:	hidden	;	text-overflow	:	ellipsis	;	}

Save	the	HTML	document	then	open	the	web	page	in	a	browser	to	see
how	the	overflow	has	been	handled

Notice	the	different	treatment	of	overflow...

Layout	Pages
The	arrangement	of	content	boxes	on	a	web	page	can	create	many	different
layouts,	but	one	of	the	most	common	layout	schemes	divides	the	web	page	into	a
header,	a	navigation	bar,	side	bars,	main	content,	and	a	footer	–	as	illustrated
below.

• Header	–	the	name	of	the	website	and	often	a	logo	image

• Navigation	Bar	–	hyperlinks	to	pages	of	the	website.

• Main	Content	–	the	most	important	part	of	the	web	page.

• Side	Bars	–	supplemental	information	or	advertisements.

• Footer	–	details	such	as	copyright	and	contact	information.

To	best	achieve	a	web	page	layout	it	is	important	to	include	a	universal	margin	:
0px	;	style	rule	to	override	the	browser’s	default	margin	size.

You	should	also	include	a	universal	box-sizing	:	border-box	;	style	rule	that	allows
the	content	boxes’	padding	and	border	to	be	included	within	each	element’s	total

width	and	height.	This	means	that	borders	and	padding	will	not	be	added	outside
the	size	you	specify	for	each	element	–	so	you	have	better	control.

You	can	discover	more	about	the	box-sizing	property	here.

Create	an	HTML	document	with	six	division	elements
<div>Header</div>
<div>Navigation	Bar</div>
<div	class=“column	side”>Side
Bar</div>
<div	class=“column	main”>Main	Content</div>
<div	class=“column	side”>Side
Bar</div>
<div	class=“footer”>Footer</div>

layout.html

Add	a	style	sheet	with	universal	overriding	rules
*	{	margin	:	0px	;	box-sizing	:	border-box	;	}

Next,	add	style	rules	to	add	padding	and	borders	to	each	division	element
–	now	included	within	their	total	size
div	{	padding	:	5px	;	border	:	1px	solid	Tomato	;	}

Now,	add	rules	to	size	and	float	three	division	elements
div.column	{	float	:	left	;	height	:	200px	;	}
div.side	{	width	:	15%	;	}
div.main	{	width	:	70%	;	}

Finally,	add	a	style	rule	to	position	the	final	division
div.footer	{	clear	:	both	;	}

Save	the	HTML	document	then	open	the	web	page	in	a	browser	to	see
the	layout

You	can	adjust	the	percentage	values	of	the	three	column	divisions,	but
added	together	they	must	total	100%.

This	is	the	traditional	CSS	method	to	create	a	3-column	layout,	but	you
will	discover	more	modern	responsive	layout	methods	later	in	this	book.

Summary
• Content	on	a	web	page	is	displayed	within	invisible	rectangular	boxes	that

are	either	block-level	or	inline.

• Block-level	content	boxes	add	line	breaks	before	and	after	the	box	and	have
optional	areas	for	padding,	border,	and	margin.

• Inline	content	boxes	do	not	add	line	breaks	or	support	rules	for	width,	height,
top/bottom	margin,	and	padding.

• Inline-blocks	appear	inline	but	unlike	regular	inline	content	boxes	they	do
support	rules	for	width	and	height.

• When	assigning	any	non-zero	value	to	a	property,	the	declaration	must
include	a	two-letter	unit	name.

• A	border	can	be	added	around	a	content	box	by	a	rule	specifying	a	width,	a
color,	and	a	border	style.

• A	padding	space	can	be	added	around	the	core	content	area	by	a	rule
specifying	a	padding	size.

• Padding	and	borders	are	added	outside	the	core	content	area	that	is	set	by	a
rule	specifying	an	element’s	width	and	height.

• Transparent	margin	space	can	be	added	around	the	content,	padding,	and
border,	by	a	rule	specifying	a	margin	size.

• Content	boxes	can	be	placed	on	the	web	page	at	absolute,	relative,	or	fixed
positions.

• The	stacking	order	of	overlapping	content	boxes	can	be	determined	by	a	rule
specifying	a	z-index	integer	value.

• A	content	box	to	be	positioned	at	the	side	boundary	of	its	containing	element
by	a	rule	specifying	a	left	or	right	side.

• Overflowing	content	is	generally	visible	but	can	be	made	invisible	by	a	rule
specifying	a	hidden	or	scroll	option.

• To	best	achieve	a	web	page	layout	it	is	important	to	include	a	universal	rule
to	override	the	browser’s	default	margin	size.

• Padding	and	borders	can	be	included	in	an	element’s	width	and	height	by	a

rule	specifying	box-sizing	as	border-box.

10

Manipulate	Text	Content

This	chapter	demonstrates	how	to	style	the	text	content	within	HTML	elements.

Suggest	Font
Set	Size

Vary	Style
Use	Shorthand
Align	Text
Control	Space

Decorate	Text
Change	Direction
Enhance	Text
Number	Sections

Summary

Suggest	Font
A	CSS	style	rule	can	suggest	a	specific	font	to	be	used	by	the	browser	for	the
display	of	text	content	in	a	selected	element	by	specifying	the	font	name	to	its
font-family	property.	The	browser	will	use	the	specified	font	if	it	is	available	on
the	user’s	system	–	otherwise	it	will	display	the	text	using	its	default	font.

The	default	font	may	not	be	the	best	choice	for	the	author’s	purpose,	so	CSS
additionally	allows	the	font-family	property	to	suggest	a	generic	font	family	from
those	in	the	table	below:

Font	Family: Description: Example:

serif Proportional	fonts	where	characters	have
different	widths	to	suit	their	size,	and	with
serif	decorations	at	the	end	of	the	character
strokes

Times	New	Roman

sans-serif Proportional	fonts	without	serif	decorations Arial

monospace Non-proportional	fonts	where	characters	are
of	fixed	width,	similar	to	type-written	text

Courier

cursive Fonts	that	attempt	to	emulate	human	hand-
written	text

Segoe	Script

fantasy Decorative	fonts	with	highly	graphic
appearance

Castellar

Above	are	serif	(left)	and	sans-serif	(right)	versions	of	a	letter	–	the	serif
decorations	are	circled.	Serif	font	characters	are	generally	considered	to
be	more	readable	but	sans-serif	is	better	for	small	font	sizes	and	for	text
aimed	at	children.

The	browser	will	first	try	to	apply	the	named	font,	but	in	the	event	that	it	is
unavailable	will	select	a	font	from	those	available	that	most	closely	matches	the
characteristics	of	the	generic	preference.	In	this	way,	the	appearance	of	the	text

should	at	least	approximate	the	author’s	intention,	even	without	specific	font-
matching.

In	a	style	rule	font-family	declaration,	the	preferred	font	name	should	appear
before	the	generic	font	family	preference	separated	by	a	comma.	Multiple	named
fonts	can	be	specified	as	a	comma-	separated	list	–	all	before	the	generic	font
family	preference.	Font	names	that	include	spaces	must	be	enclosed	within	quote
marks	or	they	will	not	be	recognized	by	the	browser.

Develop	the	habit	of	enclosing	all	named	fonts	within	quotes.

Create	an	HTML	document	containing	a	paragraph	with	several	spanned
sections	of	text
<p>The	City	of	New	York	was	introduced	to
professional	football	on	the	same	day	that	the	city	was	introduced	to	the
New	York	Giants.	It	was	a	clear	sunny
October	afternoon	in	1925
when	the	Giants	took	the	field	to	play	against	the
Frankford	Yellow	Jackets.
</p>

family.html

Add	a	style	sheet	containing	a	rule	suggesting	a	default	font	for	the	entire
paragraph
p	{	font-family	:	“Arial	Narrow”,	sans-serif	;	}

Next,	add	style	rules	suggesting	fonts	for	the	spanned	text
span.serif	{	font-family	:	“Times	New	Roman”,	serif	;	}
span.fantasy	{	font-family	:	“Castellar”,	fantasy	;	}
span.mono	{	font-family	:	“Courier”,	monospace	;	}
span.cursive	{	font-family	:	“Segoe	Script”,	cursive	;	}

Save	the	HTML	document	then	open	the	web	page	in	a	browser	to	see

the	sections	of	text	appear	in	the	named	fonts	or	in	a	generic	family	font

It	is	good	practice	to	specify	a	generic	font	family	preference	in	every
font-family	declaration.

Set	Size
CSS	provides	a	number	of	ways	to	specify	the	size	of	text	in	a	style	rule
declaration	by	assigning	values	to	the	font-size	property.	The	most	obvious	way	is
as	an	absolute	size	using	any	of	the	units	listed	here	–	for	example,	font-size	:	12pt
;.	Additionally,	CSS	provides	a	number	of	keywords	to	specify	a	relative	size:

Keyword: Equivalent:

xx-large 24pt

x-large 17pt

large 13.5pt

medium 12pt

small 10.5pt

x-small 7.5pt

xx-small 7pt

Using	the	keywords	listed	in	the	table	on	the	left,	the	medium	size	is	the
browser’s	default	font	size,	and	the	rest	are	computed	relative	to	that	size.

Where	the	browser’s	default	font	size	is	12pt,	the	computed	values	might	look
something	like	those	listed	in	the	table.

It	is	preferable	to	use	em	units	or	percentage	values	to	specify	sizes	relative	to
the	browser’s	default	font	size.	For	example,	where	the	browser’s	default	font
size	is	12pt,	a	value	of	1em	(or	100%)	is	equivalent	to	a	font	size	of	12	points	–	so
1.5em	(or	150%)	would	be	equivalent	to	a	font	size	of	18	points	in	that	case.

Use	relative	values	rather	than	absolute	values	to	specify	font	sizes	for
maximum	flexibility.	The	W3C	recommend	using	em	units	for	font	sizes.

A	further	refinement	is	to	specify	the	font-size	property	with	values	in	vw
(“viewport	width”)	units,	where	a	value	of	1vw	is	1%	of	the	current	viewport
width.	This	allows	the	size	of	text	to	resize	to	suit	the	size	of	viewing	device	or
browser	window.

The	thickness	or	“weight”	of	text	can	be	easily	adjusted	using	the	CSS	font-weight
property	and	the	bold	and	normal	keywords.

Specifying	a	bold	value	to	a	selected	element’s	font-weight	property	causes
normally	weighted	text	to	appear	in	a	heavier	font,	and	specifying	a	normal	value
causes	heavily	weighted	text	to	appear	in	a	lighter	font.	In	reality,	the	browser
uses	two	different	fonts	to	achieve	this	effect	–	for	normal	text	it	uses	a	regularly
weighted	font	(for	example	“Verdana”)	but	it	switches	to	the	heavier	weighted
variant	of	that	font	if	one	is	available	(such	as	“Verdana	Bold”)	for	bold	text.

Create	an	HTML	document	containing	four	paragraphs
<p>Medium	sized	text	at	the	default	size</p>
<p	class=”lg”>Large	sized	text	at	150%</p>
<p	class=”sm”>Small	sized	sans	text	at	60%</p>
<p	class=”huge”>Bold	text	at	double	size</p>

size.html

Add	a	style	sheet	containing	a	rule	to	specify	the	browser’s	default	font
size	relative	to	the	viewport
body	{	font-size	:	4vw	;	}

Next,	add	a	rule	to	specify	font	size	for	the	second	paragraph
p.lg	{	font-size	:	1.5em	;	}

Now,	add	rules	to	specify	font	size	and	a	generic	font	family	for	the	third
paragraph
p.sm	{	font-size	:	0.6em	;	font-family	:	sans-serif	;	}

Finally,	add	rules	to	specify	font	size	and	font	weight	for	the	fourth
paragraph
p.huge	{	font-size	:	200%	;	font-weight	:	bold	;	}

Save	the	HTML	document	then	open	the	web	page	in	a	browser	to	see
each	paragraph’s	font	size	and	weight

Sans-serif	fonts	are	considered	to	be	more	readable	for	smaller	text.

With	this	example	you	can	resize	the	browser	window	to	see	the	font	size
change	to	suit	the	current	viewport	area.

Vary	Style
Slanting	text
A	CSS	font-style	property	can	request	the	browser	to	use	a	slanting	variant	of	the
current	font	by	specifying	the	italic	or	oblique	keywords	–	these	are	subtly
different.

When	the	italic	keyword	is	specified,	the	browser	seeks	an	italicized	variant	of
the	current	font	in	its	font	database.	This	is	an	actual	font	set,	similar	to	the
current	upright	font	but	graphically	different	to	produce	slanting	versions	of	each
upright	character.

When	the	oblique	keyword	is	specified,	the	browser	seeks	an	oblique	variant	of
the	current	font	in	its	font	database.	This	may	be	an	actual	font	set	–	a	slanting
version	of	the	current	upright	font	–	or	alternatively,	it	may	be	a	generated
version	in	which	the	browser	has	computed	a	slanting	version	of	the	upright	font.
Either	may	be	mapped	to	the	oblique	keyword	in	the	browser’s	font	database	and
called	upon	by	the	CSS	font-style	property.

In	reality,	using	either	italic	or	oblique	keywords	typically	produces	the	same
italicized	text	appearance,	and	in	each	case	upright	text	can	be	resumed	by
specifying	the	normal	keyword	to	the	element’s	font-style	property.

Small	capitals
A	CSS	property	called	font-variant	can	specify	a	small-caps	value	to	allow	text
characters	to	be	displayed	in	a	popular	small	capitals	format	using	uppercase
characters	of	two	different	sizes.	Uppercase	text	in	the	selected	element	will
appear	as	large	capital	characters,	but	lowercase	text	will	appear	as	smaller
capitals.
The	browser	may	achieve	the	small	capitals	effect	using	a	smaller	capital	from
the	font	set,	or	by	generating	a	computed	smaller	version.	Once	again,	regular
text	can	be	resumed	by	specifying	the	normal	keyword	as	the	font-variant.

You	can	specify	the	small-caps	value	to	the	font-variant	property	of
heading	elements	to	make	document	headings	more	interesting.

Create	an	HTML	document	containing	four	headings
<h1>A	Heading	with	Regular	Font	Style</h1>
<h1	class=”ital”>A	Heading	with	Italic	Font	Style</h1>
<h1	class=”caps”>A	Heading	with	Small	Capitals</h1>
<h1	class=”caps”>A	Heading
with	Mixed	Variants</h1>

variant.html

Add	a	style	sheet	containing	a	rule	to	specify	an	italic	font	style	for	the
second	heading
h1.ital	{	font-style	:	italic	;	}

Next,	add	a	rule	to	specify	a	small	capitals	font	variant	for	the	third
heading
h1.caps	{	font-variant	:	small-caps	;	}

Now,	add	rules	to	specify	that	part	of	the	fourth	heading	should	return	to
normal	from	a	small	capitals	font	variant,	and	add	a	background	to
emphasize	the	change
span.norm	{	font-variant	:	normal	;

background	:	LightGreen	;	}

Save	the	HTML	document	then	open	the	web	page	in	a	browser	to	see
each	heading’s	font	style	and	variant

Use	Shorthand
Usefully,	CSS	provides	a	font	property	to	which	various	font	preferences	can	be
specified	in	a	combined	single	rule	stating:

font-style	|	font-variant	|	font-weight	|	font-size	|	font-family

Appropriate	values	can	be	assigned	to	each	part	of	the	combined	font	shorthand
property	–	for	example,	like	this:

p	{	font	:	italic	small-caps	bold	medium	“Times”,	serif	;	}

The	font-size	and	font-family	values	are	mandatory,	but	the	first	three	values	for
font-style,	font-variant,	and	font-weight	properties	are	optional	and	may	appear	in
any	order.	Values	for	each	one	of	these	three	optional	properties	may	be
completely	omitted	and	a	normal	value	will	be	automatically	assumed.

It	is	important	to	recognize	that	values	not	explicitly	specified	will	still	have	a
normal	value	applied	–	no	value	is	inherited	from	the	containing	element,	and	this
can	produce	some	unexpected	results.	For	example,	a	style	rule	selecting	a	span
element	within	a	containing	paragraph	element	styled	by	the	rule	above	might
look	like	this:

span	{	font	:	large	cursive	;	}

The	values	explicitly	specified	in	this	rule	will	be	applied	to	the	font-size	and	font-
family	properties	of	the	span	element,	and	a	normal	value	will	be	applied	to	its
font-style,	font-variant,	and	font-weight	properties	–	so	text	within	the	span	element
does	not	inherit	the	italic,	small-caps,	or	bold	values	from	the	paragraph.

One	further	possibility	available	with	a	combined	font	rule	is	the	option	to
specify	a	line-height	(the	spacing	between	each	line)	by	adding	a	forward	slash
and	unit	value	after	the	font-size	value.	This	is	useful	to	establish	a	common
standard	line	spacing	where	various	font	sizes	appear.

Remember	that	a	normal	value	is	applied	for	each	part	of	a	combined
font	rule	unless	explicitly	specified	–	and	this	will	override	the	current
parent	element	value.

Create	an	HTML	document	containing	a	paragraph	with	several	spanned
sections	of	text
<p>
The	Sneakers	Game

In	1934	the
New	York	Giants	beat	the
Chicago	Bears,	by
30-13,
in	nine-degree	temperatures	[
at	the	Polo	Grounds
]	in	a	game	that	has	become	famous	as	the	“Sneakers	Game.”	With	the	Giants	trailing	10-3	at	the
half,	head	coach	Steve	Owen	provided	his	squad
with	basketball	shoes	to	increase	traction	on	the	icy	turf.	The	team	responded
with	four	touchdowns	in	the	second	half	to	turn	the	game	into	a
Giants	rout.	</p>

font.html

Add	a	style	sheet	with	font	rules	for	the	paragraph	and	for	each	of	the
span	elements
p	{	font	:	normal	small/1.3em	“Courier”,monospace	;	}
span.head	{	font	:	350%	“Pristina”,	cursive	;	}
span.giant	{	font	:	small-caps	large	“Castellar”,	fantasy	;	}
span.bears	{	font	:	large	“Arial”,	sans-serif	;	}
span.score	{	font	:	bold	small	“Verdana”,	sans-serif	;	}
span.venue	{	font	:	italic	medium	“Arial”,	sans-serif	;	}
span.coach	{	font	:	medium	“Comic	Sans	MS”,	cursive	;	}

Save	the	HTML	document	then	open	the	web	page	in	a	browser	to	see
the	styles	applied	using	the	font	shorthand

Always	use	the	font	shorthand	property	rather	than	the	individual	font-
style,	font-variant,	font-weight,	font-size,	and	font-family	properties.

Align	Text
English	language	text	in	a	paragraph	is	normally	horizontally	aligned	to	the	left
edge	of	the	paragraph,	and	this	is	the	default	behavior	to	display	text	in	a
paragraph	element’s	content	box.

Additionally,	CSS	provides	a	text-align	property	that	can	explicitly	specify	how
text	should	be	horizontally	aligned	within	the	paragraph	element’s	content	box
using	the	keywords	left,	center,	right,	or	justify.	As	expected,	the	left	value	aligns
each	line	to	the	paragraph’s	left	edge,	the	right	value	aligns	each	line	to	the
paragraph’s	left	edge,	and	the	center	value	aligns	each	line	centrally	between
both	edges.

Perhaps	more	interestingly,	the	justify	value	aligns	each	full	line	to	both	left	and
right	edges	of	the	content	box	and	adjusts	the	spacing	between	characters	and
words	to	make	each	line	the	same	length.

In	displaying	lines	of	text,	the	browser	automatically	computes	the	line	height	to
suit	the	content	size	–	typically	this	will	be	the	height	of	the	font	x	1.2.	The
browser	then	displays	the	text	vertically	centered	in	invisible	“line	boxes”	of	the
computed	height.

The	CSS	vertical-align	property	can	explicitly	specify	how	text	should	be
vertically	aligned	using	the	keywords	baseline,	sub,	and	super.	The	baseline	value
specifies	central	vertical	alignment:	the	default	behavior.	The	sub	and	super
values	increase	the	boundaries	of	the	outer	container	in	which	the	line	box	exists,
and	shift	the	text	down	or	up	respectively	to	display	subscript	or	superscript.

Content	can	also	be	shifted	up	or	down	by	specifying	positive	or	negative	unit
values,	or	percentage	values,	to	the	vertical-align	property.	Alternatively,	the	top,
middle,	and	bottom	keywords	can	specify	vertical	alignment	with	top-most,
middle,	or	bottom-most	content.

Two	other	keywords	of	text-top	and	text-bottom	can	be	specified	to	the	vertical-align

property	in	order	to	vertically	align	other	inline	content	boxes,	such	as	those	of
image	elements,	to	the	top	or	bottom	edge	of	a	line	box.

The	text-align	property	only	controls	alignment	of	text	within	a	content
box	–	it	is	not	used	to	center	content	boxes.	See	here	for	details	on	how
to	center	content	boxes.

Usually	subscript	and	superscript	is	much	smaller	than	the	text	–	create
the	vertical	shift	by	specifying	sub	or	super	values	then	apply	a	font	rule
to	reduce	the	shifted	text’s	size.

Create	an	HTML	document	containing	three	paragraphs
<p>Enjoy	the	sunsets,	the	restaurants,	the	fishing,	the	diving...	the	lifestyle	of	the
Florida	Keys!</p>
<p	class=”just”>Enjoy	the	sunsets,	the	restaurants,	the	fishing,	the	diving...	the
lifestyle	of	the	Florida	Keys!</p>
<p>Line	Superscript
Subscript
Top</p>

align.html

Add	a	style	sheet	with	rules	to	specify	font	and	colors
p,	span	{	font	:	medium	monospace	;
background	:	LightGreen	;	border	:	1px	solid	LimeGreen	;	}

Next,	add	a	rule	to	horizontally	justify	the	text	within	the	second

paragraph’s	content	box
p.just	{	text-align	:	justify	;	}

Now,	add	rules	to	adjust	the	vertical	alignment	of	spanned	text	within	the
third	paragraph
span.up	{	vertical-align	:	super	;	}
span.down	{	vertical-align	:	sub	;	}
span.top	{	vertical-align	:	top	;	}

Save	the	HTML	document	then	open	the	web	page	in	a	browser	to	see
the	alignments

Notice	how	the	justify	keyword	aligns	each	full	line	to	the	edge	of	the
content	box	and	adjusts	the	spacing	between	characters	and	words.

Control	Space
One	of	the	most	common	features	of	printed	text	is	the	indentation	of	the	first
line	of	each	paragraph	to	improve	readability.	This	can	be	easily	accomplished
for	text	in	HTML	paragraphs	using	the	text-indent	property	to	specify	an
indentation	size,	such	as	5em.

Alternatively,	the	indentation	value	may	be	specified	as	a	percentage	where	the
browser	will	indent	an	amount	relative	to	the	total	line	length.	For	example,
given	a	paragraph	element	within	a	division	container	element	of	500px	width,
specifying	a	text-indent	value	of	10%	would	indent	the	start	of	the	first	line	by	50px
(500	x	10%	=	50).

It	is	also	possible	to	specify	negative	values	for	the	text-indent	property,	but	this
can	produce	inconsistent	results	so	is	best	avoided.

The	amount	of	space	between	each	word	can	be	adjusted	from	the	normal	default
spacing	by	explicitly	specifying	a	value	to	the	CSS	word-spacing	property.	Note
that	the	specified	value	is	added	to	the	default	spacing	to	increase	the	space.	For
example,	specifying	a	unit	value	of	5em	increases	the	space	to	normal+5em,	not	a
spacing	of	5em	overall.

Similarly,	the	amount	of	space	between	each	letter	can	be	adjusted	from	the
normal	default	spacing	by	explicitly	specifying	a	value	to	the	CSS	letter-spacing
property.	This	also	adds	the	specified	value	onto	the	default	spacing	to	determine
the	total	space.	For	example,	specifying	a	unit	value	of	5em	increases	the	space
to	normal+5em,	not	a	spacing	of	5em	overall.

Both	word-spacing	and	letter-spacing	properties	accept	the	normal	keyword	to
resume	normal	spacing.	Also,	they	may	both	be	overridden	by	the	text-align
property,	described	here,	that	has	precedence	in	determining	the	appearance	of
the	entire	line.

The	word-spacing	and	letter-spacing	properties	can	both	accept
negative	values	–	to	produce	some	interesting	results.

Create	an	HTML	document	with	two	paragraphs	containing	spanned	text
<p>The	Geologic	Story	at	the
Grand	Canyon
attracts	the	attention	of	the	world	for	many	reasons,	but	perhaps	its	greatest
significance	lies	in	the	geologic	record	preserved	and	exposed	here.</p><p>The
rocks	at	Grand	Canyon
are	not	inherently	unique	but	the
variety	of	rocks	clearly	exposed	present	a	complex
geologic	story.	</p>

space.html

Add	a	style	sheet	containing	a	rule	to	indent	the	start	of	each	paragraph
p	{	text-indent	:	5em	;	}

Next,	add	style	rules	to	increase	the	letter	spacing	and	set	a	background
color	on	two	spanned	sections	of	text
span.spread	{	letter-spacing	:	1em	;

background	:	LightGreen	;	}

Now,	add	style	rules	to	increase	the	word	spacing	and	set	a	background
color	on	the	other	spanned	text
span.space	{	word-spacing	:	1.5em	;

background	:	LawnGreen	;	}

Save	the	HTML	document	then	open	the	web	page	in	a	browser	to	see
the	indentations	and	spacing

Notice	the	increased	letter	spacing	and	increased	word	spacing.

Decorate	Text
Style	rules	can	add	decorative	lines	to	text	content	using	the	CSS	text-decoration
property	with	keywords	underline,	overline,	and	line-through.	These	behave	as
expected	adding	a	line	below,	a	line	above,	and	a	line	through	the	text
respectively.

Usefully,	the	CSS	none	keyword	can	be	specified	to	the	text-decoration	property	to
prevent	unwanted	decorations	appearing	–	this	is	particularly	popular	for
displaying	hyperlinks	without	their	usual	default	underline.

Multiple	keywords	can	be	specified	to	the	text-decoration	property	as	a	space-
separated	list	to	apply	multiple	decorations	to	the	text.

An	additional	way	to	enhance	text	with	CSS	is	available	using	the	text-transform
property	to	specify	capitalization	in	the	selected	element	with	the	keywords
uppercase,	lowercase,	or	capitalize.

Create	an	HTML	document	with	a	paragraph	containing	spanned	text	and
another	paragraph	containing	hyperlinks,	separated	by	a	ruled	line
<p	class=”main”>You	know	that	it’s
important
when
it	is
underlined

and	that	it’s	been
canceled
when
it	has	been
struck	through

but	you	also	must	remember	to

read	between	the	lines

	-	MIKE	MCGRATH
</p>

<hr>

<p>
Regular	link	|

Plain	link
</p>

decor.html

Some	users	may	not	recognize	hyperlinks	if	their	default	underline	is
removed.

Add	a	style	sheet	with	rules	to	specify	fonts	and	colors
p.main	{	font	:	medium	“Courier”,	monospace	;

background	:	LightGreen	;	}
span.signature	{	font	:	2em	“Lucida	Handwriting”,	cursive	;

color	:	Green	;	}

Next,	add	style	rules	to	decorate	spanned	text	with	lines
span.under	{	text-decoration	:	underline	;	}
span.thru	{	text-decoration	:	line-through	;	}
span.rails	{	text-decoration	:	overline	underline	;	}

Now,	add	style	rules	to	transform	the	case	of	spanned	text
span.lower	{	text-transform	:	lowercase	;	}
span.upper	{	text-transform	:	uppercase	;	}
span.caps	{	text-transform	:	capitalize	;	}

Finally,	add	a	style	rule	to	remove	the	default	underline	from	a	hyperlink
a.plain	{	text-decoration	:	none	;	}

Save	the	HTML	document	then	open	the	web	page	in	a	browser	to	see
the	text	decorations	and	case	transformations

Notice	how	lowercase	has	been	transformed	to	uppercase,	and	how
uppercase	has	been	transformed	into	lowercase.

Change	Direction
The	default	treatment	of	whitespace	within	text	content	is	to	collapse	multiple
spaces	into	a	single	space,	but	this	can	be	controlled	with	the	CSS	white-space
property.	Specifying	the	pre	(preserve)	keyword	preserves	all	spaces	as	they
appear	in	the	original	text,	including	any	line	breaks.	Conversely,	the	automatic
wrapping	of	text	in	a	block	can	be	prevented	by	specifying	the	no-wrap	keyword.
Additionally,	the	pre-wrap	keyword	can	be	specified	to	preserve	spaces	while	still
allowing	text	to	wrap	normally,	or	the	pre-line	keyword	can	be	specified	to
collapse	multiple	spaces	while	preserving	line	breaks.

The	default	left-to-right	direction	of	text	lines	can	be	changed	to	right-to-left	by
specifying	the	rtl	keyword	to	the	CSS	direction	property,	and	the	normal	direction
resumed	with	the	ltr	keyword.

Interestingly,	when	the	line	direction	is	changed	with	the	rtl	keyword,	the	words
appear	from	right-to-left	but	the	order	of	English	language	characters	is
preserved	so	that	each	word	still	reads	correctly	left-to-right.

This	intelligent	feature	also	allows	text	to	be	presented	in	different	directions	on
a	single	line	–	for	example,	to	incorporate	words	in	languages	that	are	read	right-
to-left	such	as	Hebrew	and	Arabic.	The	browser	examines	the	Unicode	value	of
each	character	using	a	complex	Bidirectional	algorithm	to	determine	which
direction	each	word	should	be	displayed	–	those	characters	from	right-to-left
languages	are	automatically	displayed	in	that	direction,	even	if	they	are	written
logically	from	left-to-right	in	the	HTML	source	code.	The	automatic
Bidirectional	algorithm	can	be	turned	off,	however,	by	specifying	the	bidi-
override	keyword	to	a	unicode-bidi	property.

You	can	discover	more	about	Unicode	online	at	www.unicode.org	and
more	on	character	entities	online	at	www.w3.org

Create	an	HTML	document	with	a	paragraph	containing	Hebrew
character	entities	and	stepped	whitespace
<p>Hebrew	“Congratulations”	with	mazel	tov:
מזל	[mazel]
+	טוב	[tov]
=	מזל	טוב

</p>

direction.html

Next,	begin	a	definition	list	with	the	same	entities
<dl>
<dt>LTR	Default	Direction	(lines	begin	at	the	LEFT):</dt>
<dd	class=“ltr”>מזל	[mazel]
טוב	[tov]</dd>

Now,	add	two	more	definitions	to	complete	the	list,	again	featuring	the
same	Hebrew	character	entities
<dt>RTL	Custom	Direction	(lines	begin	at	the	RIGHT):</dt>
<dd	class=“rtl”>מזל	[mazel]
טוב	[tov]</dd>
<dt>LTR	Explicit	Direction	+	Bidirectional	Override:</dt>
<dd	class=“bidi-off	ltr”>No	longer	reads	as	mazel	tov	:
מזל	טוב</dd>
</dl>

Add	a	style	sheet	with	rules	to	color	element	backgrounds	and	preserve
whitespace	in	paragraphs
p,dd	{	background	:	LightGreen	;	}
p	{	whitespace	:	pre	;	}

Now,	add	style	rules	to	set	the	text	directions	of	each	definition	in	the	list
dd.ltr	{	direction	:	ltr	;	}
dd.rtl	{	direction	:	rtl	;	}
dd.bidi-off	{	unicode-bidi	:	bidi-override	;	}

Save	the	HTML	document	then	open	the	web	page	in	a	browser	to	see
the	preserved	whitespace	and	changing	directions	of	the	text

http://www.unicode.org
http://www.w3.org

Notice	that	the	rtl	value	displays	the	characters	in	the	correct	order
reading	from	right	to	left.

Generally,	the	default	treatment	of	right-to-left	language	characters
achieves	the	desired	effect.	In	practice,	overriding	the	Unicode
Bidirectional	algorithm	is	seldom	needed.

Enhance	Text
CSS	provides	five	“pseudo-elements”	of	::before,	::after,	::first-letter,	::first-line	and
::selection	that	can	be	included	in	the	style	rule	selector	to	enhance	the	content	of
a	selected	element.

The	::first-letter	and	::first-line	pseudo-elements	are	used	to	add	a	style	to	the
beginning	of	text.	The	::selection	pseudo	element	is	used	to	add	style	to	text	that
has	been	selected	by	the	user.

In	CSS,	all	pseudo-	elements	begin	with	two	colon	characters.

The	::before	and	::after	pseudo-elements	are	used	to	insert	content	around	the
original	content.	For	example,	a	selector	of	p::before	inserts	content	before	the
start	of	each	paragraph.

The	::before	and	::after	pseudo-elements	specify	the	content	to	be	inserted	to	a
content	property	in	the	style	rule	declaration.	Most	simply,	this	can	specify	a
string	of	text	to	be	inserted.	The	string	must	be	enclosed	in	quote	marks,	but
these	will	not	be	included	in	the	inserted	text	–	although	spaces	in	the	string	will
be	preserved	in	the	inserted	text.	The	content	property	can,	however,	specify	the
keywords	open-quote	or	close-quote	to	explicitly	insert	quotes.

Generated	content	is	not	limited	to	text	strings,	as	the	CSS	url()	function	can	be
used	to	specify	non-textual	content	to	the	content	property	by	stating	the	path	to	a
resource	within	the	parentheses.

Additionally,	the	CSS	attr()	function	can	be	used	to	specify	to	the	content

property	the	name	of	an	attribute	within	the	selected	element	whose	assigned
value	should	be	inserted	as	content.

Multiple	items	to	be	inserted	can	be	specified	to	the	content	property	as	a	space-
separated	list	–	using	any	of	the	above.

Create	an	HTML	document	with	a	heading	and	four	paragraphs	that	each
contain	a	link	to	the	same	resource
<h1>Pseudo	Elements</h1>

<p>Get	more	info	here</p>

<p>Get	more
info	here</p>

<p>Get	more
info	here</p>

<p>Get	more
info	here</p>

pseudo.html

info.pdf

Add	a	style	sheet	containing	rules	to	style	the	heading’s	first	letter	and
selected	text	–	if	selected	by	the	user
h1::first-letter	{	color	:	ForestGreen	;	}
h1::selection	{	background	:	LawnGreen	;	}

Next,	add	rules	to	insert	text	characters	on	colored	backgrounds	before
and	after	the	content	of	each	paragraph
p::before	{	content	:	“***”	;	background	:	LightGreen	;	}
p::after	{	content	:	“!!!”	;	background	:	LawnGreen	;	}

Now,	add	rules	to	insert	colored	quotes	around	a	link

a[href].quote::before	{	content	:	open-quote	;	color	:	Blue	;	}
a[href].quote::after	{	content	:	close-quote	;	color	:	Blue	;	}

Then,	add	a	rule	to	insert	an	image	after	a	link
a[href].pdf::after	{	content	:	url(pdf-ico.png)	;	}

pdf-ico.png
32px	x	32px

Finally,	add	rules	to	insert	a	colored	attribute	value	after	a	link	to	display
the	name	of	the	linked	resource	file
a[href].att::after	{	content	:	“(“	attr(href)	“)“	;	color	:	Blue	;	}

Save	the	HTML	document	then	open	the	web	page	in	a	browser	and
select	part	of	the	heading’s	text	to	see	the	content	inserted	by	CSS	style
rules

Inserted	content	is	added	inside	the	content	box	of	the	selected	element
–	so	the	enhancements	to	the	links	in	this	example	become	part	of	the

link.

Number	Sections
The	CSS	::before	pseudo-element,	introduced	in	the	example	here,	can	insert
generated	content	to	automatically	number	sections	of	an	HTML	document
using	the	CSS	counter()	function.	This	specifies	the	name	of	a	counter	to	be
inserted	into	content	within	its	()	parentheses.

A	counter	to	count	the	instances	of	a	selected	element	must	first	be	created	by
specifying	a	chosen	name	and	an	incremental	value	to	the	counter-increment
property	as	a	space-separated	list.

The	counter	will	begin	counting	from	zero	by	default	and	will	increment	by	the
specified	incremental	value	for	every	instance	of	the	selected	element.
Optionally,	the	explicitly	specified	incremental	value	may	be	omitted	from	the
rule	so	the	value	of	1	will	be	assumed	as	the	incremental	value.	For	example,	a
declaration	of	counter-increment	:	num	;	creates	a	counter	named	“num”	that	will
start	counting	from	zero	and	increment	by	one.

Additionally,	the	counter	can	be	made	to	resume	counting	from	a	number	other
than	the	current	count	number	by	specifying	the	counter	name	and	an	integer
value	from	which	to	count	as	a	space-separated	list	to	the	counter-reset	property.
Typically,	this	will	specify	a	zero	integer	value	to	resume	counting	afresh.

Once	a	counter	has	been	created	it	can	be	inserted	before	a	selected	element	as
generated	content	by	a	CSS	pseudo-element.

Create	an	HTML	document	with	various	headings	of	two	different	sizes
<h2>Topic</h2>

<h3>Section</h3>
<h3>Section</h3>
<h3>Section</h3>

<h2>Topic</h2>
<h3	class=”restart”>Section</h3>
<h3>Section</h3>

<h3>Section</h3>

counter.html

Add	a	style	sheet	containing	a	rule	to	create	a	counter	for	the	larger
heading	elements,	which	will	increment	by	one
h2	{	counter-increment	:	num	1	;	}

Next,	add	style	rules	to	create	a	counter	for	the	smaller	heading	elements,
which	will	increment	by	one
h3	{	counter-increment	:	sub	1	;	text-indent	:	10%	;	}

Now,	add	style	rules	to	insert	the	current	larger	heading	counter	value
before	each	larger	heading	and	set	the	counter’s	foreground	and
background	colors
h2::before	{	content	:	counter(num)	“	“	;

background	:	Green	;	color	:	White	;	}

Then,	add	style	rules	to	insert	both	the	current	larger	and	smaller	heading
counter	value	before	each	smaller	heading	and	set	that	background	color
h3::before	{	content	:	counter(num)	“.”	counter(sub)	“	“	;

background	:	LawnGreen	;	}

Finally,	add	a	style	rule	to	reset	the	smaller	heading	counter	after	each
larger	heading	element
h3.restart	{	counter-reset	:	sub	0	;	}

Save	the	HTML	document	then	open	the	web	page	in	a	browser	to	see
the	generated	counter	values	inserted	before	each	heading

Notice	that	the	generated	content	in	this	example	includes	a	space	for
formatting	purposes.

Summary
• Style	rules	can	suggest	specific	font	by	name	and	a	generic	font-family	as	serif,

sans-serif,	monospace,	cursive,	or	fantasy.

• A	font-size	can	be	specified	using	keywords	or	absolute	sizes,	but	it	is
recommended	to	use	relative	sizes	for	flexibility.

• A	font-weight	can	be	specified	as	bold	or	normal.

• A	font-style	can	be	specified	as	italic	or	normal.

• A	font-variant	can	be	specified	as	small-caps	or	normal.

• The	font	shorthand	property	can	be	used	to	specify	values	for	text	style,
variant,	weight,	size,	and	font	family.

• The	font-size	and	font-family	values	are	required	when	using	the	font	shorthand
property,	but	the	other	values	are	optional.

• Text	can	be	horizontally	aligned	within	a	content	box	by	specifying	text-align
as	left,	center,	right,	or	justify.

• Text	can	be	vertically	aligned	within	a	content	box	by	specifying	vertical-align
as	top,	middle,	or	bottom.

• The	spacing	between	text	can	be	specified	as	a	unit	value	to	the	text-indent,
word-spacing,	and	letter-spacing	properties.

• Text	can	be	decorated	by	specifying	text-decoration	as	underline,	overline,	or
line-through.

• Text	can	be	transformed	by	specifying	text-transform	as	uppercase,	lowercase,
or	capitalize.

• Multiple	spaces	in	text	are	normally	collapsed	into	a	single	space,	but	can	be
preserved	using	the	white-space	property.

• The	default	left-to-right	direction	of	text	lines	can	be	changed	to	right-to-left
using	the	direction	property.

• CSS	pseudo-elements	can	be	included	after	the	style	rule	selector	to	enhance
the	content	of	a	selected	element.

• Sections	of	a	web	page	can	be	automatically	numbered	using	the	CSS	counter(

)	function.

11

Organize	Tables	&	Lists

This	chapter	demonstrates	how	to	style	tables	and	lists	in	HTML	documents.

Construct	Columns
Space	Cells

Collapse	Borders
Assign	Features
Choose	Markers
Position	Markers

Provide	Navigation
Make	Dropdowns
Summary

Construct	Columns
Although	web	page	authors	are	now	discouraged	from	using	HTML	tables	for
page	layout,	in	favor	of	CSS,	tables	remain	an	invaluable	format	for	the
presentation	of	information	within	the	content	of	a	page.

When	displaying	an	HTML	table,	the	browser	will,	by	default,	automatically
create	a	table	layout	sized	to	accommodate	its	content.	This	invariably	produces
a	table	with	columns	of	varying	width,	where	each	column	width	is	determined
by	the	widest	content	of	any	cell	in	that	column.	This	process	requires	the
browser	to	examine	the	table	content	in	some	detail	before	it	can	compute	the
optimum	table	layout	and,	especially	for	large	tables,	can	take	some	time	before
the	browser	is	able	to	draw	the	table.

CSS	provides	an	alternative	that	allows	the	browser	to	quickly	compute	a
suitable	table	layout	without	examining	the	content	of	the	entire	table	–	a	fixed
layout	can	be	specified	to	the	table-layout	property	of	a	table	element	with	the
fixed	keyword.

In	a	fixed	layout	the	browser	need	only	consider	the	width	value	of	the	table	itself
and	the	width	value	of	the	columns	and	cells	on	its	first	row	to	determine	the
table	layout,	like	this:

• The	overall	table	width	will	be	its	specified	width	value	or	the	sum	of	its
column	width	values	–	whichever	is	the	greater.

• A	specified	column	width	value	sets	the	width	for	that	column.

• When	there	is	no	specified	column	width	value,	a	specified	cell	width	value
sets	the	width	for	that	column.

• Any	columns	that	have	no	specified	width	values,	for	either	column	or	cell,
will	be	sized	equally	within	the	table	width.

Alternatively,	a	style	rule	can	explicitly	specify	that	the	default	table	layout
scheme	should	be	used,	in	which	the	browser	computes	the	column	widths

according	to	their	content	by	assigning	an	auto	value	to	the	table-layout	property.

Where	tables	include	a	caption	element,	the	position	of	the	caption	can	be
suggested	by	specifying	keywords	of	top	or	bottom	to	the	table	element’s	CSS
caption-side	property.

Specify	the	first	column	width	and	a	fixed	layout	rule	to	create	a	first
column	of	custom	width	and	other	columns	of	equal	width	to	each	other.

Create	an	HTML	document	containing	two	tables	with	similar	content
<table><caption>Auto	Layout</caption>
<tr><td>Text	content</td>
<td>This	is	text	content	wider	than	130px</td>
<td>Text	content</td></tr></table>

<table	class=“fixed”><caption>Fixed	Layout</caption>
<tr><td>Text	content</td>
<td>This	is	text	content	wider	than	130px</td>
<td>Text	content</td></tr></table>

columns.html

Add	a	style	sheet	containing	rules	to	specify	table	width	and	its	features
table	{	width	:	500px	;	border	:	2px	dashed	DeepPink	;
caption-side	:	top	;	text-align	:	center	;	margin	:	0	0	30px	;	}

Next,	add	style	rules	to	color	each	table	cell	and	caption
td	{	border	:	2px	solid	DeepPink	;	}
caption	{	background	:	Pink	;	}

Now,	add	a	style	rule	to	specify	a	fixed	size	column	scheme	for	the
second	table
table.fixed	{	table-layout	:	fixed	;	}

Save	the	HTML	document	then	open	the	web	page	in	a	browser	to	see

tables	drawn	with	both	automatic	and	fixed	layout	schemes

The	caption-side	property	can	suggest	where	a	caption	might	appear
but	the	actual	treatment	of	captions	is	browser-specific.

Space	Cells
The	distance	between	table	cell	borders	can	be	specified	as	a	unit	value	to	the
CSS	border-spacing	property.	This	easily	allows	cells	to	be	spread	some	distance
apart	throughout	a	table.

A	single	specified	border-spacing	value	will	be	applied	uniformly	to	all	cell
separations	–	in	much	the	same	way	as	with	the	HTML	cellspacing	attribute.

CSS	provides	greater	flexibility,	however,	by	allowing	two	values	to	be
specified	to	the	border-spacing	property	as	a	space-separated	list.	The	first	will	be
applied	to	the	horizontal	spacing,	at	the	left	and	right	of	each	table	cell,	and	the
second	will	be	applied	to	the	vertical	spacing	at	the	top	and	bottom	of	each	cell.
This	means	that	different	distances	can	be	specified	for	the	horizontal	and
vertical	spacing	throughout	a	table.

Another	possibility	offered	by	CSS	is	the	ability	to	hide	table	cells	that	contain
no	content.	These	frequently	occur	due	to	the	grid	format	of	tables,	which	does
not	always	conveniently	match	the	number	of	cells	required	–	for	example,
displaying	nine	content	items	in	a	table	of	five	rows	and	two	columns.

Creating	a	style	rule	with	the	CSS	empty-cells	property	specifying	a	hide	value
will	cause	the	browser	to	not	display	the	border	and	background	of	any	cell	that
contains	absolutely	no	content.	Cells	that	contain	any	content	at	all,	even	if	it’s
simply	a	 	(non-	breaking	space	entity),	will	still	be	visible.

Conversely,	a	style	rule	can	explicitly	ensure	that	empty	cells	are	displayed	by
specifying	a	show	value	to	the	empty-cells	property.

Empty	cells	that	are	hidden	do	continue	to	have	a	presence	in	the	table	layout
inasmuch	as	their	border-spacing	values	are	preserved.	For	example,	where	the
border-spacing	property	is	set	to	20px,	and	the	empty-cells	property	specifies	a	hide
value,	a	single	empty	cell	is	not	displayed,	but	the	surrounding	cells	remain	40
pixels	apart	–	rather	than	just	a	distance	of	20	pixels	that	would	exist	if	the
hidden	cell	did	not	exist.

Negative	values	cannot	be	specified	to	the	border-spacing	property.

The	empty-cells	property	does	not	apply	when	a	collapse	value	is
specified	to	the	border-collapse	property	–	see	here.

Create	an	HTML	document	containing	two	tables	with	similar	content	–
including	one	empty	cell
<table>
<tr><td>1</td><td></td><td>3</td></tr>
</table>

<table	class=“space”>
<tr><td>1</td><td></td><td>3</td></tr>
</table>

hide.html

Add	a	style	sheet	containing	rules	to	specify	table	width	and	its	features
table	{	width	:	500px	;

margin	:	20px	;	border	:	2px	dashed	DeepPink	;	}

Next,	add	a	style	rule	to	color	each	table	cell	and	border
td	{	border	:	2px	solid	DeepPink	;	}

Now,	add	style	rules	to	specify	the	border	spacing	and	hide	empty	cells	in
the	second	table
table.space	{	border-spacing	:	20px	;	empty-cells	:	hide	;	}

Save	the	HTML	document	then	open	the	web	page	in	a	browser	to	see

tables	drawn	with	both	visible	and	hidden	empty	cells

Collapse	Borders
The	borders	of	adjacent	table	borders,	and	table	cell	borders,	can	be	made	to
“collapse”	into	a	single	border	by	specifying	the	collapse	keyword	to	the	CSS
border-collapse	property.	This	requires	the	browser	to	perform	a	series	of
evaluations,	comparing	the	existing	borders,	to	determine	how	the	collapsed
border	should	appear:

• Visibility	Evaluation:	where	one	of	the	borders	to	be	collapsed	has	a	border-
style	value	of	hidden,	that	value	takes	precedence	–	so	the	collapsed	border	at
that	location	will	be	hidden.

• Width	Evaluation:	where	two	visible	borders	with	different	border-width
values	are	to	be	collapsed,	the	highest	value	takes	precedence	–	so	the
collapsed	border	will	be	the	greater	width.

• Style	Evaluation:	where	two	visible	borders	of	equal	width	are	to	be
collapsed,	their	border-style	value	sets	the	precedence	in	the	descending	status
order	of	double,	solid,	dashed,	dotted,	ridge,	outset,	groove,	inset	–	so	the
collapsed	border	at	that	location	will	be	in	the	style	of	highest	status.	For
example,	a	double	style	wins	out	over	a	solid	style.

• Color	Evaluation:	where	two	visible	borders	of	equal	width	and	identical
style	are	to	be	collapsed,	the	border-color	value	is	determined	in	the
descending	status	order	of	cell,	row,	row	group,	column,	column	group,	table
–	so	that	collapsed	border	will	be	in	the	color	of	highest	status.	For	example,
the	cell	border-color	wins	out	over	the	table	border-color	value.

The	effect	of	collapsing	borders	where	a	table	border-width	of	2px	is	compared	to
a	cell	border-width	of	5px	means	that	the	collapsed	border-width	will	be	5	pixels	–
the	greater	width.

In	comparing	adjacent	border-style	values	of	dotted	and	double,	the	collapsed
border-style	will	be	double	–	the	higher	status.

Similarly,	comparing	adjacent	border-style	values	of	dotted	and	solid,	the
collapsed	border-style	will	be	solid	–	the	higher	status.

The	separate	keyword	can	also	be	specified	to	the	border-collapse
property	–	to	explicitly	prevent	collapsing	borders.

Create	an	HTML	document	containing	two	tables	with	similar	content
<table><tr>
<td	class=“twin”>1</td>
<td	class=“dots”>2</td>
<td	class=“full”>3</td>	</tr></table>

<table	class=“fold”><tr>
<td	class=“twin”>1</td>
<td	class=“dots”>2</td>
<td	class=“full”>3</td>	</tr></table>

collapse.html

Add	a	style	sheet	containing	rules	to	specify	table	width	and	its	features
table	{	width	:	500px	;	height	:	60px	;	margin	:	20px	;	}

Next,	add	style	rules	to	specify	the	size	and	color	of	the	table	border	and
each	table	cell
table	{	border	:	2px	solid	DeepPink	;	}
td.twin	{	border	:	5px	double	DeepPink	;	}
td.dots	{	border	:	5px	dotted	DeepPink	;	}
td.full	{	border	:	5px	solid	DeepPink	;	}

Now,	add	a	style	rule	to	collapse	the	borders	of	the	second	table
table.fold	{	border-collapse	:	collapse	;	}

Save	the	HTML	document	then	open	the	web	page	in	a	browser	to	see
tables	drawn	with	both	regular	and	collapsed	borders

Assign	Features
The	CSS	display	property	can	accept	a	range	of	values	to	specify	that	a	selected
element	should	be	treated	as	a	table	component	–	emulating	the	default	behavior
of	HTML	tags	that	a	browser	automatically	applies	to	table	components:

HTML	Tag: CSS	Equivalent:

<table> table

<tr> table-row

<thead> table-header-group

<tbody> table-row-group

<tfoot> table-footer-group

<col> table-column

<colgroup> table-column-group

<th>
	table-cell

<td>

<caption> table-caption

The	CSS	values	that	can	be	specified	to	the	display	property	are	listed	in	the	table
above,	together	with	the	HTML	tag	they	most	closely	represent.	These	can	be
used	to	specify	table	features	to	elements	of	an	XML	document	so	a	browser	will
display	their	content	as	if	it	was	an	HTML	table.

Create	an	XML	document	that	nominates	a	CSS	style	sheet	to	format	its
element	content
<?xml	version=”1.0”	encoding=”UTF-8”?>
<?xml-stylesheet	href=”xtable.css”	type=”text/css”?>
<league><caption>La	Liga	Top	3</caption>

<headers>
<lbl>Position</lbl>	<lbl>Team</lbl>	<lbl>Points</lbl>
</headers>
<rows>
<team>	<pos>1</pos>	<name>Barcelona</name>
<pts>84</pts>	</team>
<team>	<pos>2</pos>	<name>Real	Madrid</name>
<pts>80</pts>	</team>
<team>	<pos>3</pos>	<name>Villareal</name>
<pts>65</pts>	</team>
</rows>

</league>

xtable.xml

Save	the	XML	document	then	create	a	style	sheet	with	rules	that	assign
table	characteristics	to	the	XML	tags
caption	{	display	:	table-caption	;	}

league	{	display	:	table	;	}

headers	{	display	:	table-header-group	;	}

rows	{	display	:	table-row-group	;	}

team	{	display	:	table-row	;	}

name,	pos,	pts,	lbl	{	display	:	table-cell	;	}

xtable.xml

Next,	add	style	rules	that	specify	the	table	features
league	{	margin	:	auto	;	margin-top	:	20px	;	width	:	300px	;
border-spacing	:	3px	;	border	:	8px	ridge	DeepPink	;	}

Now,	add	style	rules	to	color	the	headers	and	row	cells
headers	{	background	:	DeepPink	;	color	:	White	;	}
rows	{	background	:	Pink	;	}

Save	the	style	sheet	alongside	the	XML	document	then	open	the	XML
document	in	a	browser	to	see	the	table

Choose	Markers
A	list	“marker”	indicates	the	beginning	of	an	item	in	a	list	–	typically	a	bullet	in
an	unordered		list,	or	an	incrementing	number	in	an	ordered		list.	The
browser	conducts	an	item	count	in	each	case,	but	usually	only	uses	this	to
number	the	items	in	an	ordered	list	display.

The	CSS	list-style-type	property	can	specify	an	alternative	type	of	marker	for	any
list	–	so	unordered	lists	can	have	numbered	markers,	and	ordered	lists	can	have
bullet-points	if	so	desired.

Keywords	allow	the	bullet	marker	type	to	be	specified	as	disc,	circle,	or	square,
and	number	marker	types	as	lower-roman,	upper-roman,	decimal,	or	decimal-leading-
zero.

Alphabetical	marker	types	can	be	specified	with	the	lower-latin,	upper-latin,	and
lower-greek	keywords.	Additionally,	the	CSS	specification	provides	keywords	for
other	alphabets	such	as	armenian	and	georgian	–	but	a	suitable	font	is	needed	for
the	marker	to	be	displayed	correctly	by	the	web	browser.

The	list-style-type	property	can	also	specify	a	none	value	to	explicitly	suppress	the
markers	so	they	will	not	be	displayed,	although	they	do	remain	in	the	item	count.

Optionally,	an	image	may	be	specified	as	a	marker	by	stating	its	path	in	the
parentheses	of	the	CSS	url()	function	to	the	list-style-image	property.

Create	an	HTML	document	containing	three	headings	and	several
ordered	lists
<h3>Alphabetical	list	marker	types:</h3>
<ol	id=“list-0”>lower-latin......
<ol	id=“list-1”>upper-latin......
<ol	id=“list-2”>lower-greek......

<h3>Bullet	list	marker	types:</h3>
<ol	id=“list-3”>disc......

<ol	id=“list-4”>circle......
<ol	id=“list-5”>square......
<ol	id=“list-6”>image......

<h3>Numerical	list	marker	types:</h3>
<ol	id=“list-7”>lower-roman......
<ol	id=“list-8”>upper-roman......
<ol	id=“list-9”>decimal......
<ol	id=“list-10”>decimal-leading-zero......

markers.html

Add	a	style	sheet	with	rules	to	specify	heading	and	list	features
h3	{	clear	:	left	;	margin	:	0	;	}
ol	{								margin	:	0	5px	0	0	;	border	:	2px	solid	DeepPink	;

float	:	left	;
background	:	Pink	;	padding	:	0	0	0	10px	;	}

li	{	margin	:	0	0	0	20px	;	background	:	White	;	}

Next,	add	style	rules	to	specify	alphabetical	list	markers
ol#list-0	{	list-style-type:	lower-latin	;	}
ol#list-1	{	list-style-type:	upper-latin	;	}
ol#list-2	{	list-style-type:	lower-greek	;	}

Now,	add	style	rules	to	specify	bullet	list	markers
ol#list-3	{	list-style-type:	disc	;	}
ol#list-4	{	list-style-type:	circle	;	}
ol#list-5	{	list-style-type:	square	;	}
ol#list-6	{	list-style-image	:	url(tick.png)	;	}

tick.png	–	20px	x	20px
Gray	areas	are	transparent.

Finally,	add	style	rules	to	specify	numerical	list	markers
ol#list-7	{	list-style-type:	lower-roman	;	}
ol#list-8	{	list-style-type:	upper-roman	;	}
ol#list-9	{	list-style-type:	decimal	;	}
ol#list-10	{	list-style-type:	decimal-leading-zero	;	}

Save	the	HTML	document	then	open	the	web	page	in	a	browser	to	see
the	list	markers

Both	numerical	and	alphabetical	markers	display	the	incrementing	item
count.

Position	Markers
Typically,	to	display	a	list	the	browser	creates	a	block-level	content	box	for	the
entire	list	and	inline	content	boxes	for	each	list	item.	Typically,	an	automatic	left
margin	insets	the	list	item	content	boxes	and	each	marker	appears	up	against	the
right	edge	of	this	margin	area	–	outside	the	list	item	content	boxes.

The	position	of	the	marker	may	be	explicitly	specified	to	the	list-style-position
property	using	inside	or	outside	keywords	to	determine	whether	the	markers
should	appear	inside	the	list	item	content	boxes.

Rather	than	creating	separate	style	rules	for	the	list-style-type,	list-style-image,	and
list-style-position	properties,	it	is	simpler	to	use	the	CSS	shorthand	technique	that
may	specify	a	value	for	each	property	as	a	space-separated	list	to	the	list-style
property.	The	values	may	appear	in	any	order,	and	where	any	value	is	omitted
the	default	value	for	that	property	will	be	assumed.

Lists	of	either	type	may	be	nested	with	their	marker	position	and	type	specified
independently:

Create	an	HTML	document	containing	three	lists	plus	one	nested	list
<ol	class=“outside-markers”>
ListMarkersOutside	content	box

<ol	class=“inside-markers”>
ListMarkersInside	content	box

ListStyle
<ol	class=“inside-markers”>
ListMarkersInside	content	box
Shorthand

list.html

Add	a	style	sheet	containing	rules	to	show	the	list	boundaries
li	{	background	:	Pink	;	}
ol,ul	{	border	:	2px	solid	DeepPink	;	}

Nested	lists	can	specify	they	should	adopt	the	list-style	of	the	containing
element	using	the	inherit	keyword	or	suppress	markers	with	the	none
keyword.

Next,	add	a	style	rule	to	specify	that	some	ordered	list	markers	should
appear	outside	the	list	item	content	boxes
ol.outside-markers	{	list-style-position	:	outside	;	}

Now,	add	a	style	rule	to	specify	that	other	ordered	list	markers	should
appear	inside	the	list	item	content	boxes
ol.inside-markers	{	list-style-position	:	inside	;	}

Finally,	add	a	shorthand	style	rule	that	specifies	the	position,	image,	and
bullet	type	for	the	unordered	list
ul	{	list-style	:	url(star.png)	outside	square	;	}

star.png	–	20px	x	20px
Gray	areas	are	transparent.

Save	the	HTML	document	then	open	the	web	page	in	a	browser	to	see
the	lists

The	square	marker	type	specified	by	the	shorthand	rule	will	be	used
when	the	specified	image	is	not	available.

Provide	Navigation
A	navigation	bar	is	simply	a	list	of	hyperlinks	with	particular	CSS	style	rules
applied	to	an	HTML	list	element.	Markers	are	not	required,	so	the	list-style-type
property	is	specified	as	none,	and	the	browser’s	default	margins	and	paddings	are
removed.	The	hyperlinks	in	the	list	are	then	styled	with	display	:	block	;	,	so	that
their	entire	content	box	is	clickable	(not	just	the	link	text),	and	text-decoration	:
none	;	–	to	remove	the	default	underlines.

Hyperlinks	can	indicate	status	by	adding	a	class	for	styling,	to	indicate	the
current	location	on	the	website,	and	by	adding	a	:hover	pseudo-class	after	the
selector.

Vertical	navigation	bars	typically	specify	a	fixed	width	value	for	the	list,	whereas
horizontal	navigation	bars	can	instead	float	the	list	items	and	hide	the	overflow	to
maintain	visibility	of	the	bar.

Create	an	HTML	document	containing	a	list	with	four	hyperlink	items

Home
Information
Extra
Contact

navigation.html

Add	a	style	sheet	containing	rules	to	remove	the	markers,	margin,	and
padding,	then	specify	a	color	and	fixed	width
ul	{	list-style-type	:	none	;	margin	:	0	;	padding	:	0	;

background	:	Pink	;	width	:	150px	;	}

Next,	add	style	rules	to	display	the	hyperlinks	in	blocks	and	specify	how
they	should	appear
li	a	{	display	:	block	;	text-align	:	center	;

text-decoration	:	none	;
color	:	Black	;	padding	:	10px	;	}

Now,	add	style	rules	to	indicate	the	hyperlinks’	status
li	a.current	{	background	:	HotPink	;	}
li	a:hover	{	background	:	DeepPink	;	color	:	White	;	}

Save	the	HTML	document	then	open	the	web	page	in	a	browser	to	see
the	vertical	navigation	bar

Pseudo-classes	are	used	to	indicate	the	state	of	a	hyperlink	with	a:link
(default),	a:visited,	a:hover,	and	a:active.

Edit	the	rules	in	Step	2	to	replace	width	with	overflow
ul	{	list-style-type	:	none	;	margin	:	0	;	padding	:	0	;

background	:	Pink	;	overflow	:	hidden	;	}

Also	edit	the	rules	in	Step	3	to	add	a	float	rule
li	a	{	display	:	block	;	text-align	:	center	;

text-decoration	:	none	;
color	:	Black	;	padding	:	10px	;	float	:	left	;	}

Save	the	HTML	document	again,	then	refresh	the	web	page	in	your
browser	to	see	the	horizontal	navigation	bar

You	can	discover	how	to	automatically	display	appropriate	navigation	for
different	device	sizes	here.

Make	Dropdowns
A	dropdown	box	is	a	content	box	that	is	hidden	until	the	user	places	the	cursor
over	an	active	element,	at	which	point	the	box	appears	to	offer	further
information,	a	larger	image	when	placing	the	cursor	over	a	thumbnail	image,	or
a	list	of	clickable	options.

The	active	element	should	be	styled	with	a	position	:	relative	;	rule	so	that	the
dropdown	box	can	be	positioned	directly	beneath	it	with	a	position	:	absolute	;
rule.	Additionally,	the	dropdown	box	should	have	a	specified	z-index	value	to
place	it	above	any	existing	content	on	the	page.

It	is	also	useful	to	include	a	universal	box-sizing	:	border-box	;	rule	that	allows
padding	and	border	to	be	included	within	the	total	width	and	height	of	the	active
element	and	of	the	dropdown	box.

Create	an	HTML	document	with	a	heading,	a	division	element	containing
two	inner	divisions,	and	a	paragraph
<h1>Banner</h1>

<div	class=”container”>
<div	class=”active”>Dropdown	Menu</div>
<div	class=”dropdown”>
Option	1
Option	2
Option	3
</div>

</div>

<p>Random	text	content:
Remains	below	the	dropdown	menu.</p>

dropdown.html

Add	a	style	sheet	containing	a	rule	to	include	padding	and	borders	in	all
elements’	total	width	and	height
*	{	box-sizing	:	border-box	;	}

Next,	add	a	rule	to	create	a	border	around	the	heading,	just	to	reveal	its
overall	width	and	height
h1	{	border	:	2px	dashed	DeepPink	;	}

Now,	add	rules	to	position	the	outer	division	as	an	inline-block	beneath
the	heading
div.container	{	position	:	relative	;	display	:	inline-block	;	}

You	can	discover	more	about	the	box-sizing	property	here.

Then,	add	rules	to	style	the	first	inner	division	–	this	will	be	the	active
element	for	the	dropdown
div.active	{	padding	:	15px	;	background	:	Pink	;	}

Next,	add	rules	to	position	and	hide	the	second	inner	division	–	this	will
be	the	dropdown	content
div.dropdown	{	position	:	absolute	;	width	:	100%	;

border	:	2px	solid	Pink	;	background	:	White	;
z-index	:	1	;	display	:	none	;	}

If	you	do	not	specify	a	background	value	for	the	dropdown	content	it
may	be	transparent	–	so	the	content	beneath	will	remain	visible.

Now,	add	rules	to	make	each	link’s	content	box	clickable
div.dropdown	a	{	display	:	block	;	padding	:	15px	;

text-decoration	:	none	;	color	:	Black	;	}

Then,	add	rules	to	change	the	link’s	appearance	when	the	user	places	the

cursor	over	the	link
div.dropdown	a:hover	{	background	:	DeepPink	;

color	:	White	;	}

Finally,	add	a	style	rule	to	reveal	the	dropdown	box	when	the	user	places
the	cursor	over	the	active	element
div.container:hover	div.dropdown	{	display	:	block	;	}

Save	the	HTML	document	then	open	it	and	put	your	cursor	over	the
active	element	to	see	the	dropdown	appear

Summary
• A	web	browser	can	quickly	draw	a	fixed	layout	table	by	assessing	the	width

of	the	table	and	its	first	row	of	cells.

• A	table	caption-side	can	be	specified	as	top	or	bottom.

• A	border-spacing	can	specify	the	distance	between	table	cell	borders	as	a
uniform	distance	or	as	horizontal	and	vertical.

• The	empty-cells	property	can	hide	any	cell	that	contains	absolutely	no	content.

• The	border-collapse	property	can	combine	adjacent	borders	of	a	table	and	its
cells	into	a	single	border.

• The	display	property	can	specify	that	a	selected	element	should	be	treated	by
the	browser	as	a	table	component.

• A	list-style-type	can	specify	the	type	of	marker	to	be	used	for	list	items	as
bullets,	numbers	or	letters.

• The	CSS	url()	function	can	specify	the	path	to	an	image	for	use	as	a	list
marker.

• A	list-style-position	can	specify	whether	markers	should	appear	inside	or
outside	the	list’s	content	box.

• A	navigation	bar	is	a	list	of	hyperlinks	with	particular	CSS	style	rules	applied
to	an	HTML	list	element.

• When	a	hyperlink	is	displayed	as	a	block,	its	entire	content	box	is	clickable.

• Pseudo-classes	can	be	used	to	indicate	the	status	of	hyperlinks.

• Vertical	navigation	bars	specify	a	list	width,	but	horizontal	navigation	bars
float	the	list	items	and	hide	the	overflow.

• A	dropdown	box	is	a	content	box	that	is	hidden	until	the	user	places	the	cursor
over	an	active	element.

• An	dropdown’s	active	element	should	be	relatively	positioned	so	the
dropdown	box	can	be	absolutely	positioned	beneath	it.

12

Generate	Effects

This	chapter	demonstrates	how	to	produce	stylish	effects	in	HTML	documents.

Choose	Cursors
Show	Focus

Roll	Over
Push	Buttons
Reveal	Elements
Draw	Corners

Cast	Shadows
Blend	Gradients
Decorate	Borders
Transform	Shapes

Make	Transitions
Animate	Elements
Fit	Objects
Summary

Choose	Cursors
The	CSS	cursor	property	can	specify	the	type	of	cursor	to	display	when	the
pointer	hovers	over	a	selected	element.	Its	default	value	of	auto	allows	the
browser	to	determine	which	cursor	to	display,	but	specifying	a	default	keyword
will	explicitly	force	the	browser	to	use	the	operating	system’s	default	cursor.

Alternative	cursor	keywords,	together	with	the	cursor	icons	they	represent	in	the
Windows	operating	system,	are	listed	below:

Keyword: Cursor: Keyword: Cursor:

default n-resize

pointer ne-resize

crosshair e-resize

move se-resize

text s-resize

wait sw-resize

progress w-resize

help nw-resize

Traditionally,	the	pointer	cursor	icon	indicates	a	hyperlink,	the	move	cursor	icon
indicates	an	item	that	can	be	dragged,	and	the	text	cursor	icon	indicates	a
component	in	which	text	can	be	selected.	As	most	users	are	familiar	with	these
cursor	conventions,	it	is	best	to	adhere	to	them.

In	addition	to	system	cursor	icons,	the	cursor	property	can	specify	an	image	for

use	as	a	custom	cursor	icon	by	stating	its	path	within	the	parentheses	of	the	CSS
url()	function.	Multiple	images	may	be	specified,	as	a	comma-separated	list,	but
the	list	should	always	end	with	a	regular	cursor	keyword	to	specify	which
system	cursor	icon	to	use	if	the	specified	images	are	unavailable.

By	default,	Windows	uses	the	same	resize	icon	for	each	diagonal	(north-
south)	but	these	can	be	individually	different.

The	wait	cursor	means	that	the	user	should	not	proceed	until	the	current
task	has	completed,	whereas	the	progress	cursor	allows	the	user	to
proceed	without	delay.

Create	an	HTML	document	containing	two	paragraphs
<p	class=”help-cursor”>Browser	defined	help	cursor</p>
<p	class=“target-cursor”>

Custom	cursor	(or	browser	default)</p>

cursor.html

Add	a	style	sheet	with	rules	to	specify	border,	paragraph	height,	and
color
p	{	border	:	2px	solid	DarkOrange	;

height	:	60px	;	background	:	Bisque	;	}

Next,	add	style	rules	to	specify	cursors	for	the	paragraphs
p.help-cursor	{	cursor	:	help	;	}
p.target-cursor{	cursor	:	url(target.cur),	default	;	}

target.cur	–	32px	x	32px	Gray	areas	are	transparent.

Save	the	HTML	document	then	place	the	pointer	over	each	paragraph	to
see	the	cursors

Show	Focus
Interactive	components	of	an	HTML	document	comprise	those	elements	that	can
accept	keyboard	input,	such	as	a	text	field,	and	those	that	can	be	activated	by	a
user	action,	such	as	a	push	button	or	hyperlink.	When	one	of	these	interactive
components	is	selected	by	the	user,	typically	by	a	mouse	click	or	tab	key,	it	is
ready	to	be	activated	and	is	said	to	have	“focus”.

CSS	provides	the	:focus	pseudo-class	that	can	be	used	to	apply	styling	to	the
element	with	current	focus	in	a	document	–	in	recognition	of	the	user’s	selection.
The	styling	is	removed	from	that	element	when	the	focus	shifts	to	another
element,	as	the	user	selects	a	different	interactive	component.

Indicating	the	element	with	current	focus	is	especially	useful	in	lengthy	forms
with	many	input	fields,	as	it	acts	as	a	marker	that	easily	identifies	the	progress
through	the	form.

Create	an	HTML	document	containing	a	form	with	several	interactive
components
<form	action=”echo.py”>
<fieldset>
<legend>Send	for	details</legend>
<label	for=“addr”>Enter	your	email	address:	</label>
<input	id=“addr”	type=“text”>

<input	type=“submit”	value=“Send”>
Samples	Page
</fieldset>
</form>

focus.html

Add	a	style	sheet	with	a	rule	to	color	input	elements	when	in	focus
input:focus	{	background	:	DarkOrange	;	}

Next,	add	a	style	rule	to	color	hyperlinks	when	in	focus
a:focus	{	background	:	Orange	;	}

Save	the	HTML	document	then	open	the	web	page	in	a	browser	and
select	each	interactive	component	in	turn	to	see	the	styles	applied

Repeatedly	hit	the	Tab	key	to	move	through	the	interactive	components.

Focus	only	relates	to	interactive	elements	that	can	receive	keyboard
input	or	be	somehow	activated	by	the	user.

Roll	Over
User	actions	cause	interface	“events”	to	which	the	three	dynamic	pseudo-classes
:focus,	:hover,	and	:active	can	react.	For	example,	when	a	user	clicks	on	a	text
input,	the	Focus	event	occurs	–	to	which	the	:focus	pseudo-class	can	react	by
applying	styles.	Perhaps	more	interestingly,	when	the	user	moves	the	cursor	onto
any	element,	the	MouseOver	event	occurs	–	to	which	the	:hover	pseudo-class	can
react	by	applying	styles.	The	applied	styles	are	removed	when	the	cursor	moves
off	the	element,	as	the	MouseOut	event	occurs,	creating	a	dynamic	“rollover”
effect.

Typically,	the	rollover	will	highlight	the	selected	element	by	changing	its
content	color	or	background	color	to	become	more	prominent.	A	rollover	might
also	specify	a	different	background	image	to	create	an	image-swap	–	but	this
may	not	work	too	well	on	slower	connections	that	need	to	wait	for	the	new
image	to	download.

A	better	image-swap	alternative	is	to	combine	the	images	for	both	MouseOver
and	MouseOut	states	into	a	single	image	file,	then	have	the	rollover	reveal	the
appropriate	half	of	the	image	by	specifying	a	different	background	position	for
each	state.

Create	an	image	file	of	150x100	pixels	containing	top	and	bottom	image
areas	on	a	transparent	background

prints.png
Gray	areas	are	transparent.

Next,	create	an	HTML	document	containing	two	empty	division	elements
with	id	attributes	for	style	reference
<div	id=“active”></div>	<div	id=“prints”></div>

rollover.html

Add	a	style	sheet	with	rules	to	set	the	divisions’	position	and	size	–	with
height	exactly	half	that	of	the	image
div	{	position	:	absolute	;	top	:	10px	;

width	:	150px	;	height	:	50px	;	}
div#active	{	left	:	10px	;	}
div#prints	{	left	:	170px	;	}

Next,	add	style	rules	to	color	the	backgrounds,	and	set	the	background
position	at	the	top-left	corner	of	the	image,	when	the	cursor	is	not	over
the	div	elements
div#active	{	background	:	Bisque	;	}
div#prints	{	background	:	url(prints.png)	0	0	Bisque	;	}

Now,	add	style	rules	to	change	the	background	colors	and	set	the
background	position	at	the	center-left	of	the	image,	when	the	cursor	is
over	the	division	elements
div#active:hover	{	background-color	:	DarkOrange	;	}
div#prints:hover	{

background	:	url(prints.png)	0	-50px	DarkOrange	;	}

Save	the	HTML	document	then	open	the	web	page	in	a	browser	and	roll
the	cursor	over	the	division	elements	to	see	their	backgrounds	change

The	:focus	pseudo-class	only	relates	to	elements	that	can	receive	input
–	but	the	:hover	pseudo-class	relates	to	almost	ANY	element.

Push	Buttons
A	rollover	effect,	as	described	in	the	example	here,	can	be	used	with	almost	any
HTML	element	to	create	CSS	push	buttons	–	for	links,	scripting,	or	form
submission.

Create	an	HTML	document	with	a	form	that	contains	three	inner
elements	that	will	be	styled	as	buttons
Link	Button
<button	class=”button”

onclick=”alert(this.innerText	+	‘	Clicked’)”>
Script	Button</button>

<form	method=”GET”	action=”http://localhost/echo.py”>
<input	class=”button”	type=”submit”

name=”CSS”	value=”Submit	Button”>
</form>

echo.py

buttons.html	&	target.html

Add	a	style	sheet	with	rules	to	style	each	of	the	three	inner	elements	–
removing	any	default	styles
.button	{	display	:	inline-block	;	font	:	16px	sans-serif	;

background	:	Orange	;	color	:	White	;
border	:	none	;	padding	:	16px	32px	;	margin	:	5px	;
text-align	:	center	;	text-decoration	:	none	;
cursor	:	pointer	;	}

Next,	add	rules	to	create	a	rollover	effect	on	each	button	and	to	simply
align	the	form
.button:link,	.button:visited	{	color	:	White	;	}
.button:hover	{	background	:	Coral	;	}
.button:active	{	background	:	OrangeRed	;	}
form	{	display	:	inline-block	;	}

Save	the	HTML	document	then	open	it	in	a	browser	to	see	the	rollover
effect	on	each	button

Notice	how	the	selector	only	specifies	the	class	in	this	example,	to	apply
the	same	style	rules	to	various	types	of	element.

Click	the	link	button	to	open	its	target	page,	then	return	to	the	buttons
page

Click	the	script	button	to	execute	the	snippet	of	code	assigned	to	its
onclick	attribute,	then	close	the	dialog	box

Click	the	submit	button	to	see	the	web	server	response

The	target	page	here	contains	a	single	link	button	that	is	styled	with	the
same	rules	as	the	other	buttons.

This	example	is	run	on	a	local	web	server	that	supports	the	Python	script
echo.py	–	which	processes	the	form	submission	and	provides	the
response	to	the	web	browser.

Reveal	Elements
A	dropdown	box	can	be	used	to	reveal	larger	versions	of	thumbnail	images	and,
optionally,	additional	descriptive	text.	This	technique	is	similar	to	that	used	to
display	the	dropdown	menu	here,	so	the	thumbnail	element	should	be	styled	with
a	position	:	relative	;	rule	so	that	the	dropdown	box	can	be	positioned	directly
beneath	it	with	a	position	:	absolute	;	rule.	Additionally,	the	dropdown	box	should
have	a	specified	z-index	value	to	place	it	above	any	existing	content	on	the	page.

Create	an	HTML	document	with	a	division	that	contains	a	thumbnail
image,	plus	an	inner	division	containing	a	larger	version	of	the	image
and	some	descriptive	text
<div	class=”thumbnail”>

<div	class=”dropdown”>

HyperText	Markup	Language
</div>

reveal.html

html.png	&	css.png	&	js.png	–	all	330px	x	464px

Next,	copy	and	paste	the	elements	in	Step	1,	then	in	the	copies	replace
both	image	sources	with	css.png	and	replace	the	descriptive	text	with
Cascading	Style	Sheets

Once	again,	copy	and	paste	the	elements	in	Step	1,	then	in	these	copies
replace	both	image	sources	with	js.png	and	replace	the	descriptive	text
with	JavaScript

Add	a	style	sheet	with	rules	to	position	the	thumbnail	–	this	will	be	the
active	element	for	the	dropdown
div.thumbnail	{	position	:	relative	;	display	:	inline-block	;	}

Next,	add	rules	to	position	and	hide	the	second	inner	division	–	this	will
be	the	dropdown	content
div.dropdown	{	position	:	absolute	;	padding	:	2px	;

border	:	2px	dashed	DarkOrange	;
background	:	White	;
z-index	:	1	;	display	:	none	;	}

Now,	add	a	rule	to	reveal	the	dropdown	content	when	the	user	places	the
cursor	over	the	thumbnail
div.thumbnail:hover	div.dropdown	{	display	:	block	;	}

If	you	do	not	specify	a	background	value	for	the	dropdown	content	it
may	be	transparent	–	so	the	content	beneath	will	remain	visible.

Finally,	add	rules	to	style	the	descriptive	text
span.label	{	display	:	block	;	padding	:	15px	;

text-align	:	center	;
background	:	DarkOrange	;	color	:	White	;	}

Save	the	HTML	document	then	place	the	cursor	over	each	thumbnail	to
reveal	the	dropdown	content

Alternatively,	elements	can	be	hidden	with	a	visibility	:	hidden	;	rule	and
revealed	with	a	visibility	:	visible	;	rule.	With	these,	the	content	still
occupies	space	on	the	page	even	when	hidden,	whereas	with	a	display	:
none	;	rule,	the	content	is	totally	removed	from	the	page	flow	layout.

Draw	Corners
The	appearance	of	content	box	borders	can	be	enhanced	by	rounding	their
corners	with	the	CSS	border-radius	property.	Where	all	corners	are	to	have	the
same	radius,	this	property	can	specify	the	radius	size	as	a	distance	from	the
corner	point	in	both	horizontal	and	vertical	directions	–	for	example,	as	a	value
of	20px.

Individual	corners	may	also	be	rounded	by	specifying	a	radius	size	to	border-top-
left,	border-top-right,	border-bottom-right,	and	border-bottom-left	properties.

Alternatively,	individual	corners	may	be	rounded	by	using	border-radius	as	a
shorthand	property	to	specify	four	values	–	one	value	for	each	corner	in	the	order
border-top-left,	border-top-right,	border-bottom-right,	border-bottom-left.	Where	a	zero
value	is	specified	for	any	corner,	no	radius	will	be	produced.	Individual	corners
may	also	be	curved	by	specifying	two	values	to	define	an	ellipse	so	the
horizontal	and	vertical	directions	get	a	different	radius.	The	first	value	specifies
the	horizontal	x	radius	and	the	second	value	specifies	the	vertical	y	radius.	For
example,	border-top-right-radius	:	20px	50px	defines	an	ellipse.

Circles	can	be	created	by	setting	the	border-radius	property	to	exactly	half	the	size
(including	borders)	of	a	square	content	box.

You	can	create	an	ellipsis	by	setting	border-radius	to	50%	on	an	oblong
content	box.

Create	an	HTML	document	with	three	outer	divisions,	which	each
contain	one	inner	division	element
<div	class=”outer	all”><div	class=”inner”>
All	Rounded	Corners</div></div>

<div	class=”outer	ind”><div	class=”inner”>
Individual	Corners</div></div>

<div	class=”outer	cir”><div	class=”inner”>
Circle</div></div>

radius.html

Next,	add	a	style	sheet	with	rules	to	specify	the	position	and	appearance
of	each	element
div.outer,	div.inner	{	width	:	120px	;	height	:	120px	;	}

div.outer	{	display	:	inline-block	;	margin	:	10px	;
border	:	5px	solid	DarkOrange	;	background	:	Bisque	;	}

div.inner	{	display	:	table-cell	;	text-align	:	center	;
vertical-align	:	middle	;	border	:	2px	dashed	Orange	;	}

Now,	add	rules	to	adjust	the	corners	of	the	outer	divisions
div.all	{	border-radius	:	40px	;	}

div.ind	{	border-radius	:	50px	0	50px	0	;	}

div.cir	{	border-radius	:	65px	;	}

Save	the	HTML	document	then	open	it	in	a	browser	to	see	the	rounded
corners

Notice	here	how	the	table-cell	display	style	allows	the	text	to	be	centered
horizontally	and	vertically.

The	second	outer	division	in	this	example	could	alternatively	be	styled
with	individual	rules	border-top-left-radius	:	50px	;	border-bottom-
right-radius	:	50px	;.

Cast	Shadows
The	appearance	of	content	boxes	can	be	enhanced	by	adding	drop-shadow
effects	with	the	box-shadow	property,	and	text	can	be	similarly	enhanced	with	the
text-shadow	property.

Horizontal	and	vertical	offset	values	must	be	specified	to	position	the	shadow.
Where	these	are	positive	values,	the	shadow	will	be	positioned	to	the	right	and
below	the	item.	Conversely,	negative	values	can	be	specified	to	position	the
shadow	to	the	left	and	above	respectively	–	for	example,	positive	values	of	20px
10px.

Optionally,	the	box-shadow	and	text-shadow	properties	can	have	a	third	value	to
specify	a	blur	distance	that	determines	how	blurred	the	shadow’s	edge	will	be	–
the	higher	the	value,	the	more	blurred.	For	example,	a	blur	value	of	20px	expands
the	shadow	to	blur	its	edge	in	an	area	that	is	10	pixels	either	side	of	the	original
offset.

Additionally,	a	fourth	optional	value	can	specify	a	spread	distance,	to	determine
how	far	the	shadow	should	extend	beyond	the	offset,	and	the	inset	keyword	can
be	used	to	create	an	inner	shadow.

You	can	also	add	multiple	shadows	to	text	by	specifying	a	comma-separated	list
of	shadow	values	to	the	text-shadow	property.

Although	specifying	a	color	is	not	strictly	required,	it	is	recommended	to
avoid	inconsistencies	between	web	browsers.

Create	an	HTML	document	with	three	outer	divisions,	which	each
contain	one	inner	division	element
<div	class=”outer	drop”>

<div	class=”inner”>HTML</div></div>
<div	class=”outer	glow”>

<div	class=”inner”>CSS</div></div>
<div	class=”outer	inset”>

<div	class=”inner”>JS</div></div>

shadow.html

Next,	add	a	style	sheet	with	rules	to	specify	the	position	and	appearance
of	each	element
div.outer,	div.inner	{	width	:	120px	;	height	:	120px	;	}
div.outer	{	display	:	inline-block	;	margin	:	20px	;
border	:	2px	solid	Black	;	background	:	White	;	}

div.inner	{	display	:	table-cell	;	text-align	:	center	;
vertical-align	:	middle	;	font	:	bold	2em	sans-serif	;	}

Now,	add	rules	to	apply	shadows	to	boxes	and	text
div.drop	{	box-shadow	:	10px	10px	10px	DarkOrange	;	}
div.drop	>	div.inner	{	text-shadow	:	2px	2px	DarkOrange	;	}

div.glow	{	box-shadow	:	0	0	10px	10px	DarkOrange	;	}

div.glow	>	div.inner	{	color	:	White	;
text-shadow	:	2px	2px	4px	Black	;	}

div.inset	{	box-shadow	:	10px	10px	30px	DarkOrange	inset	;	}
div.inset	>	div.inner	{	color	:	Bisque	;	text-shadow	:
-1px	0	Black	,	0	1px	Black	,	1px	0	Black	,	0	-1px	Black	;	}

Save	the	HTML	document	then	open	it	in	a	browser	to	see	the	shadows

Notice	how	the	multiple	shadow	rules	create	a	border	around	the	text.

Blend	Gradients
CSS	provides	four	functions	to	create	gradient	fills,	which	the	browser	blends
smoothly	from	one	specified	color	to	another	–	linear-gradient(),	repeating-linear-
gradient(),	radial-gradient()	and	repeating-radial-gradient().

The	linear-gradient()	function	creates	the	color	transition	along	a	linear	path
blending	from	one	“color	stop”	point	to	another.	Each	color	stop	may	be
specified	in	the	function’s	parentheses	simply	as	comma-separated	color	values,
or	as	comma-separated	color	and	position	value	–	for	example,	as	Red,	Yellow	or
as	Red	50%,	Yellow	100%	to	define	color	stops	at	the	path’s	mid-point	and	end.
There	must	be	at	least	two	color	stops,	but	you	can	specify	multiple	color	stops
for	more	elaborate	gradient	effects	that	employ	more	colors.

The	default	direction	of	the	linear-gradient()	function’s	path	is	top-to-bottom,	but
you	can	define	a	different	direction	by	including	an	optional	first	value	as	a
combination	of	keywords	to	top	bottom	left	right	–	for	example,	for	a	diagonal
gradient	starting	at	the	top	left	with	to	bottom	right	keywords.	For	more	precise
control	of	the	direction,	the	optional	first	value	may	be	specified	as	an	angle,
such	as	45deg	or	90deg.	In	this	case,	the	value	specifies	the	angle	between	a
horizontal	edge	and	linear-	gradient()	path.	For	example,	45deg	creates	a	diagonal
path	from	the	bottom	left	corner	to	the	top	right	corner,	and	90deg	produces	a
horizontal	path	from	left	to	right.	You	can	also	specify	negative	values.	For
example,	-90deg	creates	a	horizontal	path	from	right	to	left	(as	does	270deg).

The	radial-gradient()	function	also	blends	from	one	color	stop	to	another,	but	the
path	spreads	out	from	a	center	point.	By	default,	it	begins	at	the	center	of	the
element	and	is	circular.	Optionally,	the	ellipse	keyword	can	be	specified	along
with	length	and	position	values	to	define	a	different	radial	shape	and	different
center	point.	You	can	define	a	different	center	point	by	including	an	optional
first	value	as	a	combination	of	keywords	closest-side,	farthest-side,	closest-corner,
farthest-corner,	at	and	percentage	values	for	the	x-axis	and	y-axis	–	for	example,
for	a	radial	gradient	starting	to	the	right	and	below	center	with	closest-side	at	60%

60%.

The	repeating-linear-gradient()	and	repeating-radial-gradient()	functions	accept	the
same	values	as	their	non-repeating	counterparts,	but	automatically	repeat	the
gradient	after	the	final	specified	color	stop	has	been	reached.

Each	gradient	must	have	at	least	two	color	stops.

Create	an	HTML	document	with	four	division	elements
<div	class=”linear”></div>
<div	class=”linear-repeat”></div>
<div	class=”radial”></div>
<div	class=”radial-repeat”></div>

gradient.html

Next,	add	a	style	sheet	with	rules	to	specify	the	position	and	appearance
of	each	element	–	including	a	default	background	color
div	{	display	:	inline-block	;	width	:	100px	;	height	:	100px	;

margin	:	10px	;	border	:	2px	solid	Black	;
background	:	Orange	;	}

Some	browsers	may	not	support	gradients	so	it’s	useful	to	specify	a
default	single	color.

Now,	add	rules	to	apply	gradient	backgrounds	for	browsers	that	support
gradients
div.linear	{	background	:

linear-gradient(45deg	,	DarkOrange,	Bisque)	;	}

div.linear-repeat	{	background	:
repeating-linear-gradient(DarkOrange	20%,

Bisque	40%,	OrangeRed	50%)	;	}

div.radial	{	background	:
radial-gradient(DarkOrange	20%,

Bisque	40%,	OrangeRed	50%)	;	}

div.radial-repeat	{	background	:
repeating-radial-gradient(DarkOrange	20%,

Bisque	40%,	OrangeRed	50%)	;	}

Save	the	HTML	document	then	open	it	in	a	browser	to	see	the	gradients

You	can	specify	the	same	color	for	the	first	and	last	color	stops	in	a
repeating	gradient	to	avoid	abrupt	changes.

Decorate	Borders
CSS	provides	a	border-image	property	that	allows	you	to	specify	an	image	source
to	the	CSS	url()	function	for	decoration	of	borders.	This	is	the	only	required
value	and	will	position	the	image	within	a	specified	border	area,	at	each	corner
of	a	content	box.

The	border-image	property	can	specify	additional	values,	after	the	image	source,
to	decorate	the	border	areas	between	the	corners	–	but	this	works	in	an	unusual
manner.

The	border-image	property	slices	the	image	into	nine	sections,	like	those	of	a	tic-
tac-toe	board.	The	first	additional	value	can	specify	at	which	points	to	slice	the
image	from	the	top,	right,	bottom,	and	left	edges.	For	example,	a	33%	value	will
slice	one	third	from	each	edge.	The	four	corner	slices	are	then	placed	at	each
corner	of	the	border,	and	the	four	middle	slices	are	then	stretched,	by	default,	to
decorate	the	border	areas	between	the	corners.

A	second	additional	value	can	explicitly	specify	how	to	decorate	the	border	areas
between	the	corners	using	these	keywords:

• stretch	–	the	middle	slices	stretch	to	fill	the	areas	(the	default).

• repeat	–	the	middle	slices	tile	to	fill	the	areas,	dividing	if	necessary.

• round	–	the	middle	slices	tile	to	fill	the	areas,	rescaling	if	necessary	to	avoid
dividing.

The	border-image	property	is	a	shorthand	property	for	individual	border-image-
source,	border-image-slice,	and	border-image-repeat	properties.	There	are	also
further	additional	values	that	can	be	specified	for	border-image-width,	to	specify
the	widths	of	the	border	image,	and	border-image-outset,	to	specify	how	far	the
image	can	extend	outside	the	border	area.

All	browsers	that	support	the	border-image	property	also	support	gradients.	This
means	that,	besides	images,	you	can	specify	any	type	of	gradient	to	decorate	a
border.

The	border-image	will	only	be	applied	if	a	border	property	has	been
specified.

Create	an	HTML	document	with	four	division	elements
<div	class=”image”></div>
<div	class=”round”></div>
<div	class=”stretch”></div>
<div	class=”gradient”></div>

decorate.html

Next,	add	a	style	sheet	with	rules	to	specify	the	position	and	appearance
of	each	element	–	including	a	border
div	{	display	:	inline-block	;	width	:	175px	;	height	:	100px	;

margin	:	10px	;	border	:	30px	solid	transparent	;
background	:	Bisque	;	}

Now,	add	rules	to	decorate	the	border	of	each	division
div.image	{	border-image	:	url(stars.png)	;	}
div.round	{	border-image	:	url(stars.png)	33%	round	;	}
div.stretch	{	border-image	:	url(stars.png)	33%	stretch	;	}
div.gradient	{	border-image	:	repeating-linear-gradient

(45deg,	OrangeRed,	Orange	20%)	33%	;	}

stars.png	–	90px	x	90px
Gray	areas	are	transparent.

Save	the	HTML	document	then	open	it	in	a	browser	to	see	the	decorated
borders

Transform	Shapes
CSS	can	dynamically	manipulate	content	boxes	to	change	their	size,	position	or
orientation	by	specifying	one	of	the	transformation	functions	below	to	their
transform	property.

Function: Transform:

scale(n1,n2) Scales	X	and	Y	axis	all	by	the	ratio	n1	n2

scaleX(n) Scales	X	axis	by	the	ratio	n

scaleY(n) Scales	Y	axis	by	the	ratio	n

skew(n1,n2) Scales	X	and	Y	axis	all	by	the	angle	n1	n2

skewX(n) Scales	X	axis	by	the	angle	n

skewY(n) Scales	Y	axis	by	the	angle	n

rotate(n) Rotates	by	the	angle	n	amount

rotateX(n) Rotates	X	axis	by	the	angle	n	amount

rotateY(n) Rotates	Y	axis	by	the	angle	n	amount

rotateZ(n) Rotates	Z	axis	by	the	angle	n	amount

translate(n1,n2) Moves	X	and	Y	axis	by	n1	n2	amount

translateX(n) Moves	X	axis	by	n	amount

translateY(n) Moves	Y	axis	by	n	amount

matrix(n,n,n,n,n,n) Scales	by	n,	n,	skews	by	n,	n	translates	by	n,	n

The	matrix()	function	is	seldom	used	but	it	allows	you	to	rotate,	scale,	move,	and
skew	elements	all	at	once.	Its	six	values,	in	(somewhat	confusing)	order,
represent	the	individual	functions	scaleX(),	skewY(),	skewX(),	scaleY(),	translateX(),

and	translateY().

A	“transform	origin”	is	the	point	around	which	a	transformation	is	performed
and	is,	by	default,	the	center	of	the	element.	You	can,	however,	specify	an
alternative	to	a	transform-origin	property	as	units,	percentage	values,	or	keywords
top,	bottom,	left,	right,	and	center.	For	example,	with	rotate()	and	transform-origin	:
top	left	;	the	element	will	pivot	around	its	top-left	corner,	instead	of	its	center
point.

Transformations	can	be	specified	to	the	element’s	:hover	pseudo-class	so	the
transformation	will	be	performed	when	the	user	places	the	cursor	over	the
element,	and	will	resume	its	normal	state	when	the	user	moves	the	cursor	off	the
element.

You	can	also	specify	just	one	single	value	to	the	scale()	function	to	be
applied	to	both	the	X	axis	and	Y	axis.

The	transform-origin	property	can	only	be	used	in	conjunction	with	the
transform	property.

Create	an	HTML	document	with	three	division	elements
<div	class=”rotate”>Rotate</div>
<div	class=”scale”>Scale</div>
<div	class=”skew”>Skew</div>

transform.html

Next,	add	a	style	sheet	with	rules	to	specify	the	position	and	appearance
of	each	element
div	{	display	:	inline-block	;	margin	:	50px	0	0	50px	;

padding	:	15px	;	background	:	DarkOrange	;
color	:	White	;	font	:	1.5em	sans-serif	;	}

Now,	add	rules	to	transform	each	division	when	the	user	places	the
cursor	over	the	content	box
div.rotate:hover	{	transform	:	rotate(45deg)	;	}
div.scale:hover	{	transform	:	scale(2.0,	2.0)	;	}
div.skew:hover	{	transform	:	skew(15deg,	15deg)	;	}

Save	the	HTML	document	then	open	it	in	a	browser	and	place	the	cursor
over	each	element	to	see	transformations

Make	Transitions
CSS	can	dynamically	modify	property	values	to	change	their	color,	size,
position,	orientation,	etc.	over	a	specified	period	of	time	to	create	simple
animated	effects	with	the	transition	property.

The	transition	property	must	specify	the	CSS	property	that	is	to	be	modified,	and
the	duration	of	the	effect	–	for	example,	a	style	rule	transition	:	width	5s	;	to
modify	the	width	of	an	element	over	a	period	of	five	seconds.	Multiple
properties	can	be	specified	as	a	comma-separated	list	of	property	and	duration
pairs,	such	as	transition	:	width	5s,	height	3s	;	to	modify	both	width	and	height.

You	can	control	the	“acceleration	curve”	of	the	effect	by	assigning	one	of	the
functions	below	to	a	transition-timing-function	property.

Function: Transition:

linear Consistent	speed	from	start	to	end

ease Increases	from	start	to	reach	full	speed	then	decreases
at	end	(default)

ease-in Increases	at	start	only

ease-out Decreases	at	end	only

ease-in-out Increases	at	start	and	decreases	at	end

steps(n) Jump	to	n	number	of	intervals

cubic-bezier(x1,y1,x2,y2) Elastic	or	bounce	between	coordinates

Additionally,	you	can	specify	a	transition-delay	time	value,	such	as	1s	for	one
second,	so	the	effect	will	not	begin	immediately.

The	transition	property	is	a	shorthand	property	for	individual	transition-property,

transition-duration,	transition-timing-function,	and	transition-delay	properties.	Values
for	these	may	be	specified	to	each	individual	property	or	values	for	all	four	may
be	specified,	in	this	order,	to	the	shorthand	property	–	for	example,	to	modify	a
width,	over	five	seconds,	at	a	consistent	speed,	after	a	half	second	delay	with
transition	:	width	5s	linear	0.5s	;.	You	can	also	specify	multiple	transitions	in	a
comma-separated	list	of	grouped	values.

The	final	value	of	the	property	to	be	modified	can	be	specified	to	an	element’s
:hover	pseudo-class	so	the	transformation	will	be	performed	when	the	user	places
the	cursor	over	the	element.

A	transition	will	not	run	unless	you	specify	a	duration	period.

The	steps()	function	jumps	to	pauses	in	the	transition,	so	that	steps(5)
pauses	each	second	in	a	five	second	effect.

Create	an	HTML	document	with	one	division	element
<div	class=”expand”>Transition</div>

transition.html

Next,	add	a	style	sheet	with	rules	to	specify	the	position	and	appearance
of	the	element
div	{	margin	:	50px	;	padding	:	15px	;

color	:	White	;	font	:	1.5em	sans-serif	;
background	:	Orange	;
width	:	100px	;	height	:	30px	;	}

Now,	add	a	rule	to	modify	the	background,	width,	and	height	properties
in	a	five-second	transition	effect
div.expand	{	transition	:	background	5s	linear	0.5s	,

width	5s	ease-out	0.5s	,
height	5s	steps(5)	0.5s	;	}

Then,	add	rules	to	specify	the	final	values	of	the	background,	width,	and
height	at	the	end	of	the	effect
div.expand:hover	{	background	:	OrangeRed	;

width	:	350px	;	height	:	100px	;	}

Save	the	HTML	document	then	open	it	in	a	browser	and	place	the	cursor
over	the	element	to	see	the	transition

The	element	will	resume	its	original	values	when	the	user	moves	the
cursor	off	the	active	element	–	automatically	running	the	transition	effect
in	reverse.

Animate	Elements
CSS	can	dynamically	modify	property	values	over	a	specified	period	of	time
with	the	transition	property,	as	described	here,	but	can	also	nominate	“keyframes”
to	determine	property	values	at	particular	points	for	the	animation	property.

Keyframes	are	created	by	a	CSS	@keyframes	(“at	keyframes”)	rule	that	defines	an
animation	name	and	selects	points	using	percentages	or	from	(0%)	and	to	(100%)
keywords	–	for	example,	naming	an	animation	“bounce”	and	selecting	three
points,	like	this:
@keyframes	bounce	{

from					{	top	:	100px	;	}
50%							{	top	:	150px	;	}
to									{	top	:	300px	;	}

}

The	animation	property	can	specify,	in	this	order,	the	animation	name	(defined	by
the	@keyframes	rule),	duration,	timing	function,	delay,	iteration	count,	and
direction.

Duration	and	delay	are	specified	as	with	transitions,	where	a	value	of	5s
represents	a	period	of	five	seconds.

Timing	functions	that	control	the	acceleration	curve	are	the	same	as	those	for
transitions,	such	as	ease-in-out,	and	the	iteration	count	may	be	an	integer	or	the
keyword	infinite.

Interestingly,	the	direction	can	be	specified	as	normal	(the	default),	reverse,	or
alternate	–	alternating	between	playing	forward	and	reverse	on	successive
iterations.

The	animation	property	is	a	shorthand	property	for	individual	animation-name,
animation-duration,	animation-timing-function,	animation-delay,	animation-iteration-count,
animation-direction	properties.	Values	for	these	may	be	specified	to	each
individual	property	or	values	for	all	six	may	be	specified,	in	this	order,	to	the

shorthand	property	–	for	example,	to	bind	a	keyframe	named	“bounce”	to	a	five-
second	animation,	at	a	consistent	speed,	after	a	one-second	delay,	to	repeat
infinitely,	in	alternating	directions,	with	animation	:	bounce	5s	linear	1s	infinite
alternate	;.

An	animation-fill-mode	can	also	be	added	for	animations	that	run	for	a	set	number
of	iterations.	This	can	specify	forwards,	so	that	the	element	will	retain	the	values
of	the	final	keyframe,	backwards,	so	it	will	get	the	style	values	of	the	first
keyframe,	or	both.

Keyframes	determine	what	styles	one	or	more	properties	will	have	at
various	points	during	an	animation.

You	can	combine	transitions	and	animations	to	create	some	great
effects.

Create	an	HTML	document	with	one	division	element	that	contains	an
inner	division	element
<div	class=”ball”>
<div	class=”label”>Animation</div></div>

animation.html

Next,	add	a	style	sheet	with	rules	to	specify	the	position	and	appearance
of	the	outer	division	element
div.ball	{	position	:	absolute	;	top	:	10px	;	width	:	120px	;

height	:	120px	;	color	:	White	;	font	:	1.5em	sans-serif	;
background	:	Orange	;	border-radius	:	50%	;	}

Now,	add	rules	to	specify	the	appearance	of	the	inner	division	element
div.label	{	display	:	table-cell	;	width	:	120px	;
height	:	120px	;	text-align	:	center	;	vertical-align	:	middle	;	}

Then,	add	a	keyframe	rule	to	define	an	animation	name	and	specify
points	for	the	animation
@keyframes	bounce	{	from	{	top	:	10px	;	}
50%	{	top	:	40px	;	}	to	{	top	:	100px	;	}	}

Finally,	add	a	rule	to	bind	the	animation	to	the	outer	division	element
div.ball	{	animation	:	bounce	2s	linear	infinite	alternate	;	}

Save	the	HTML	document	then	open	it	in	a	browser	to	see	the	animation

No	animation	delay	is	required	in	this	example,	so	its	value	is	omitted
from	the	style	rule	and	the	browser	uses	its	zero	default	delay	value.

Fit	Objects
CSS	provides	a	number	of	ways	in	which	you	can	manipulate	image	or	video
content.	These	can	be	centered	within	a	container	simply	by	making	the		or
<video>	element	into	a	block	and	setting	its	left	and	right	margins	to	the	auto
value.

More	interestingly,	you	can	specify	how	image	or	video	content	fits	into	the
	or	<video>	element	itself,	using	a	CSS	object-fit	property.	This	can
determine	whether	the	content	should	be	stretched,	squeezed,	scaled,	or	clipped
by	specifying	any	of	the	values	listed	below:

Value: Fit:

fill Content	is	stretched	or	squeezed	to	fill	the	element’s
content	box	(the	default)

contain Content	is	scaled	up	or	down	to	maintain	its	aspect
ratio	and	fit	inside	the	element’s	content	box

cover Content	is	scaled	to	maintain	its	aspect	ratio	and	fill	the
element’s	content	box,	so	may	be	clipped

scale-down Content	is	scaled	down	to	maintain	its	aspect	ratio	in
smaller	content	boxes

none Content	is	not	resized,	so	may	be	clipped

Probably	the	best	way	to	understand	how	these	values	affect	how	the	object	fits
into	its	content	box	is	by	comparison:

Create	an	HTML	document	with	six	elements	that	will	display	the	same
image	–	but	fit	differently

fit.html

run.png
150px	x	120px

Add	a	style	sheet	with	rules	to	specify	the	appearance	and	set	the	width
of	each	element	to	match	the	image	width
img	{	display	:	inline-block	;	border	:	2px	solid	DarkOrange	;

margin	:	5px	;	width	:	150px	;	}

Next,	add	style	rules	to	set	some	content	boxes	shorter,	and	some	taller,
than	the	image	height	of	120	pixels
img.short	{	height	:	80px	;	}
img.tall	{	height	:	200px	;	}

Now,	add	rules	to	specify	how	the	images	should	fit	their	respective
content	boxes
img.scale-down	{	object-fit	:	scale-down	;	}
img.none	{	object-fit	:	none	;	}
img.fill	{	object-fit	:	fill	;	}
img.contain	{	object-fit	:	contain	;	}
img.cover	{	object-fit	:	cover	;	}

Save	the	HTML	document	then	open	it	in	a	browser	to	compare	how	the
objects	fit	within	each	content	box

Summary
• The	type	of	cursor	icon	to	display	when	the	pointer	hovers	over	a	selected

element	can	be	specified	using	a	keyword.

• A	currently-selected	interactive	component	of	a	page	can	be	indicated	by
specifying	a	value	to	the	CSS	:focus	pseudo-class.

• Interface	events	caused	by	user	actions	are	recognized	by	the	CSS	:focus,
:hover,	and	:active	pseudo-classes.

• The	MouseOver	and	MouseOut	states	can	be	used	to	create	rollover	effects
for	links,	scripting,	or	form	submission	buttons.

• A	relatively	positioned	thumbnail	element	can	reveal	a	larger	element	that	is
absolutely	positioned	directly	beneath	it.

• Content	box	borders	can	have	rounded	corners	by	specifying	a	radius	size	to
the	border-radius	property.

• Content	boxes	and	text	can	have	shadows	by	specifying	offset	values	to	the
box-shadow	or	text-shadow	property.

• Linear	and	radial	gradients	fill	content	boxes	with	colors	blended	between
specified	color	stop	points.

• Content	box	borders	can	be	decorated	by	stretching	or	tiling	a	sliced	image
specified	to	the	border-image	property.

• Transformations	manipulate	content	boxes	to	change	their	size,	position	or
orientation.

• Transitions	modify	property	values	over	a	specified	period	of	time	to	create
simple	animated	effects.

• Animations	modify	property	values	over	a	period	of	time	and	nominate
keyframes	to	specify	values	at	particular	points.

• Images	and	videos	can	be	stretched,	squeezed,	scaled	or	clipped	to	fit	inside	a
content	box.

13

Control	the	Web	Page

This	chapter	demonstrates	column	layouts,	flexbox	layouts,	and	grid	layouts	in	HTML	documents.

Change	Models
Draw	Outlines

Use	Columns
Span	Columns
Use	Flexbox
Align	Items

Use	Grid
Place	Items
Query	Media
Switch	Navigation

Summary

Change	Models
Web	browsers	apply	default	element	styles,	contained	in	their	“user	agent	style
sheet”,	that	apply	margins	and	padding	values	automatically	to	some	elements.
For	example,	the	<body>	element	typically	gets	an	8-pixel	margin	by	default.
You	can	inspect	this	in	most	browsers	by	hitting	the	F12	key,	to	open	a
Developer	Tools	window,	and	selecting	the	body	element:

default.html

Additionally,	the	browser’s	default	box	model	will	apply	your	specified	padding
and	borders	outside	your	specified	element	size,	so	the	overall	size	of	the
element	becomes	larger	than	your	specification.	For	example,	an		list
element	specified	to	have	a	2-pixel	border	and	a	size	of	100	x	70	pixels	typically
gains	a	16-pixel	margin	top	and	bottom,	40-pixel	left	padding	(for	the	list
markers),	and	the	2-pixel	border	outside	the	content	box.	This	makes	the	overall
size	of	the	element	144	x	106	pixels:

The	default	value	for	the	CSS	box-sizing	property	is	content-box.

In	order	to	gain	control	of	these	default	browser	behaviors,	you	can	begin	each
one	of	your	style	sheets	with	these	universal	rules:

*	{	margin	:	0	;	padding	:	0	;	box-sizing	:	border-box	;	}

This	overrides	the	browser’s	default	styles	so	margins	and	padding	values	are	no
longer	automatically	applied	to	elements:

control.html

Additionally,	the	browser’s	default	box	model	will	no	longer	apply	your
specified	padding	and	borders	outside	your	specified	element	size,	so	the	overall
size	of	the	element	is	exactly	as	you	specified.	For	example,	an		list	element
specified	to	have	a	2-pixel	border	and	a	size	of	100	x	70	pixels,	now	gains	no
margins	or	padding,	and	the	2-pixel	border	is	now	inside	the	content	box.	This
makes	the	overall	size	of	the	element	100	x	70	pixels,	as	intended	by	your
specification:

You	now	have	control	and	could	add	a	left	padding	for	the	list	markers	if
required.

Draw	Outlines
CSS	provides	three	properties	that	can	be	applied	to	the	user	interface,
complementing	the	regular	box	model.	The	first	two	of	these	can	be	used	to	add
outlines	around	an	element.	The	outline	property	accepts	the	same	values	that	can
be	specified	to	the	border	property	–	for	example,	outline	:	2px	solid	RoyalBlue	;	to
draw	a	2-pixel	blue	outline	around	an	element.

Crucially,	unlike	a	border,	an	outline	is	not	part	of	the	element’s	dimensions,	so
an	element’s	total	width	and	height	is	unaffected	by	the	addition	of	an	outline.
An	outline	is	drawn	on	a	different	level	of	the	Z	axis,	so	may	overlap	other
content.

Additionally,	you	can	add	space	between	an	outline	and	the	edge,	(or	border)	of
an	element	by	specifying	a	distance	value	to	an	outline-offset	property	–	for
example,	outline-offset	:	5px	;	to	add	a	5-pixel	space	between	the	edge	of	an
element	and	an	outline.

The	third	property	that	can	be	applied	to	the	user	interface	can	be	used	to	allow
the	user	to	resize	an	element,	typically	by	dragging	its	bottom-right	corner.	The
resize	property	can	allow	the	user	to	resize	an	element’s	size	both	horizontally
and	vertically	when	it	specifies	a	both	value.

If	the	user	resizes	an	element	to	reduce	its	dimensions,	the	contents	may	well
overflow,	so	when	using	the	resize	property	it	should	be	accompanied	by	an
overflow	style	rule	to	handle	the	content	overflow.	It	is	important	that	the
overflow	should	be	specified	as	scroll,	auto,	or	hidden,	because	the	resize	property
will	not	be	applied	to	inline	or	block	elements	whose	overflow	is	set	to	a	visible
value.

Where	you	want	to	restrict	the	user’s	ability	to	resize	an	element	in	both
directions,	you	can	specify	a	horizontal	value	to	the	resize	property	–	so	that	the
user	can	only	adjust	the	width	of	an	element	by	dragging	its	corner.

Conversely,	you	can	specify	a	vertical	value	to	the	resize	property	–	so	that	the

user	can	only	adjust	the	height	of	an	element	by	dragging	its	corner.

Setting	all	elements’	box-sizing	property	to	border-box	means	that	the
edge	of	the	element	is	the	same	as	the	edge	of	any	border	it	has.

Create	an	HTML	document	containing	a	division	element
<div	class=”outline	resize”>This	division	has	a	blue	outline	and	can	be	resized	by
dragging	its	bottom-right	corner.</div>

outline.html

Add	a	style	sheet	with	rules	to	control	the	web	page
*	{	margin	:	0	;	padding	:	0	;	box-sizing	:	border-box	;	}

Next,	add	rules	to	specify	the	appearance	of	the	division
div	{	width	:	420px	;	margin	:	20px	;	padding	:	10px	;
border	:	2px	solid	Black	;	background	:	LightSteelBlue	;
font	:	1.25em	sans-serif	;	}

Now,	add	rules	to	surround	the	division	with	an	outline
div.outline	{								outline	:	10px	solid	RoyalBlue	;

outline-offset	:	5px	;	}

Then,	add	a	rule	to	make	the	division	resizable
div.resize	{	resize	:	both	;	overflow	:	auto	;	}

Save	the	HTML	document,	then	open	it	in	a	web	browser	to	see	the
outline	and	resize	the	element

Outlines	can	overlap	page	contents.

Use	Columns
CSS	provides	a	number	of	properties	that	make	it	simple	to	create	multiple-
column	layouts	for	text	–	like	those	in	newspapers.

First,	you	need	to	specify	an	integer	value	to	a	column-count	property	to
determine	the	number	of	columns	you	want	the	text	divided	into	–	for	example,
column-count	:	3	;	for	three	columns.	Typically,	this	will	create	a	gap	(“gutter”)
between	each	column	that	is	1em	wide	by	default	–	equivalent	to	the	height	of
the	font.	You	can	also	choose	your	own	gutter	size	by	specifying	a	distance	to	a
column-gap	property	–	for	example,	column-gap	:	50px	;	to	create	a	gap	of	50-pixels
width	between	the	columns.

With	a	wider	gutter,	you	can	then	add	a	vertical	ruled	line	by	specifying	width,
style,	and	color	values	to	a	column-rule	property.	This	accepts	the	same	values	as
the	border	property,	so	that	a	rule	of	column-rule	:	5px	solid	RoyalBlue	;	would	add
blue	lines.	The	column-rule	property	is	a	shorthand	property	for	individual	column-
rule-width,	column-rule-style,	and	column-rule-color	properties.	It	must	at	least
specify	a	style	to	display	a	vertical	ruled	line	using	default	initial	values	for
width	and	color.

Create	an	HTML	document	with	a	division	element	that	contains	one
heading	and	some	text	content
<div	class=”newspaper”>

<h1>The	CSS	Reporter</h1>
Cascading	Style	Sheets	(CSS)	is	a	style	sheet	language	used	for	describing	the
presentation	of	a	document	written	in	a	markup	language.	Although	most	often
used	to	set	the	visual	style	of	web	pages	and	user	interfaces	written	in	HTML	and
XHTML,	the	language	can	be	applied	to	any	XML	document,	including	plain	XML,
SVG	and	XUL,	and	is	applicable	to	rendering	in	speech,	or	on	other	media.

</div>

multicol.html

Add	a	style	sheet	with	rules	to	control	the	web	page
*	{	margin	:	0	;	padding	:	0	;	box-sizing	:	border-box	;	}

Next,	add	rules	to	add	a	margin	to	the	division	and	to	specify	the
appearance	of	a	two-column	layout
div.newspaper	{	margin	:	15px	;

column-count	:	2	;
column-gap	:	50px	;
column-rule	:	solid	;	}

Save	the	HTML	document,	then	open	it	in	a	web	browser	to	see	the
multiple-column	layout

Edit	the	rules	in	Step	3	–	to	change	the	appearance	to	a	three-column
layout	with	dotted	gutter	lines
div.newspaper	{	margin	:	15px	;

column-count	:	3	;
column-gap	:	50px	;
column-rule	:	5px	dotted	RoyalBlue	;	}

Save	the	HTML	document	again,	then	refresh	the	web	browser	to	see	the
new	multiple-column	layout

The	default	column-rule-color	value	here	is	derived	from	the	text	color	–
adding	a	color	rule	for	the	text	will	also	change	the	vertical	line	color	to
match	–	for	example,	color	:	Red	;	to	change	text	and	line.

Setting	this	example	to	have	many	columns	will	cause	the	heading	to
overlap	other	content	–	a	solution	is	demonstrated	in	the	example
overleaf.

Span	Columns
In	addition	to	the	column-count,	column-gap,	and	column-rule	properties	introduced
in	the	example	here,	CSS	provides	three	further	properties	for	use	in	column
layouts.

Where	you	prefer	elements	such	as	headings	to	span	across	columns,	you	can
specify	how	many	columns	to	span	as	an	integer	value,	or	using	the	keyword	all,
to	a	column-span	property.

You	can	also	state	a	preferred	width	for	the	columns	by	specifying	a	size	to	a
column-width	property	–	but	the	browser	only	treats	the	specified	value	as	a
minimum	width	suggestion.	If	it	cannot	fit	at	least	two	columns	at	the	specified
width,	it	will	revert	to	a	single-column	layout.

Lastly,	there	is	a	shorthand	columns	property	that	can	be	used	to	specify	both
column-width	and	column-count	values.	Using	both	the	columns	and	column-rule
shorthand	properties	lets	you	specify	a	large	number	of	column	layout	values
very	concisely.

Create	an	HTML	document	with	a	division	that	contains	text	content	and
two	headings
<div	class=”newspaper”>

<h1>Professional	Word	Documents</h1>
To	make	your	document	look	professionally	produced,	Word	provides	header,
footer,	cover	page,	and	text	box	designs	that	complement	each	other.	You	can
add	a	matching	cover	page,	header,	and	sidebar.	Click	Insert	and	then	choose	the
elements	you	want	from	the	different	galleries.

<h2>Coordinated	Document	Styles</h2>
Themes	and	styles	also	help	keep	your	document	coordinated.	When	you	click
Design	and	choose	a	new	Theme,	the	pictures,	charts,	and	SmartArt	graphics
change	to	match	your	new	theme.	When	you	apply	styles,	your	headings	change
to	match	the	new	theme.

</div>

spancol.html

Add	a	style	sheet	with	rules	to	control	the	web	page
*	{	margin	:	0	;	padding	:	0	;	box-sizing	:	border-box	;	}

Next,	add	rules	to	add	left	and	right	margins	to	the	division	and	to	specify
the	appearance	of	a	three	column	layout	–with	a	suggested	column	width
of	100	pixels
div.newspaper	{

margin	:	0	15px	;
column-gap	:	50px	;
column-rule	:	5px	solid	LightSteelBlue	;
columns	:	100px	3	;	}

Now,	add	rules	to	specify	the	appearance	of	the	headings	and	to	have
both	headings	span	across	all	columns
h1,	h2	{

padding	:	10px	10px	10px	;
margin	:	20px	0	0	0	;
background	:	LightSteelBlue	;
column-span	:	all	;	}

Save	the	HTML	document,	then	open	it	in	a	web	browser	to	see	the
multiple	column	layout	and	headings	that	span	across	the	columns

The	column-rule	property	is	shorthand	for	column-width,	column-style
and	column-color	properties.

Use	Flexbox
Previous	examples	in	this	book	have	displayed	content	using	absolute	or	relative
positioning,	and	by	floating	content.	These	are	important,	but	not	ideally	suited
to	create	a	flexible	layout	that	will	respond	to	various	browser	screen	sizes.	To
answer	this	need,	CSS	introduced	the	flexible	box	(“flexbox”)	layout	scheme.

To	create	a	flexible	box	you	must	first	define	an	element	to	be	a	“flex	container”
by	specifying	a	flex	value	to	its	display	property.

Any	inner	elements	(“flex	items”)	within	a	flex	container	will	appear	on	a	single
row.	If	the	length	of	the	row	exceeds	the	width	of	the	browser,	the	row	will	not,
by	default,	wrap	onto	the	next	row	–	unless	you	specify	a	wrap	value	to	a	flex-
wrap	property.

You	can	also	reverse	the	order	of	the	flex	items	in	the	row	by	specifying	a	wrap-
reverse	value	to	the	flex-wrap	property.

So,	to	create	a	flexible	box	that	will	wrap	items	onto	rows,	you	will	need	to
specify	values	to	both	display	and	flex-wrap	properties.

Create	an	HTML	document	with	a	division	element	that	contains	five
inner	divisions
<div	class=”flex-container”>

<div>One</div>
<div>Two</div>
<div>Three</div>
<div>Four</div>
<div>Five</div>

</div>

flexbox.html

Add	a	style	sheet	with	rules	to	control	the	web	page
*	{	margin	:	0	;	padding	:	0	;	box-sizing	:	border-box	;	}

Next,	add	rules	to	make	the	outer	division	flexible
div.flex-container	{							display	:	flex	;

flex-wrap	:	wrap	;
border	:	2px	dashed	RoyalBlue	;	}

Now,	add	rules	to	specify	the	appearance	of	the	flex	items
div.flex-container	>	div	{

padding	:	10px	40px	;
background	:	LightSteelBlue	;
border	:	2px	solid	RoyalBlue	;
font	:	1.25em	sans-serif	;	}

Refer	back	to	the	absolute	and	relative	positioning	example	here	and	the
float	layout	here.

All	modern	browsers	support	flexbox	since:

	Chrome	29.0

	Edge	11.0

	Firefox	22.0

	Safari	10

	Opera	48

Save	the	HTML	document,	then	open	it	in	a	web	browser	to	see	the
flexbox	layout

Drag	one	side	of	the	browser	window	to	make	it	narrower	and	see	the
layout	wrap	flex	items	onto	the	next	row

Edit	the	rules	in	Step	3	–	to	reverse	the	wrapping	order
div.flex-container	{									display	:	flex	;

flex-wrap	:	wrap-reverse	;
background	:	RoyalBlue	;	}

Save	the	HTML	document	again,	then	refresh	the	web	browser	to	see	the
flex	items	appear	in	reverse	order

The	default	value	for	the	wrap	property	is	nowrap.

Align	Items
The	flexbox	examples	here	have	stretched	the	flex	items	within	the	confines	of
their	lines	in	the	flex	container.	This	is	the	default	behavior,	but	you	can	control
how	the	flex	items	align	along	their	lines	using	a	CSS	justify-content	property	to
specify	center,	flex-start,	flex-end,	space-evenly,	space-around,	or	space-between.	The
center	value	aligns	items	around	the	center	of	the	line,	but	flex-start	and	flex-end
aligns	them	at	the	start	or	end	of	the	container.	The	space-evenly	value	adds	even
space	around	each	item;	space-around	adds	space	between,	but	half-space	before
and	after	the	items;	and	space-between	only	adds	space	between.

You	can	also	control	how	the	flex	items	align	vertically	within	their	lines	using
an	align-items	property	to	specify	center,	flex-start	(start	of	the	line),	or	flex-end
(end	of	the	line).

Similarly,	you	can	control	how	the	lines	align	within	the	flex	container	using	an
align-content	property	to	specify	center,	flex-	start	(start	of	the	container)	or	flex-end
(end	of	the	container).

If	you	want	to	align	individual	flex	items	vertically	within	their	line,	you	can
reference	each	inner	child	element	by	specifying	its	index	number	in	the
parentheses	of	an	:nth-child()	pseudo-class	selector,	and	specify	your	preferred
value	to	an	align-self	property.

Create	an	HTML	document	with	a	division	element	that	contains	five
inner	divisions
<div	class=”flex-container”>

<div>One</div>
<div>Two</div>
<div>Three</div>
<div>Four</div>
<div>Five</div>

</div>

alignment.html

Add	a	style	sheet	with	rules	to	control	the	web	page
*	{	margin	:	0	;	padding	:	0	;	box-sizing	:	border-box	;	}

Next,	add	rules	to	make	the	outer	division	flexible	and	specify	how	the
flex	items	should	align
div.flex-container	{	display	:	flex	;	flex-flow	:	row	wrap	;

border	:	2px	dashed	RoyalBlue	;
height	:	200px	;
justify-content	:	space-between	;
align-items	:	center	;	}

For	perfect	centering	use	justify-content	:	center	;	align-items	:	center
;	style	rules.

Now,	add	rules	to	specify	the	appearance	of	the	flex	items
div.flex-container	>	div	{

padding	:	10px	40px	;	background	:	LightSteelBlue	;
border	:	2px	solid	RoyalBlue	;
font	:	1.25em	sans-serif	;	}

Save	the	HTML	document,	then	open	it	in	a	web	browser	to	see	the	flex
item	alignment

Now,	add	rules	to	change	the	alignment	of	two	flex	items
div.flex-container	>	div:nth-child(2)	{	align-self	:	flex-end	;	}
div.flex-container	>	div:nth-child(3)	{	align-self	:	flex-start	;	}

Save	the	HTML	document	again,	then	refresh	the	web	browser	to	see	the
changed	flex	items	alignment

The	align-self	property	overrides	the	alignment	specified	to	the	align-
items	property.

Draw	Grid
The	CSS	flexible	box	layout	scheme,	described	on	pages	290-293,	is	a	1-
dimensional	system,	which	can	automatically	wrap	its	flex	item	lines	to	the	next
row	or	column	in	small	display	areas.	By	contrast,	the	CSS	grid	layout	scheme	is
a	2-dimensional	system,	which	places	“grid	items”	in	columns	and	rows.

To	create	a	grid	layout	you	must	first	define	an	element	to	be	a	“grid	container”
by	specifying	a	grid	(or	inline-grid)	value	to	its	display	property.	All	direct	child
elements	within	a	grid	container	then	automatically	become	the	grid	items.

You	can	specify	how	many	columns	the	grid	should	have	as	a	space-separated
list	of	width	values	to	a	grid-template-columns	property.	For	example,	grid-template-
columns	:	20%	60%	20%	;.	Similarly,	you	can	specify	how	many	rows	the	grid
should	have	as	a	space-separated	list	of	height	values	to	a	grid-template-rows
property	–	for	example,	grid-template-rows	:	20%	40%	40%	;

The	auto	keyword	can	also	be	used	to	specify	any	column	width	or	row	height	–
for	example,	to	create	three	columns	and	rows	of	equal	size	with	grid-template-
columns	:	auto	auto	auto	;	and	with	grid-template-rows	:	auto	auto	auto	;

The	CSS	repeat()	function	can	specify	a	large	number	of	columns	or	rows	as
repeating	fragment	fr	units.	This	function	accepts	two	arguments	to	specify	the

number	of	repetitions	and	the	number	of	grid	track	fragments	–	for	example,	to
create	ten	columns	of	equal	size	with	grid-template-columns	:	repeat(10,	1fr)	;

A	grid	is	block-level,	so	will	fill	the	page	width,	whereas	an	inline-grid	does
not	do	so.

All	modern	browsers	support	grid	since:

	Chrome	57.0

	Edge	16.0

	Firefox	52.0

	Safari	10

	Opera	44

Create	an	HTML	document	with	a	division	element	containing	seven
inner	divisions
<div	class="grid-container">
<div>One</div>	<div>Two</div>	<div>Three</div>
<div>Four</div>	<div>Five</div>	<div>Six</div>
<div>Seven</div>

</div>

grid.html

Add	a	style	sheet	with	rules	to	control	the	web	page

*	{	margin	:	0	;	padding	:	0	;	box-sizing	:	border-box	;	}

Next,	add	rules	to	make	the	outer	division	into	a	grid	of	three	columns
and	two	rows
div.grid-container	{
display	:	grid	;
grid-template-columns	:	auto	250px	auto	;
grid-template-rows	:	auto	100px	;
border	:	2px	dashed	RoyalBlue	;	}

Now,	add	rules	to	specify	the	appearance	of	the	grid	items
div.grid-container	>	div	{
background	:	LightSteelBlue	;
border	:	2px	solid	RoyalBlue	;
padding	:	10px	40px	;
font	:	1.25em	sans-serif	;	}

Save	the	HTML	document,	then	open	it	in	a	web	browser	to	see	the	grid
layout

Notice	that	the	second	row	and	column	is	larger,	and	a	third	row	is
automatically	added.	Subsequent	rows	would	all	use	only	the	first	row
template	values.

Place	Items
With	grid	containers,	the	lines	at	the	leading	edge	between	the	columns	and	rows
are	known	as	“column	lines”	and	“row	lines”.

Line	numbers	can	be	used	to	place	grid	items	at	a	specific	position	in	a	grid
container.	The	grid-column	and	grid-row	shorthand	properties	can	specify
horizontal	and	vertical	positioning	as	single	line	numbers,	such	as	grid-column	:
1	;	grid-row	:	2	;	for	the	bottom	left	corner	of	the	grid	shown	above.

Alternatively,	two	“/”	forward	slash-separated	values	can	specify	start	and	end
line	numbers	to	have	the	item	span	rows	or	columns	–	for	example,	grid-column	:
1	/	3	;	would	span	the	first	two	columns	of	the	grid	shown	above.	Additionally,
the	span	keyword	can	achieve	the	same	result	with	grid-column	:	span	2	;

Create	an	HTML	document	with	a	division	element	that	contains	three
inner	divisions
<div	class=”grid-container”>
<div>One</div>	<div>Two</div>	<div>Three</div>

</div>

gridlines.html

Add	a	style	sheet	with	rules	to	control	the	web	page	and	to	make	the
outer	division	into	a	grid	container
*	{	margin	:	0	;	padding	:	0	;	box-sizing	:	border-box	;	}

div.grid-container	{
display	:	grid	;	height	:	200px	;
grid-template-columns	:	100px	100px	100px	;
grid-template-rows	:	100px	100px	;
justify-content	:	space-evenly	;
align-items	:	center	;	align-content	:	center	;
border	:	2px	dashed	DeepSkyBlue	;	}

Now,	add	rules	to	specify	the	appearance	of	the	grid	items
div.grid-container	>	div	{
padding	:	10px	30px	;	background	:	LightBlue	;
border	:	2px	solid	DeepSkyBlue	;	font	:	1.25em	sans-serif	;	}

Notice	that	the	justify-content,	align-items,	and	align-content
properties	can	be	used	for	item	alignment	in	grids	in	the	same	way	as
with	a	flexbox	layout.

Save	the	HTML	document,	then	open	it	in	a	web	browser	to	see	the	grid
item	alignment

Now,	add	rules	to	place	each	one	of	the	grid	items
div.grid-container	>	div:nth-child(1)	{
grid-column	:	span	2	;	grid-row	:	1	;	}

div.grid-container	>	div:nth-child(2)	{
grid-column	:	3	;	grid-row	:	1	/	3	;	}

div.grid-container	>	div:nth-child(3)	{
grid-column	:	2	;	grid-row	:	2	;	}

Save	the	HTML	document	once	more,	then	refresh	the	browser	to	see	the
position	and	extent	of	the	grid	items

Query	Media
CSS	has	the	ability	to	discover	the	capabilities	of	the	viewing	device	by	making
“media	queries”	to	apply	appropriate	style	rules.	The	syntax	of	a	CSS	media
query	looks	like	this:

@media	media-type	and	(media-feature)	{	style-rules	}

The	media	type	can	be	specified	using	any	of	the	keywords	below:

Keyword: Description:

all Detect	all	media	types

print Detect	printers

screen Detect	PC	desktop,	tablet,	and	phone	screens

speech Detect	screenreaders

A	media	query	can	check	for	many	types	of	media	feature,	but	the	most	useful
are	those	that	detect	the	width	of	the	display	area	and	orientation	of	the	device
using	these	keywords:

Keyword: Description:

min-width Minimum	width	of	the	display	area,	such	as	the	width	of	the
browser	window

max-width Maximum	width	of	the	display	area,	such	as	the	width	of	the
browser	window

orientation Orientation	of	the	viewport,	as	either	landscape	mode	or	portrait
mode

When	a	specified	media	feature	is	detected	on	the	specified	media	type,	the
media	query	will	report	as	true,	so	style	rules	within	its	curly	brackets	will	be

applied	–	otherwise	they	will	be	ignored.	For	example,	to	apply	a	background
color	only	on	devices	whose	display	area	is	600	pixels	wide	or	less	with	this
media	query:

@media	screen	and	(max-width:600px)	{
body	{	background	:	Blue	;	}

}

A	media	query	can	check	for	the	existence	of	multiple	media	features	by
adding	further	and	(media-feature)	parts	to	the	query.

Create	an	HTML	document	with	a	style	sheet	that	specifies	a	default
background	color	for	wide	display	areas
body	{	background	:	Tomato	;	}

mediaquery.html

Next,	add	a	media	query	to	specify	a	background	color	for	medium-width
display	areas
@media	screen	and	(min-width:600px)

and	(max-width:992px)	{
body	{	background	:	DarkOrange	;	}

}

Notice	that	there	are	no	spaces	around	the	colon	character	in	the	media-
feature	specifications.

Now,	add	media	queries	for	small-width	display	areas	and	different
orientations
@media	screen	and	(max-width:600px)

and	(orientation:landscape)	{
body	{	background	:	LimeGreen	;	}

}

@media	screen	and	(max-width:600px)
and	(orientation:portrait)	{

body	{	background	:	RoyalBlue	;	}
}

Save	the	HTML	document	then	open	it	in	desktop,	tablet,	and	cellphone
devices	to	see	appropriate	colors

The	values	specified	for	screen	widths	here	are	typical	breakpoints	used
to	target	small,	medium,	and	large	devices.

Switch	Navigation
Media	queries	allow	appropriate	navigation	to	be	provided	for	large	and	small
devices.	Typically,	a	horizontal	navigation	bar	is	provided	for	wide	display
areas,	whereas	a	vertical	navigation	list	is	more	suitable	for	smaller	screens.

Vertical	navigation	bars	will	specify	a	fixed	width	value	for	the	list,	whereas
horizontal	navigation	bars	can	instead	float	the	list	items	and	hide	the	overflow	to
maintain	the	visibility	of	the	bar.

Create	an	HTML	document	containing	a	list	with	four	hyperlink	items

Home
Information
Extra
Contact

medianav.html

Add	a	style	sheet	with	rules	to	control	the	web	page
*	{	margin	:	0	;	padding	:	0	;	box-sizing	:	border-box	;	}

Next,	add	rules	to	remove	the	markers,	margin,	and	padding,	then	specify
a	color,	fixed	width,	and	font
ul	{							list-style-type	:	none	;

margin	:	0	;
padding	:	0	;
background	:	LightSteelBlue	;
width	:	150px	;
font	:	1.25em	sans-serif	;	}

Now,	add	style	rules	to	display	the	hyperlinks	in	blocks	and	specify	how
they	should	appear
li	a	{					display	:	block	;

text-align	:	center	;
text-decoration	:	none	;
color	:	Black	;
padding	:	10px	;	}

Then,	add	style	rules	to	indicate	the	hyperlinks’	status
li	a.current	{	background	:	CornflowerBlue	;	}
li	a:hover	{	background	:	RoyalBlue	;	color	:	White	;	}

Finally,	add	a	media	query	that	will	apply	new	rules	when	the	display
area	is	600	pixels	or	more	in	width
@media	screen	and	(min-width:600px)	{

ul	{	overflow	:	hidden	;	width	:	100%	;	}
li	a	{	float	:	left	;	}

}

Save	the	HTML	document	then	open	the	web	page	in	a	desktop	web
browser	to	see	the	horizontal	navigation	bar

Drag	the	edge	of	the	browser	to	reduce	its	size	to	see	the	navigation	bar
automatically	switch	to	a	vertical	list

This	example	is	similar	to	that	here	but	automates	the	switch	of
navigation	type.

Summary
• A	universal	style	rule	can	be	used	to	override	the	browser’s	default	styles	for

margin	and	padding.

• An	element’s	total	width	and	height	is	unaffected	by	the	addition	of	an
outline.

• Elements	that	can	be	resized	should	specify	how	to	handle	any	content
overflow.

• A	column-count	can	specify	the	number	of	columns	into	which	text	content
should	be	divided.

• A	column-gap	can	specify	the	gutter	width	between	columns.

• A	column-rule	shorthand	can	specify	the	width,	style,	and	color	of	a	vertical
ruled	line	to	appear	between	columns.

• A	column-span	can	specify	the	number	of	columns	to	span.

• The	flexbox	scheme	first	requires	a	flex	container	element	be	created	by
specifying	a	flex	value	to	its	display	property.

• Inner	elements	within	a	flex	container	are	flex	items	that	will	appear	on	a
single	row	by	default.

• A	justify-content	can	align	flex	items	horizontally	and	an	align-items	can	align
flex	items	vertically	on	the	line.

• The	grid	layout	scheme	first	requires	a	grid	container	element	be	created	by
specifying	a	grid	value	to	its	display	property.

• The	grid	layout	scheme	is	a	2-dimensional	system,	which	places	grid	items	in
columns	and	rows.

• The	grid-column	and	grid-row	shorthand	properties	can	specify	horizontal	and
vertical	positioning	of	grid	items.

• A	media	query	can	be	used	to	discover	the	capabilities	of	the	viewing	device
to	apply	appropriate	style	rules.

• A	media	query	can	specify	a	screen	media	type	to	detect	PC	desktop,	tablet,
and	phone	screens.

• A	media	query	can	check	for	many	types	of	media	feature	to	discover	the
display	area’s	width	and	orientation	of	the	device.

14

Design	for	Devices

This	chapter	demonstrates	Responsive	Web	Design	(RWD)	in	HTML	documents.

Adapt	Layouts
Compare	Schemes

Combine	Schemes
Add	Breakpoints
Scale	Images
Hide	Content

Summary

Adapt	Layouts
Web	pages	are	viewed	on	a	variety	of	devices	that	have	different-sized	display
areas	and	different	features.	In	fact,	since	2015,	more	web	pages	are	now	viewed
on	mobile	devices	than	desktop	PCs.	This	means	it	is	important	that	web	pages
are	designed	to	look	great	on	a	variety	of	devices	and	screen	sizes.

Responsive	Web	Design	(“RWD”)	aims	to	ensure	optimum	usability	for	user
satisfaction	by	designing	web	pages	that	present	content	well,	and	perform	well,
across	all	devices.

Web	pages	designed	with	RWD	adapt	their	layout	to	suit	the	viewing	device
using	only	HTML	and	CSS	–	no	JavaScript.

The	key	to	Responsive	Web	Design	is	the	use	of	CSS	media	queries	to
determine	the	size	and	capabilities	of	the	viewing	device.	Having	recognized	the
device’s	features,	the	layout	can	be	adapted	to	suit	the	viewing	environment	by
the	use	of	fluid	proportion-based	grids	and	flexible	images	to	create	a	responsive
layout:

• CSS	Media	Queries	–	allow	the	web	page	to	use	style	sheets	containing
rules	that	are	appropriate	for	the	screen	size	of	the	viewing	device	or	width	of
the	browser	window.

• Fluid	Grid	Layout	–	requires	the	web	page	sizes	to	be	specified	in	relative
units,	such	as	percentages	and	em	values	(rather	than	in	absolute	units	such
as	pixel	and	point	values),	so	that	items	can	stretch	or	shrink.

• Flexible	Images	–	requires	image	sizes	to	be	specified	in	relative	units,	such
as	percentages,	so	they	will	not	overflow	their	containing	element	on	smaller
viewing	devices.

• Responsive	Layouts	–	will	automatically	adapt	to	suit	the	size	of	the	viewing
device	and	adjust	when	the	user	resizes	the	browser	window.

Pages	optimized	for	Responsive	Web	Design	must	include	the	<meta>	viewport

tag	in	the	document’s	head	section,	as	described	here,	to	instruct	the	web
browser	how	to	control	the	page’s	dimensions	and	scaling.	This	tag’s
width=device-width	value	tells	the	browser	to	match	the	screen’s	width	in	device-
independent	pixels,	and	the	tag’s	initial-scale=1.0	value	tells	the	browser	to
establish	a	1:1	relationship	between	CSS	pixels	and	device-	independent	pixels	–
irrespective	of	the	device’s	orientation.

Flexible	images	in	RWD	are	sometimes	referred	to	as	“context-aware”.

Desktop

Frequently,	a	Responsive	Web	Design	will	provide	a	3-column	web	page	layout
for	larger	devices,	similar	to	the	one	shown	above.	It	will	also	provide	a	2-
column	layout	for	medium	sized	devices,	and	a	1-column	layout	for	smaller
devices,	like	those	shown	below.

Tablet

Phone

Looking	at	the	layouts	illustrated	above	it	should,	hopefully,	be	apparent	that	the
requirements	of	Responsive	Web	Design	can	be	satisfied	using	the	CSS	flexbox
and	grid	layout	schemes.

The	Google	Chrome	web	browser	has	a	facility	that	lets	you	simulate
how	a	web	page	will	look	on	different	devices.	Open	the	web	page	in
Google	Chrome,	then	press	the	F12	key	and	click	the	 	button	in	the
“DevTools”	window	to	open	the	device	toolbar	in	the	browser	window.
Choose	any	device	to	simulate	from	the	dropdown	options	in	the	device
toolbar	menu.

Compare	Schemes
In	deciding	which	layout	scheme	is	best	suited	for	an	RWD	web	page	design,	it
is	useful	to	compare	the	flexbox	and	grid	schemes.

First,	recall	that	flexbox	is	intended	for	1-dimensional	layouts,	whereas	grid	is
intended	for	2-dimensional	layouts.	This	means	that	if	you	want	to	lay	out	items
in	a	row,	such	as	buttons	in	a	horizontal	navigation	bar,	then	choose	the	flexbox
scheme.

Conversely,	if	you	want	to	lay	out	items	in	two	dimensions,	with	both	rows	and
columns,	then	choose	the	grid	layout	scheme.

The	straightforward	choice	of	scheme	for	the	header	items	in	the	illustrations
above	would	then	be	for	the	flexbox	layout	scheme.	It	is,	however,	a	useful
exercise	to	build	the	header	using	each	scheme	to	compare	them:

Create	an	HTML	document	containing	two	similar	headers,	separated	by

a	line	break
<header	class=”	flex-container”>
<div>Home</div><div>>News</div><div>Logout</div>
</header>

<header	class=”	grid-container”>
<div>Home</div><div>News</div><div>Logout</div>
</header>

flexvgrid.html

Next,	add	a	style	sheet	with	rules	to	control	the	page	and	to	specify	the
appearance	of	the	headers
*	{	margin	:	0	;	padding	:	0	;	box-sizing	:	border-box	;	}
header	{	background	:	Purple	;	color	:	White	;	}
header	>	div	{	font	:	1em	sans-serif	;	padding	:	0	1em	;	}

Now,	add	rules	to	create	a	flexbox	layout	and	position	its	final	item	at	the
far	right
header.flex-container	{	display	:	flex	;	}
header.flex-container	>	div:nth-child(3)	{

margin	:	0	0	0	auto	;	}

Notice	that	the	flexbox	layout	easily	positions	the	final	item	to	the	far	right
by	adding	a	left	margin,	whereas	the	grid	layout	must	explicitly	place	it	in
the	10th	column	of	the	grid.

Then,	add	rules	to	create	a	grid	layout	with	ten	columns,	and	position	its
final	item	at	the	far	right
header.grid-container	{	display	:	grid	;
grid-template-columns	:	repeat(10,	1fr)	;	}
header.grid-container	>	div:nth-child(3)	{

grid-column	:	10	;	}

Save	the	HTML	document,	then	open	it	in	a	browser	to	see	that	the

headers	appear	to	be	identical

Open	the	browser’s	Developer	Tools,	then	inspect	each	header	to	see
how	they	compare

Open	the	web	page	in	Google	Chrome,	then	press	the	F12	key	and	click
the	 	button	in	the	“DevTools”	window	to	open	the	device	toolbar	in	the
browser	window.	Place	the	cursor	over	any	element	to	inspect	it.

Combine	Schemes
The	optimum	solution	for	an	RWD	web	page	design	invariably	uses	a
combination	of	the	grid	and	flexbox	layout	schemes.	Overall	page	layout	is	best
governed	by	grid	layout	and	the	flexbox	layout	is	best	suited	for	horizontal
components	–	such	as	items	in	a	navigation	bar.

As	more	web	pages	are	now	viewed	on	mobile	devices	than	desktop	PCs	it	is
good	practice	to	design	for	mobile	first.

Create	an	HTML	document	with	a	division	containing	header,	menu,
content,	aside,	and	footer	elements
<div	class=”grid-container”>

<header>
<div>Home</div>
<div>News</div>
<div>Logout</div>

</header>

<nav>Menu</nav>
<main>Content</main>
<aside>Aside</aside>
<footer>Footer</footer>

</div>

responsive.html

Add	a	style	sheet	with	rules	to	control	the	web	page	and	the	appearance
of	all	its	text
*	{	margin	:	0	;	padding	:	0	;	box-sizing	:	border-box	;

font	:	1em	sans-serif	;	text-align	:	center	;	}

Next,	add	rules	to	specify	the	appearance	of	some	page	elements
header,	footer	{	background	:	Purple	;	color	:	White	;	}
nav,	aside	{	background	:	Thistle	;	}

Now,	add	rules	to	make	the	division	element	into	a	grid	layout	of	10
columns	and	5	rows	that	fill	the	viewport
div.grid-container	{
display	:	grid	;
width	:	100vw	;
height	:	100vh	;
grid-template-columns	:	repeat(10,	1fr)	;
grid-template-rows:	10%	15%	60%	10%	5%	;

}

The	vw	and	vh	units	are	viewport	dimensions	of	100%	width	and	height.

Then,	add	rules	to	position	element	items	in	the	grid
header	{	grid-column	:	span	10	;	}
nav	{	grid-column	:	span	10	;	}
main	{	grid-column	:	span	10	;	}
aside	{	grid-column	:	span	10	;	}
footer	{	grid-column	:	span	10	;	}

Next,	add	rules	to	make	the	header	element	into	a	flexbox	layout	with
items	vertically	centered
header	{	display	:	flex	;	align-items	:	center	;	}

Now,	add	rules	to	pad	each	side	of	the	flexbox	header	items	and	position
its	final	item	at	the	far	right
header	>	div	{	padding	:	0	1em	;	}
header	>	div:nth-child(3)	{	margin	:	0	0	0	auto	;	}

Save	the	HTML	document	then	open	it	in	a	browser	to	see	the	combined
layouts

Adjust	the	size	of	the	browser	window	horizontally	and	vertically	to	see
the	grid	layout	and	flexbox	layout	are	both	maintained.

Add	Breakpoints
The	responsive	web	page	created	here	can	now	be	made	to	adapt	its	layout	for
devices	that	have	larger	display	areas	by	adding	media	queries	to	the	style	sheet.
These	will	change	the	grid	layout	from	the	1-column	web	page	layout	for	small
devices	to	a	2-column	layout	for	medium-sized	devices,	and	a	3-column	layout
for	large	devices.

Make	a	new	copy	of	the	“responsive.html”	document	from	here	and	save
it	as	“breakpoints.html”

breakpoints.html

In	the	style	sheet,	after	the	existing	rules,	add	a	media	query	for	medium-
sized	devices	with	rules	to	change	the	layout	by	decreasing	the	number
of	rows	from	five	to	four
@media	screen	and	(min-width:600px)

and	(max-width:992px)	{

div.grid-container	{
grid-template-rows	:	10%	75%	10%	5%	;	}

nav	{	grid-column	:	span	2	;	}
main	{	grid-column	:	span	8	;	}

}

Next,	add	another	media	query	to	change	the	layout	for	large	devices	by
decreasing	the	number	of	rows	from	five	to	three
@media	screen	and	(min-width:992px)	{

div.grid-container	{
grid-template-rows	:	10%	85%	5%	;	}

nav	{	grid-column	:	span	2	;	}

main	{	grid-column	:	span	6	;	}
aside	{	grid-column	:	span	2	;	}

}

Now,	save	the	HTML	document,	then	open	it	in	a	variety	of	devices	to
see	how	the	breakpoints	adapt	the	layout

Desktop

Tablet

Phone

Scale	Images
Responsive	Web	Design	should	recognize	that	images	and	video	content	on	a
web	page	should	also	adapt	to	suit	viewing	devices	of	different	size.

Background	images	can	be	made	to	scale	down	and	maintain	their	aspect	ratio
between	width	and	height,	by	specifying	the	contain	keyword	to	the	background-
size	property	and	the	no-repeat	keyword	to	the	background-repeat	property	–	for
example:

div	{
width	:	100%	;
height	:	400px	;
background-image	:	url(ferrari.png)	;
background-size	:	contain	;
background-repeat	:	no-repeat	;

}

But	this	technique	will	only	scale	down	the	image	within	its	containing	element
–	its	container	maintains	the	specified	height.

If	the	image	file	size	is	a	concern,	you	could	specify	different	versions	of	the
image	for	different	devices	using	media	queries	to	provide	smaller	image	files	to
small	devices	for	better	performance.	Remembering	to	design	for	mobile	first,
initially	specify	a	small	image	file	for	small	devices,	then	add	media	queries	to
specify	increasingly	larger	image	files	for	medium-sized	and	large	devices.

More	simply,	images	and	video	can	easily	be	made	to	scale	up	or	down	using
CSS	rules	to	assign	their	width	property	a	percentage	value,	and	by	specifying	the
auto	keyword	to	their	height	property.

Create	an	HTML	document	containing	a	division	element	and	a	single
image

scale.html

ferrari.png
800px	x	400px

Add	a	style	sheet	with	rules	to	control	the	web	page
*	{	margin	:	0	;	padding	:	0	;	box-sizing	:	border-box	;	}

Now,	add	rules	to	scale	the	image
img.scale	{	width	:	100%	;	height	:	auto	;

border	:	5px	dashed	Purple	;	}

Save	the	HTML	document,	then	open	it	in	different	devices	to	see	the
image	scale	to	suit	the	display	area

Hide	Content
CSS	provides	a	number	of	ways	in	which	web	page	content	can	be	hidden	from
view,	but	with	varying	consequences:

• display	:	none	;	–	entirely	removes	content	from	the	page	flow,	no	page	space
reserved,	and	invisible	to	screen	readers.

• visibility	:	hidden	;	–	remains	in	the	page	flow,	page	space	is	reserved,	but
content	is	invisible	to	users	and	screen	readers.

• opacity	:	0	;	–	remains	in	the	page	flow,	page	space	is	reserved,	the	content	is
visually	hidden	but	is	visible	to	screen	readers.

With	Responsive	Web	Design	content	should,	ideally,	not	be	omitted	from	web
pages	viewed	on	small	devices.	You	can,	however,	remove	content	visually	from
the	page	flow,	but	have	it	remain	visible	to	screen	readers	to	aid	accessibility,	by
absolutely	positioning	the	content	outside	the	display	area.

Create	an	HTML	document	with	a	division	containing	an	image	and	a
paragraph
<div	class=”flex-container”>

<p	class=”screen-reader-text”>The	orchid	is	the	official	national	flower	of	Hong
Kong.</p>
</div>

hide.html

orchid.png
200px	x	200px

Add	a	style	sheet	with	rules	to	control	the	web	page
*	{	margin	:	0	;	padding	:	0	;	box-sizing	:	border-box	;	}

body	{	background	:	Black	;	}

Next,	add	rules	to	create	a	flexible	row
div.flex-container	{
display	:	flex	;
justify-content	:	center	;

}

Now,	add	rules	to	specify	the	appearance	of	the	paragraph
p.screen-reader-text	{
font	:	2em	sans-serif	;
padding	:	1em	;
color	:	Thistle	;

}

Then,	add	rules	to	hide	the	paragraph	on	small	screens	and	center	the
image
@media	screen	and	(max-width:600px)	{

p.screen-reader-text	{
position	:	absolute	;	width	:	1px	;	height	:	1px	;
left	:	-10000px	;
overflow	:	hidden	;	}

}

Save	the	HTML	document	then	open	it	in	a	web	browser	and	enable	a
screen	reader

Drag	the	edge	of	the	browser	window	to	narrow	its	width	–	see	the

paragraph	get	hidden	and	the	image	centered

Click	on	the	page	to	hear	the	screen	reader	read	the	image	name	and	the
hidden	paragraph	text

ChromeVox	is	a	screen	reader	extension	for	the	Google	Chrome	browser
–	available	from	chrome.google.com/webstore/category/extensions

https://chrome.google.com/webstore/category/extensions

Summary
• Responsive	Web	Design	(RWD)	aims	to	ensure	web	pages	present	content

well	and	perform	well	across	all	devices.

• Responsive	Web	Design	uses	media	queries	to	determine	the	size	and
capabilities	of	the	viewing	device.

• Pages	optimized	for	Responsive	Web	Design	must	include	the	<meta>
viewport	tag	in	the	document’s	head	section.

• Responsive	Web	Design	requirements	can	be	satisfied	using	the	flexbox
layout	scheme	and	grid	layout	scheme.

• The	flexbox	layout	scheme	places	items	in	rows,	but	the	grid	layout	scheme
places	items	in	both	rows	and	columns.

• The	optimum	solution	for	Responsive	Web	Design	invariably	uses	a
combination	of	the	grid	and	flexbox	layout	schemes.

• It	is	good	practice	to	design	for	mobile	first,	as	more	web	pages	are	now
viewed	on	mobile	devices	than	desktop	PCs.

• A	responsive	web	page	can	be	made	to	adapt	its	layout	for	devices	that	have
larger	display	areas	by	adding	media	queries.

• Media	queries	can	be	used	to	specify	different	versions	of	an	image	for
devices	of	different	size.

• Background	images	can	be	made	to	scale	down	by	specifying	the	contain
keyword	to	the	background-size	property,	and	the	no-repeat	keyword	to	the
background-repeat	property.

• Images	and	video	can	be	made	to	scale	up	or	down	by	specifying	a
percentage	value	to	their	width	property	and	the	auto	keyword	to	their	height
property.

• Content	can	be	hidden	and	removed	from	the	page	flow	by	specifying	the
none	keyword	to	the	display	property.

• The	visibility	and	opacity	properties	can	be	used	to	hide	content	but	they	each
reserve	space	on	the	web	page.

• Content	can	be	hidden	from	view	and	remain	visible	to	screen	readers

without	reserving	page	space	by	absolutely	positioning	the	content	outside
the	display	area.

15

Get	Started	in	JavaScript

This	chapter	is	an	introduction	to	the	exciting	world	of	JavaScript.	It	demonstrates	how	to	add	scripts	to

HTML	documents	that	provide	JavaScript	variables	and	functions.

Meet	JS
Include	Scripts

Console	Output
Make	Statements
Avoid	Keywords
Store	Values

Create	Functions
Assign	Functions
Recognize	Scope
Use	Closures

Summary

Meet	JS
JavaScript	(“JS”)	is	an	object-based	scripting	language	whose	interpreter	is
embedded	inside	web	browser	software	such	as	Google	Chrome,	Microsoft
Edge,	Firefox,	Opera,	and	Safari.	This	allows	scripts	contained	in	a	web	page	to
be	interpreted	when	the	page	is	loaded	in	the	browser	to	provide	functionality.
For	security	reasons,	JavaScript	cannot	read	or	write	files,	with	the	exception	of
“cookie”	files	that	store	minimal	data.

Created	by	Brendan	Eich	at	Netscape,	JavaScript	was	first	introduced	in
December	1995,	and	was	initially	named	“LiveScript”.	It	was	soon	renamed,
however,	to	perhaps	capitalize	on	the	popularity	of	Sun	Microsystem’s	Java
programming	language	–	although	it	bears	little	resemblance.

Before	the	introduction	of	JavaScript,	web	page	functionality	required	the
browser	to	call	upon	“server-side”	scripts,	resident	on	the	web	server,	where
slow	response	could	impede	performance.	Calling	upon	“client-side”	scripts
resident	on	the	user’s	system,	overcame	the	latency	problem	and	provided	a
superior	experience.

JavaScript	quickly	became	very	popular	but	a	disagreement	arose	between
Netscape	and	Microsoft	over	its	licensing	–	so	Microsoft	introduced	its	own
version	named	“JScript”.	Although	similar	to	JavaScript,	the	new	JScript	version
had	some	extended	features.	Recognizing	the	danger	of	fragmentation,	the
JavaScript	language	was	standardized	by	the	Ecma	International	standards
organization	in	June	1997	as	“ECMAScript”.	This	helped	to	stabilize	core
features	but	the	name,	sounding	like	some	kind	of	skin	disease,	is	not	widely
used	and	most	people	will	always	call	the	language	“JavaScript”.

Brendan	Eich,	creator	of	the	JavaScript	language,	also	co-founded	the
Mozilla	project	and	helped	launch	the	Firefox	web	browser.

The	JavaScript	examples	in	this	book	describe	three	key	ingredients:

• Language	basics	–	illustrating	the	mechanics	of	the	language	syntax,
keywords,	operators,	structure,	and	built-in	objects.

• Web	page	functionality	–	illustrating	how	to	use	the	browser’s	Document
Object	Model	(DOM)	to	provide	user	interaction.

• Web	applications	–	illustrating	responsive	web-based	apps	and	JavaScript
Object	Notation	(JSON)	techniques.

Include	Scripts
To	include	JavaScript	code	directly	in	an	HTML	document	it	must	be	inserted
between	<script>	and	</script>	tags,	like	this:

<script>
document.getElementById(‘message’).innerText	=	‘Hello	World!’
</script>

An	HTML	document	can	include	multiple	scripts,	and	these	may	be	placed	in
the	head	or	body	section	of	the	document.	It	is,	however,	recommended	that	you
place	scripts	at	the	end	of	the	body	section	(immediately	before	the	</body>
closing	tag)	so	the	browser	can	render	the	web	page	before	interpreting	the
script.

JavaScript	code	can	also	be	written	in	external	plain	text	files	that	are	given	a	.js
file	extension.	This	allows	several	different	web	pages	to	call	upon	the	same
script.	In	order	to	include	an	external	script	in	the	HTML	document,	the	file
name	of	the	script	must	be	assigned	to	a	src	attribute	of	the	<script>	tag,	like	this:

<script	src=”external_script.js”>	</script>

Again,	this	can	be	placed	in	the	head	or	body	section	of	the	document,	and	the
browser	will	treat	the	script	as	though	it	was	written	directly	at	that	position	in
the	HTML	document.

Assigning	only	the	file	name	of	an	external	script	to	the	src	attribute	of	a	<script>
tag	requires	the	script	file	to	be	located	in	the	same	folder	(directory)	as	the
HTML	document.	If	the	script	is	located	in	an	adjacent	folder	you	can	assign	the
relative	path	address	of	the	file	instead,	like	this:

<script	src=”js/external_script.js”>	</script>

If	the	script	is	located	elsewhere,	you	can	assign	the	absolute	path	address	of	the
file,	like	this:

<script	src=”https://www.example.com/js/external_script.js”>
</script>

You	can	also	specify	content	that	will	only	appear	in	the	web	page	if	the	user	has
disabled	JavaScript	in	their	web	browser	by	including	a	<noscript>	element	in	the

body	of	the	HTML	document,	like	this:

<noscript>JavaScript	is	Not	Enabled!</noscript>

You	may	see	a	type=”text/javascript”	attribute	in	a	<script>	tag	but	this
is	no	longer	required	as	JavaScript	is	now	the	default	scripting	language
for	HTML.

Do	not	include	<script>	and	</script>	tags	in	an	external	JavaScript	file,
only	the	script	code.

External	script	files	can	make	code	maintenance	easier	but	almost	all
examples	in	this	book	are	standalone	for	clarity,	so	include	the	script
code	between	tags	directly	in	the	HTML	document.

Console	Output
JavaScript	can	display	output	by	dynamically	writing	content	into	an	HTML
element.	For	example,	with	this	code:

document.getElementById(‘message’).innerText	=	‘Hello	World!’

The	element	is	identified	by	the	value	assigned	to	its	id	attribute	and	the	innerText
property	specifies	text	to	be	written	there.

Additionally,	JavaScript	can	display	output	by	writing	content	into	a	pop-up
dialog	box,	like	this:

window.alert(‘Hello	World!’)

This	calls	the	alert()	method	of	the	window	object	to	display	the	content	specified
within	the	()	parentheses	in	a	dialog	box.

When	developing	in	JavaScript,	and	learning	the	language,	it	is	initially	better	to
display	output	in	the	browser’s	JavaScript	console,	like	this:

console.log(‘Hello	World!’)

This	calls	the	log()	method	of	the	console	object	to	display	the	content	specified
within	the	()	parentheses	in	a	console	window.	All	leading	browsers	have	a

JavaScript	console	within	their	Developers	Tools	feature	–	typically	accessed	by
pressing	the	F12	keyboard	key.	As	the	Google	Chrome	web	browser	is
statistically	the	most	popular	browser	at	the	time	of	writing	it	is	used	throughout
this	book	to	demonstrate	JavaScript,	and	initially	its	console	window	is	used	to
display	output.

Notice	the	use	of	the	.	period	(full	stop)	operator	to	describe	properties	or
methods	of	an	object	using	“dot	notation”.

The	console	provides	helpful	messages	if	an	error	occurs	in	your	code	–
so	is	great	for	debugging	the	code.

Create	an	HTML	document	that	includes	an	empty	paragraph	and	a	script
to	display	output	in	three	ways
<p	id=”message”></p>
<script>
document.getElementById(‘message’).innerText	=

‘Hello	World!’
window.alert(‘Hello	World!’)
console.log(‘Hello	World!’)
</script>

output.html

Save	the	HTML	document	then	open	it	in	your	browser	to	see	the	output
written	in	the	paragraph	and	displayed	in	a	dialog	box	–	as	illustrated
opposite

Next,	hit	the	F12	key,	or	use	your	browser’s	menu	to	open	its	Developers
Tools	feature

Now,	select	the	Console	tab	to	see	the	output	written	into	the	console
window

Click	 	the	Show/Hide	button	to	hide	or	show	the	sidebar,	click	the	
Customize	button	to	choose	how	the	console	window	docks	in	the
browser	window,	then	click	the	 	Clear	button	to	clear	all	content	from
the	console

There	is	also	a	document.write()	method	that	replaces	the	entire
header	and	body	of	the	web	page,	but	its	use	is	generally	considered	bad
practice.

See	that	the	console	displays	the	output	plus	the	name	of	the	HTML
document	and	the	line	number	upon	which	the	JavaScript	code	appears
that	created	the	output.

Make	Statements
JavaScript	code	is	composed	of	a	series	of	instructions	called	“statements”,
which	are	generally	executed	in	top-to-bottom	order	as	the	browser’s	JavaScript
engine	proceeds	through	the	script.

Each	statement	may	contain	any	of	the	following	components:

• Keywords	–	words	that	have	special	significance	in	the	JavaScript	language.

• Operators	–	special	characters	that	perform	an	operation	on	one	or	more
operands.

• Values	–	text	strings,	numbers,	boolean	true	or	false,	undefined,	and	null.

• Expressions	–	units	of	code	that	produce	a	single	value.

In	earlier	JavaScript	code	each	statement	had	to	be	terminated	by	a	;	semicolon
character	–	just	as	each	sentence	must	end	with	a	.	period	(full	stop)	character	in
the	English	language.	This	is	now	optional	so	may	be	omitted	unless	you	wish	to
write	multiple	statements	on	a	single	line.	In	that	case,	the	statements	do	need	to
be	separated	by	a	semicolon,	like	this:

statement	;	statement	;	statement

Some	JavaScript	programmers	still	prefer	to	end	each	statement	with	a
semicolon.	The	examples	in	this	book	choose	to	omit	them	for	the	sake	of
concision	but	the	choice	is	yours.

The	JavaScript	interpreter	ignores	tabs	and	spaces	(“whitespace”)	so	you	should
use	spacing	to	make	your	code	more	readable.	For	example,	when	adding	two
numbers:

total	=	100	+	200	rather	than	total=100+200

JavaScript	statements	are	often	grouped	together	within	{	}	curly	brackets
(“braces”)	in	function	blocks	that	can	be	repeatedly	called	to	execute	when
required.	It	is	good	practice	to	indent	those	statements	by	two	spaces	to	improve
readability,	like	this:

{
statement
statement
statement
}

The	JavaScript	keywords	are	described	here	and	you	will	learn	about
operators,	values,	and	expressions	later.

An	“expression”	produces	a	value,	whereas	a	“statement”	performs	an
action.

Use	the	space	bar	to	indent	statements,	as	tab	spacing	may	be	treated
differently	when	viewing	the	code	in	text	editors.

The	rules	that	govern	the	JavaScript	language	is	called	“syntax”,	and	it
recognizes	two	types	of	values	–	fixed	and	variable.	Fixed	numeric	and	text
string	values	are	called	“literals”:

• Number	literals	–	whole	number	integers,	such	as	100,	or	floating-point
numbers	such	as	3.142.

• String	literals	–	text	within	either	double	quotes,	such	as	“JavaScript	Fun”,	or
single	quotes	such	as	‘JavaScript	Fun’.

Variable	values	are	called,	quite	simply,	“variables”	and	are	used	to	store	data
within	a	script.	They	can	be	created	using	the	JavaScript	let	keyword	–	for

example,	let	total	creates	a	variable	named	“total”.	The	variable	can	be	assigned	a
value	to	store	using	the	JavaScript	=	assignment	operator,	like	this:

let	total	=	300

Other	JavaScript	operators	can	be	used	to	form	expressions	that	will	evaluate	to
a	single	value.	Typically,	an	expression	may	be	enclosed	within	()	parentheses
like	this	expression	that	comprises	numbers	and	the	JavaScript	+	addition
operator	and	evaluates	to	a	single	value	of	100:

(80	+	20)

Expressions	may	also	contain	variable	values	too,	like	this	expression	that
comprises	the	previous	variable	value,	the	JavaScript	-	subtraction	operator,	and
a	number,	to	also	evaluate	to	a	single	value	of	100:

(total	-	200)

JavaScript	is	a	case-sensitive	language	so	variables	named	total	and	Total	are
regarded	as	two	entirely	different	variables.

It	is	good	practice	to	add	explanatory	comments	to	your	JavaScript	code	to	make
it	more	easily	understood	by	others,	and	by	yourself	when	revisiting	the	code
later.	Anything	that	appears	on	a	single	line	following	//	double	slashes	or
between	/*	and	*/	character	sequences	on	one	or	more	lines	will	be	ignored.

let	total	=	100	//	This	code	WILL	be	executed.

/*	let	total	=	100
This	code	will	NOT	be	executed.	*/

Decide	on	one	form	of	quotes	to	use	in	your	code	for	string	literals	and
stick	with	it	for	consistency.	The	examples	in	this	book	use	single	quotes.

It	is	often	useful	to	“comment-out”	lines	of	code	to	prevent	their	execution
when	debugging	code.

Avoid	Keywords

In	JavaScript	code	you	can	choose	your	own	names	for	variables	and	functions.
The	names	should	be	meaningful	and	reflect	the	purpose	of	the	variable	or
function.	Your	names	may	comprise	letters,	numbers,	and	underscore	characters,
but	they	may	not	contain	spaces	or	begin	with	a	number.	You	must	also	avoid
these	words	of	special	significance	in	the	JavaScript	language:

JavaScript	Keywords

abstract arguments await boolean

break byte case catch

char class const continue

debugger default delete do

double else enum eval

export extends false final

finally float for function

goto if implements import

in instanceof int interface

let long native new

null package private protected

public return short static

super switch synchronized this

throw throws transient true

try typeof var void

volatile while with yield

JavaScript	Objects,	Properties,	and	Methods

Array Date eval function

hasOwnProperty Infinity isFinite isNaN

isPrototypeOf length Math NaN

name Number Object prototype

String toString undefined valueOf

HTML	Names,	Window	Objects,	and	Properties

alert all anchor anchors

area assign blur button

checkbox clearInterval clearTimeout clientInformation

close closed confirm constructor

crypto decodeURI decodeURIcomponent defaultStatus

document element elements embed

embeds encodeURI encodeURIcomponent escape

event fileUpload focus form

forms frame innerHeight innerWidth

layer layers link location

mimeTypes navigate navigator frames

frameRate hidden history image

images offscreenBuffering open opener

option outerHeight outerWidth packages

pageXOffset pageYOffset parent parseFloat

parseInt password pkcs11 plugin

prompt propertyIsEnum radio reset

screenX screenY scroll secure

select self setInterval setTimeout

status submit taint text

textarea top unescape untaint

window

HTML	Event	Attributes
For	Example:

onclick ondblclick onfocus onfocusout

onkeydown onkeypress onkeyup onload

onmousedown onmouseup onmouseover onmouseout

onmousemove onchange onreset onsubmit

Store	Values

A	“variable”	is	a	container,	common	to	every	scripting	and	programming
language,	in	which	data	can	be	stored	and	retrieved	later.	Unlike	the	“strongly
typed”	variables	in	most	other	languages,	which	must	declare	a	particular	data
type	they	may	contain,	JavaScript	variables	are	much	easier	to	use	because	they
are	“loosely	typed”	–	so	they	may	contain	any	type	of	data:

Data	Type Example Description

String ‘Hello	World!’ A	string	of	text	characters

Number 3.142 An	integer	or	floating-point	number

Boolean true A	true	(1)	or	false	(0)	value

Object console A	user-defined	or	built-in	object

Function log() A	user-defined	function,	a	built-in
function,	or	an	object	method

Symbol Symbol() A	unique	property	identifier

null null Absolutely	nothing	(not	even	zero)

undefined undefined A	non-configured	property

A	JavaScript	variable	can	be	declared	using	the	let,	const,	or	var	keywords
followed	by	a	space	and	a	name	of	your	choosing.	Variables	declared	with	let
can	be	reassigned	new	values	as	the	script	proceeds,	whereas	const	(constant)
does	not	allow	this.	The	var	keyword	was	used	in	JavaScript	before	the	let
keyword	was	introduced	but	is	best	avoided	now	as	it	does	not	prevent	you
declaring	the	same	variable	twice	in	the	same	context.

A	let	declaration	of	a	variable	in	a	script	may	simply	create	a	variable	to	which	a
value	can	be	assigned	later,	or	may	include	an	assignation	to	instantly
“initialize”	the	variable	with	a	value:
let	myNumber																											//	Declare	a	variable.

myNumber	=	10																								//	Initialize	a	variable.
let	myString	=	‘Hello	World!’		//	Declare	and	initialize	a	variable.

Multiple	variables	may	be	declared	on	a	single	line	too:
let	i	,	j	,	k																																		//	Declare	3	variables.
let	num	=10	,	char	=	‘C’										//	Declare	and	initialize	2	variables.

Constant	variables	must,	however,	be	initialized	when	declared:
const	myName	=	‘Mike’

A	variable	name	is	an	alias	for	the	value	it	contains	–	using	the	name	in
script	references	its	stored	value.

Choose	meaningful	names	for	your	variables	to	make	the	script	easier	to
understand	later.

Upon	initialization,	JavaScript	automatically	sets	the	variable	type	for	the	value
assigned.	Subsequent	assignation	of	a	different	data	type	later	in	the	script	can	be
made	to	change	the	variable	type.	The	current	variable	type	can	be	revealed	by
the	typeof	keyword.

Create	an	HTML	document	with	a	script	that	declares	several	variables
that	are	assigned	different	data	types
const	firstName	=	‘Mike’
const	valueOfPi	=	3.142
let	isValid	=	true
let	jsObject	=	console
let	jsMethod	=	console.log
let	jsSymbol	=	Symbol()
let	emptyVariable	=	null
let	unusedVariable

variables.html

Add	statements	to	output	the	data	type	of	each	variable
console.log(‘firstName:	‘	+	typeof	firstName)
console.log(‘valueOfPi:	‘	+	typeof	valueOfPi)
console.log(‘isValid:	‘	+	typeof	isValid)
console.log(‘jsObject:	‘	+	typeof	jsObject)
console.log(‘jsMethod:	‘	+	typeof	jsMethod)
console.log(‘jsSymbol:	‘	+	typeof	jsSymbol)
console.log(‘emptyVariable:	‘	+	typeof	emptyVariable)
console.log(‘unusedVariable:	‘	+	typeof	unusedVariable)

Save	the	HTML	document	then	open	it	in	your	browser	and	launch	the
console	to	see	the	data	types	in	output

The	concatenation	+	operator	is	used	here	to	output	a	combined	text
string.

You	should	be	surprised	to	see	that	the	variable	assigned	a	null	value	is
described	as	being	an	object	type,	rather	than	a	null	type.	This	is	a
known	error	in	the	JavaScript	language.

Create	Functions
A	function	expression	is	simply	one,	or	more,	statements	that	are	grouped
together	in	{	}	curly	brackets	for	execution,	and	it	returns	a	final	single	value.
Functions	may	be	called	as	required	by	a	script	to	execute	their	statements.
Those	functions	that	belong	to	an	object,	such	as	console.log(),	are	known	as
“methods”	–	to	differentiate	them	from	built-in	and	user-defined	functions.	Both
have	trailing	parentheses	that	may	accept	“argument”	values	to	be	passed	to	the
function	for	manipulation	–	for	example,	an	argument	passed	in	the	parentheses
of	the	console.log()	method.

The	number	of	arguments	passed	to	a	function	must	normally	match	the	number
of	“parameters”	specified	within	the	parentheses	of	the	function	block
declaration.	For	example,	a	user-defined	function	requiring	exactly	one
argument	looks	like	this:

function	function-name	(parameter)	{
//	Statements	to	be	executed	go	here.

}

Multiple	parameters	can	be	specified	as	a	comma-separated	list	and	you	can,
optionally,	specify	a	default	value	to	be	used	when	the	function	call	does	not
pass	an	argument,	like	this:

function	function-name	(parameter	,	parameter	=	value)	{
//	Statements	to	be	executed	go	here.

}

You	choose	your	own	parameter	names	following	the	same	naming	conventions
as	for	variable	names.	The	parameter	names	can	then	be	used	within	the	function
to	reference	the	argument	values	passed	from	the	parentheses	of	the	function
call.

A	function	block	can	include	a	return	statement	so	that	script	flow	continues	at
the	caller	–	no	further	statements	in	the	function	get	executed.	It	is	typical	to

finally	return	the	result	of	manipulating	passed	argument	values	back	to	the
caller:

function	function-name	(parameter	,	parameter)	{
//	Statements	to	be	executed	go	here.

return	result
}

It	is	common	for	statements	within	a	function	block	to	include	calls	to	other
functions	–	to	modularize	scripts	into	blocks.

Notice	that	the	preferred	format	of	a	function	declaration	places	the	{
opening	curly	bracket	on	the	same	line	as	the	function	keyword.

You	can	omit	the	return	statement,	or	use	the	return	keyword	without
specifying	a	value,	and	the	function	will	simply	return	an	undefined	value
to	the	caller.

Create	an	HTML	document	with	a	script	that	declares	a	function	to	return
the	squared	value	of	a	passed	argument
function	square	(arg)	{
return	arg	*	arg

}

functions.html

Next,	add	a	function	that	returns	the	result	of	an	addition
function	add	(argOne,	argTwo	=	10)	{
return	argOne	+	argTwo

}

Now,	add	a	function	that	returns	the	result	of	squaring	and	an	addition	by
calling	each	of	the	functions	above
function	squareAdd	(arg)	{
let	result	=	square(arg)
return	result	+	add(arg)

}

Finally,	add	statements	that	call	the	functions	and	print	the	returned
values	in	output	strings
console.log(‘8	x	8:	‘	+	square(8))
console.log(‘8	+	20:	‘	+	add(8,	20))
console.log(‘8	+	10:	‘	+	add(8))
console.log(‘(8	x	8)	+	(8	+	10):	‘	+	squareAdd(8))

Notice	that	the	default	second	parameter	value	(10)	is	used	here	when
only	one	argument	value	is	passed	by	the	caller.

Save	the	HTML	document,	then	open	it	in	your	browser	and	launch	the
console	to	see	values	returned	from	functions

The	*	asterisk	character	is	the	arithmetical	multiplication	operator	in
JavaScript.

Assign	Functions
Functions	are	really	useful	in	JavaScript	as	they	can	be	called	(“invoked”)	to
execute	their	statements	whenever	required,	and	the	caller	can	pass	different
arguments	to	return	different	results.

It	is	important	to	recognize	that	the	JavaScript	()	parentheses	operator	is	the
component	of	the	call	statement	that	actually	calls	the	function.	This	means	a
statement	can	assign	a	function	to	a	variable	by	specifying	just	the	function
name.	The	variable	can	then	be	used	to	call	the	function	in	a	statement	that
specifies	the	variable	name	followed	by	the	()	operator.	But	beware,	if	you
attempt	to	assign	a	function	to	a	variable	by	specifying	the	function	name
followed	by	()	the	function	will	be	invoked	and	the	value	returned	by	that
function	will	be	assigned.

Variables	that	were	declared	using	the	older	var	keyword	were	also
hoisted,	but	those	declared	with	let	or	const	are	not	hoisted.

Function	Hoisting
Although	scripts	are	read	by	the	JavaScript	interpreter	in	top-to-bottom	order	it
actually	makes	two	sweeps.	The	first	sweep	looks	for	function	declarations	and
remembers	any	it	finds	in	a	process	known	as	“hoisting”.	The	second	sweep	is
when	the	script	is	actually	executed	by	the	interpreter.	Hoisting	allows	function
calls	to	appear	in	the	script	before	the	function	declaration,	as	the	interpreter	has
already	recognized	the	function	on	the	first	sweep.	The	first	sweep	does	not,
however,	recognize	functions	that	have	been	assigned	to	variables	using	the	let	or
const	keywords!

Anonymous	Functions
When	assigning	a	function	to	a	variable,	a	function	name	can	be	omitted	as	the
function	can	be	called	in	a	statement	specifying	the	variable	name	and	the	()
operator.	These	are	called	anonymous	function	expressions,	and	their	syntax
looks	like	this:

let	variable	=	function	(parameters)	{	statements	;	return	value	}

Anonymous	function	expressions	can	also	be	made	“self-invoking”	by	enclosing
the	entire	function	within	()	parentheses	and	adding	the	()	parentheses	operator
at	the	end	of	the	expression.	This	means	that	their	statements	are	automatically
executed	one	time	when	the	script	is	first	loaded	by	the	browser.	The	syntax	of	a
self-invoking	function	expression	looks	like	this:

(function	()	{	statements	;	return	value	})	()

Self-invoking	functions	are	used	widely	throughout	this	book	to	execute
example	code	when	the	script	gets	loaded.

Self-invoking	function	expressions	are	also	known	as	Immediately
Invoked	Function	Expressions	(IIFE	–	often	pronounced	“iffy”).

Create	an	HTML	document	with	a	script	that	calls	a	function	that	has	not
yet	been	declared
console.log(‘Hoisted:	‘	+	add(100,	200))

anonymous.html

Next,	add	below	the	function	that	is	called	above
function	add(numOne,	numTwo)	{
return	numOne	+	numTwo

}

Now,	add	a	function	that	assigns	the	function	above	to	a	variable,	then
calls	the	assigned	function
let	addition	=	add
console.log(‘Assigned:	‘	+	addition(32,	64))

Then,	assign	a	similar,	but	anonymous,	function	to	a	variable	and	call
that	assigned	function
let	anon	=	function	(numOne,	numTwo)	{
let	result	=	numOne	+	numTwo	;	return	result

}
console.log(‘Anonymous:	‘	+	anon(9,	1))

Finally,	assign	the	value	returned	from	a	self-invoking	function	to	a
variable	and	display	that	value
let	iffy	=	(function	()	{
let	str	=	‘Self	Invoked	Output’	;	return	str

})	()
console.log(iffy)

Save	the	HTML	document,	then	open	it	in	your	browser	and	launch	the
console	to	see	values	returned	from	functions

When	assigning	a	named	function	to	a	variable,	only	specify	the	function
name	in	the	statement.

The	significance	of	self-invoking	functions	may	not	be	immediately
obvious,	but	their	importance	should	become	clearer	by	the	end	of	this
chapter.

Recognize	Scope
The	extent	to	which	variables	are	accessible	in	your	scripts	is	determined	by
their	“lexical	scope”	–	the	environment	in	which	the	variable	was	created.	This
can	be	either	“global”	or	“local”.

Global	Scope
Variables	created	outside	function	blocks	are	accessible	globally	throughout	the
entire	script.	This	means	they	exist	continuously	and	are	available	to	functions
within	the	same	script	environment.	At	first	glance	this	might	seem	very
convenient,	but	it	has	a	very	serious	drawback	in	that	variables	of	the	same	name
can	conflict.	For	example,	imagine	that	you	have	created	a	global	myName
variable	that	has	been	assigned	your	name,	but	then	also	include	an	external
script	in	which	another	developer	has	created	a	global	myName	variable	that	has
been	assigned	his	or	her	name.	Both	like-named	variables	exist	in	the	same	script
environment,	so	conflict.	This	is	best	avoided	so	you	should	not	create	global
variables	to	store	primitive	values	(all	data	types	except	Object	and	Function)
within	your	scripts.

Local	Scope
Variables	created	inside	function	blocks	are	accessible	locally	throughout	the	life
of	the	function.	They	exist	only	while	the	function	is	executing,	then	they	are
destroyed.	Their	script	environment	is	limited	–	from	the	point	at	which	they	are
created,	to	the	final	}	curly	bracket,	or	the	moment	when	the	function	returns.	It
is	good	practice	to	declare	variables	at	the	very	beginning	of	the	function	block
so	their	lexical	scope	is	the	duration	of	the	function.	This	means	that	like-named
variables	can	exist	within	separate	functions	without	conflict.	For	example,	a
local	myName	variable	can	exist	happily	inside	separate	functions	within	your
script	and	inside	functions	in	included	external	scripts.	It	is	recommended	that
you	try	to	create	only	local	variables	to	store	values	within	your	scripts.

Best	Practice

Declaring	global	variables	with	the	older	var	keyword	allows	like-named
conflicting	variables	to	overwrite	their	assigned	values	without	warning.	The
more	recent	let	and	const	keywords	prohibit	this	and	instead	recognize	the
behavior	as	an	“Uncaught	SyntaxError”.	It	is	therefore	recommended	that	you
create	variables	declared	using	the	let	or	const	keywords	to	store	values	within
your	scripts.

You	will	discover	how	to	catch	and	handle	errors	here.

Create	an	external	script	that	calls	a	function	to	output	the	value	of	a
global	variable
let	myName	=	‘External	Script’
function	readName()	{	console.log(myName)	}
readName()

external.js

Create	an	HTML	document	that	includes	the	external	script	and	adds	a
similar	script
<script	src=”external.js”></script>
<script>
let	myName	=	‘Internal	Script’
function	getName()	{	console.log(myName)	}
getName()
</script>

scope.html

Save	both	files	in	the	same	folder,	then	open	the	HTML	document	to	see

a	conflict	error	reported	in	the	console

Edit	both	scripts	to	make	the	global	variables	into	local	variables	then
refresh	the	browser	to	see	no	conflict

function	readName()	{
let	myName	=	‘External	Script’	;	console.log(myName)

}

function	getName()	{
let	myName	=	‘Internal	Script’	;	console.log(myName)

}

The	function	calls	readName()	and	getName()	remain	in	the	scripts
without	editing.

Use	Closures
The	previous	example	demonstrated	the	danger	of	creating	global	variables	to
store	values	in	JavaScript,	but	sometimes	you	will	want	to	store	values	that
remain	continuously	accessible	–	for	example,	to	remember	an	increasing	score
count	as	the	script	proceeds.	How	can	you	do	this	without	using	global	variables
to	store	primitive	values?	The	answer	lies	with	the	use	of	“closures”.

A	closure	is	a	function	nested	inside	an	outer	function	that	retains	access	to
variables	declared	in	the	outer	function	–	because	that	is	the	lexical	scope	in
which	the	nested	function	was	created.

Create	an	HTML	document	with	a	script	that	assigns	a	self-invoking
anonymous	function	to	a	global	variable
const	add	=	(function	()	{
//	Statements	to	be	inserted	here.

})	()

closure.html

Next,	insert	statements	to	initialize	a	local	variable	and	assign	a	function
to	a	local	variable	in	the	same	scope
let	count	=	0
const	nested	=	function	()	{	return	count	=	count	+	1	}

Now,	insert	a	statement	to	return	the	inner	function	–	assigning	the	inner
function	to	the	global	variable
return	nested

Finally,	add	three	identical	function	calls	to	the	inner	function	that	is	now
assigned	to	the	global	variable

console.log(‘Count	is	‘	+	add())
console.log(‘Count	is	‘	+	add())
console.log(‘Count	is	‘	+	add())

Save	the	HTML	document,	then	open	it	in	your	browser	and	launch	the
console	to	see	values	returned	from	a	closure

Self-invoking	function	expressions	are	described	here.	They	execute	their
statements	one	time	only.	Here,	you	can	use	console.log(add)	to
confirm	that	the	function	expression	has	been	assigned	to	the	outer
variable.

It	can	be	difficult	to	grasp	the	concept	of	closures,	as	it	would	seem	that	the	count
variable	in	this	example	should	be	destroyed	when	the	self-invoking	function	has
completed	execution.	In	order	to	better	understand	how	closures	work,	you	can
explore	the	prototype	property	of	the	assigned	function.

Add	a	statement	at	the	end	of	the	script	to	reveal	how	the	assigned
function	has	been	constructed	internally
console.log(add.prototype)

Save	the	HTML	document,	then	refresh	the	browser	and	expand	the
“constructor”	dropdown	to	see	the	scopes

Closer	inspection	reveals	that	the	assigned	function	has	a	special	(Closure)	scope
in	addition	to	the	regular	local	(Script)	scope	and	outer	(Global)	scope.	This	is
how	the	count	variable	remains	accessible	via	the	assigned	function	yet,
importantly,	cannot	be	referenced	in	any	other	way.

The	use	of	closures	to	hide	persistent	variables	from	other	parts	of	your	script	is
an	important	concept.	It	is	similar	to	how	“private”	variables	can	be	hidden	in
other	programming	languages	and	are	only	accessible	via	“getter”	methods.

All	JavaScript	objects	inherit	properties	and	methods	from	a	prototype.
Standard	JavaScript	objects,	such	as	functions,	call	an	internal
constructor	function	to	create	the	object	by	defining	its	components.

Don’t	worry	if	you	can’t	immediately	understand	how	closures	work.	They

can	seem	mystical	at	first,	but	will	become	clearer	with	experience.	You
can	continue	on	and	come	back	to	this	technique	later.

Summary
• JavaScript	code	can	be	included	in	an	HTML	document	directly	or	from	an

external	file	using	<script>	</script>	tags.

• JavaScript	can	display	output	in	an	HTML	element	in	an	alert	dialog	box	or
in	the	browser’s	console	window.

• JavaScript	statements	may	contain	keywords,	operators,	values,	and
expressions.

• The	JavaScript	interpreter	ignores	tabs	and	spaces.

• JavaScript	statements	can	be	grouped	in	{	}	curly	bracket	function	blocks	that
can	be	called	to	execute	when	required.

• Variable	and	function	names	may	comprise	letters,	numbers,	and	underscore
characters,	but	must	avoid	keywords.

• JavaScript	variables	may	contain	data	types	of	String,	Number,	Boolean,
Object,	Function,	Symbol,	null,	and	undefined.

• Variables	declared	with	the	let	keyword	can	be	reassigned	new	values,	but	the
const	keyword	does	not	allow	this.

• A	function	expression	has	statements	grouped	in	{	}	curly	brackets	for
execution,	and	it	returns	a	final	single	value.

• The	()	parentheses	of	a	function	expression	may	contain	parameters	for
argument	values	to	be	passed	from	the	caller.

• A	function	block	can	include	a	return	statement	to	specify	data	to	be	passed
back	to	the	caller.

• The	JavaScript	()	parentheses	operator	calls	the	function.

• Hoisting	allows	function	calls	to	appear	in	the	script	before	the	function
declaration.

• Anonymous	function	expressions	have	no	function	name.

• Lexical	scope	is	the	environment	in	which	the	variable	was	created	and	can
be	global,	local,	or	closure.

• Local	variables	should	be	used	to	store	values,	but	global	variables	can	be

assigned	functions	to	create	closures.

• A	closure	is	a	function	nested	within	an	outer	function	that	retains	access	to
variables	declared	in	the	outer	function.

16

Perform	Useful	Operations

This	chapter	describes	the	JavaScript	operators	and	demonstrates	how	they	can	be	used	in	your	scripts.

Convert	Values
Do	Arithmetic

Assign	Values
Make	Comparisons
Assess	Logic
Examine	Conditions

Juggle	Bits
Force	Order
Summary

Convert	Values
Before	performing	operations	in	JavaScript	it	is	important	to	recognize	the	data
types	of	the	values	you	are	working	with	in	order	to	avoid	unexpected	results.
For	example,	the	value	42	is	a	number,	but	the	value	‘42’	is	a	string,	so	attempting
to	perform	an	addition	with	‘42’	+	8	will	return	a	string	result	of	‘428’,	not	the
number	50.	Happily,	JavaScript	provides	a	number	of	ways	to	return	versions	of
values	in	other	data	types	–	without	changing	the	value’s	original	data	type.

Strings	to	Numbers
The	JavaScript	parseInt()	built-in	function	can	return	an	integer	whole	number
version,	in	the	number	data	type,	of	a	string	specified	within	its	parentheses.	For
example,	parseInt(‘42’)	will	return	the	number	42,	so	42	+	8	will	return	a	number
result	of	50.

Similarly,	the	JavaScript	parseFloat()	built-in	function	can	return	a	floating-point
number	version,	in	the	number	data	type,	of	a	string	specified	within	its
parentheses.

Both	these	methods	allow	alphabetic	characters	to	follow	the	numeric	part	of	the
specified	string	and	strip	them	from	the	result	–	for	example,	parseInt(‘42nd	Street’
)	returns	number	42.

If	either	of	these	functions	cannot	find	a	numeric	value	at	the	beginning	of	the
specified	string,	the	result	will	be	NaN	–	a	JavaScript	property	meaning	“Not	a
Number”.	You	can	also	check	if	a	value	is	not	a	number	by	specifying	the	value
within	the	parentheses	of	a	JavaScript	isNaN()	built-in	function.	This,	too,	will
first	attempt	to	find	a	number	at	the	beginning	of	the	specified	value	and	return
false	if	it	finds	a	number	(even	from	a	specified	string),	otherwise	it	will	return
true	if	it	cannot	find	a	number.

Conversion	of	data	types	is	known	as	“coercion”,	and	it	can	be	explicit	or
implicit.	Where	‘42’	+	8	returns	the	string	‘428’	this	is	implicit	coercion.
Where	String(42)	returns	the	string	‘42’	this	is	explicit	coercion.

Numbers	to	Strings
The	JavaScript	String()	method	can	return	a	string	representation,	in	the	string
data	type,	of	a	number	specified	within	its	parentheses	–	for	example,	String(42)
will	return	the	number	’42’	as	a	string	data	type.

Alternatively,	you	can	append	a	toString()	method	call	onto	a	variable	name	to
return	a	string	representation	of	a	stored	number	data	type.	For	example,	where	a
variable	named	“num”	has	been	assigned	a	number,	num.toString()	will	return	a
string	version	of	that	stored	number.

Create	an	HTML	document	with	a	self-invoking	anonymous	function
block	that	declares	three	variables
(function	()	{

let	sum,	net	=	‘25’,	tax	=	5.00

//	Statements	to	be	inserted	here.

})	()

conversion.html

Next,	insert	statements	that	create	versions	of	different	data	types	and
print	the	result	in	an	ouput	string
sum	=	net	+	tax
console.log(‘sum:	‘	+	sum	+	‘	‘	+	typeof	sum)

sum	=	parseFloat(net)	+	tax
console.log(‘sum:	‘	+	sum	+	‘	‘	+	typeof	sum)

console.log(‘tax:	‘	+	tax	+	‘	‘	+	typeof	tax)
tax	=	tax.toString()
console.log(‘tax:	‘	+	tax	+	‘	‘	+	typeof	tax)

net	=	‘$’	+	net
console.log(‘net:	‘	+	net	+	‘	‘	+	parseInt(net))
console.log(‘net	Not	a	Number?	‘	+	isNaN(net))

Save	the	HTML	document,	then	open	it	in	your	browser	and	launch	the
console	to	see	the	different	versions

If	you	try	isNan(net)	before	the	‘$’	prefix	is	added	to	the	string	the	result
is	false	–	because	the	method	finds	the	number	at	the	beginning	of	the
‘25’	string.

Do	Arithmetic
The	arithmetical	operators	commonly	used	in	JavaScript	are	listed	in	the	table
below,	together	with	the	operation	they	perform:

Operator Operation

+ Addition	of	numbers
Concatenation	of	strings

– Subtraction

* Multiplication

/ Division

% Modulus

++ Increment

–	–
Decrement

** Exponentiation

Values	specified	in	operation	statements	are	called	“operands”.	For	example,	in
the	statement	5	+	2	the	+	operator	is	supplied	operand	values	of	five	and	two.
Notice	that	the	+	operator	performs	two	kinds	of	operation	depending	on	the	type
of	operands.	Numeric	operands	are	added	to	return	a	sum	total,	but	string
operands	are	concatenated	to	return	a	single	joined	string.

The	%	modulus	operator	divides	the	first	operand	by	the	second	operand	and
returns	the	remainder.	Dividing	by	two	will	return	either	one	or	zero	to	usefully
determine	whether	the	first	operand	is	an	odd	number	or	an	even	number.

The	++	increment	operator	and	--	decrement	operator	alter	the	value	of	a	single

operand	by	one,	and	return	the	new	value.	These	operators	are	most	commonly
used	to	count	iterations	of	a	loop	and	can	be	used	in	two	different	ways	to	subtly
different	effect.	When	placed	before	the	operand	(prefixed)	its	value	is
immediately	changed	before	the	expression	is	evaluated,	but	when	placed	after
the	operand	(postfixed)	the	expression	is	evaluated	first	then	the	value	gets
changed.

The	**	exponentiation	operator	returns	the	result	of	a	first	operand	raised
to	the	power	of	a	second	operand.

An	example	using	the	modulus	operator	to	determine	odd	or	even
numbers	can	be	found	here.

Create	an	HTML	document	with	a	self-invoking	anonymous	function
block
(function	()	{

//	Statements	to	be	inserted	here.

})	()

arithmetic.html

Next,	insert	statements	that	assign	values	to	variables	using	each
arithmetical	operator	and	print	each	result	in	an	output	string
let	sum	=	80	+	20	;	console.log(‘Addition:	‘	+	sum)

let	sub	=	sum	-	50	;	console.log(‘Subtraction:	‘	+	sub)

let	mul	=	sum	*	5	;	console.log(‘Multiplication:	‘	+	mul)

let	div	=	sum	/	4	;	console.log(‘Division:	‘	+	div)

let	mod	=	sum	%	2	;	console.log(‘Modulus:	‘	+	mod)

let	inc	=	++sum	;	console.log(‘Increment:	‘	+	inc)

let	dec	=	--sum	;	console.log(‘Decrement:	‘	+	dec)

Save	the	HTML	document,	then	open	it	in	your	browser	and	launch	the
console	to	see	the	arithmetic	results

Assign	Values
The	operators	that	are	commonly	used	in	JavaScript	to	assign	values	are	all
listed	in	the	table	below.	All	except	the	simple	=	assignment	operator	are
shorthand	forms	of	longer	expressions,	so	each	equivalent	is	also	given	for
clarity.

Operator Example Equivalent

= a	=	b a	=	b

+= a	+=	b a	=	(a	+	b)

–= a	–=	b a	=	(a	–	b)

*= a	*=	b a	=	(a	*	b)

/= a	/=	b a	=	(a	/	b)

%= a	%=	b a	=	(a	%	b)

**= a	**=	b a	=	(a	**	b)

It	is	important	to	think	of	the	=	operator	as	meaning	“assign”	rather	than	“equals”
to	avoid	confusion	with	the	JavaScript	===	equality	operator.

In	the	=	example	in	the	table,	the	variable	a	gets	assigned	the	value	contained	in
variable	b	to	become	its	new	stored	value.

The	combined	+=	operator	is	most	useful	and	can	be	employed	to	append	a	string
onto	an	existing	string.	For	example,	with	a	variable	string	let	str	=	‘JavaScript’	and
str	+=	‘	Fun’	the	variable	now	stores	the	combined	string	‘JavaScript	Fun’.

Numerically	speaking,	the	+=	example	in	the	table	will	add	the	value	contained
in	variable	a	to	that	contained	in	variable	b	then	assign	the	sum	total	to	become
the	new	value	stored	in	variable	a.
All	other	combined	assignment	operators	work	in	a	similar	way	to	the	+=

operator.	They	each	perform	the	arithmetical	operation	on	their	two	operands
first,	then	assign	the	result	of	that	operation	to	the	first	variable	–	so	that
becomes	its	new	stored	value.

The	===	equality	operator	compares	values	and	is	fully	explained	here.

Create	an	HTML	document	with	a	self-invoking	anonymous	function
that	concatenates	two	strings
(function	()	{

let	msg	=	‘JavaScript’	;	msg	+=	‘	Fun’
console.log(‘Add	&	concatenate:	‘	+	msg)

//	Statements	to	be	inserted	here.

})	()

assignment.html

Next,	insert	statements	that	use	combined	operators	to	perform	arithmetic
and	assign	results	for	output
let	sum	=	5.00	;	sum	+=	2.50
console.log(‘Add	&	assign	decimal:	‘	+	sum)

sum	=	8	;	sum	-=	4
console.log(‘Subtract	&	assign	integer:	‘	+	sum)

sum	=	8	;	sum	*=	4
console.log(‘Multiply	&	assign	integer:	‘	+	sum)

sum	=	8	;	sum	/=	4
console.log(‘Divide	&	assign	integer:	‘	+	sum)

sum	=	8	;	sum	%=	4
console.log(‘Modulus	&	assign	integer:	‘	+	sum)

Save	the	HTML	document,	then	open	it	in	your	browser	and	launch	the
console	to	see	the	assigned	values

Make	Comparisons
The	operators	that	are	commonly	used	in	JavaScript	to	compare	two	values	are
all	listed	in	the	table	below:

Operator Comparison

=== Equality

!== Inequality

> Greater	than

< Less	than

>= Greater	than	or	equal	to

<= Less	than	or	equal	to

The	===	equality	operator	compares	two	operands	and	will	return	a	Boolean	true
value	if	they	are	exactly	equal,	otherwise	it	will	return	a	Boolean	false	value.	If
the	operands	are	identical	numbers	they	are	equal;	if	the	operands	are	strings
containing	the	same	characters	in	the	same	positions	they	are	equal;	if	the
operands	are	Boolean	values	that	are	both	true,	or	both	false,	they	are	equal.
Conversely,	the	!==	inequality	operator	returns	true	if	the	two	operands	are	not
equal,	using	the	same	rules	as	the	===	equality	operator.

Equality	and	inequality	operators	are	useful	in	comparing	two	values	to	perform
“conditional	branching”,	where	the	script	will	follow	a	particular	direction
according	to	the	result.

The	>	greater	than	operator	compares	two	operands	and	returns	true	if	the	first	is
greater	in	value	than	the	second.	The	<	less	than	operator	makes	the	same
comparison	but	returns	true	when	the	first	is	less	in	value	than	the	second.
Adding	the	=	character	after	the	>	greater	than	operator	or	the	<	less	than	operator
makes	them	also	return	true	when	the	two	operands	are	equal.

The	>	greater	than	and	<	less	than	operators	are	frequently	used	to	test	the	value
of	a	counter	variable	in	a	loop	structure.

An	example	using	the	<	less	than	operator	in	a	loop	structure	can	be
found	here.

There	is	also	a	==	equality	operator	and	a	!=	inequality	operator,	but
these	may	produce	unexpected	results	as,	unlike	===	and	!==,	they	do
not	ensure	the	values	being	compared	are	of	the	same	data	type.	This
means	that	25	==	‘25’	returns	true,	whereas	25	===	‘25’	returns	false.
Always	use	the	three-character	versions	so	your	scripts	will	make
accurate	comparisons.

Create	an	HTML	document	with	a	self-invoking	anonymous	function
that	declares	three	variables
(function	()	{

let	comparison,	sum	=	8,	str	=	‘JavaScript’

//	Statements	to	be	inserted	here.

})	()

comparison.html

Next,	insert	statements	that	use	comparison	operators	to	assign	Boolean
results	for	output

comparison	=	str	===	‘JAVASCRIPT’
console.log(‘String	Equality?	‘	+	comparison)

comparison	=	str	===	‘JavaScript’
console.log(‘String	Equality?	‘	+	comparison)

comparison	=	sum	===	8
console.log(‘Number	Equality?	‘	+	comparison)

comparison	=	sum	>	5
console.log(‘Greater	Than?	‘	+	comparison)

comparison	=	sum	<	5
console.log(‘Less	Than?	‘	+	comparison)

comparison	=	sum	<=	8
console.log(‘Less	Than	or	Equal	To?	‘	+	comparison)

Save	the	HTML	document,	then	open	it	in	your	browser	and	launch	the
console	to	see	the	assigned	results

JavaScript	is	case-sensitive,	so	character	capitalization	must	match	for
compared	strings	to	be	equal.

Assess	Logic
The	three	logical	operators	that	can	be	used	in	JavaScript	are	listed	in	the	table
below:

Operator Operation

&& Logical	AND

|| Logical	OR

! Logical	NOT

The	logical	operators	are	typically	used	with	operands	that	have	a	Boolean	value
of	true	or	false	–	or	values	that	can	convert	to	true	or	false.

The	&&	logical	AND	operator	will	evaluate	two	operands	and	return	true	only	if
both	operands	are	themselves	true.	Otherwise,	the	&&	AND	operator	will	return
false.	This	is	often	used	in	conditional	branching	where	the	direction	of	the	script
is	determined	by	testing	two	conditions.	If	both	conditions	are	satisfied,	the
script	will	follow	a	particular	direction,	otherwise	it	will	follow	a	different
direction.

Unlike	the	&&	logical	AND	operator,	which	needs	both	operands	to	be	true,	the	||
logical	OR	operator	will	evaluate	two	operands	and	return	true	if	either	one	of
the	operands	is	itself	true.	If	neither	operand	is	true	then	the	||	OR	operator	will
return	false.	This	is	useful	to	have	a	script	perform	a	certain	action	if	either	one
of	two	test	conditions	is	satisfied.

The	third	logical	operator	is	the	!	logical	NOT	operator	that	is	used	before	a
single	operand,	and	it	returns	the	inverse	value	of	the	operand.	For	example,	if
variable	named	“tog”	had	a	true	value	then	!tog	would	return	false.	This	is	useful
to	“toggle”	the	value	of	a	variable	in	successive	loop	iterations	with	a	statement
such	as	tog	=	!a	so	that	the	value	is	reversed	on	each	iteration	–	like	flicking	a
light	switch	on	and	off.

The	term	“Boolean”	refers	to	a	system	of	logical	thought	developed	by
the	English	mathematician	George	Boole	(1815-1864).

Create	an	HTML	document	with	a	self-invoking	anonymous	function
that	declares	three	variables
(function	()	{

let	result,	yes	=	true,	no	=	false

//	Statements	to	be	inserted	here.

})	()

logic.html

Next,	insert	statements	that	use	logical	operators	to	assign	Boolean
results	for	output
result	=	yes	&&	yes
console.log(‘Are	both	true?	‘	+	result)

result	=	yes	&&	no
console.log(‘Are	both	still	true?	‘	+	result)

result	=	yes	||	no
console.log(‘Are	either	true?	‘	+	result)

result	=	no	||	no
console.log(‘Are	either	still	true?	‘	+	result)

console.log(‘Original	value:	‘	+	yes)
yes	=	!yes

console.log(‘Toggled	value:	‘	+	yes)

Save	the	HTML	document,	then	open	it	in	your	browser	and	launch	the
console	to	see	the	returned	results

See	that	false	&&	false	returns	false,	not	true	–	perhaps	demonstrating
the	maxim	“two	wrongs	don’t	make	a	right”.

Examine	Conditions
Possibly,	the	JavaScript	author’s	favorite	operator	is	the	?:	conditional	operator.
This	operator	is	also	known	as	the	“ternary”	operator	–	meaning	composed	of
three	parts.

The	ternary	operator	evaluates	a	specified	condition	for	a	true	or	false	value	then
executes	one	of	two	specified	statements	according	to	the	result.	Its	syntax	looks
like	this:

condition	?	if-true-do-this	:	if-false-do-this

Where	multiple	actions	are	required	to	be	performed,	according	to	the	result	of
the	condition	evaluation,	each	specified	statement	may	be	a	function	call	to
execute	multiple	statements	in	each	function	–	for	example,	calling	functions	to
execute	multiple	statements	according	to	the	Boolean	value	of	a	variable	named
“flag”,	like	this:

flag	===	true	?	doThis()	:	doThat()

In	this	example,	the	===	equality	operator	and	true	keyword	are	actually
superfluous,	as	operators	that	evaluate	an	expression	for	a	Boolean	value
automatically	perform	this	assessment,	so	the	example	could	be	more	simply
stated	as:

flag	?	doThis()	:	doThat()

Alternatively,	the	two	statements	specified	to	the	ternary	operator	might	assign	a
value	to	a	variable	according	to	the	result	of	the	condition	evaluation,	like	this:

flag	?	str	=	‘Go	left’	:	str	=	’Go	right’

While	this	is	syntactically	correct,	it	can	be	more	elegantly	expressed	by	having
the	ternary	operator	assign	an	appropriate	value	to	the	variable	in	a	single

assignment	statement,	like	this:

str	=	flag	?	‘Go	left’	:	’Go	right’

Where	the	condition	evaluates	the	parity	of	a	numeric	value,	the	two	statements
can	supply	alternatives	according	to	whether	the	evaluation	determines	the
number	to	be	even	or	odd.

The	ternary	operator	has	three	operands	–	the	one	before	the	?	and
those	either	side	of	the	:	colon.

Create	an	HTML	document	with	a	self-invoking	anonymous	function
that	declares	two	variables
(function	()	{

const	numOne	=	8,	numTwo	=	3

//	Statements	to	be	inserted	here.

})	()

ternary.html

Next,	insert	statements	to	output	a	string	with	appropriate	grammar	for
quantity
let	verb	=	(numOne	!==	1)	?	‘	are	‘	:	‘	is	‘
console.log(‘There’	+	verb	+	numOne)

Now,	insert	statements	to	ouput	strings	correctly	describing	the	parity	of
two	variable	values
let	parity	=	(numOne	%	2	!==	0)	?	‘Odd’	:	‘Even’
console.log(numOne	+	‘	is	‘	+	parity)

parity	=	(numTwo	%	2	!==	0)	?	‘Odd’	:	‘Even’
console.log(numTwo	+	‘	is	‘	+	parity)

Finally,	insert	statements	to	output	a	string	reporting	the	greater	of	two
variable	values
let	max	=	(numOne	>	numTwo)	?	numOne	:	numTwo
console.log(max	+	‘	is	the	Greater	Number’)

Save	the	HTML	document,	then	open	it	in	your	browser	and	launch	the
console	to	see	the	string	descriptions

The	ternary	operator	can	return	values	of	any	data	type	–	string,	number,
Boolean,	etc.

Juggle	Bits
JavaScript	“bitwise”	operators	regard	their	operands	as	a	sequence	of	32	bits	in
which	each	bit	may	contain	a	value	of	zero	(0)	or	one	(1).	Each	bit	contributes	a
decimal	component	only	when	that	bit	contains	a	one.	Components	are
designated	right-to-left	from	the	“Least	Significant	Bit”	(LSB)	to	the	“Most
Significant	Bit”	(MSB).	The	binary	number	in	the	eight-bit	pattern	below
represents	decimal	50	as	denoted	by	the	bits	set	with	a	1	value	(2	+	16	+	32	=
50).

Bit	No. 8 7 6 5 4 3 2 1

Decimal 128 64 32 16 8 4 2 1

Binary 0 0 1 1 0 0 1 0

It	is	possible	to	manipulate	individual	bits	of	the	sequence	using	the	JavaScript
bitwise	operators	listed	in	the	table	below.

Operator Name Binary	number	operation:

| OR Return	a	1	in	each	bit	where	either	of	two	compared	bits	is	a	1
Example:	1010	|	0101	=	1111

& AND Return	a	1	in	each	bit	where	both	of	two	compared	bits	is	a	1
Example:	1010	&	1100	=	1000

~ NOT Return	a	1	in	each	bit	where	the	bit	is	not	1,	and	return	0
where	the	bit	is	1
Example:	~	1010	=	0101

^ XOR Return	a	1	in	each	bit	where	only	one	of	two	compared	bits	is
a	1
Example:	1010	^	0100	=	1110

<< Shift	left Push	zeros	in	from	the	right,	to	move	each	bit	a	number	of
bits	to	the	left
Example:	0010<<	2	=	1000

>> Signed	shift	right Push	copies	of	the	leftmost	bit	in	from	the	left,	to	move	each
bit	a	number	of	bits	to	the	right.
Example:	1000	>>	2	=	0010

>>> Shift	right Push	zeros	in	from	the	left,	to	move	each	bit	a	number	of	bits
to	the	right
Example:	1000	>>	2	=	0010

Many	JavaScript	authors	never	use	bitwise	operators	but	it	is	useful	to
understand	what	they	are	and	how	they	may	be	used.

A	“byte”	has	8	bits,	and	each	half	of	a	byte	is	known	as	a	“nibble”	(4	bits).
The	binary	numbers	in	the	examples	in	this	table	describe	values	stored
in	a	nibble.

Create	an	HTML	document	with	a	self-invoking	anonymous	function
that	declares	two	variables
(function	()	{

let	numOne	=	10,	numTwo	=	5

//	Statements	to	be	inserted	here.

})	()

bitwise.html

Next,	insert	statements	to	simply	output	strings	that	confirm	the	initial

values	stored	in	each	variable
console.log(‘numOne:‘	+	numOne)
console.log(‘numTwo:	‘	+	numTwo)

Now,	insert	statements	to	swap	the	values	stored	in	each	variable	using
bitwise	operations
numOne	=	numOne	^	numTwo

//	1010	^	0101	=	1111	=	(decimal	15)
numTwo	=	numOne	^	numTwo

//	1111	^	0101	=	1010	(decimal	10)
numOne	=	numOne	^	numTwo

//	1111	^	1010	=	0101	(decimal	5)

Finally,	insert	statements	to	output	a	line	break	and	strings	to	confirm	the
final	values	stored	in	each	variable
console.log(‘\n’	+	‘numOne:	‘	+	numOne)
console.log(‘numTwo:	‘	+	numTwo)

Save	the	HTML	document,	then	open	it	in	your	browser	and	launch	the
console	to	see	the	swapped	values

Notice	how	this	example	uses	the	special	\nescape	sequence	to	create	a
line	break	in	the	console	output.

Force	Order
JavaScript	operators	have	different	levels	of	priority	to	determine	the	order	in
which	a	statement	containing	multiple	different	operators	gets	evaluated	–	those
with	higher	priority	take	precedence	over	those	with	lower	priority.	The	table
below	lists	each	type	of	operator	in	order	of	highest	to	lowest	priority	from	top
to	bottom	of	the	table:

Operator Operation

() Expression	grouping

. Object	Member

[] Array	Member

() Function	Call

++	-- Postfix	Increment,	Postfix	Decrement

++	-- Prefix	Increment,	Prefix	Decrement

!	~ Logical	NOT,	Bitwise	NOT

** Exponentiation

*	/	% Multiplication,	Division,	Modulus

+	– Addition,	Subtraction

<<	>>	>>> Bitwise	shift

<	<=	=>	> Comparison

===	===	!==	!= Equality,	Inequality

& Bitwise	AND

^ Bitwise	XOR

| Bitwise	OR

&& Logical	AND

|| Logical	OR

?: Ternary	conditional

=
+=	–=	*=	/=	%=
&=	^=	|=
<<=	>>=	>>>=

Assignment

, Comma

The	[]	operator	is	introduced	in	the	section	that	demonstrates	arrays
beginning	here.	Meanwhile,	note	that	the	.	period	(full	stop)	operator,
used	in	dot	notation	such	as	console.log(),	is	given	high	precedence	for
early	recognition	of	the	object	and	its	member.

Create	an	HTML	document	with	a	self-invoking	anonymous	function
that	initializes	a	variable	with	the	result	of	an	ungrouped	expression	and
outputs	its	value

(function	()	{

let	sum	=	9	+	12	/	3							//	Equivalent	to	9	+	4.
console.log(‘Ungrouped	sum:	‘	+	sum)

})	()

precedence.html

Save	the	HTML	document,	then	open	it	in	your	browser	and	launch	the
console	to	see	the	resulting	value

The	evaluation	first	computes	the	division,	as	its	operator	has	higher	priority
than	the	addition	operator,	so	the	result	is	13.	But	you	can	force	the	order	of
precedence	by	grouping	an	expression	within	parentheses	so	it	will	be	evaluated
first,	because	the	()	operator	has	the	very	highest	priority	of	all	operators.

Edit	the	statements	within	the	function	to	force	the	order	of	evaluation	so
the	addition	is	performed	before	division
let	sum	=	(9	+	12)	/	3							//	Equivalent	to	21	/	3.
console.log(‘Grouped	sum:	‘	+	sum)

Save	the	HTML	document	once	more,	then	refresh	your	browser	to	see
the	new	resulting	value

Make	a	habit	of	using	parentheses	to	group	expressions	and	thereby	set
the	precedence	order	of	evaluation.

Summary
• parseInt()	and	parseFloat()	can	convert	strings	to	numbers,	but	String()	and

toString()	can	convert	numbers	to	strings.

• The	isNaN()	function	tests	its	argument	for	a	NaN	value.

• Arithmetic	operators	perform	regular	arithmetic	plus	%	modulus,	++
increment,	--	decrement,	and	**	exponentiation.

• When	the	++	increment	or	–	–	decrement	operator	prefix	the	operand	its	value
is	changed	immediately,	but	when	they	are	postfixed	after	the	operand	the
expression	is	evaluated	first.

• The	=	operator	can	be	combined	with	an	arithmetic	operator	to	perform	an
arithmetical	operation	then	assign	its	result.

• The	+=	operator	is	useful	to	append	to	an	existing	string.

• Two	operands	can	be	compared	for	===	equality,	!==	inequality,	>	greater	than
value,	or	<	less	than	value.

• The	<=	and	>=	combined	comparison	operators	also	return	true	when	both
operands	are	equal.

• The	logical	&&	AND	operator	evaluates	two	operands	and	returns	true	when
both	operands	are	true,	but	the	logical	||	OR	operator	returns	true	when	either
operand	is	true.

• The	logical	!	NOT	operator	can	prefix	a	single	operand	to	return	its	inverse
value.

• Ternary	operator	?:	evaluates	a	condition	for	true	or	false	then	executes	one	of
two	statements	according	to	the	result.

• JavaScript	bitwise	operators	can	manipulate	individual	bits	of	a	binary
sequence	to	perform	binary	arithmetic.

• JavaScript	operators	have	different	levels	of	priority	to	determine	the	order	in
which	a	statement	gets	evaluated.

• The	order	of	precedence	can	be	forced	by	grouping	an	expression	within	()
parentheses	so	it	will	be	evaluated	first.

17

Manage	the	Script	Flow

This	chapter	describes	the	JavaScript	control	structures	and	demonstrates	how	they	control	the	progress

of	scripts.

Branch	If
Branch	Alternatives

Switch	Alternatives
Loop	For
Loop	While
Do	Loops

Break	Out
Catch	Errors
Summary

Branch	If
The	progress	of	any	script	or	computer	program	depends	upon	the	evaluation	of
conditions	to	determine	the	direction	of	flow.	Each	evaluation	may	present	one
or	more	branches	along	which	to	continue	according	to	the	result	of	the
evaluation.

In	JavaScript,	the	basic	conditional	test	is	performed	with	the	if	keyword	to	test	a
condition	for	a	Boolean	true	or	false	value.	When	the	result	is	true,	a	statement
following	the	evaluation	will	be	executed,	otherwise	this	is	skipped	and	flow
continues	at	the	next	subsequent	statement.

The	syntax	of	an	if	statement	demands	that	the	condition	to	be	tested	is	placed
within	parentheses	after	the	if	keyword,	and	looks	like	this:

if	(condition)	execute-this-statement-when-true

An	if	statement	may	also	specify	multiple	statements	to	be	executed	when	the
result	is	true	by	enclosing	those	statements	within	braces,	like	this:

if	(condition)
{
execute-this-statement-when-true
execute-this-statement-when-true
execute-this-statement-when-true

}

The	evaluation	of	a	condition	and	the	execution	of	actions	according	to	its	result
simply	reflects	the	real-life	thought	process	–	for	example,	the	actions	you	might
execute	on	a	summer	day:

let	temperature	=	readThermometer()
const	tolerable	=	25

if	(temperature	>	tolerable)
{

turn_on_air-conditioning()
get_a_cool_drink()
stay_in_shade()

}

The	conditional	test	is	equivalent	to	if(condition	===	true),	but	as	it	automatically
performs	the	equality	test	for	a	true	value	there	is	no	need	to	include	===	true	in
the	parentheses.

It	is	recommended	that	you	enclose	even	single	statements	to	be
executed	within	braces	–	to	maintain	a	consistent	coding	style.

Create	an	HTML	document	with	a	self-invoking	function	that	begins	by
initializing	a	Boolean	variable
let	flag	=	true

if.html

Next,	insert	statements	to	perform	conditional	tests	of	the	variable’s
Boolean	value
if(!flag)
{
console.log(‘Power	is	OFF’)

}

if(flag)
{
console.log(‘Power	is	ON’)

}

Now,	insert	statements	to	perform	conditional	tests	of	an	expression	that
compares	two	integers
if(7	<	2)
{
console.log(‘Failure’)

}

if(7	>	2)
{
console.log(‘Success’)

}

Save	the	HTML	document,	then	open	it	in	your	browser	and	launch	the
console	to	see	which	output	statements	get	executed	and	which	ones	are
ignored

The	logical	!	NOT	operator	is	used	here	to	invert	the	conditional	test	so	it
becomes	equivalent	to
if(flag	===	false)

The	script	code	that	creates	the	function	block	is	omitted	from	this
example,	and	most	further	examples,	to	conserve	page	space.	You	can
refer	back	to	here	for	instruction	on	how	to	create	anonymous	self-
invoking	functions.

Branch	Alternatives
An	if	statement,	which	tests	a	condition	for	a	Boolean	value	and	only	executes	its
statements	when	the	result	is	true,	provides	a	single	branch	that	the	script	may
follow.	An	alternative	branch	that	the	script	can	follow	when	the	result	is	false
can	be	provided	by	extending	an	if	statement	with	the	else	keyword.

An	else	statement	follows	after	the	if	statement,	like	this:

if	(condition)	execute-this-statement-when-true
else	execute-this-statement-when-false

An	if	else	statement	may	also	specify	multiple	statements	to	be	executed	by
enclosing	those	statements	within	braces,	like	this:

if	(condition)
{
execute-this-statement-when-true
execute-this-statement-when-true

}
else
{
execute-this-statement-when-false
execute-this-statement-when-false

}

Multiple	branches	can	be	provided	by	making	subsequent	conditional	if	tests	at
the	start	of	each	else	statement	block,	like	this:

if	(condition)
{
execute-these-statements-when-true

}
else	if	(condition)
{
execute-these-statements-when-true

}
else	if	(condition)

{
execute-these-statements-when-true

}
else
{
execute-these-statements-when-false

}

An	if	else	if	statement	might	repeatedly	test	a	variable	for	a	range	of	values	or
might	test	a	variety	of	conditions.	The	final	else	statement	acts	as	a	default	when
no	conditions	are	found	to	be	true.

Once	a	condition	is	found	to	be	true	in	an	if	else	statement,	its	associated
statements	are	executed,	then	flow	continues	after	the	if	else	statement	–
without	evaluating	subsequent	else	statements.

Create	an	HTML	document	with	a	self-invoking	function	that	begins	by
initializing	two	variables
let	flag	=	false
const	num	=	10

else.html

Next,	insert	statements	to	perform	conditional	tests	of	the	first	variable’s
Boolean	value
if(!flag)
{
console.log(‘Power	is	OFF’)

}
else
{
console.log(‘Power	is	ON’)

}

Now,	insert	statements	to	perform	conditional	tests	of	the	second

variable’s	numeric	value
if(num	===	5)
{
console.log(‘Number	is	Five’)

}
else	if(num	===	10)
{
console.log(‘Number	is	Ten’)

}
else
{
console.log(‘Number	is	Neither	Five	nor	Ten’)

}

Save	the	HTML	document,	then	open	it	in	your	browser	and	launch	the
console	to	see	which	output	statements	get	executed	and	which	ones	are
ignored

The	else	statement	specifies	an	alternative	when	a	conditional	test	is	false,
but	an	else	if	statement	specifies	a	new	conditional	test.

Switch	Alternatives
Conditionally	branching	script	flow	using	if	else	statements	is	fine	for	testing	just
a	few	conditions	but	can	become	unwieldy	when	there	are	a	large	number	of
conditions	to	test.	In	that	situation	it	is	often	both	more	efficient	and	more
elegant	to	use	a	switch	statement	rather	than	if	else	statements.

A	switch	statement	works	in	an	unusual	way	–	it	first	evaluates	a	specified
expression,	then	seeks	a	match	for	the	resulting	value.	Where	a	match	is	found,
the	switch	statement	will	execute	one	or	more	statements	associated	with	that
value,	otherwise	it	will	execute	one	or	more	statements	specified	as	“default
statements”.

The	switch	statement	begins	by	enclosing	the	expression	to	be	evaluated	within
parentheses	after	the	switch	keyword.	This	is	followed	by	a	pair	of	{	}	braces	that
contain	the	possible	matches.	Each	match	value	follows	a	case	keyword	and
employs	a	colon	:	character	to	associate	one	or	more	statements	to	be	executed.
Importantly,	each	case	must	end	with	a	break	statement	to	exit	the	switch
statement	after	its	associated	statements	have	executed.

Optionally,	a	switch	statement	may	include	a	final	default	alternative	to	associate
one	or	more	statements	to	be	executed	when	none	of	the	specified	case	values
match	the	result	of	the	expression	evaluation.

So	the	syntax	of	a	switch	statement	looks	like	this:

switch	(expression)
{
case	value-1	:	statements-to-be-executed-when-matched	;	break

case	value-2	:	statements-to-be-executed-when-matched	;	break

case	value-3	:	statements-to-be-executed-when-matched	;	break

default	:	statements-to-be-executed-when-no-match-found
}

There	is	no	limit	to	the	number	of	case	values	that	can	be	included	within	a
switch	statement	block,	so	this	is	an	ideal	way	to	match	any	one	of	tens,
hundreds,	or	even	thousands	of	different	values.

Omission	of	the	break	statement	allows	the	script	to	also	execute
statements	associated	with	subsequent	unmatching	case	values.

Create	an	HTML	document	with	a	self-invoking	function	that	begins	by
declaring	a	variable
let	day

switch.html

Next,	insert	a	switch	statement	to	assign	a	value	to	the	variable	following
the	evaluation	of	an	expression
switch(5	-	2)
{
case	1	:	day	=	‘Monday’	;	break

case	2	:	day	=	‘Tuesday’	;	break

case	3	:	day	=	‘Wednesday’	;	break

case	4	:	day	=	‘Thursday’	;	break

case	5	:	day	=	‘Friday’	;	break

default	:	day	=	‘Weekend’
}

Now,	insert	a	statement	to	output	the	value	assigned	by	the	case
statement	that	found	a	match
console.log(‘It	is	‘	+	day)

Save	the	HTML	document,	then	open	it	in	your	browser	and	launch	the

console	to	see	the	assigned	value	in	output

String	values	offered	as	possible	case	matches	must	be	enclosed	within
quotes	like	all	other	string	values.

Loop	For
A	loop	is	a	structure	containing	a	test	condition	and	one	or	more	statements	that
are	repeatedly	executed	while	the	test	condition	is	met.	Each	single	examination
of	the	condition	and	execution	of	the	statements	is	called	an	“iteration”.	When
the	test	condition	is	not	met,	no	further	iterations	are	made	and	flow	continues	at
the	next	statement	following	the	loop	structure.

Perhaps	the	most	commonly	used	loop	structure	in	JavaScript	is	the	for	loop,
which	has	this	syntax:

for	(initializer	;	condition	;	modifier)	{	statements-to-be-executed	}

The	parentheses	after	the	for	keyword	contain	three	expressions	that	control	the
number	of	iterations	the	loop	will	perform:

• Initializer	–	a	statement	that	specifies	the	initial	value	of	a	variable	that	will
be	used	to	count	the	number	of	loop	iterations.	Traditionally,	this	trivial
counter	variable	is	simply	named	“i”.

• Condition	–	an	expression	that	is	tested	for	a	boolean	true	value	on	each
iteration.	When	the	evaluation	returns	true,	the	loop	statements	are	then
executed	to	complete	that	iteration.	If	the	evaluation	returns	false,	the
statements	are	not	executed	and	the	loop	ends.	Typically,	the	condition
examines	the	value	of	the	loop	counter	variable.

• Modifier	–	a	statement	that	modifies	a	value	in	the	test	condition	so	that	at
some	point	its	evaluation	will	return	false.	Typically,	this	will	increment,	or
decrement,	the	loop	counter	variable.

For	example,	a	for	loop	structure	to	execute	a	set	of	statements	one	hundred
times	might	look	like	this:

let	i
for	(i	=	0	;	i	<	100	;	i++)	{	statements-to-be-executed	}

In	this	case,	the	counter	variable	is	incremented	on	each	iteration	until	its	value
reaches	100,	upon	which	the	evaluation	returns	false	and	the	loop	ends.

Unless	the	modifier	enables	the	evaluation	to	return	false	at	some	point,
an	infinite	loop	is	created	that	will	run	forever.

Create	an	HTML	document	with	a	self-invoking	function	that	begins	by
initializing	a	loop	counter	variable
let	i	=	0

for.html

Next,	insert	a	for	loop	structure	that	will	make	10	iterations	and	output	the
value	of	the	loop	counter	on	each	iteration
for(i	=	1	;	i	<	11	;	i++)
{
console.log(‘Iteration	Number:	‘	+	i)

}

Save	the	HTML	document,	then	open	it	in	your	browser	and	launch	the
console	to	see	the	loop	iterations

This	is	the	regular	for	loop.	There	is	also	a	special	for	in	loop	that	is
used	to	iterate	through	properties	of	an	object	and	is	demonstrated	later,
here.

Loop	While
The	for	loop	structure,	described	here,	is	ideal	when	the	number	of	required
iterations	is	a	known	quantity,	but	when	this	is	unknown	a	while	loop	structure	is
often	preferable.	The	syntax	of	a	while	loop	looks	like	this:

while(condition)
{
statements-to-be-executed
modifier

}

The	parentheses	after	the	while	keyword	contain	a	condition	that	is	evaluated	for
a	boolean	value	upon	each	iteration.	Statements	to	be	executed	on	each	iteration
are	enclosed	within	braces	along	with	a	statement	that	modifies	a	value	in	the
test	condition,	so	that	at	some	point	its	evaluation	will	return	false	and	the	loop
will	exit.	While	the	evaluation	remains	true,	the	statements	will	be	executed	on
each	iteration	of	the	loop.

Where	the	condition	evaluation	is	false	on	the	first	iteration,	the	loop	exits
immediately	so	the	statements	within	its	braces	are	never	executed.	Both	while
loops	and	for	loops	are	sometimes	referred	to	as	“pre-test”	loops	because	their
test	condition	is	evaluated	before	any	statements	are	executed.

A	while	loop	can	be	made	to	perform	a	specific	number	of	iterations,	like	a	for
loop,	by	using	a	counter	variable	as	the	test	condition	and	incrementing	its	value
on	each	iteration.	For	example,	a	while	loop	structure	to	execute	a	set	of
statements	100	times	might	look	like	this:

let	i	=	0
while	(i	<	100)
{
statements-to-be-executed
i++	;

}

The	counter	variable	is	incremented	on	each	iteration	until	its	value	reaches	100,
upon	which	the	evaluation	returns	false	and	the	loop	ends.

Omitting	a	modifier	from	the	while	loop	structure	will	create	an	infinite	loop
that	will	run	forever.

Create	an	HTML	document	with	a	self-invoking	function	that	begins	by
initializing	a	loop	counter	variable
let	i	=	10

while.html

Next,	insert	a	while	loop	structure	that	will	make	iterations	and	output	the
value	of	the	loop	counter	on	each	iteration	until	it	reaches	zero
while(i	>	-1)
{
console.log(‘Countdown	Number:	‘	+	i)
i--

}

Save	the	HTML	document,	then	open	it	in	your	browser	and	launch	the
console	to	see	the	loop	iterations

Each	while	loop	must	have	braces	as	they	contain	at	least	two
statements	–	one	statement	to	execute	and	a	modifier.

Do	Loops
Another	kind	of	loop	available	in	JavaScript	is	the	do	while	loop	structure.	This	is
like	an	inverted	version	of	the	while	loop,	described	here,	and	is	ideal	when	the
statements	it	will	execute	on	each	iteration	absolutely	must	be	executed	at	least
one	time.	Its	syntax	looks	like	this:

do
{
statements-to-be-executed
modifier

}
while	(condition)

The	parentheses	after	the	while	keyword	contain	a	condition	that	is	evaluated	for
a	boolean	value	after	each	iteration.	Statements	to	be	executed	on	each	iteration
are	enclosed	within	braces	along	with	a	statement	that	modifies	a	value	in	the
test	condition,	so	that	at	some	point	its	evaluation	will	return	false	and	the	loop
will	exit.	While	the	evaluation	remains	true,	the	statements	will	be	executed	on
each	iteration	of	the	loop.

Where	the	condition	evaluation	is	false	on	the	first	iteration,	the	loop	exits
immediately	so	the	statements	within	its	braces	have	been	executed	once.	The	do
while	loop	is	sometimes	referred	to	as	a	“post-test”	loop	because	the	test
condition	is	evaluated	after	its	statements	have	been	executed.

A	do	while	loop	can	be	made	to	perform	a	specific	number	of	iterations,	like	a	for
loop,	by	using	a	counter	variable	as	the	test	condition	and	incrementing	its	value
on	each	iteration.	For	example,	a	do	while	loop	structure	to	execute	a	set	of
statements	100	times	might	look	like	this:

let	i	=	0
do
{
statements-to-be-executed
i++

}
while	(i	<	100)

The	counter	variable	is	incremented	on	each	iteration	until	its	value	reaches	100,
upon	which	the	evaluation	returns	false	and	the	loop	ends.

Only	use	a	do	while	loop	if	the	statements	absolutely	must	be	executed	at
least	once.

Create	an	HTML	document	with	a	self-invoking	function	that	begins	by
initializing	a	loop	counter	variable
let	i	=	2

do.html

Next,	insert	a	do	while	loop	structure	that	will	make	iterations	and	output
the	value	of	the	loop	counter	on	each	iteration	until	it	exceeds	1000
do
{
i	*=	2
console.log(‘Multiplied	Number:	‘	+	i)

}
while(i	<	1000)

Save	the	HTML	document,	then	open	it	in	your	browser	and	launch	the
console	to	see	the	loop	iterations

Notice	that	the	final	value	exceeds	the	condition	limit	because	it	gets
written	in	output	before	the	test	is	made.

Break	Out
The	JavaScript	break	keyword	can	be	used	to	exit	from	a	loop	when	a	specified
condition	is	encountered.	The	conditional	test	should	appear	before	all	other
statements	to	be	executed	so	the	loop	will	end	immediately.

Where	a	break	statement	is	used	in	a	loop	that	is	nested	within	an	outer	loop,
flow	resumes	in	the	outer	loop	iteration.

The	JavaScript	continue	keyword	can	be	used	to	skip	a	single	iteration	of	a	loop
when	a	specified	condition	is	encountered.

Where	a	continue	statement	is	used	in	a	loop	that	is	nested	within	an	outer	loop,
flow	resumes	at	the	next	iteration	of	the	inner	loop.

Create	an	HTML	document	with	a	self-invoking	function	that	begins	by
initializing	two	loop	counter	variables
let	i	=	0
let	j	=	0

break.html

Next,	insert	a	for	loop	containing	an	inner	nested	for	loop
for	(i	=	1	;	i	<	3	;	i++)
{
console.log(‘Outer	Loop:	‘	+	i)

for	(j	=	1	;	j	<	4	;	j++)
{

//	Statements	to	be	inserted	here.

console.log(‘\tInner	Loop:	‘	+	j)

}

}

The	\t	escape	sequence	is	used	here	to	include	a	tab	space	in	the	output.

Save	the	HTML	document,	then	open	it	in	your	browser	and	launch	the
console	to	see	two	iterations	of	the	outer	loop	and	three	iterations	of	the
inner	loop

Next,	insert	statements	in	the	inner	loop	to	skip	an	iteration	of	the	inner
loop	and	break	out	of	the	outer	loop
if((i	===	1)	&&	(j	===	2))	{
console.log(‘\tSkipped:	‘	+	j)
continue

}

if((i	===	2)	&&	(j	===	2))	{
console.log(‘\tBroken:	‘	+	j)
break

}

Save	the	HTML	document	again,	then	open	it	in	your	browser	and	launch
the	console	to	see	an	iteration	skipped	and	the	loop	broken	completely

The	break	keyword	is	also	used	as	a	terminator	in	switch	statements.

Don’t	be	tempted	to	use	break	statements	to	exit	loops	in	place	of	the
regular	conditional	tests	that	form	part	of	the	loop	structure.

Catch	Errors
Sections	of	script	in	which	it	is	possible	to	anticipate	errors,	such	as	those
handling	user	input,	may	be	enclosed	in	a	try	catch	structure	to	handle
“exception”	errors.	The	statements	to	be	executed	are	contained	within	the
braces	of	a	try	block,	and	exceptions	are	passed	as	an	argument	to	the	ensuing
catch	block	for	handling.	Optionally,	this	may	be	followed	by	a	finally	block,
containing	statements	to	execute	after	exceptions	have	been	handled.

JavaScript	recognizes	error	objects	of	Error,	EvalError,	InternalError,	RangeError,
ReferenceError,	SyntaxError,	TypeError,	and	URIError.	These	may	be	automatically
created	and	passed	to	the	catch	block	by	the	parser	or	manually	created	with	the
new	keyword	and	a	constructor	method,	then	passed	using	the	throw	keyword.

Each	error	object	can	have	a	name	property	and	a	message	property	to	allow	the
catch	block	to	describe	its	nature.	The	message	is	specified	as	an	argument	to	the
constructor	for	error	objects	created	manually,	but	is	predefined	otherwise.

Alternatively,	a	string	may	be	passed	to	the	catch	block	by	the	throw	keyword	to
identify	the	error.	An	appropriate	action	can	then	be	determined	by	examining
the	string	value.

Create	an	HTML	document	with	a	self-invoking	function	that	begins	by
initializing	a	variable
let	day	=	32

catch.html

Next,	insert	a	try	block	to	recognize	invalid	integer	values
try
{

if(day	>	31)
{
throw	new	RangeError(‘Day	Cannot	Exceed	31’)
}

if(day	<	1)
{
throw	‘invalid’
}

}

Now,	append	a	catch	block	to	the	try	block,	to	handle	invalid	integer
values
catch(err)
{
if(err	===	‘invalid’)
{
console.log(‘Variable	has	invalid	value	of	‘	+	day)
}
else
{
console.log(err.name	+	‘	Exception:	‘	+	err.message)
}

}

Then,	append	a	finally	block	to	the	catch	block,	to	output	a	final	message
finally
{
console.log(‘The	script	has	ignored	the	error...’)

}

Save	the	HTML	document	again,	then	open	it	in	your	browser	and	launch
the	console	to	see	the	error	caught

Change	the	variable	value	to	zero,	then	save	the	HTML	document	and
refresh	your	browser	to	see	the	error	caught

Delete	or	comment	out	the	day	variable	declaration	then	save	and
refresh	this	example	to	see	an	automatic	ReferenceError	get	caught.

Summary
• The	basic	conditional	test	is	performed	with	the	if	keyword	to	test	a	condition

for	a	boolean	true	or	false	value.

• An	alternative	branch	to	the	basic	conditional	test	can	be	provided	by
extending	an	if	statement	with	the	else	keyword.

• A	large	number	of	conditions	can	be	tested	for	a	boolean	true	or	false	value
with	a	switch	statement.

• In	a	switch	block,	each	case	statement	must	end	with	the	break	keyword	to
exit	when	a	match	is	found.

• A	switch	block	may	contain	a	final	default	statement	to	execute	when	no
match	has	been	found.

• A	for	loop	must	specify	an	initializer,	a	condition	to	be	tested	for	a	boolean
true	or	false	value,	and	a	modifier.

• A	loop	modifier	must	enable	the	tested	condition	to	become	false	at	some
point	in	order	to	exit	the	loop.

• The	while	loops	and	for	loops	evaluate	a	test	condition	before	any	statements
are	executed.

• A	do	while	loop	evaluates	a	test	condition	after	its	statements	have	been
executed.

• The	break	keyword	can	be	used	to	exit	from	a	loop	when	a	specified	condition
is	encountered.

• The	continue	keyword	can	be	used	to	skip	a	single	iteration	of	a	loop	when	a
specified	condition	is	encountered.

• The	try	catch	structure	can	be	used	to	handle	exception	errors	that	occur	in	a
script.

• Each	error	object	can	have	a	name	property	and	a	message	property	to	allow
the	catch	block	to	describe	its	nature.

• A	string	may	be	passed	to	the	catch	block	by	the	throw	keyword	to	identify	the
error.

• A	try	catch	structure	may	be	followed	by	a	finally	block	containing	statements

to	execute	after	exceptions	are	handled.

18

Use	Script	Object

The	chapter	describes	how	to	create	script	objects	and	demonstrates	how	to	use	built-in	JavaScript

objects.

Custom	Objects
Extend	Objects

Built-in	Objects
Create	Arrays
Loop	Elements
Slice	Arrays

Sort	Elements
Get	Dates
Extract	Calender
Extract	Time

Set	Dates
Match	Patterns
Meet	JSON
Make	Promises

Fetch	Data
Summary

Custom	Objects

Real-world	objects	are	all	around	us,	and	they	each	have	attributes	and	behaviors
that	we	can	describe:

• Attributes	describe	the	features	that	an	object	has.

• Behaviors	describe	actions	that	an	object	can	perform.

For	example,	a	car	might	be	described	with	attributes	of	“make”	and	“model”,
along	with	“accelerate”	and	“brake”	behaviors.

These	features	could	be	represented	in	JavaScript	with	a	custom	car	object
containing	variable	properties	of	make	and	model,	along	with	accelerate()	and
brake()	methods.

Values	are	assigned	to	the	object	as	a	comma-separated	list	of	name:value	pairs
within	{	}	curly	brackets,	like	this:

let	car	=	{	make:	‘Jeep’,	model:	‘Wrangler’,

accelerate:	function	()	{	return	this.model	+	‘	drives	away’	}	,

brake:	function	()	{	return	this.make	+	‘	pulls	up’	}
}

You	can	reference	the	object	property	values	in	two	ways	–	using	dot	notation
syntax	of	objectName.propertyName	or	using	the	syntax	of	objectName[

‘propertyName’]

The	object	methods	can	be	called	using	dot	notation	syntax	of
objectName.methodName()

The	this	keyword	can	be	used	in	object	method	definitions	to	refer	to	the	object
that	“owns”	the	method.	In	the	example	above,	this	refers	to	the	car	object,	so
this.model	references	the	car.model	property	and	this.make	references	the	car.make
property.

Whitespace	is	ignored	in	the	object’s	list	of	name:value	pairs,	but	don’t
forget	to	put	a	comma	between	the	pairs.

Create	an	HTML	document	with	a	self-invoking	function	that	begins	by
declaring	a	variable	to	contain	an	object	definition
let	car	=	{

//	Statements	to	be	inserted	here.

}

custom.html

Next,	insert	statements	to	define	the	object’s	properties
make:	‘Jeep’	,
model:	‘Wrangler’	,

Now,	insert	statements	to	define	the	object’s	methods
accelerate:	function	()	{
return	this.model	+	‘	drives	away’	}	,

brake:	function	()	{
return	this.make	+	‘	pulls	up’	}

Then,	after	the	closing	}	of	the	variable	declaration,	add	a	statement	to
output	a	string	containing	the	object	property	values	–	using	each

reference	technique
console.log(‘Car	is	a	‘	+	car.make	+	‘	‘	+	car[‘model‘])

Finally,	add	statements	to	call	each	object	method
console.log(car.accelerate())
console.log(car.brake())

Save	the	HTML	document,	then	open	it	in	your	browser	and	launch	the
console	to	see	the	object’s	property	values	and	the	strings	returned	from
its	methods

You	must	include	the	trailing	()	parentheses	to	call	a	method,	otherwise	it
will	simply	return	the	function	definition.

Extend	Objects
Custom	objects	are	very	flexible	and	can	easily	be	extended	and	updated	at	any
time	simply	by	assigning	a	new	value,	using	dot	notation	to	reference	the
property	as	objectName.propertyName

A	special	for	in	loop	can	be	used	to	list	all	the	property	names	and	method	names
(‘keys”)	of	an	object	with	this	syntax:

for	(property	in	objectName)	{	console.log(property)	}

In	order	to	reference	the	value	of	each	property	on	each	iteration,	the	property
variable	name	can	be	enclosed	within	square	brackets	following	the	object	name
as	object-Name[property]

Create	an	HTML	document	with	a	self-invoking	function	that	begins	by
initializing	a	variable	that	exactly	recreates	the	object	in	the	previous
example
let	property,	car	=	{
make:	‘Jeep’	,
model:	‘Wrangler’	,
accelerate:	function	()	{
return	this.model	+	‘	drives	away’	}	,
brake:	function	()	{
return	this.make	+	‘	pulls	up’	}

}

extend.html

Add	a	loop	statement	to	list	the	name	and	value	of	each	property	and
method

for(property	in	car)	{
console.log(property	+	‘:	‘	+	car[property])

}

Save	the	HTML	document,	then	open	it	in	your	browser	and	launch	the
console	to	see	the	object’s	keys	and	values

The	property	variable	in	this	example	could,	in	fact,	be	given	any	valid
variable	name.

Next,	add	statements	to	assign	new	values	to	two	existing	object
properties
car.make	=	‘Ford’
car.model	=	‘Bronco’

Now,	add	statements	to	extend	the	object	with	an	additional	property	and
an	additional	method
car.engine	=	‘V6’
car.start	=	function	()	{
return	this.make	+	‘	motor	is	running’	}

Then,	add	statements	to	output	strings	containing	the	object	property
values	–	using	each	reference	technique
console.log(‘\nCar	is	a	‘	+	car.make	+	‘	‘	+	car[‘model‘])
console.log(‘Engine	Type:	‘	+	car.engine)

The	\n	escape	sequence	is	used	in	this	statement	to	include	a	newline
(line	break)	in	the	output.

Finally,	add	statements	to	call	each	object	method
console.log(car.start())
console.log(car.accelerate())
console.log(car.brake())

Save	the	HTML	document	again,	then	refresh	your	browser	to	see	the
extended	object’s	property	values	and	the	strings	returned	from	its
methods

Built-in	Objects

Object

String	(an	object	only	if	created	using	the	new	keyword)

Number	(an	object	only	if	created	using	the	new	keyword)

Boolean	(an	object	only	if	created	using	the	new	keyword)

Object	–	an	object	defined	by	you

Date	–	an	object	containing	date	and	time	components

Array	–	an	object	storing	indexed	items	of	data

RegExp	–	an	object	describing	a	regular	expression	pattern

Math	–	an	object	providing	math	properties	and	methods

Error	–	an	object	supplying	details	of	an	error

JavaScript	provides	the	predefined	built-in	objects	listed	in	the	table	above.	Each
of	these	objects,	except	for	Math,	has	a	like-named	constructor	method	that	can
be	used	with	the	new	keyword	to	create	an	object	of	that	type	–	for	example,	to
create	a	new	Date	object	with	let	now	=	new	Date().

It	is,	however,	not	recommended	you	use	the	new	keyword	and	a	constructor
method	for	any	object	type	other	than	Error	and	Date.	JavaScript	can	intelligently
recognize	what	type	of	object	should	be	created	by	the	value	being	assigned
unless	that	value	is	a	string,	a	number,	or	a	boolean.	These	are	each	regarded	as
“primitive”	literal	values	that	have	no	properties	or	methods,	so	a	typeof
statement	returns	string,	number,	boolean,	for	these	–	not	object	.

All	JavaScript	built-in	objects	inherit	properties	and	methods	from	a	top-level
Object.prototype	object.	For	example,	this	provides	a	toLocaleString()	method	to
lower-level	objects	such	as	Date.prototype,	so	you	can	append	that	method	call	to

a	Date	object	to	get	a	locally	formatted	date	string.

You	can	also	call	inherited	methods	on	the	primitive	string,	number,	and	boolean
literal	values	because	JavaScript	will	automatically	call	the	method	from	the
equivalent	object.	This	means	you	can	append	the	toLocaleString()	method	call	to
a	number	literal	value	to	get	a	locally	formatted	number	string.

If	you’re	working	through	this	book	from	the	beginning	you	should	already
be	somewhat	familiar	with	String,	Number,	Boolean,	Error,	and	Object
objects.	The	Array	object	is	introduced	here,	the	Date	object	is
introduced	here,	the	RegExp	object	is	introduced	here,	and	the	Math
object	is	introduced	here.

Create	an	HTML	document	with	a	self-invoking	function	that	begins	by
assigning	primitive	literal	values	to	three	variables
let	jsString	=	‘Text’														//	not,	new	String(‘Text’).

let	jsNumber	=	125000			//	not,	new	Number(125000).

let	jsBoolean	=	true									//	not,	new	Boolean(true).

builtin.html

Next,	assign	values	to	create	objects	of	each	other	type
let	jsObject	=	{	firstName:	‘Mike’,	lastName:	‘McGrath’	}
let	jsDate	=	new	Date()
let	jsArray	=	[1,	2,	3]
let	jsRegExp	=	/ineasysteps/i
let	jsMath	=	Math
let	jsError	=	new	Error(‘Error!’)

Now,	insert	statements	to	output	the	contents	of	the	Date	object	and	a
locally	formatted	date	string
console.log(‘Date	Object:	‘	+	jsDate)

console.log(‘Locale	Date	String:	‘	+
jsDate.toLocaleString())

Then,	insert	statements	to	output	the	primitive	literal	number	value	and	a
locally	formatted	numeric	string
console.log(‘\nPrimitive	Number:	‘	+	jsNumber)
console.log(‘Locale	Number	String:	‘	+	jsNumber.toLocaleString())

Save	the	HTML	document,	then	open	it	in	your	browser	and	launch	the
console	to	see	the	output	strings

The	Math	object	is	the	only	JavaScript	object	that	does	not	provide	a
constructor	method.

Create	Arrays
An	Array	object	is	a	JavaScript	built-in	object	that	can	store	multiple	items	(of
various	data-types)	in	individual	“elements”.	An	array	is	created	by	assigning	[]
square	brackets	to	a	variable,	which	can	optionally	contain	a	comma-separated
list	of	values	to	initialize	the	array	elements.	Its	syntax	looks	like	this:

let	arrayName	=	[value1	,	value2	,	value3]

Unlike	custom	objects,	where	each	property	is	named,	array	elements	are
automatically	numbered	–	starting	at	zero.	So	the	first	element	is	0,	the	second	is
1,	the	third	is	2,	and	so	on.	This	numbering	system	is	often	referred	to	as	a	“zero-
based	index”.

The	value	stored	within	an	array	element	can	be	referenced	by	enclosing	its
element	index	number	within	square	brackets	following	the	object	name.	For
example,	colors[0]	would	reference	the	value	in	the	first	element	in	an	array
named	“colors”.

Where	array	elements	are	not	required	to	be	initialized	immediately,	an	empty
array	can	be	created	and	values	assigned	to	its	elements	later,	like	this:

let	colors	=	[]

colors[0]	=	‘Red’

colors[1]	=	‘Green’

colors[2]	=	‘Blue’

Although	the	Array	object	provides	an	Array()	constructor	it	should	not	be	used
as	it	can	produce	unexpected	results	–	for	example,	creating	an	array	initializing
the	first	element,	like	this:

let	jsArray	=	new	Array(10)

You	might	reasonably	expect	jsArray[0]	to	reference	an	integer	value	of	10
within	the	first	element,	but	it	in	fact	returns	an	undefined	value.	What’s	going
on?	This	is	an	anomaly	that	only	occurs	when	you	specify	a	single	integer
argument	to	the	constructor	method	–	which	causes	JavaScript	to	create	an	array
of	10	empty	elements!	Creating	the	array	with	jsArray	=	[10]	does	not	have	that
effect,	and	creates	the	array	with	its	first	element	containing	the	integer	value	of
10	as	expected.

All	built-in	object	names	begin	with	an	uppercase	character	–	so	the
constructor	is	named	“Array”,	not	“array”.

Create	an	HTML	document	with	a	self-invoking	function	that	begins	by
creating	an	array	–	the	wrong	way
let	jsArray	=	new	Array(10)

array.html

Next,	add	statements	to	output	the	value	in	the	first	array	element	and	list
the	entire	array
console.log(jsArray[0])
console.log(jsArray)

Now,	add	a	statement	to	declare	a	variable,	and	to	declare	a	variable
initialized	with	an	array
let	month,	summer	=	[‘June‘,	‘July‘,	‘August‘]

Then,	add	a	loop	to	output	the	index	number	and	value	of	each	array
element
for	(month	in	summer)
{
if	(month	!==	‘	‘)
{
console.log(month	+	‘:	‘	+	summer[month])

}
}

Finally	add	statements	to	output	the	value	in	the	first	array	element	and
list	the	entire	array
console.log(‘Start	of	Summer:	‘	+	summer[0])
console.log(summer)

Save	the	HTML	document,	then	open	it	in	your	browser	and	launch	the
console	to	see	the	array	element	contents

It’s	good	practice	to	wrap	the	body	of	for	in	loops	in	an	if	statement	–
here,	it	ensures	the	element	is	not	empty.

Loop	Elements
Arrays	and	loops	make	great	partners!	Any	kind	of	loop	can	be	used	to	fill	the
elements	of	an	array	with	values.	The	elements	of	even	very	large	arrays	can	be
“populated”	in	this	way	–	and	with	surprisingly	little	code.

Similarly,	loops	can	be	used	to	quickly	read	the	values	in	each	array	element	and
perform	some	action	appropriate	to	that	value	on	each	iteration	of	the	loop.

Usefully,	each	array	has	a	length	property	that	contains	an	integer	record	of	the
total	number	of	elements	in	that	array.	As	a	result	of	zero-based	indexing	this
will	always	be	one	greater	than	the	final	element’s	index	number,	so	can	be
readily	used	in	a	conditional	test	to	terminate	the	loop.

Create	an	HTML	document	with	a	self-invoking	function	that	begins	by
declaring	three	variables
let	i,	result,	boolArray	=	[]

elements.html

Next,	output	a	simple	heading
console.log(‘Fill	Elements...’)

Now,	add	a	loop	to	fill	10	elements	with	Boolean	values	and	output	their
index	number	and	each	stored	value
for(i	=	1	;	i	<	11	;	i++)
{
boolArray[i]	=	(i	%	2	===	0)	?	true	:	false
console.log(‘Element	‘	+	i	+	‘:	‘	+	boolArray[i])

}

Then,	output	a	second	simple	heading	and	initialize	a	variable	with	an
empty	string	value
console.log(‘Read	Elements...’)
result	=	‘’

Next,	add	a	loop	to	assign	the	index	numbers	of	any	elements	containing
a	true	value	to	a	string
for(i	=	1	;	i	<	boolArray.length	;	i++)
{
if(boolArray[i])	{	result	+=	i	+	‘	|	‘	}

}

This	array	length	property	here	has	a	value	of	11	because	the	array	has
eleven	elements	–	even	though	element	zero	has	not	been	filled.

Now,	output	the	string	to	reveal	the	index	numbers	of	elements	that
contain	a	true	value
console.log(‘True	in	Elements:	‘	+	result)

Reset	the	string	variable	to	contain	an	empty	string
result	=	‘‘

Then,	add	a	loop	to	assign	the	index	numbers	of	any	elements	containing
a	false	value	to	a	string
for(i	=	1	;	i	<	boolArray.length	;	i++)
{
if(!boolArray[i])	{	result	+=	i	+	‘	|	‘	}

}

Finally,	output	the	string	to	reveal	the	index	numbers	of	elements	that
contain	a	false	value
console.log(‘False	in	Elements:	‘	+	result)

Save	the	HTML	document,	then	open	it	in	your	browser	and	launch	the
console	to	write	and	read	array	elements

Conditional	tests	for	a	boolean	value	do	not	need	to	include	the
expression	===	true	as	that	is	automatic.

Slice	Arrays
JavaScript	objects	have	properties	and	methods.	In	addition	to	the	length
property,	each	array	object	has	methods	that	can	be	used	to	manipulate	the
elements	in	an	array.	These	are	listed	in	the	table	below,	together	with	a	brief
description	of	the	task	they	perform:

Method Description

join(separator) Unites	all	element	values	into	a	single	string	separated	by	a
specified	separator,	or	by	a	comma	if	no	separator	is	specified

pop() Deletes	the	last	element	of	the	array,	and	returns	its	value

push(value	,	value) Adds	elements	to	the	end	of	the	array	and	returns	the	new	length

reverse() Reverses	the	order	of	all	elements	in	the	array	and	returns	the
reordered	value	of	each	element

shift() Deletes	the	first	element	of	the	array,
and	returns	its	value

slice(begin	,	end) Returns	elements	between	specified	index	positions,	or	the	end	of
the	array	if	no	end	position	is	specified

sort() Sorts	all	elements	in	the	array	into	alphabetical	or	numerical	order
and	returns	the	reordered	value	of	each	element

splice(position	,
number,	value,	value)

Replaces	a	specified	number	of	element	values	starting	at	a
specified	index	position,	and	returns	the	replaced	values

unshift(value	,	value) Adds	elements	to	the	start	of	the	array	and	returns	the	new	length

Where	no	values	are	specified	by	the	push()	or	unshift()	methods,	a	single	empty
element	gets	added	to	the	array.	A	commaseparated	list	of	values	can	be
specified	to	the	push(),	unshift(),	and	splice()	methods	to	change	multiple
elements.

The	join()	method	is	faster	for	uniting	a	large	number	of	element	values
into	a	single	string,	but	the	+	concatenate	operator	is	faster	at	uniting	just
a	few	element	values.

The	slice()	method	returns	the	element	values	up	to,	but	not	including,
the	optional	end	index	position.

Create	an	HTML	document	with	a	self-invoking	function	that	begins	by
creating	an	array
let	seasons	=	[‘Spring’,	‘Summer’,	‘Fall’,	‘Winter’]
console.log(‘Elements:	‘	+	seasons)

slice.html

Next,	output	a	modified	list	of	the	elements
console.log(‘Joined:	‘	+	seasons.join(‘	&	‘))

Now,	extract	the	final	element	from	the	array
console.log(‘Popped:	‘	+	seasons.pop())
console.log(‘Elements:	‘	+	seasons)

Then,	put	the	final	element	back	on	the	array
console.log(‘Pushed:	‘	+	seasons.push(‘Winter’))
console.log(‘Elements:	‘	+	seasons)

Next,	output	just	two	element	values
console.log(‘Sliced:	‘	+	seasons.slice(1,	3))

Finally,	replace	the	value	in	the	third	element
console.log(‘Spliced:	‘	+	seasons.splice(2,	1,	‘Autumn’))
console.log(‘Elements:	‘	+	seasons)

Save	the	HTML	document,	then	open	it	in	your	browser	and	launch	the
console	to	see	the	elements	manipulated

Use	the	slice()	method	without	a	replacement	value	to	delete	a	specified
number	of	elements	at	a	specified	position	and	it	will	automatically
renumber	all	remaining	elements	that	follow	in	that	array.

The	shift()	and	the	unshift()	methods	work	like	pop()	and	push()	but
on	the	first	element	rather	than	the	last.	The	reverse()	and	sort()
methods	are	used	in	the	next	example	listed	here.

Sort	Elements
It	is	often	desirable	to	arrange	an	array’s	element	values	in	a	particular	order
using	the	array	sort()	method.	This	can	optionally	specify	a	comparison	function
argument	to	define	the	sort	order.

When	no	comparison	function	is	specified,	the	sort()	method	will,	by	default,
convert	all	element	values	to	strings	then	sort	them	lexicographically	in
dictionary	order	–	comparing	each	first	character,	then	each	second	character,
and	so	on.	Where	the	elements	contain	matching	strings	that	differ	only	by
character	case,	the	string	with	most	uppercase	characters	gets	a	lower	index
position	–	appearing	before	that	with	fewer	uppercase	characters.

The	sort()	method’s	default	behavior	of	sorting	into	dictionary	order	is	usually
satisfactory	for	string	values	but	is	often	not	what	you	want	when	sorting
numerical	values.	For	example,	in	sorting	three	values	30,	100,	20,	the	result	is
100,	20,	30	–	because	the	first	characters	are	different	they	are	sorted	by	that
comparison	only.	Typically,	it	is	preferable	to	require	all	numerical	element
values	to	be	sorted	in	ascending,	or	descending,	numerical	order	so	the	sort()
method	needs	to	specify	the	name	of	a	custom	comparison	function	to	define	the
sort	order.

A	comparison	function	nominated	by	the	sort()	method	will	be	passed	successive
pairs	of	element	values	for	comparison,	and	it	must	return	an	integer	value	to
indicate	each	comparison’s	result.	When	the	first	value	is	greater	than	the	second
it	should	return	a	value	greater	than	zero	to	indicate	that	the	first	value	should	be
sorted	to	a	higher	index	position	–	to	appear	after	the	second	value.	Conversely,
the	comparison	function	should	return	a	value	less	than	zero	to	indicate	that	the
first	value	should	be	sorted	to	a	lower	index	position	–	to	appear	before	the
second	value.	When	both	values	are	identical,	zero	should	be	returned	to	indicate
that	the	element	positions	should	remain	unchanged.	When	all	comparisons	have
been	made,	the	elements	will	be	arranged	in	ascending	value	order.	If
descending	order	is	required,	the	array’s	reverse()	method	can	then	be	used	to

reverse	the	element	order.

If	a	comparison	function	is	comparing	numerical	element	values	it	simply	needs
to	return	the	result	of	subtracting	the	second	passed	value	from	the	first	passed
value	to	have	the	desired	effect.

Remember	that	sort()	does	actually	rearrange	the	values	stored	in	the
array	elements.

The	default	behavior	of	the	sort()	method	is	the	equivalent	of	a
comparison	function	comparing	arguments	x	and	y	with	these
statements:

if(x	>	y)	return	1	else	if(x	<	y)	return	-1	else	return	0.

Create	an	HTML	document	with	a	self-invoking	function	that	begins	by
creating	two	arrays
let	hues	=	[‘Red’,	‘RED’,	‘red’,	‘Green’,	‘Blue’]
let	nums	=	[1,	20,	3,	17,	14,	0.5]

sort.html

Next,	output	the	values	in	each	array,	and	output	their	element	values
sorted	in	dictionary	sort	order
console.log(‘Colors:	‘	+	hues)
console.log(‘Dictionary	Sort:	‘	+	hues.sort())
console.log(‘\nNumbers:	‘	+	nums)
console.log(‘Dictionary	Sort:	‘	+	nums.sort())

Now,	add	a	statement	to	output	the	numerical	values	sorted	after	calling	a
comparison	function
console.log(‘Numerical	Sort:	‘	+	nums.sort(sortNums))

Finally,	in	the	function	block,	add	a	statement	to	output	the	numerical
values	in	descending	order
console.log(‘Reversed	Sort:	‘	+	nums.reverse())

Next,	in	the	script,	add	the	comparison	function
function	sortNums(numOne,	numTwo)	{
return	numOne	-	numTwo

}

Save	the	HTML	document,	then	open	it	in	your	browser	and	launch	the
console	to	see	the	elements	sorted

When	the	sort()	method	specifies	a	comparison	function	it	must
nominate	it	by	function	name	only	–	do	not	include	trailing	brackets	after
the	comparison	function	name	in	the	argument	to	the	sort()	method.

Get	Dates
The	built-in	JavaScript	Date	object	provides	components	representing	a	particular
date,	time,	and	timezone.	An	instance	of	a	Date	object	is	created	using	the	new
keyword,	a	Date()	object	constructor,	and	a	variable	name	assignment.	Without
specifying	any	arguments	to	the	constructor,	a	new	Date	object	represents	the
date	and	time	of	its	creation	based	upon	the	system	time	of	the	computer	on
which	the	browser	is	running.	There	is	no	consideration	given	as	to	whether
system	time	is	accurate	to	the	Universal	Time	Clock	(UTC)	or	Greenwich	Mean
Time	(GMT).

Computer	date	and	time	is	measured	numerically	as	the	period	of	elapsed	time
since	January	1,	1970	00:00:00	–	a	point	in	time	often	referred	to	as	the	“epoch”.
In	JavaScript,	the	elapsed	time	is	recorded	as	the	number	of	milliseconds	since
the	epoch.	This	figure	can	be	extracted	from	Date	object	using	its	getTime()
method,	and	may	be	subtracted	from	that	of	another	Date	object	to	calculate	an
elapsed	period	between	two	points	in	a	script	–	for	example,	to	calculate	the
period	taken	to	execute	a	loop.

A	string	of	the	components	within	a	Date	object	can	be	extracted	using	its
toString()	method,	or	an	equivalent	converted	to	UTC	time	using	its	toUTCString()
method.

JavaScript	can	determine	in	which	time	zone	the	user	is	located,	assuming	the
system	is	correctly	set	to	the	local	time	zone,	by	examining	the	value	returned	by
a	current	Date	object’s	getTimezoneOffset()	method.	This	returns	an	integer	value
that	is	the	number	of	minutes	by	which	the	current	local	time	differs	from	UTC
time.	The	calculation	is	performed	in	minutes	rather	than	hours	because	some
time	zones	are	offset	by	other	than	one-hour	intervals	–	for	example,
Newfoundland,	Canada	is	UTC	-3:30	(UTC	-2:30	during	periods	of	daylight
saving	time).

The	time	zone	offset	value	can	be	used	to	provide	localized	customization	for

U.S.	time	zones	but	they	must	be	adjusted	by	subtracting	60	(minutes)	for
periods	of	daylight	saving	time.	The	example	opposite	calls	getMonth()	and
getDate()	methods	of	a	Date	object	to	adjust	the	time	zone	offset	value	if	daylight
saving	time	is	not	in	operation	at	the	current	date.

More	examples	follow	here	that	demonstrate	how	to	use	components	of	a
Date	object	by	calling	its	many	methods.

Create	an	HTML	document	with	a	self-invoking	function	that	begins	by
initializing	three	variables
const	now	=	new	Date()
let	offset	=	now.getTimezoneOffset()
let	dst	=	60

date.html

Next,	add	statements	to	turn	off	daylight	saving	time	from	November	3	to
March	10
if((now.getMonth()	<	3)	&&	(now.getDate()	<	10))
{	dst	=	0	}
if((now.getMonth()	>	9)	&&	(now.getDate()	>	2))
{	dst	=	0	}

Now,	add	a	statement	to	establish	a	time	zone
switch(offset)
{
case	(300	-	dst)	:	offset	=	‘East	Coast’	;	break
case	(360	-	dst)	:	offset	=	‘Central’	;	break
case	(420	-	dst)	:	offset	=	‘Mountain’	;	break
case	(480	-	dst)	:	offset	=	‘Pacific’	;	break
default	:	offset	=	‘All’

}

Finally,	add	statements	to	output	date	and	time	information,	and	an

appropriate	greeting	message
console.log(‘System	Time:	‘	+	now.toString())
console.log(‘UTC	(GMT)	Time:	‘	+	now.toUTCString())
console.log(‘\nWelcome	to	‘	+	offset	+	‘	Visitors’)

Save	the	HTML	document,	then	open	it	in	your	browser	and	launch	the
console	to	see	the	elements	sorted

The	getMonth()	method	returns	a	zero-based	index	number	in	which
March	is	at	position	2	–	more	on	this	in	the	next	example	here.

Discovery	of	the	user’s	local	time	zone	could	be	used	to	direct	the
browser	to	a	page	relevant	to	that	time	zone	–	for	example,	a	page
containing	only	Californian	distributors	for	users	in	the	Pacific	time	zone.
But	be	aware	that	system	time	information	can	be	easily	changed	by	the
user	to	any	time,	date,	or	time	zone,	so	may	not	necessarily	report	their
actual	location.

Extract	Calendar
A	JavaScript	Date	object	provides	separate	methods	to	extract	each	of	its	date
components	for	the	year,	month	name,	day	of	the	month,	and	the	day	name:

Method Returns

getFullYear() Year	as	four	digits	(yyyy)

getMonth() Month	as	index	number	(0-11)

getDate() Day	as	number	(1-31)

getDay() Weekday	as	index	number	(0-6)

The	Date	object’s	getFullYear()	method	returns	the	year	as	a	four-digit	number,
such	as	2025,	and	the	Date	object’s	getDate()	method	returns	the	day	number	of
the	month	–	so	that	on	the	first	day	of	the	month	it	returns	1.

For	reasons	of	internationalization,	getMonth()	and	getDay()	return	index	number
values	that	must	be	converted	to	the	local	language	month	and	day	names	by	the
script.	The	conversion	is	easily	made	for	month	names	by	creating	an	array	of	all
month	names,	starting	with	January,	then	using	the	index	number	returned	by
getMonth()	to	reference	the	appropriate	month	name	from	the	array	element.

Similarly,	the	conversion	is	made	for	day	names	by	creating	an	array	of	all	day
names,	starting	with	Sunday,	then	using	the	index	number	returned	by	the
getDay()	method	to	reference	the	appropriate	day	name	from	the	array	element.

The	various	components	can	then	be	assembled	into	a	date	string	arranged
according	to	the	preferred	date	format	of	any	locale.

Create	an	HTML	document	with	a	self-invoking	function	that	begins	by
initializing	three	variables
const	days	=	[‘Sun’,	‘Mon’,	‘Tue’,	‘Wed’,	‘Thu’,	‘Fri’,	‘Sat’]

const	months	=	[‘Jan’,	‘Feb’,	‘Mar’,	‘Apr’,	‘May’,	‘Jun’,	‘Jul’,	‘Aug’,	‘Sep’,	‘Oct’,
‘Nov’,	‘Dec’]
const	now	=	new	Date()

calendar.html

Next,	add	statements	to	extract	individual	date	components	using
methods	of	the	Date	object
let	year	=	now.getFullYear()
let	month	=	now.getMonth()
let	dayNumber	=	now.getDate()
let	dayName	=	now.getDay()

Now,	add	statements	to	convert	the	extracted	index	numbers	to	month
name	and	day	name	values
month	=	months[month]
dayName	=	days[dayName]

Then,	concatenate	the	date	components	into	date	strings	–	in	both
American	and	British	date	formats
let	usDate	=	dayName	+	‘,	‘	+	month	+	‘	‘	+	dayNumber	+	‘,	‘	+	year
let	ukDate	=	dayName	+	‘,	‘	+	dayNumber	+	‘	‘	+	month	+	‘,	‘	+	year

Finally,	add	statements	to	output	each	date	string
console.log(‘U.S.	Date:	‘	+	usDate)
console.log(‘U.K.	Date:	‘	+	ukDate)

Save	the	HTML	document,	then	open	it	in	your	browser	and	launch	the
console	to	see	the	formatted	date	strings

Month	indexing	starts	at	zero	(0),	not	one	(1)	–	so	for	example	March	is
at	index	[2]	not	at	[3].

Extract	Time
A	JavaScript	Date	object	provides	separate	methods	to	extract	each	of	its	time
components	for	the	hour,	the	minute,	the	second,	and	the	millisecond:

Method Returns

getHours() Hour	as	number	(0-23)

getMinutes() Minute	as	number	(0-59)

getSeconds() Second	as	number	(0-59)

getMilliseconds() Millisecond	as	number	(0-999)

The	Date	object’s	getHours()	method	returns	the	hour	in	24-hour	format	–	as	a
value	in	the	range	0-23.	The	getMinutes()	and	getSeconds()	methods	both	return	a
value	in	the	range	0-59.	There	is	also	a	getMilliseconds()	method	for	even	greater
precision	that	returns	a	value	in	the	range	0-999.

The	values	of	each	component	can	be	concatenated	into	a	time	string	but	it	is
often	preferable	to	add	a	leading	zero	to	single	minute	and	second	values	for
better	readability.	For	example,	10:05:02	is	preferable	to	10:5:2.

An	appropriate	greeting	string	can	be	created	by	examining	the	hour	value	to
establish	whether	the	user’s	system	time	is	currently	morning,	afternoon,	or
evening.

For	situations	where	a	12-hour	time	format	is	desirable,	an	“AM”	or	“PM”	suffix
can	be	created	by	examining	the	hour	value	and	all	PM	hour	values	reduced	by
12.	For	example,	13:00	can	be	transformed	to	1:00	PM.

Time	components	are	based	upon	the	user’s	system	time	–	which	may
not	be	accurate.

Create	an	HTML	document	with	a	self-invoking	function	that	begins	by
initializing	five	variables
const	now	=	new	Date()
let	hour	=	now.getHours()
let	minute	=	now.getMinutes()
let	second	=	now.getSeconds()
let	millisecond	=	now.getMilliseconds()

time.html

Next,	add	statements	to	prefix	a	zero	to	minute	and	second	values	below
10
if(minute	<	10)	{	minute	=	‘0’	+	minute	}
if(second	<	10)	{	second	=	‘0’	+	second	}

Now,	concatenate	the	time	components	into	a	string,	then	output	that
string
let	time	=	‘It	is	now:	‘	+	hour	+	‘:’	+	minute	+	‘:’	+

second	+	‘	and	‘	+	millisecond	+	‘	milliseconds’
console.log(time)

Then,	output	a	greeting	appropriate	to	the	current	time	add	statements	to
output	each	date	string
let	greeting	=	‘Good	Morning!’
if(hour	>	11)	{	greeting	=	‘Good	Afternoon!’	}
if(hour	>	17)	{	greeting	=	‘Good	Evening!’	}
console.log(greeting)

Finally,	output	the	time	in	a	12-hour	format
let	suffix	=	(hour	>	11)	?	‘	P.M.’	:	‘	A.M.’
if(hour	>	12)	{	hour	-=	12	}
console.log(‘Time	is:	‘	+	hour	+’:’	+	minute	+	suffix)

Save	the	HTML	document,	then	open	it	in	your	browser	and	launch	the
console	to	see	the	formatted	time	strings

The	Date	object	also	provides	methods	to	retrieve	the	UTC	equivalent	of
each	date	and	time	component	–	for	example,	methods	getUTCMonth(),
and	getUTCHours().

Set	Dates
The	JavaScript	Date()	constructor	can	optionally	specify	two	to	seven	arguments
to	set	values	for	each	of	its	components,	like	this:

new	Date(year,	month,	date,	hours,	minutes,	seconds,	milliseconds)

When	only	the	minimum	year	and	month	are	specified,	the	date	component	is	set
to	one	(1),	and	all	time	components	are	set	to	zero	(0).

The	Date	object	also	provides	separate	methods	to	specify	the	value	of	each	of	its
date	and	time	components	individually:

Method Sets

setDate() Day	as	number	(1-31)

setFullYear() Year	as	four	digits	(yyyy)

setMonth() Month	as	number	(0-11)

setHours() Hour	as	number	(0-23)

setMinutes() Minute	as	number	(0-59)

setSeconds() Second	as	number	(0-59)

setMilliseconds() Millisecond	as	number	(0-999)

The	setMonth()	method	sets	the	month	numerically	in	the	range	where
0=January-11=December	and,	optionally,	the	setFullYear()	method	can	also	set
the	month	and	day	using	this	syntax:

date.setFullYear(year	,	monthNumber	,	dayNumber)

The	values	of	each	set	component	can	be	revealed	by	displaying	the	entire	Date
object.	Additionally,	all	Date	objects	have	methods	to	output	a	variety	of	strings

displaying	date	and	time.	The	toString()	method	converts	the	date	to	a	string
value;	the	toUTCString()	method	converts	the	date	to	its	UTC	equivalent;	and	the
toLocaleString()	method	displays	the	date	using	the	computer’s	locale
conventions.	Useful	toDateString()	and	toTimeString()	methods	can	display	date
and	time	components.

The	toString()	method	returns	the	string	value	of	any	JavaScript	object
and	has	many	uses.

Create	an	HTML	document	with	a	self-invoking	function	that	begins	by
creating	a	4th-of-July	Date	object
const	holiday	=	new	Date(2025,	6,	4)
console.log(‘Object:	‘	+	holiday)

setdate.html

Next,	add	statements	to	modify	individual	date	components	to	become	a
Christmas	Day	at	noon
holiday.setFullYear(2028)
holiday.setMonth(11)
holiday.setDate(25)
holiday.setHours(12)
holiday.setMinutes(0)
holiday.setSeconds(0)
holiday.setMilliseconds(0)

Now,	add	statements	to	output	the	modified	date	and	time	and	its
equivalent	UTC	(GMT)	time
console.log(‘String:	‘	+	holiday.toString())
console.log(‘UTC:	‘	+	holiday.toUTCString())

Then,	add	statements	to	output	the	modified	date	and	time	in	locale
string,	date	string,	and	time	string	formats
console.log(‘Locale:	‘	+	holiday.toLocaleString())

console.log(‘Date:	‘	+	holiday.toDateString())
console.log(‘Time:	‘	+	holiday.toTimeString())

Save	the	HTML	document,	then	open	it	in	your	browser	and	launch	the
console	to	see	set	date	and	time	strings

The	Date	object	also	has	a	setTime()	method	that	accepts	an	argument
of	the	number	of	milliseconds	since	the	epoch	–	each	day	has
86,400,000	milliseconds,	so	setTime(86400000)	sets	the	date	Jan	1,
1970.

Match	Patterns
The	RegExp	object	is	a	JavaScript	built-in	object	that	can	contain	a	“regular
expression”	pattern	–	describing	a	string	of	characters.	Regular	expressions	are
useful	for	text	validation	and	for	search-	and-replace	operations	within	text	by
matching	their	specified	pattern	to	a	section	of	the	text.

A	regular	expression	pattern	may	consist	entirely	of	literal	characters	between	/	/
describing	a	character	string	to	match.	For	example,	the	regular	expression	/wind/
finds	a	match	in	“windows”	–	the	pattern	quite	literally	matches	the	string	in	the
text.	More	typically,	a	regular	expression	pattern	consists	of	a	combination	of
literal	characters	and	these	“metacharacters”:

Metacharacter Matches Example

. Any	Characters ja..pt

^ First	Characters ^ja

$ Final	Characterspt$

* Zero	Or	More	Repetitions ja*

+ One	Or	More	Repetitions ja+

? Zero	Or	One	Repetition ja?

{	} Multiple	Repetitions ja{	3	}

[] Character	Class [a-z]

\ Any	Digits \d

| Either	Optional	Character a	|	b

() Expression	Group (...)

The	pattern	may	also	include	an	i	modifier	after	the	final	/	character,	to	perform	a

case-insensitive	search,	or	a	g	modifier	to	perform	a	global	search	for	all	matches
of	the	pattern.

A	RegExp	object	has	a	test()	method	that	returns	true	when	a	match	is	found,	or
false	otherwise.	A	RegExp	object	also	has	an	exec()	method	that	returns	a	null
value	if	no	match	was	found,	or	the	text	found	if	the	search	was	successful,	and
its	index	property,	which	contains	the	character	position	where	the	match	begins.

The	topic	of	regular	expressions	is	extensive	and	beyond	the	remit	of	this
book	–	but	a	brief	introduction	is	provided	here	for	completeness.

The	character	class	[a-z]	matches	only	lowercase	characters	but	[a-z0-9]
also	matches	digits.

Create	an	HTML	document	with	a	self-invoking	function	that	begins	by
initializing	three	variables
const	system	=	‘Windows’,	suite	=	‘Office’	pattern	=	/ice/i

regexp.html

Next,	add	statements	to	output	two	search	results
console.log(‘In	‘	+	system	+’?	‘	+	pattern.test(system))
console.log(‘In	‘	+	suite	+	‘?	‘	+	pattern.test(suite))

Now,	add	statements	to	output	the	text	match	and	position,	or	a	message
if	unsuccessful
let	result	=	pattern.exec(suite)

if(result)
{
console.log(‘Found:	‘	+	result	+	‘	at	‘	+	result.index)

}
else	{	console.log(‘No	Match	Found’)	}

Then,	add	statements	to	output	the	result	of	an	attempt	to	validate	a	badly
formatted	email	address
let	email	=	‘mike@example’
const	format	=	/.+\@.+\..+/
console.log(email	+	‘	Valid?	‘	+	format.test(email))

The	regular	expression	used	here	tests	only	the	most	basic	email	format
requirements.

Finally,	add	statements	to	correct	the	address	format	and	output	the
validation	result
email	+=	‘.com’
console.log(email	+	‘	Valid?	‘	+	format.test(email))

Save	the	HTML	document,	then	open	it	in	your	browser	and	launch	the
console	to	see	regular	expression	matches

The	character	index	begins	at	zero,	so	the	fourth	character	is	at	index
position	3.

Meet	JSON

JavaScript	Object	Notation	(“JSON”)	is	a	popular	text	format	that	is	used	to
store	and	exchange	data.	It	is	a	subset	of	the	JavaScript	language	in	which	data	is
stored	as	a	comma-separated	list	of	key:value	pairs	within	a	JSON	object.	All
keys	must	be	of	the	String	data	type,	enclosed	in	double	quote	marks,	and	their
associated	values	may	only	be	one	of	these	data	types:

• String	–	enclosed	within	double	quotes,	not	single	quotes.

• Number	–	either	integer	or	floating	point.

• Object	–	a	JSON	object.

• Array	–	but	not	a	Function	or	a	Date.

• boolean	–	either	true	or	false.

• null	–	but	not	undefined.

JSON	key:value	pairs	are	enclosed	in	curly	brackets,	like	this:

{“name”:”Alice”,”age”:21,”city”:”New	York”}

You	can	easily	convert	a	JavaScript	object	to	a	JSON	object	by	specifying	it	as
the	argument	to	a	JSON.stringify()	method.

Conversely,	you	can	convert	a	JSON	object	to	a	JavaScript	object	by	specifying
it	as	the	argument	to	a	JSON.parse()	method.

Typically,	JSON	objects	store	data	in	a	text	file	with	a	.json	file	extension	as	an
online	resource.	A	web	page	script	may,	therefore,	receive	data	in	JSON	format
from	a	web	server.

After	converting	a	JSON	object	to	a	JavaScript	object,	with	the	JSON.parse()
method,	the	data	can	be	addressed	as	usual	with	dot	notation,	or	with	bracket
notation.

Both	JSON	and	XML	(eXtensible	Markup	Language)	can	be	used	to	receive
data	from	a	web	server,	but	JSON	is	considered	better	because	you	need	to	loop
through	the	elements	to	extract	data	from	the	XML	format,	whereas	the
JSON.parse()	method	simply	returns	a	string	of	all	the	data.

Usefully,	JavaScript	can	fetch	data	from	online	JSON	resources	for	use	in	web
applications.

You	can	find	a	free	JSON	object	validator	online	at	jsonlint.com

Begin	a	script	with	a	self-invoking	function	that	creates	a	JavaScript
object	containing	a	String	and	an	Array
let	obj	=	{	category	:	’Fashion’	,
models	:	[{	name	:	’Alice’,	age	:	21,	city	:	’New	York’	}	,

{	name	:	’Kelly’,	age	:	23,	city	:	’Las	Vegas’	}]	}

json.html

Next,	create	a	JSON	version	of	the	JavaScript	object	and	print	it	out
let	json_obj	=	JSON.stringify(obj)
console.log(json_obj)

Now,	create	a	JavaScript	version	of	the	JSON	object	and	print	it	out	for
comparison
let	new_obj	=	JSON.parse(json_obj)
console.log(new_obj)

Finally,	print	out	selected	values	using	both	dot	notation	and	bracket
notation
console.log(new_obj[‘category’])
console.log(new_obj.models[0].name)
console.log(new_obj[‘models’][1][‘name’])

Save	the	HTML	document	then	open	it	in	a	web	browser	and	launch	the

http://www.jsonlint.com

Console	in	Developer	Tools	to	compare	the	objects

See	that	the	JSON	object	has	all	String	values	within	double	quotes.

Make	Promises
JavaScript	is	a	single-threaded	“synchronous”	language.	This	means	that	only
one	operation	can	be	executed	at	any	given	time.	As	the	script	proceeds,	each
operation	is	added	to	a	“call	stack”,	then	executed	(in	top-down	order)	–	then
removed	from	the	stack.

There	are,	however,	some	functions	that	are	handled	by	a	browser	API
(“Application	Programming	Interface”),	rather	than	by	the	JavaScript	engine.
For	example,	the	setTimeout()	method	is	handled	by	the	browser	–	so	that	other
operations	can	be	executed	while	waiting	for	the	timer	to	end.	When	the	timer
does	end	it	passes	the	operation	to	a	“callback	queue”,	then	(when	it	reaches	the
front	of	the	queue)	it	gets	executed.	This	entire	process	is	controlled	by	an
“event	loop”	that	constantly	monitors	the	state	of	the	call	stack	and	callback
queue.

In	JavaScript,	a	Promise	object	represents	the	eventual	completion,	or	failure,	of
an	asynchronous	operation	and	its	resulting	value.	Its	status	may	be	either
pending,	resolved	(completed),	or	rejected	(failed).

You	create	a	promise	using	the	JavaScript	new	keyword	and	the	Promise()
constructor.	This	accepts	a	function	as	its	argument,	which	in	turn	accepts	the
names	of	two	functions	that	specify	what	to	do	when	the	promise	is	resolved	or
rejected.

Each	JavaScript	promise	has	then()	and	catch()	methods	that	can	be	“chained”
after	the	promise	object	using	dot	notation.	The	then()	method	can	handle	the
resulting	value	of	the	asynchronous	operation,	and	the	catch()	method	can	handle
errors	if	rejected.

Web	browsers	have	several	APIs,	including	the	Fetch	API,	which	is	used
to	grab	resources	over	a	network.

You	can	chain	several	then()	method	calls	onto	a	promise,	but	only	one
will	receive	the	resolved	result.

Begin	a	script	with	a	self-invoking	function	that	creates	a	JavaScript
Promise	object	that	will	execute	one	of	two	functions	after	a	one-second
delay
const	promise	=	new	Promise(function(resolve,	reject)	{
let	random	=	Math.round(Math.random()	*	10)

if	(random	%	2	===	0)
{	setTimeout(function()	{	resolve(random)	},	1000)	}
else
{	setTimeout(function()	{	reject(random)	},	1000)	}

})

promise.html

Next,	add	a	statement	with	chained	methods	that	display	the	promise
status	and	handle	the	returned	values
promise

.then(console.log(promise))

.then(function(res)	{	console.log(res	+	‘	Is	Even’)	})

.catch(function(err)	{	console.log(err	+	‘	Is	Odd’)	})

Save	the	HTML	document	then	open	it	in	a	web	browser	and	launch	the
Console	in	Developer	Tools	to	see	the	asynchronous	operations

Notice	how	the	Console	provides	the	line	number	of	the	promise	and	of
the	function	that	handled	the	result.

Fetch	Data
Web	browsers	support	a	Fetch	API	that	can	be	used	in	JavaScript	to	grab
resources	over	a	network.	The	fetch()	method	accepts	a	single	argument,	which	is
the	URL	of	the	resource	to	be	grabbed.

The	fetch()	method	is	asynchronous,	so	that	means	other	operations	can	be
executed	while	waiting	for	the	resource	to	arrive.	On	completion,	the	fetch()
method	returns	a	Promise	object,	which	contains	a	response	(an	HTTPResponse
object).

Typically,	the	fetch()	method	can	grab	a	JSON	resource	and	parse	it	using	a	json(
)	method	of	the	HTTPResponse	object.	The	returned	JSON	data	can	then	be	passed
as	an	argument	to	the	next	chained	promise	method,	which	can	in	turn	pass	the
JSON	data	to	a	handler	function.	The	syntax	of	the	process	looks	like	this:

fetch(url)
.then(function(response)	{	return	response.json()	})
.then(function(data)	{	return	handler(data)	})
.catch(function(err)	{	return	console.log(err)	})

Arrow	Function	Expressions
The	function	definitions	above	can,	optionally,	be	written	more	concisely	as
JavaScript	=>	arrow	function	expressions.	This	allows	you	to	omit	the	function
keyword,	like	this:
.then((response)	=>	{	return	response.json()	})

If	the	function	body	contains	only	one	statement,	and	that	statement	returns	a
value,	you	can	also	omit	the	curly	brackets	and	the	return	keyword	from	the	=>
arrow	function,	like	this:

.then((response)	=>	response.json())

Any	parameters	can	appear	as	a	comma-separated	list	within	the	round	()
brackets,	as	usual,	but	if	there	is	only	one	parameter	you	can	even	omit	the

brackets	from	the	=>	arrow	function	–	so	the	entire	syntax	of	the	process	can,
optionally,	look	like	this:

fetch(url)
.then(response	=>	response.json())
.then(data	=>	handler(data))
.catch(err	=>	console.log(err))

This	is	more	readable,	but	you	should	be	aware	that	=>	arrow	functions	treat	the
this	keyword	differently	to	regular	functions.

With	arrow	functions,	the	this	keyword	represents	the	object	in	the
originating	context,	whereas	with	regular	functions,	the	this	keyword
represents	the	object	that	calls	the	function.

Open	a	plain	text	editor,	such	as	Windows’	Notepad	app,	then	create	a
JSON	document	with	an	object	containing	five	key:value	pairs

weekdays.json

Save	the	JSON	document	in	the	“htdocs”	folder	of	a	web	server	–	so	it
will	be	accessible	over	the	network

Begin	a	script	with	an	asynchronous	HTTP	request	by	creating	a	promise
that	must	be	resolved	by	grabbing	data
fetch(‘	http://localhost/weekdays.json’)
.then(response	=>	response.json())

.then(data	=>	list(data))

.catch(err	=>	console.log(err))

fetch.html

Now,	create	the	function	to	print	out	the	data
function	list(data)	{
const	values	=	Object.values(data)
let	i	=	0
while(i	<	values.length)	{	console.log(values[i])	;	i++	}

}

Save	the	HTML	document	alongside	the	JSON	document,	then	open	the
web	page	via	HTTP	and	launch	the	Console	in	Developer	Tools	to	see
the	data

Summary
• Custom	objects	are	assigned	properties	as	a	comma-separated	list	of

name:value	pairs	within	{	}	curly	brackets.

• Object	property	values	can	be	referenced	using	dot	notation	syntax	or	by
quoting	their	name	between	[]	square	brackets.

• Object	methods	are	called	by	appending	()	parentheses	after	the	object’s
method	name.

• The	JavaScript	built-in	Array	object	stores	items	in	individual	elements	that
are	numbered	starting	at	zero.

• Values	can	be	assigned	to	an	array	as	a	comma-separated	list	within	[]	square
brackets.

• The	value	in	an	array	element	is	referenced	by	enclosing	its	index	number	in	[
]	square	brackets	after	the	object	name.

• Each	Array	object	has	a	length	property	and	methods	that	can	be	used	to
manipulate	the	elements	in	the	array.

• The	JavaScript	built-in	Date	object	provides	separate	methods	to	extract	each
of	its	date	and	time	components.

• The	JavaScript	Date()	constructor	can	optionally	specify	two	to	seven
arguments	to	set	values	for	each	of	its	components.

• The	Date	object	also	provides	separate	methods	to	set	the	value	of	each	of	its
date	and	time	components	individually.

• The	JavaScript	built-in	RegExp	object	can	contain	a	regular	expression	pattern
that	describes	a	string	of	characters.

• The	RegExp	object	has	test()	and	exec()	methods	that	search	a	specified	string
argument	for	a	match	to	its	pattern.

• The	JavaScript	JSON	object	stores	data	as	a	comma-separated	list	of
key:value	pairs	where	each	key	must	be	a	String	type.

• The	JSON	object	has	parse()	and	stringify()	methods	that	convert	between
JavaScript	and	JSON	object	types.

• The	Promise	object	represents	the	eventual	completion	or	failure	of	an

asynchronous	operation	and	its	resulting	value.

• The	then()	and	catch()	methods	can	be	chained	after	a	Promise	object	or	the
fetch()	method	to	handle	results.

19

Control	Strings	&	Numbers

This	chapter	describes	and	demonstrates	methods	of	the	JavaScript	built-in	Math	and	String	objects.

Calculate	Areas
Compare	Numbers

Round	Decimals
Generate	Randoms
Unite	Strings
Split	Strings

Find	Characters
Trim	Strings
Summary

Calculate	Areas

JavaScript	has	a	built-in	Math	object	that	provides	a	number	of	useful	methods
and	constant	mathematical	values.	The	constants	are	listed	in	the	table	below,
together	with	their	approximate	value:

Constant Description

Math.E Constant	E,	base	of	the	natural	logarithm,	with	an	approximate	value
of	2.71828

Math.LN2 The	natural	logarithm	of	2,	with	an	approximate	value	of	0.69315

Math.LN10 The	natural	logarithm	of	10,	with	an	approximate	value	of	2.30259

Math.LOG2E The	base-2	logarithm	of	constant	E,	with	an	approximate	value	of
1.44269

Math.LOG10E The	base-10	logarithm	of	constant	E,	with	an	approximate	value	of
0.43429

Math.PI The	constant	PI,	with	an	approximate	value	of	3.14159

Math.SQRT1_2 The	square	root	of	0.5,	with	an	approximate	value	of	0.70711

Math.SQRT2 The	square	root	of	2,	with	an	approximate	value	of	1.41421

There	is	no	need	to	create	an	instance	of	the	Math	object	as	it	is	globally	available
by	default,	so	Math	constants	and	methods	are	accessible	from	anywhere	in	your
script	via	the	Math	object	and	dot	notation	syntax.

The	Math	constants	are	mostly	used	in	scripts	that	have	a	particular	mathematical
purpose,	but	all	the	Math	constants	are	listed	above	for	completeness.

All	the	Math	methods	are	listed	here.

Create	an	HTML	document	with	a	self-invoking	function	that	begins	by
initializing	a	variable
let	radius	=	4
console.log(‘\nRadius	of	Circle:	‘	+	radius)

constants.html

Next,	add	statements	to	perform	a	mathematical	calculation	and	display
the	result	in	output
let	area	=	Math.PI	*	(radius	*	radius)
console.log(‘\nArea	of	Circle:	‘	+	area)

Now,	add	statements	to	perform	another	mathematical	calculation	and
display	the	result	in	output
let	circumference	=	2	*	(Math.PI	*	radius)
console.log(‘\nPerimeter	of	Circle:	‘	+	circumference)

Then,	add	statements	to	perform	a	final	mathematical	calculation	and
display	the	result	in	output
let	cube	=	(radius	*	radius	*	radius)
let	volume	=	((4	/	3)	*	Math.PI)	*	cube
console.log(‘\nVolume	of	Sphere:	‘	+	volume)

Save	the	HTML	document,	then	open	it	in	your	browser	and	launch	the
console	to	see	the	mathematical	results

All	Math	constant	names	must	be	stated	in	uppercase	–	for	example,	be
sure	to	use	Math.PI	rather	than	Math.pi.

Compare	Numbers

The	built-in	Math	object	provides	these	useful	methods:

Method Returns

Math.abs() An	absolute	value

Math.acos() An	arc	cosine	value

Math.asin() An	arc	sine	value

Math.atan() An	arc	tangent	value

Math.atan2() An	angle	from	an	X-axis	point

Math.ceil() A	rounded-up	value

Math.cos() A	cosine	value

Math.exp() An	exponent	of	constant	E

Math.floor() A	rounded-down	value

Math.log() A	natural	logarithm	value

Math.max() The	larger	of	two	numbers

Math.min() The	smaller	of	two	numbers

Math.pow() A	power	value

Math.random() A	pseudo-random	number

Math.round() The	nearest	integer	value

Math.sin() A	sine	value

Math.sqrt() A	square	root	value

Math.tan() A	tangent	value

Create	an	HTML	document	with	a	self-invoking	function	that	begins	by
initializing	two	variables
let	square	=	Math.pow(5,	2)					//	5	to	power	2	(5	x	5)

let	cube	=	Math.pow(4,	3)								//	4	to	power	3	(4	x	4	x	4)

math.html

Next,	add	statements	to	display	the	largest	and	smallest	of	these	two
positive	variable	values	in	output
console.log(‘\nLargest	Positive:	‘	+	Math.max(square,	cube))
console.log(‘\nSmallest	Positive:	‘	+	Math.min(square,	cube))

Now,	add	statements	to	reverse	the	numerical	polarity	of	each	variable	–
making	positive	values	into	negative	values
square	*=	-1
cube	*=	-1

Then,	add	statements	to	display	the	largest	and	smallest	of	these	two
negative	variable	values	in	output
console.log(‘\nLargest	Negative:	‘	+	Math.max(square,	cube))
console.log(‘\nSmallest	Negative:	‘	+	Math.min(square,	cube))

Save	the	HTML	document,	then	open	it	in	your	browser	and	launch	the
console	to	see	the	numerical	comparisons

The	largest	negative	value	is	the	one	closest	to	zero.

Round	Decimals
The	built-in	JavaScript	Math	object	provides	three	methods	for	rounding	floating-
point	numbers	to	integer	values.	Each	method	takes	the	floating-point	value	as
its	argument	and	returns	an	integer.	The	Math.ceil()	method	rounds	up,	the
Math.floor()	method	rounds	down,	and	the	Math.round()	method	rounds	up	or	down
to	the	nearest	integer.

When	handling	floating-point	values	it	is	important	to	recognize	a	discrepancy
that	exists	between	the	prevailing	computer	floating-point	math	standard,	as
defined	by	the	IEEE	(Institute	of	Electrical	and	Electronics	Engineers),	and
generally	accepted	mathematical	accuracy.	This	exists	because	some	decimal
numbers	cannot	be	exactly	translated	into	binary	form.	For	example,	the	decimal
number	81.66	cannot	be	exactly	translated	to	binary,	so	–	the	expression	81.66	*
15	returns	1224.8999999999999	rather	than	the	mathematically	accurate	figure	of
1224.9.

Some	programming	languages	provide	automatic	rounding	to	overcome	floating-
point	discrepancies,	but	JavaScript	does	not	so	care	must	be	taken,	especially
with	monetary	values,	to	avoid	mathematically	erroneous	results.	The
recommended	procedure	is	to	first	multiply	the	floating-point	value	by	100,	then
perform	the	arithmetical	operation,	and	finally	divide	the	result	by	100	to	return
to	the	same	decimal	level.

A	similar	procedure	can	be	used	to	commute	long	floating-point	values	to	just
two	decimal	places.	After	multiplying	a	value	by	100,	the	Math.round()	method
can	be	employed	to	round	the	value,	then	division	by	zero	returns	to	two	decimal
places.

Procedures	that	multiply,	operate,	then	divide,	can	be	written	as	individual	steps
or	parentheses	can	be	used	to	determine	the	order	in	a	single	succinct	expression.
For	example,	commuting	a	long	floating-point	value	in	a	variable	named	“num”
can	be	written	as:

num	=	num	*	100
num=	Math.round(num)
num	/=	100

or	alternatively	as:

num	=	(Math.round(num	*	100))	/	100

The	Math.round()	method	rounds	up	by	default	–	so	Math.round(7.5)
returns	8,	not	7	and	Math.round(-7.5)	returns	-7,	not	-8.

Create	an	HTML	document	with	a	self-invoking	function	that	begins	by
initializing	a	variable
let	bodyTemp	=	98.6

round.html

Next,	add	statements	to	display	closest	integers	to	the	floating-point
value
console.log(‘Ceiling:	‘	+	Math.ceil(bodyTemp))
console.log(‘Floor:	‘	+	Math.floor(bodyTemp))
console.log(‘Round:	‘	+	Math.round(bodyTemp))

Now,	add	statements	to	display	an	incorrectly	calculated	result	of	an
expression	and	a	corrected	equivalent
console.log(‘\nImprecision:	‘	+	(81.66	*	15))

console.log(‘Corrected:	‘	+	(((81.66	*	100)	*	15)	/	100))

Then,	add	statements	to	display	a	long	floating-point	value	and	a
commuted	equivalent
console.log(‘\nFloat:	‘	+	Math.PI)

console.log(‘Commuted:	‘	+
((Math.round	(Math.PI	*	100)	/	100)))

Save	the	HTML	document,	then	open	it	in	your	browser	and	launch	the
console	to	see	the	rounded	numbers

Expressions	in	innermost	parentheses	are	evaluated	first.

Generate	Randoms
The	JavaScript	Math.random()	method	returns	a	random	floating-point	number
between	0.0	and	1.0.	This	can	be	used	for	a	variety	of	web	page	effects	that
require	a	generated	random	number.	Multiplying	the	random	floating-point	value
will	increase	its	range.	For	example,	multiplying	it	by	10	increases	the	range	to
become	0.0-10.0.

Generally,	it	is	useful	to	round	the	random	value	up	with	the	Math.ceil()	method
so	that	the	range	becomes	1-10.

The	process	of	specifying	the	range	for	a	random	number	value	can	be	written	as
individual	steps,	or	parentheses	can	be	used	to	determine	the	order	in	a	single
expression.	For	example,	specifying	a	range	of	1-10	for	a	variable	named	“rand”
can	be	written	as:

let	rand	=	Math.random()
rand	*=	10
rand	=	Math.ceil(rand)

or	alternatively	as:

let	rand	=	Math.ceil(Math.random()	*	10)

A	series	of	unique	random	numbers	can	be	generated	within	a	specified	range.
For	example,	to	produce	a	random	lottery	numbers	selection	within	the	range	1-
59:

Create	an	HTML	document	with	a	self-invoking	function	that	begins	by
declaring	five	variables
let	i,	rand,	temp,	nums	=	[]
let	str	=	‘\n\nYour	Six	Lucky	Numbers:	‘

random.html

Next,	add	a	loop	to	fill	array	elements	1-59	with	their	respective	index
number
for(i	=	1	;	i	<	60	;	i++)	{	nums[i]	=	i	}

Now,	add	a	loop	to	randomize	the	numbers	in	the	array	elements
for(i	=	1	;	i	<	60	;	i++)
{
rand	=	Math.ceil(Math.random()	*	59)
temp	=	nums[i]
nums[i]	=	nums[rand]
nums[rand]	=	temp

}

Step	3	contains	an	algorithm	that	shuffles	the	numbers	and	ensures	no
two	elements	contain	the	same	number.

Then,	add	a	loop	to	append	a	hyphenated	list	of	six	element	values	to	the
string	variable
for(i	=	1	;	i	<	7	;	i++)
{
str	+=	nums[i]
if(i	!==	6)	{	str	+=	‘	-	‘	}

}

Finally,	add	a	statement	to	output	the	string	variable
console.log(str)

Save	the	HTML	document,	then	open	it	in	your	browser	and	launch	the
console	to	see	a	unique	selection	of	random	numbers	within	the	specified
range	each	time	the	script	is	executed

Here,	the	random	numbers	are	in	the	range	1	to	59	–	to	play	the	UK	Lotto
game	or	the	US	New	York	Lotto	game.

Unite	Strings
JavaScript	has	a	String	object	that	provides	useful	methods	to	manipulate	string
values.	There	is,	however,	no	need	to	create	instances	of	the	String	object	with
the	new	keyword	and	the	String()	constructor,	as	its	methods	can	simply	be
applied	to	string	variables	using	dot	notation.	For	example,	str.toUpperCase()
returns	all	characters	of	a	string	variable	named	“str”	in	uppercase,	whereas
str.toLowerCase()	returns	all	its	characters	in	lowercase.

There	is	also	a	string	length	property	that	stores	the	total	number	of	characters	in
a	string.

Many	of	the	examples	listed	earlier	use	the	+	concatenation	operator	to	unite
multiple	strings	but,	alternatively,	the	string	concat()	method	can	be	used	to
append	one	or	more	strings	supplied	as	a	comma-separated	list	of	arguments.

The	eval()	built-in	function	is	also	used	to	unite	strings	and	variables	by	some
script	authors	–	but	this	absolutely	should	be	avoided.	The	eval()	function
directly	calls	the	JavaScript	compiler	to	compile	its	string	argument	into	a
JavaScript	statement:

• If	the	string	represents	an	expression,	eval()	will	evaluate	that	expression	–
for	example,	eval(‘1	+	1’)	returns	2.

• If	the	string	represents	a	statement,	or	sequence	of	statements,eval(will
evaluate	the	last	statement	–	for	example,	the	code	eval(‘let	num	=	100	;	alert(
num)’)	produces	an	alert	dialog.

This	use	of	eval()	incurs	a	large	cost	in	script	performance	and	is	unnecessary	in
almost	every	case	as	there	is	usually	a	more	efficient	and	elegant	solution.
Furthermore,	the	eval()	function	can	have	security	implications	if	the	script
allows	user	input	to	be	evaluated	as	a	JavaScript	instruction.	This	provides	the
opportunity	to	execute	malicious	code.	For	example,	the	code	eval(‘while(true)	;
alert()’)	will	produce	an	infinite	loop	that	locks	the	browser.

Avoid	using	the	eval()	function	because	“eval	can	be	evil”.

Create	an	HTML	document	with	a	self-invoking	function	that	begins	by
declaring	three	variables
let	topic	=	‘JavaScript’
let	series	=	‘in	easy	steps’
let	title	=	‘‘

string.html

Next,	add	statements	to	display	converted	case	versions	of	the	first	two
string	variable	values
console.log(topic	+	‘	>	‘	+	topic.toLowerCase())
console.log(series	+	‘	>	‘	+	series.toUpperCase())

Now,	add	statements	to	append	a	space	and	the	second	string	onto	the
first	string,	then	assign	it	to	the	third	variable	and	output	the
concatenated	string
title	=	topic.concat(‘	‘,	series)
console.log(‘Title:	‘	+	title)

Then,	add	statements	to	display	the	length	of	each	string	in	output
console.log(‘\n’	+	topic	+	‘	-	Length:	‘	+	topic.length)

console.log(series	+	‘	-	Length:	‘	+	series.length)

console.log(title	+	‘	-	Length:	‘	+	title.length)

Save	the	HTML	document,	then	open	it	in	your	browser	and	launch	the
console	to	see	the	string	output

Split	Strings
There	are	several	string	methods	that	allow	a	specified	part	of	a	string	to	be
copied	from	the	full	string.	These	treat	each	string	like	an	array,	in	which	each
element	contains	a	character	or	a	space,	and	can	be	referenced	by	their	index
position.	As	with	arrays,	the	string	index	is	zero-based,	so	the	first	character	is	at
position	zero.

The	start	at	which	to	begin	copying	a	“substring”	can	be	specified	by	stating	its
index	position	as	an	argument	to	the	string’s	substring()	method.	This	will	copy
all	characters	after	that	position	right	up	to	the	end	of	the	string.	Optionally,	a
second	argument	may	be	supplied	to	the	string’s	substring()	method	to	specify
a	subsequent	index	position	as	the	end	of	the	substring.	This	will	then	copy	all
characters	between	the	start	and	end	positions.

An	alternative	way	to	copy	substrings	is	provided	by	the	string	substr()	method.
Like	the	substring()	method,	this	can	take	a	single	argument	to	specify	the	index
position	at	which	to	begin	copying,	and	will	copy	all	characters	after	that
position	right	up	to	the	end	of	the	string.	Unlike	the	substring()	method,	the
substr()	method	may	optionally	be	supplied	with	a	second	argument	to	specify
the	number	of	characters	to	copy	after	the	start	position.

Similarly,	the	string	slice()	method	can	be	used	to	return	all	characters	after	a
start	position,	specified	by	a	single	argument,	or	all	characters	between	two
positions,	specified	as	two	arguments.

It	is	sometimes	useful	to	copy	parts	of	a	string	that	are	separated	by	a	particular
character.	The	separator	character	can	be	specified	as	an	argument	to	the	string
split()	method,	which	will	return	an	array	of	all	substrings	that	exist	between
occurrences	of	that	character.	Optionally,	the	split()	method	may	be	supplied
with	a	second	argument	specifying	the	size	of	the	array	it	should	return.	In	this
case,	each	substring	that	exists	between	the	specified	separator	character	is
returned	until	the	limit	is	reached,	and	the	rest	of	the	string	is	ignored.

None	of	these	string	methods	modify	the	original	string	but	merely	make	a	copy
of	a	particular	part	of	the	original	string.

The	substr()	method	is	invariably	easier	to	use	than	the	substring()
method	–	because	you	need	only	calculate	the	start	position	and	the
substring	length,	not	an	end	position.

The	split()	method	is	used	to	separate	cookie	data	in	the	example	here.

Create	an	HTML	document	with	a	self-invoking	function	that	begins	by
initializing	a	variable
let	definition	=	‘JavaScript	is	the	original	dialect	of	\	the	ECMAScript	standard
language.’

A	\	backslash	character	lets	you	continue	the	string	on	the	next	line.

split.html

Next,	add	statements	to	assign	selected	slices	of	the	string	to	a	second
variable,	then	output	its	value
let	str	=	definition.slice(0,	27)
str	+=	definition.slice(62,	70)

console.log(str)

Now,	add	a	statements	to	output	four	individual	words	of	the	slices
console.log(str.split(‘	‘,	4)

Then,	add	statements	to	assign	selected	substrings	of	the	original	string	to
the	second	variable,	then	output	its	value
str	=	definition.substring(42,	52)
str	+=	definition.substring(10,	17)
str	+=	definition.substr(52,	70)

console.log(str)

Save	the	HTML	document,	then	open	it	in	your	browser	and	launch	the
console	to	see	the	split	string	output

Specify	’’	(an	empty	string	without	any	space)	as	the	separator	to	the	split(
)	function	to	return	an	array	of	individual	characters.

Find	Characters
The	JavaScript	String	object	provides	a	number	of	methods	that	allow	a	string	to
be	searched	for	a	particular	character	or	substring.	The	string	search()	method
takes	a	substring	as	its	argument	and	returns	the	position	at	which	that	occurs	in
the	searched	string,	or	a	-1	value	if	it	is	not	found.	Alternatively,	the	substring
can	be	specified	as	the	argument	to	a	string	match()	method	that	will	return	the
substring	if	it	is	present,	or	the	JavaScript	null	value	if	it	is	absent.

The	string	indexOf()	method	takes	a	substring	as	its	argument	and	returns	the
index	position	of	the	first	occurrence	of	the	substring	when	it’s	present,	or	-1
when	it’s	absent.	The	lastIndexOf()	method	works	in	the	same	way	but	searches
backwards,	from	the	end	of	the	string,	reporting	the	last	occurrence	of	the
substring.

To	discover	the	character	at	a	particular	index	position	in	a	string,	its	index	value
can	be	specified	as	an	argument	to	a	charAt()	method,	or	its	numerical	Unicode
value	can	be	revealed	by	specifying	its	index	value	to	the	charCodeAt()	method.
Conversely,	one	or	more	Unicode	values	can	be	specified	as	arguments	to	the
String.fromCharCode()	method	to	return	their	character	values.

Additionally,	all	occurrences	of	a	character	or	substring	can	be	replaced	by
specifying	their	value	as	the	first	argument	to	the	string	replace()	method,	and	a
replacement	value	as	its	second	argument.

Create	an	HTML	document	with	a	self-invoking	function	that	begins	by
initializing	a	variable	with	a	string	value
let	str	=	‘JavaScript	in	easy	steps’

find.html

Next,	add	statements	to	output	the	results	of	two	case-sensitive	string
searches
console.log(‘”Script”	Search:	‘	+	str.search(‘Script’))
console.log(‘”script”	Search:	‘	+	str.search(‘script’))

Now,	add	statements	to	output	the	results	of	two	case-sensitive	string
matches
console.log(‘\n”Script”	Match:	‘	+	str.match(‘Script’))
console.log(‘”script”	Match:	‘	+	str.match(‘script’))

The	null	keyword	is	not	equivalent	to	a	zero	value,	as	null	has	no	value
whatsoever.

Use	double	quotes	to	include	quote	marks	in	a	string	surrounded	by
single	quotes.

Add	statements	to	output	the	first	and	last	index	positions	of	a	character
if	found	within	the	string
console.log(‘\nindexOf	“s”:	‘	+	str.indexOf(‘s’))
console.log(‘indexOf	“m”:	‘	+	str.indexOf(‘m’))
console.log(‘\nlastIndexOf	“s”:	‘	+	str.lastIndexOf(‘s’))
console.log(‘lastIndexOf	“m”:	‘	+	str.lastIndexOf(‘m’))

Then,	add	statements	to	output	the	first	character	in	the	string	and	its
Unicode	value,	plus	four	characters	specified	by	their	Unicode	values
console.log(‘\ncharAt	0:	‘	+	str.charAt(0))
console.log(‘charCodeAt	0:	‘	+	str.charCodeAt(0))
console.log(‘fromCharCode:	‘	+

String.fromCharCode(74,	97,	118,	97))

Finally,	add	statements	to	output	the	original	string	and	a	modified

version	of	that	string
console.log(‘\nOriginal:	‘	+	str)
console.log(‘Replaced:	‘	+	str.replace(‘easy’,	‘simple’))

Save	the	HTML	document,	then	open	it	in	your	browser	and	launch	the
console	to	see	the	results	output

Unicode	uppercase	A-Z	values	are	65-90,	and	lowercase	a-z	values	are
97-122.

The	replace()	method	returns	a	modified	version	of	the	original	string	but
does	not	actually	change	the	original	string.

Trim	Strings
The	JavaScript	String	object	provides	a	trim()	method	that	removes	whitespace
from	both	ends	of	a	string.	This	is	especially	useful	to	ensure	that	user	input	does
not	have	spaces,	tabs,	or	newline	characters	accidentally	included	by	the	user.

Having	trimmed	whitespace	from	a	string,	you	can	verify	its	first	characters
using	a	startsWith()	method,	and	verify	its	last	characters	using	an	endsWith()
method.	These	each	accept	a	character	or	substring	as	their	argument	and	seek	a
case-sensitive	match	within	the	string.	If	a	match	is	found	they	will	return	true,
otherwise	they	will	return	false	if	no	match	is	found.

An	individual	character	can	be	referenced	by	stating	its	index	position	within	[]
square	brackets	after	the	string	variable	name	–	for	example,	str[0]	to	reference
the	first	letter	of	a	string	in	a	variable	named	“str”.

You	can	also	perform	a	case-sensitive	match	within	a	string	by	specifying	a
character	or	substring	as	the	argument	to	an	includes()	method.	If	a	match	is
found,	this	will	return	true,	otherwise	it	will	return	false	if	no	match	is	found.

If	you	wish	to	construct	a	new	string	containing	multiple	copies	of	an	existing
string,	simply	specify	an	integer	argument	to	a	repeat()	method	to	determine	how
many	times	the	existing	string	should	be	repeated	in	the	newly	created	string.

Create	an	HTML	document	with	a	self-invoking	function	that	begins	by
initializing	a	variable	–	with	a	value	that	contains	whitespace	at	both
ends	of	a	string
let	str	=	‘			Love	For	All,	Hatred	For	None.			’

trim.html

Next,	add	statements	to	output	the	string	and	test	its	beginning	and	end
console.log(‘String:	‘	+	str)
console.log(‘Starts	With	“L”	?	‘	+	str.startsWith(‘L’))
console.log(‘Ends	With	“.”	?	‘	+str.endsWith(‘.’))
console.log(‘First	Letter:	‘	+	str[0])

Now,	add	a	statement	to	assign	a	trimmed	version	of	the	string	to	the
variable
str	=	str.trim()

The	split()	method	is	used	to	remove	whitespace	from	cookie	data	in	the
example	here.

Then,	add	statements	to	output	the	trimmed	string	and	test	its	beginning
and	end,	as	before
console.log(‘Trimmed:	‘	+	str)
console.log(‘Starts	With	“L”	?	‘	+	str.startsWith(‘L’))
console.log(‘Ends	With	“.”	?	‘	+str.endsWith(‘.’))
console.log(‘First	Letter:	‘	+	str[0])

Add	statements	to	see	substrings	within	the	string
console.log(‘\nIncludes	“Hat”	?	‘+	str.includes(‘Hat’))
console.log(‘Includes	“hat”	?	‘+	str.includes(‘hat’))

Finally,	add	a	statement	to	output	10	copies	of	the	trimmed	string
console.log(‘\nRepeat:\n’	+	str.repeat(10))

Save	the	HTML	document,	then	open	it	in	your	browser	and	launch	the
console	to	see	the	results	output

Character	matching	can	alternatively	be	performed	with	the	equality
operator,	such	as	str[0]	===	‘L’

Matching	with	these	methods	is	case-sensitive.

Summary
• The	Math	object	provides	mathematical	constants,	such	as	Math.PI,	and

mathematical	methods,	such	as	Math.max()

• Floating-point	numbers	can	be	rounded	to	the	nearest	integer	using	Math.floor(
),	Math.ceil(),	and	Math.round()	methods.

• JavaScript	does	not	provide	automatic	rounding	to	overcome	floating-point
discrepancies.

• Multiply	floating-point	values	by	100,	perform	the	arithmetic,	then	divide	the
result	by	100	to	avoid	discrepancy	errors.

• The	Math.random()	method	returns	a	random	floating-point	number	between
0.0	and	1.0.

• Multiplying	a	random	floating-point	number	by	10	and	rounding	the	result
with	Math.ceil()	makes	the	range	1-10.

• The	String	object	provides	useful	methods	to	manipulate	string	values,	such	as
toUpperCase()	and	toLowerCase()

• Each	string	has	a	length	property	containing	an	integer	that	is	the	total	number
of	characters	in	that	string.

• Strings	can	be	joined	together	using	the	+	concatenation	operator	or	the	string
concat()	method.

• The	eval()	built-in	function	can	have	security	implications	so	is	best	avoided.

• The	slice()	and	substring()	method	arguments	specify	start	and	end	positions,
but	those	of	the	substr()	method	specify	the	start	position	and	the	number	of
characters	to	copy.

• The	split()	method	returns	an	array	of	all	substrings	that	exist	between
occurrences	of	the	character	specified	as	its	argument.

• The	search(),	match(),	indexOf(),	lastIndexOf(),	and	charAt()	methods	can	be
used	to	seek	characters	within	a	string.

• The	trim()	method	removes	whitespace	from	both	ends	of	a	string.

• The	startsWith(),	endsWith(),	and	includes()	methods	seek	a	case-sensitive
match	within	a	string.

• The	replace()	and	repeat()	methods	create	modified	strings.

20

Address	the	Window	Object

This	chapter	describes	and	demonstrates	methods	of	the	top-level	Window	object	of	a	web	browser

environment.

Meet	DOM
Inspect	Properties

Show	Dialogs
Scroll	Around
Pop-up	Windows
Make	Timers

Examine	Browsers
Check	Status
Control	Location
Travel	History

Summary

Meet	DOM

The	browser	represents	all	components	of	a	web	page	within	a	hierarchical	tree
called	the	“Document	Object	Model”	(DOM).	Each	component	appears	below
the	top-level	window	object,	and	the	tree	contains	branches	like	those	illustrated
below:

A	for	in	loop	can	be	used	to	list	all	properties	of	the	window	object	provided	by
the	browser.	The	list	will	contain	fundamental	properties	that	are	common	to	all
modern	browsers,	plus	minor	properties	that	are	browser-specific.

Items	followed	by	square	brackets	are	array	objects,	and	those	within
regular	parentheses	are	various	types	of	form	elements.

Create	an	HTML	document	with	an	empty	list	element
<ol	id=”props”	style=”column-count:3”>	

dom.html

Next,	in	a	script	element,	create	a	self-invoking	function	that	begins	by
initializing	two	variables
const	list	=	document.getElementById(‘props’)
let	property	=	null

Now,	add	a	loop	to	populate	the	list	element	with	items	that	are	direct
properties	of	the	browser’s	window	object
for(property	in	window)
{
if(property)	{	list.innerHTML	+=	‘’	+	property	}

}

Save	the	HTML	document,	then	open	it	in	your	browser	to	see	the	window
object’s	properties	and	method	names

Closing		tags	are	optional	so	are	omitted	in	this	loop.

Scroll	down	the	list	to	examine	all	window	properties	and	methods	–	on
this	occasion	there	was	a	total	of	204	items.	The	important	properties	in
the	tree	illustration	opposite	are	highlighted	in	this	screenshot.

Inspect	Properties
The	top-level	DOM	window	object	has	a	screen	child	object	that	provides
properties	describing	the	user’s	monitor	resolution	in	pixel	measurement.
Overall	screen	dimensions	can	be	found	in	the	window.screen.width	and
window.screen.height	properties.

Similarly,	the	usable	screen	dimensions,	excluding	the	space	occupied	by	the
desktop	task	bar,	can	be	found	in	the	window.screen.availWidth	and
window.screen.availHeight	properties.

The	screen’s	color	capability	can	be	discovered	from	the	window.screen.colorDepth
property	that	contains	a	bit	value	describing	the	range	of	possible	colors	that
screen	can	display:

• 8-bit	–	Low	Color	can	display	only	256	colors.

• 16-bit	–	High	Color	can	display	65,536	colors.

• 24-bit	–	True	Color	can	display	millions	of	colors.

• 32-bit	–	Deep	Color	can	display	a	gamut	comprising	a	billion	or	more	colors.

Modern	computers	use	24-bit	or	32-bit	hardware	for	color	display,	but	older
computers	use	16-bit	hardware.	Only	very	old	computers	and	old	cellphones	use
8-bit	hardware	for	color	display.

There	is	also	a	window.screen.pixelDepth	property	that	contains	the	screen’s	pixel
depth,	but	on	modern	computers	this	is	the	same	value	as	in	the
window.screen.colorDepth	property	–	always	use	window.screen.colorDepth	to
discover	the	color	capability.

Some	browsers	now	support	a	window.screen.orientation	object	that	has	a	type
property	describing	the	current	orientation	of	the	screen	as	either	landscape	or
portrait,	and	whether	this	is	the	screen’s	primary	or	secondary	usual	orientation.

As	the	window	object	is	the	top-level	global	object	in	the	browser’s	scripting
environment,	its	name	can	optionally	be	omitted	when	referencing	its	child
objects	and	their	properties.	For	example,	you	can	simply	write	screen.colorDepth
to	reference	the	window.screen.colorDepth	property.

Notice	the	“camelCase”	capitalization	of	these	property	names.

Create	an	HTML	document	with	an	empty	paragraph
<p	id=”props”	style=”font:1.5em	sans-serif”></p>

screen.html

Next,	in	a	script	element,	create	a	self-invoking	function	that	begins	by
initializing	six	variables
const	info	=	document.getElementById(‘props’)
let	width	=	window.screen.width	+	‘px’
let	height	=	window.screen.height	+	‘px’
let	availW	=	window.screen.availWidth	+	‘px’
let	availH	=	window.screen.availHeight	+	‘px’
let	colors	=	‘Unknown’

Now,	add	a	statement	to	describe	the	color	capability
switch(window.screen.colorDepth)
{
case	8	:	colors	=	‘Low	Color’	;	break
case	16	:	colors	=	‘High	Color’	;	break
case	24	:	colors	=	‘True	Color’	;	break
case	32	:	colors	=	‘Deep	Color’	;	break

}

Then,	add	statements	to	display	screen	information
info.innerHTML	=	‘Screen	Resolution:	‘	+

width	+	‘	x	‘	+	height	+	‘
’
info.innerHTML	+=	‘Available	Screen	Size:	‘	+

availW	+	‘	x	‘	+	availH	+	‘
’

info.innerHTML	+=	‘Color	Capability:	‘	+	colors	+	‘
’
if(window.screen.orientation)
{
info.innerHTML	+=	‘Orientation:	‘	+

window.screen.orientation.type
}

Save	the	HTML	document,	then	open	it	in	your	browser	to	see	the	screen
information

The	available	height	here	is	40	pixels	less	than	the	screen	height
because	the	desktop	taskbar	is	40	pixels	high.

The	colorDepth	property	can	be	used	to	deliver	low	resolution	images
within	a	document	for	browsers	with	limited	color	capabilities.

Show	Dialogs
The	top-level	DOM	window	object	provides	three	methods	with	which	JavaScript
can	display	dialog	messages	to	the	user.	A	simple	warning	message	string	can	be
specified	as	the	argument	to	the	window.alert()	method.	This	gets	displayed	on	a
dialog	box	with	just	an	“OK”	button,	which	merely	closes	the	dialog	box.

More	usefully,	a	message	can	be	specified	as	the	argument	to	the	window.confirm(
)	method	to	request	a	decision	from	the	user.	This	gets	displayed	on	a	dialog	box
with	an	“OK”	button	and	a	“Cancel”	button.	Either	button	will	close	the	dialog
box	when	pushed,	but	the	“OK”	button	returns	a	true	value,	whereas	the
“Cancel”	button	returns	a	false	value.

A	message	can	also	be	specified	as	the	argument	to	the	window.prompt()	method
to	request	input	from	the	user.	This	gets	displayed	on	a	dialog	box	with	an	“OK”
button,	a	“Cancel”	button,	and	a	text	input	field.	Either	button	will	close	the
dialog	box	when	pushed,	but	the	“OK”	button	returns	the	value	in	the	text	field,
whereas	the	“Cancel”	button	returns	a	null	value.	A	second	argument	can	also	be
supplied	to	the	window.prompt()	method	to	specify	default	content	for	the	text
field.

Create	an	HTML	document	with	an	empty	paragraph
<p	id=”response”	style=”font:1.5em	sans-serif”></p>

dialogs.html

Next,	in	a	script	element,	create	a	self-invoking	function	that	begins	by
initializing	one	variable	reference
const	info	=	document.getElementById(‘response’)

Now,	add	a	statement	to	display	a	message	on	a	simple	dialog	box
window.alert(‘Hello	from	JavaScript’)

Then,	add	a	statement	to	request	a	decision	from	the	user	and	write	the
response	in	the	paragraph
info.innerHTML	=	‘Confirm:	‘	+	window.confirm(‘Go	or	Stop?’)

Next,	add	a	statement	to	request	text	input	from	the	user	and	write	the
text	response	into	the	paragraph
info.innerHTML	+=	‘
Prompt:	‘	+	window.prompt(‘Yes	or	No?’,	‘Yes’)

Save	the	HTML	document,	then	open	it	in	your	browser	to	see	the
message	appear	on	a	simple	dialog	box

Click	the	OK	button	on	each	dialog	box	to	close	them	in	turn,	then	see
the	response	appear	in	the	paragraph

The	confirm	dialog	can	be	used	with	an	if	statement	to	branch	a	script	–
for	example,
if(confirm(‘OK?’))	{	...	}	else	{	...	}

If	the	script	is	to	use	text	input	from	a	prompt	dialog	it	is	good	practice	to
trim	whitespace	from	the	ends	of	the	string	–	see	here.

Scroll	Around
The	DOM	window	object	has	a	scrollBy()	method	that	allows	the	window	to	be
scrolled	horizontally	and	vertically	when	content	overflows	the	window	in	either
orientation.	This	method	requires	two	arguments	to	specify	the	number	of	pixels
to	shift	along	the	X	and	Y	axes.

When	content	overflows	the	window	vertically,	a	scroll	bar	appears	along	the
right	edge	of	the	browser	window.	The	scrollBy()	method	will	scroll	by	the
number	of	pixels	specified	as	its	first	argument	–	or	until	it	reaches	the	extreme
of	the	content.

Similarly,	when	content	overflows	the	window	horizontally,	a	scroll	bar	appears
along	the	bottom	of	the	browser	window.	The	scrollBy()	method	will	scroll	by	the
number	of	pixels	specified	as	its	second	argument	–	or	until	it	reaches	the
extreme	of	the	content.

There	is	also	a	scrollTo()	method	that	accepts	two	arguments	specifying	X	and	Y
coordinates	that	the	top-left	corner	of	the	window	should	scroll	to	when	content
overflows	the	window	horizontally	and	vertically.	This	can	be	used	to	shift	away
from	the	default	X=0,	Y=0	coordinates	to	a	specified	alternative	position.	For
example,	where	the	browser	is	displaying	data	in	a	tabular	spreadsheet	format,
with	the	first	cell	of	the	first	row	in	the	top	left	corner	of	the	browser	window,
the	scrollTo()	method	can	place	a	particular	cell	at	the	top-left	corner	of	the
browser	window	instead.

The	DOM	window	object	has	a	scrollX	property	that	stores	the	number	of	pixels
by	which	the	window	is	scrolled	horizontally.	This	denotes	the	position	of	the
“thumb”	(scroller	box)	along	the	scrollbar	at	the	bottom	of	the	window,	relative
to	its	left	corner.	The	window.scrollX	property	is	an	alias	for	an	older	property
named	window.pageXOffset	that	still	exists	in	the	DOM,	and	can	be	used	instead	of
window.scrollX	for	backward	compatibility.

Similarly,	there	is	a	scrollY	property	that	stores	the	number	of	pixels	by	which	the
window	is	scrolled	vertically.	This	denotes	the	position	of	the	thumb	along	the
scrollbar	at	the	right	of	the	window,	relative	to	its	top	corner.	The	window.scrollY
property	is	an	alias	for	an	older	property	named	window.pageYOffset	that	still
exists	in	the	DOM,	and	can	be	used	instead	of	window.scrollY	for	backward
compatibility.

Supply	negative	values	to	the	scrollBy()	method	to	move	up	and	left.

The	effect	of	the	scrollby()	method	is	only	apparent	when	the	content
overflows	the	window	–	causing	scroll	bars	to	appear.

Create	an	HTML	document	with	a	wide	empty	paragraph	that	is	inset
from	the	left	of	the	window
<p	id=”info”	style=”width:2000px;	margin-left:300px;

font:1.2em	sans-serif”></p>

scroll.html

Next,	in	a	script	element,	create	a	self-invoking	function	that	begins	by
initializing	two	variables
const	info	=	document.getElementById(‘info’)
let	i	=	0

Now,	add	a	loop	to	write	a	column	of	40	numbers	into	the	paragraph
for(i	=	1	;	i	<	41	;	i++)
{

info.innerHTML	+=	(i	+	‘
’)
}

Then,	add	a	statement	to	scroll	the	widow	200	pixels	horizontally	to	the
right,	and	by	the	height	of	the	paragraph	element	vertically	downward
window.scrollBy(200,	info.clientHeight)

Notice	the	use	of	the	element’s	clientHeight	property	here.	Elements
also	have	a	useful	clientWidth	property.

Finally,	add	a	statement	to	append	a	confirmation	of	the	current
window’s	thumb	positions
info.innerHTML	+=	‘scrollX:	‘	+	window.scrollX	+

‘&	scrollY:	‘	+	window.scrollY

Save	the	HTML	document,	then	open	it	in	your	browser	to	see	the
window	scroll	and	thumb	positions

Pop-up	Windows

A	new	browser	window	can	be	opened	using	the	window	object’s	open()	method.
This	requires	three	arguments	to	specify	the	URL	address	of	the	HTML
document	to	be	loaded	in	the	new	window,	a	name	for	the	new	window,	and	a
comma-separated	list	of	features	that	the	window	should	include	–	from	the
possible	features	described	in	the	table	below:

Feature Description

directories Adds	the	links	bar

height Sets	height	in	pixels	of	the	document	area

left The	screen	X	coordinate	of	the	window

location Adds	the	address	bar

menubar Adds	the	standard	menu	bar

resizable Permits	the	window	to	be	resized

scrollbars Enables	scrollbars	when	needed

status Adds	the	status	bar

toolbar Adds	the	Forward	and	Back	buttons	bar

top The	screen	Y	coordinate	of	the	window

width Sets	width	in	pixels	of	the	document	area

When	successful,	the	window.open()	method	returns	a	new	window	object	and
opens	the	new	“pop-up”	window	or	if	it	fails,	the	method	simply	returns	null.	The
returned	result	should	be	assigned	to	a	variable	that	may	be	subsequently	tested
–	if	the	variable	is	not	null	it	must	then	represent	the	pop-up	window	object.	That
window	may	then	be	closed	by	calling	its	close()	method,	or	its	contents	printed

by	calling	its	print()	method.

Windows	can	also	be	positioned	by	specifying	X	and	Y	screen	axes	coordinates
as	arguments	to	a	window.moveTo()	method.	There	is	also	a	similar
window.moveBy()	method	that	accepts	two	arguments	to	specify	how	many	pixels
along	the	X	and	Y	axes	the	window	should	be	shifted	from	its	current	screen
position.

Browser	makers	have	added	Pop-up	Blockers	due	to	the	annoying
proliferation	of	pop-up	windows	–	so	the	use	of	pop-ups	is	no	longer
recommended,	but	they	are	demonstrated	here	for	completeness.

Create	an	HTML	document	containing	a	heading
<h1>Pop-up	Window</h1>

popup.html

opener.html

Create	a	second	HTML	document	containing	a	heading
<h1>Main	Window</h1>

Next,	within	a	script	element	in	the	second	document,	add	a	self-invoking
function	that	creates	a	window	object
const	popWin	=	window.open(‘popup.html’,	‘Popup’,
‘top=150,left=100,width=350,height=100’)

Save	both	HTML	documents,	then	open	the	second	document	to	see	its

pop-up	window	is	blocked

Open	the	browser’s	Pop-up	Blocker	dialog	and	choose	to	allow	pop-ups
from	this	page

Now,	refresh	the	browser	window	to	see	the	pop-up	window	appear	with
the	specified	features

Do	not	put	any	spaces	in	the	features	list	string	as	it	may	cause	the
window.open()	method	to	fail.

Notice	that	the	pop-up	window	does	not	display	the	specified	“favicon”	on
its	title	bar.

Make	Timers
The	JavaScript	window	object	has	an	interesting	setTimeout()	method	that	can
repeatedly	evaluate	a	specified	expression	after	a	specified	period	of	time.
Where	the	specified	expression	calls	the	function	in	which	the	window.setTimout()
statement	appears,	a	recursive	loop	is	created	–	in	which	the	function	is
repeatedly	executed	after	the	specified	period	of	time.

The	expression	to	be	evaluated	by	the	setTimeout()	method	must	be	specified	as
its	first	argument,	and	the	period	of	time	must	be	a	number	specified	as	its
second	argument.	The	time	is	expressed	in	milliseconds,	where	1000	represents
one	second.

The	setTimeout()	method	returns	a	numeric	value	that	can	be	assigned	to	a
variable	to	uniquely	identify	the	waiting	process.	This	value	can	be	specified	as
the	argument	to	the	window	object’s	clearTimeout()	method	to	terminate	the	timer
loop	at	some	point.

The	window	object	also	has	setInterval()	and	clearInterval()	methods	that	take	the
same	arguments	and	work	in	a	similar	way.	The	difference	is	that	the	time
specified	to	setInterval()	specifies	the	interval	at	which	point	the	expression	is	to
be	evaluated,	irrespective	of	how	long	it	takes	to	execute.	Conversely,	the	time
specified	to	the	setTimeout()	method	specifies	the	period	of	time	between	the	end
of	one	execution	until	the	start	of	the	next	execution.	This	means	that	it	is
possible	for	setInterval()	to	attempt	overlapping	executions	where	the	interval	is
short	and	the	time	taken	to	execute	the	expression	is	lengthy.	For	this	reason	it	is
generally	preferable	to	use	the	setTimeout()	method.

Create	an	HTML	document	with	an	empty	paragraph
<p	id=”info”></p>

timer.html

Next,	in	a	script	element,	initialize	a	variable	with	a	closure	function	that
returns	a	decreasing	integer
const	count	=	(function	()	{

let	num	=	10
return	(function()	{	return	num--	})

})	()

A	two-minute	task	set	to	an	interval	of	10	minutes	gets	started	every	10
minutes,	but	the	same	task	set	to	a	timeout	of	10	minutes	gets	started
every	12	minutes	(10+2).

For	a	refresher	on	closure	functions	see	here.

Now,	add	a	timer	function	that	begins	by	initializing	three	variables
function	countDown()
{
const	info	=	document.getElementById(‘info’)
let	timerId	=	null
let	num	=	count()
//	Statements	to	be	inserted	here.

}

Insert	statements	to	write	the	decreasing	integer	into	the	paragraph	at
one-second	intervals	until	it	reaches	zero
if	(num	>	0)

{
info.innerHTML	+=	‘’+	num	+	‘’
timerId	=	window.setTimeout(countDown	,	1000)

}
else
{
info.innerHTML	+=	‘Lift	Off!’
window.clearTimeout(timerId)

}

After	the	function	block,	add	a	statement	to	call	the	timer	function	when
the	page	has	loaded
countDown()

Save	the	HTML	document,	then	open	it	in	your	browser	to	see	the	timer
count	down	for	10	seconds

You	could	usefully	add	a	console.log(timerId)	statement	to	the	timer
function	to	see	the	timer’s	ID	value.

Examine	Browsers
In	the	DOM	hierarchy,	the	top-level	window	object	has	a	number	of	child	objects,
which	each	have	their	own	properties	and	methods.	One	of	these	is	the
window.navigator	object	that	contains	information	about	the	web	browser.	As	the
top-level	window	object	exists	in	the	“global	namespace”,	all	its	child	objects	can
omit	that	part	of	the	address,	so	the	window.alert()	method	can	be	simply	called
using	alert(),	the	window.onload	property	can	be	referenced	using	onload,	and	the
window.	navigator	object	can	be	referenced	using	navigator.

The	navigator	object	has	an	appName	property	that	contains	the	browser	name,	an
appCodeName	property	that	contains	its	code	name,	and	an	appVersion	property
that	contains	its	version	number.	But	you	may	be	surprised	with	the	values	as
Google	Chrome,	Firefox,	Safari,	and	Opera	all	give	their	code	name	as
“Mozilla”.

Each	browser	sends	the	browser	code	name	and	version	in	a	HTTP	header
named	“User-Agent”	when	making	a	request	to	a	web	server,	and	this	string	can
also	be	retrieved	from	the	navigator.userAgent	property.	There	is	also	a
navigator.platform	property	that	describes	the	browser’s	host	operating	system.

In	previous	years,	much	was	made	of	browser	detection	scripts	that	attempted	to
identify	the	browser	using	its	navigator	properties	so	that	appropriate	code	could
be	supplied	to	suit	that	browser’s	supported	features.	This	is	now	considered	bad
practice	and	it	is	now	recommended	that	feature	detection	be	used	instead.

For	example,	querying	if	the	browser	supports	the	useful	addEventListener()
method	determines	whether	that	browser	supports	the	modern	Document	Object
Model.

Create	an	HTML	document	with	an	empty	list

<ul	id=”list”>

browser.html

Next,	in	a	script	element,	create	a	self-invoking	function	that	begins	by
initializing	a	variable	reference
const	list	=	document.getElementById(‘list’)

Now,	add	statements	to	list	your	browser’s	names
list.innerHTML	=	‘Browser:	‘	+	navigator.appName
list.innerHTML	+=	‘Code	Name:	‘	+

navigator.appCodeName

Previous	examples	have	explicitly	used	the	window	prefix	to	make	the
parentage	of	window	object	methods	and	properties	apparent,	but	it	is
technically	preferable	to	omit	the	window.	prefix	–	so	they	are	not	being
referenced	via	the	window	object’s	very	own	window	property.	For
example,	simply	use	onload	rather	than	window.onload.

Then,	add	statements	to	list	the	version	details	of	your	browser	and	of
your	operating	system
list.innerHTML	+=	‘Version:	‘	+	navigator.appVersion
list.innerHTML	+=	‘Platform:	‘	+	navigator.platform

Finally,	add	a	statement	to	confirm	that	you	have	a	modern	browser
if(window.addEventListener)
{
list.innerHTML	+=	‘This	is	a	modern	DOM	browser’

}

Save	the	HTML	document,	then	open	it	in	any	browser	to	see	the	name
and	version	details

In	all	modern	web	browsers,	the	window	object	has	an
addEventListener()	method	–	you	will	discover	more	about	this	in
Chapter	21,	which	demonstrates	window	events.

The	reason	that	Google	Chrome	and	other	browsers	describe
themselves	as	Netscape,	Mozilla	emanates	from	the	era	of	the	“Browser
Wars”	–	when	browsers	had	to	assume	those	names	so	they	could	be
served	all	the	web	pages	that	Netscape	Mozilla	browsers	could	load.

Check	Status
The	DOM	window	object’s	navigator	child	object	has	a	javaEnabled()	method	that
will	return	true	only	if	Java	support	is	enabled	in	the	web	browser.

There	is	also	a	cookieEnabled	property	that	will	be	true	only	if	cookie	support	is
enabled	in	the	browser.

Additionally,	navigator	has	a	plugins	child	object	and	a	mimeTypes	child	object.	As
with	other	arrays,	the	plugins	and	mimeTypes	arrays	both	have	a	length	property
containing	the	numeric	total	of	their	elements.

Each	plugin	array	element	has	a	name	and	description	property	containing	details
of	one	installed	plugin	feature.	These	can	be	referenced	using	the	element	index
number	as	usual.	For	example,	navigator.plugins[0].name	references	the	name
property	of	the	first	element	in	the	plugins	array.

Similarly,	each	mimeTypes	array	element	has	a	type	and	description	property
containing	details	of	one	supported	MIME	feature.	These	can	be	referenced
using	the	element	index	number	as	usual.	For	example,	navigator.mimeTypes[0
].type	references	the	type	property	of	the	first	element	in	the	mimeTypes	array.

Create	an	HTML	document	with	an	empty	paragraph
<p	id=”info”></p>

enabled.html

Next,	in	a	script	element,	create	a	self-invoking	function	that	begins	by
initializing	two	variables
const	info	=	document.getElementById(‘info’)

let	status	=	‘‘

Now,	add	statements	to	write	a	confirmation	in	the	paragraph	only	if	Java
support	is	enabled
status	=	(navigator.javaEnabled())	?	‘Enabled’	:	‘Disabled’
info.innerHTML	+=	‘Java	Support	is	‘	+	status	+	‘<hr>’

Then,	add	statements	to	write	a	confirmation	in	the	paragraph	only	if
cookie	support	is	enabled
status	=	(navigator.cookieEnabled)	?	‘Enabled’	:	‘Disabled’
info.innerHTML	+=	‘Cookie	Support	is	‘	+	status	+	‘<hr>’

The	contents	of	these	array	elements	vary	according	to	which	features
are	supported	by	each	browser.

Now,	add	statements	to	write	the	length	of	the	plugins	array	and	an
example	element
if	(navigator.plugins.length	!==	0)
{
info.innerHTML	+=	‘No.	of	Plugins:	‘	+

navigator.plugins.length
info.innerHTML	+=	‘
Example:	‘	+

navigator.plugins[0].name
info.innerHTML	+=	‘
For:	‘	+

navigator.plugins[0].description	+	‘<hr>’
}

Finally,	add	statements	to	write	the	length	of	the	MIME	types	array	and
an	example	element
if	(navigator.mimeTypes.length	!==	0)
{
info.innerHTML	+=	‘No.	of	MIME	Types:	‘	+

navigator.mimeTypes.length
info.innerHTML	+=	‘
Example:	‘	+

navigator.mimeTypes[1].type
info.innerHTML	+=	‘
For:	‘	+

navigator.mimeTypes[1].description
}

Save	the	HTML	document,	then	open	it	in	any	browser	to	see	the	status

of	its	enabled	features

You	could	use	loops	to	write	all	plugins	and	mimeTypes	element	contents.

Control	Location
The	window’s	location	object	has	five	properties	containing	the	components	of
the	full	URL	address	of	the	document	currently	loaded	in	the	browser	window.
The	complete	address,	describing	the	protocol,	domain	name,	file	name,	and
fragment	anchor	if	applicable,	is	contained	in	the	location.href	property.	Separate
components	of	the	complete	address	are	contained	in	the	location.protocol	(http:	or
https:),	location.host	(domain	name),	location.pathname	(file	path),	and	location.hash
(fragment	anchor).	Assigning	a	new	URL	to	the	location	property	will	cause	the
browser	to	load	that	page	or	other	resource	at	that	address.

Create	an	HTML	document	with	a	paragraph	that	contains	a	hyperlink
anchor
<p	id=”info”>
Fragment	Anchor
</p>

location.html

Next,	in	a	script	element,	create	a	self-invoking	function	that	begins	by
initializing	two	variables
const	info	=	document.getElementById(‘info’)
let	jump	=	confirm(‘Jump	to	Fragment?’)

Now,	add	a	statement	to	change	the	window’s	location	if	the	user	has
agreed	to	a	request
if	(jump)
{
location	=	location.href	+	‘#frag’

}

Then,	add	statements	to	write	each	component	of	the	current	location
address	in	the	panel
info.innerHTML	+=	‘<hr>Href:	‘	+	location.href
info.innerHTML	+=	‘
Protocol:	‘	+	location.protocol
info.innerHTML	+=	‘
Host:‘	+	location.host
info.innerHTML	+=	‘
Path:‘	+	location.pathname
info.innerHTML	+=	‘
Hash:	‘	+	location.hash

Save	the	HTML	document,	then	open	it	in	any	browser	to	see	a	confirm
dialog	request	a	change	of	location

Click	the	Cancel	button	to	deny	the	request	and	see	the	page	load	at	its
“root”	location,	as	usual

A	web	browser	can	load	a	file	of	any	supported	MIME	type	–	for	example,
the	MIME	type	of	image/png	for	all	PNG	image	files.

Refresh	the	browser,	then	click	the	OK	button	to	accept	the	request	and
see	the	page	load	at	its	fragment	location

The	location	shown	here	is	that	of	the	page	located	on	a	web	server	on
the	local	system.	If	the	page	was	located	on	your	desktop,	the	protocol
would	be	file:	and	there	would	be	no	host	value.

Travel	History
The	web	browser	stores	a	history	of	the	URLs	visited	in	the	current	session	as	an
array	within	the	window	object’s	history	child	object.	Like	other	arrays,	this	has	a
length	property,	but	also	back()	and	forward()	methods	to	move	between	elements.
Alternatively,	the	history	object’s	go()	method	accepts	a	positive	or	negative
integer	argument	specifying	how	many	elements	to	move	along	the	array.	For
example,	history.go(1)	moves	forward	one	element,	and	history.go(-2)	moves
back	two	elements.

Create	three	identical	HTML	documents	that	contain	an	empty	paragraph
and	embed	the	same	external	script	file

<p	id=”info”	>	</p>

<script	src=”history.js”	>	</script>

page-1.html

page-2.html

page-3.html

Next,	create	the	script	file	with	a	self-invoking	function	that	begins	by
initializing	a	variable	reference
const	info	=	document.getElementById(‘info’)

history.js

Now,	in	the	function	block,	add	statements	to	write	content	into	the
empty	paragraphs
info.innerHTML	+=
‘Page	1	|	‘

info.innerHTML	+=
‘Page	2	|	‘

info.innerHTML	+=
‘Page	3’

info.innerHTML	+=
‘
History	Length:	‘	+	history.length

info.innerHTML	+=
‘
Current	Location:	‘	+	location.pathname	+	‘
’

Then,	add	statements	to	create	buttons	in	the	paragraphs
info.innerHTML	+=
‘<button	onclick=”history.back()”>Back</button>’

info.innerHTML	+=
‘<button	onclick=”history.forward()”>Forward</button>’

Save	the	HTML	document	and	JavaScript	script	file	in	the	same	folder,
then	clear	your	browser’s	history

To	clear	the	browser	history	in	the	Google	Chrome	browser,	click	the	
button,	then	select	More	tools,	Clear	browsing	data,	and	click	the	Clear
data	button.

Open	the	first	page	to	see	the	initial	history	length	is	1

Click	a	link	to	load	the	third	page	and	see	the	history	length	increase	to	2

Click	the	Back	button	to	return	to	the	first	page	but	see	the	history	length
remain	the	same	as	2

The	URLs	are	stored	in	the	history	object	array	elements	in	a	protected
manner	so	they	cannot	be	retrieved	as	strings.

In	this	example,	each	URL	only	gets	added	to	the	history	array	when
moving	to	a	different	page	by	clicking	on	a	link.	The	back(),	forward(),
and	go()	methods	simply	select	an	element	in	the	history	array	so	do
not	change	its	length	property.

Summary
• The	Document	Object	Model	(DOM)	is	a	hierarchical	tree	representation	of

all	components	of	a	web	page.

• The	window	object	is	the	top	level	in	the	DOM	hierarchy	and	has	properties
describing	the	browser	window.

• The	screen	object	is	a	child	of	the	window	object	and	has	properties	describing
the	screen	dimensions	and	color	depth.

• The	window	object	has	scrollBy()	and	scrollTo()	methods	and	scrollX	and	scrollY
properties	that	specify	the	scroll	position.

• Dialog	messages	can	be	displayed	using	the	window	object’s	alert(),	confirm(),
and	prompt()	methods.

• A	pop-up	window	can	be	created	using	the	window	object’s	open()	method,
but	may	be	obstructed	by	a	pop-up	blocker.

• The	window	object’s	setTimeout()	method	creates	a	timer,	which	can	be
canceled	later	using	the	clearTimeout()	method.

• The	navigator	object	is	a	child	of	the	window	object	and	has	properties
describing	the	browser	and	host	platform	versions.

• The	window	object	exists	in	the	global	namespace	so	all	its	child	objects	need
not	include	the	window	part	of	the	address.

• Feature	detection	is	used	to	identify	the	modern	DOM.

• The	navigator.plugins	and	navigator.mimeTypes	properties	are	arrays	that	contain
details	of	supported	features.

• The	location	object	is	a	child	of	the	window	object	and	has	properties
describing	the	address	of	the	loaded	document.

• The	history	object	is	a	child	of	the	window	object	that	contains	an	array	of
visited	locations	in	the	current	session.

• The	history	object	has	back(),	forward(),	and	go()	methods	that	are	used	to
move	through	pages	in	the	current	session.

21

Interact	with	the	Document

This	chapter	demonstrates	how	to	use	properties	and	methods	of	the	document	object	in	the	Document

Object	Model	(DOM).

Extract	Info
Address	Arrays

Address	Elements
Write	Content
Manage	Cookies
Load	Events

Mouse	Events
Event	Values
Check	Boxes
Select	Options

Reset	Changes
Validate	Forms
Summary

Extract	Info
Most	interesting	of	all	the	DOM	window	object’s	children	is	the	document	object,
which	provides	access	to	the	HTML	document.

The	document	object	has	a	number	of	properties	describing	the	document	and	its
location:

• The	document.title	property	contains	the	value	specified	within	the	HTML
document’s	title	element.

• The	location	of	the	HTML	document	is	contained	within	the	document.URL
property,	and	is	similar	to	the	value	contained	in	the	location.href	property.

• 	The	domain	hosting	the	document	is	contained	in	the	document.domain
property,	similar	to	the	location.host	value.

• HTML	documents	supply	the	date	of	their	creation	or	last	modification	as	an
HTTP	header	to	the	browser	so	it	may	decide	whether	to	use	a	cached	copy
of	the	document	or	seek	a	new	copy.	This	date	can	also	be	retrieved	in
JavaScript	from	the	DOM’s	document.lastModified	property.

• There	is	a	document.referrer	property	that	stores	the	URL	of	the	web	page
containing	the	hyperlink	that	the	user	followed	to	load	the	current	HTML
document.	This	is	only	set	if	the	user	followed	a	hyperlink	to	load	the	page,
not	if	they	typed	in	the	URL	or	used	some	other	method	to	load	the	page.

Create	an	HTML	document	that	provides	a	hyperlink	to	a	second	(target)
HTML	document	within	its	body	section
<p>
Link	to	the	Next	Page
</p>

info-1.html

Next,	create	the	target	HTML	document,	which	contains	an	empty
unordered	list
<ul	id=”list”>

info-2.html

Now,	in	a	script	element,	create	a	self-invoking	function	that	begins	by
initializing	a	variable	reference
const	list	=	document.getElementById(‘list’)

Then,	add	statements	to	list	features	of	the	document
list.innerHTML	=	‘Linked	From:	‘	+	document.referrer
list.innerHTML	+=	‘Title:	‘	+	document.title
list.innerHTML	+=	‘URL:	‘	+	document.URL
list.innerHTML	+=	‘Domain:	‘	+	document.domain
list.innerHTML	+=	‘Last	Modified:	‘	+

document.lastModified

Save	the	HTML	documents	in	the	same	folder,	then	open	the	document
containing	the	link	in	your	browser

Now,	click	on	the	hyperlink	to	load	the	second	HTML	document	in	the
browser	and	see	document	information

The	date	contained	in	document.lastModified	only	relates	to	the	HTML
document	itself,	not	to	any	external	style	sheets	or	external	script	files
that	the	HTML	document	may	import.

The	domain	shown	here	is	that	of	the	page	located	on	a	web	server	on
the	local	system.	If	the	page	was	located	on	your	desktop,	the
document.referrer	and	document.domain	properties	would	not	be	set
with	any	values.

Address	Arrays
The	DOM	document	object	has	child	objects	of	forms,	images,	links,	styleSheets,
and	scripts.	Each	of	these	children	is	an	array	in	which	every	array	element
represents	a	document	component	in	the	same	order	they	appear	within	the
HTML	document.	For	example,	the	first	image	in	the	document	body,	specified
by	an	HTML		tag,	is	represented	by	document.images[0].	This	means	its
URL	can	be	referenced	using	document.images[0].src,	which	reveals	the	path
assigned	to	the	src	attribute	of	the	HTML		tag.	Assigning	this	component	a
new	URL	in	a	script	will	dynamically	replace	the	old	image	with	a	different
image.

The	links	array	represents	HTML	<a>	tags	within	the	HTML	document;	the
styleSheets	array	represents	HTML	<style>	tags;	and	the	scripts	array	represents
HTML	<script>	tags.

The	forms	array	represents	HTML	<form>	tags	but	also	has	its	own	child	elements
object	that	is	an	array	of	all	the	form	components.	For	example,	the	value	of	the
first	component	of	the	first	form	in	an	HTML	document	can	be	referenced	using
document.forms[0].elements[0].value.	Assigning	this	component	a	new	value	in	a
script	will	dynamically	replace	the	old	value.

Create	an	HTML	document	containing	a	form	and	an	empty	list
<form>

<input	type=”text”	name=”topic”	size=”30”

value=”Type	Your	Question	Here”	>
<input	type=”button”	value=”Ask	a	Question”	>	

Help?
</form>

<ul	id=”list”>

components.html

Now,	add	a	style	sheet	to	style	the	font	and	form
<	style>
*	{	font	:	1em	sans-serif	;	}
form	{	width	:	500px	;	height	:	100px	;

background	:	url(bg.png)	;	}
</style>

user.png	64px	x	64px	(gray	areas	are	transparent)

bg.png	24px	x	100px

Next,	in	a	script	element,	create	a	self-invoking	function	that	begins	by
initializing	a	variable	reference
const	list	=	document.getElementById(‘list’)

Notice	the	“camelCase”	capitalization	of	the	styleSheets	array.

Now,	add	statements	to	list	components	of	the	document
list.innerHTML	=	‘No.	Forms:	‘	+

document.forms.length
list.innerHTML	+=	‘No.	Links:	‘	+

document.links.length
list.innerHTML	+=	‘No.	Images:	‘	+

document.images.length
list.innerHTML	+=	‘No.	Style	Sheets:	‘	+

document.styleSheets.length
list.innerHTML	+=	‘No.	Scripts:	‘	+

document.scripts.length

Finally,	add	statements	to	list	two	attribute	values
list.innerHTML	+=	‘First	Image	URL:	‘	+

document.images[0].src
list.innerHTML	+=	‘First	Form	Element	Value:	‘	+

document.forms[0].elements[0].value

Save	the	HTML	document,	then	open	it	in	your	browser	to	see
components	of	the	document	listed

Notice	that	images	incorporated	within	a	document	by	style	rules	are	not
included	in	the	images	array,	only	those	that	are	incorporated	by	HTML	
tags	–	so	here	the	form	background	image	(bg.png)	does	not	appear	in	the	images
array.	Similarly,	the	style	rule	assigned	inline	to	the	style	attribute	is	not	included
in	the	styleSheets	array.

The	array	elements	only	represent	the	relevant	HTML	tags.

Address	Elements

Using	the	component	arrays	with	dot	notation	to	reference	a	specific	element
requires	the	script	author	to	count	the	number	of	components	to	calculate	each
index	position.	This	is	especially	tedious	with	lengthy	documents,	is	error-prone,
and	modification	of	the	HTML	document	can	change	the	element’s	index
position.	This	was	required	in	earlier	years	but	was	eventually	resolved	by	the
addition	of	three	new	methods	to	the	document	object:

• The	document.getElementById()	method,	used	by	previous	examples	in	this
book	to	add	content	from	JavaScript	code,	allows	any	component	to	be
referenced	by	its	HTML	id	attribute	value.	This	method	simply	specifies	the
target	id	value	as	its	argument	and	is	used	to	reference	a	single	specific
HTML	element.

• The	document.getElementsByTagName()	method	returns	an	array-like
HTMLCollection	object	that	references	all	HTML	elements	of	the	tag	name
specified	as	its	argument.	A	specific	HTML	element	can	then	be	referenced
using	its	element	index	number,	as	you	would	do	in	an	array.

• The	document.getElementsByClassName()	method	returns	an	array-like
HTMLCollection	object	that	references	all	HTML	elements	containing	a	class
attribute	that	has	been	assigned	the	name	specified	as	its	argument.	A
specific	HTML	element	can	then	be	referenced	using	its	element	index
number,	as	you	would	do	in	an	array.

Create	an	HTML	document	containing	two	lists	and	an	empty	paragraph

<li	class=”fruit”>Apple
<li	class=”nut”>Almond
<li	class=”fruit”>Apricot

<li	class=”fruit”>Blackberry

<li	id=”country”	class=”nut”>Brazil
<li	class=”fruit”>Banana

<p	id=”info”></p>

collection.html

In	the	name	of	the	two	methods	that	return	an	HTMLCollection	it’s
“Elements”	(plural)	but	in	the	name	of	the	other	method	it’s	“Element”
(singular).

Next,	in	a	script	element,	create	a	self-invoking	function	that	begins	by
initializing	five	variables
const	info	=	document.getElementById(‘info’)
const	item	=	document.getElementById(‘country’)
const	lists	=	document.getElementsByTagName(‘ol’)
const	fruits	=	document.getElementsByClassName(‘fruit’)
let	i	=	0

Now,	add	a	statement	to	describe	an	element	object	and	the	text	that
element	contains
info.innerHTML	=	item	+	‘	Id:	‘	+	item.innerText	+	‘
’

Then,	add	statements	to	describe	an	HTMLCollection	object	and	the	text	its
elements	contain
info.innerHTML	+=	‘
’	+	lists	+	‘	Tags:
’
for(i	=	0;	i	<	lists.length	;	i++)	{
info.innerHTML	+=	(i	+	1)	+	‘	of	‘	+	lists.length
info.innerHTML	+=	‘	:	‘	+	lists[i].innerText	+	‘
’

}

The	innerText	property	of	an	element	returns	only	the	content	between
its	opening	and	closing	tags,	whereas	the	innerHTML	property	also
returns	the	HTML	tags.	Change	this	to	innerHTML	to	see	the	difference.

Finally,	add	statements	to	describe	a	second	HTMLCollection	object	and	the
text	its	elements	contain
info.innerHTML	+=	‘
’	+	fruits	+	‘	Class:
’
for(i	=	0	;	i	<	fruits.length	;	i++)	{
info.innerHTML	+=	(i	+	1)	+	‘	of	‘	+	fruits.length
info.innerHTML	+=	‘	:	‘	+	fruits[i].innerText+	‘
’

}

Save	the	HTML	document,	then	open	it	in	your	browser	to	see	the
element	values	retrieved	by	different	methods

Write	Content
As	witnessed	in	previous	examples,	the	innerHTML	and	innerText	properties	of	the
document	object	can	be	used	to	write	content	into	existing	elements.	The
document	object	also	has	a	write()	method	that	provides	another	way	to	write
content,	but	this	automatically	calls	a	document.open()	method	to	start	a	new
document	–	so	the	current	document	is	no	longer	displayed.

More	usefully,	a	document.createElement()	method	accepts	a	tag	name	as	its
argument	and	creates	an	element	of	that	type.	Content	can	then	be	added	to	the
new	element	by	assignment	to	its	innerHTML	or	innerText	properties.	It	can	then	be
inserted	into	the	web	page	within	an	existing	element	by	specifying	the	new
element	as	the	argument	to	a	document.appendChild()	method.

You	can	also	dynamically	write	attributes	into	elements	by	specifying	an
attribute	name	and	value	as	two	arguments	to	an	element’s	setAttribute()	method.

Create	an	HTML	document	that	contains	a	heading	and	an	ordered	list	of
three	items
<h1	id=”heading”>Top	3	Cities</h1>
<ol	id=”list”>
Tokyo,	Japan
New	York,	USA
Rio	de	Janeiro,	Brazil

write.html

Save	the	HTML	document,	then	open	it	in	your	browser	to	see	the	web
page

Next,	in	a	script	element,	create	a	self-invoking	function	that	begins	by
initializing	two	variables	as	new	list	item	elements	and	one	variable
reference
const	itemFour	=	document.createElement(‘li’)
const	itemFive	=	document.createElement(‘li’)
const	heading	=	document.getElementById(‘heading’)

Now,	assign	text	content	to	the	two	new	elements
itemFour.innerText	=	‘London,	England’
itemFive.innerText	=	‘Cape	Town,	South	Africa’

Then,	insert	the	new	element	content	into	the	web	page	as	children	of	the
ordered	list	element
document.getElementById(‘list’).appendChild(itemFour)
document.getElementById(‘list’).appendChild(itemFive)

Add	an	attribute	to	the	existing	heading	element	to	change	its	font	color
heading.setAttribute(‘style’,	‘color:Red’)

Finally,	change	the	heading	to	better	describe	the	extended	list
heading.innerText	=	‘Best	Five	Cities’

Save	the	HTML	document	once	more,	then	refresh	your	browser	to	see
the	newly	written	content

An	existing	element	may	be	removed	from	the	web	page	by	specifying	it
as	the	argument	to	a	document.removeChild()	method,	or	replaced	by
specifying	new	and	old	elements	as	arguments	to	a
document.replaceChild()	method.

You	can	remove	an	attribute	by	specifying	the	attribute’s	name	as	the
argument	to	an	element’s	removeAttribute()	method.

Manage	Cookies
For	security	reasons	JavaScript	cannot	write	regular	files	on	the	user’s	hard
drive,	but	it	can	write	“cookie”	files	to	store	a	small	amount	of	data.	These	are
limited	in	size	to	a	maximum	of	4KB	and	in	number	to	20	per	web	server.
Typically,	the	data	stored	in	a	cookie	will	identify	the	user	for	subsequent	visits
to	a	website.

Cookie	data	is	stored	in	the	DOM	document	object’s	cookie	property	as	one	or
more	“key=value”	pairs,	terminated	with	a	“;”	semicolon	character.	The	value
may	not	contain	whitespace,	commas,	or	semicolons,	unless	passed	as	the
argument	to	the	built-in	encodeURI()	function,	which	encodes	the	string	in
Unicode	format	–	for	example,	this	represents	a	space	as	%20.

By	default,	the	lifespan	of	a	cookie	is	limited	to	the	current	browser	session
unless	an	expiry	date	is	specified	when	the	cookie	is	created	as	an
“expires=date”	pair,	in	which	the	date	value	is	a	UTC	string.	Typically,	this	is
achieved	using	a	JavaScript	Date	object	converted	with	its	toUTCString()	method.
Setting	an	existing	cookie’s	expiry	date	to	a	past	time	will	delete	that	cookie.

Retrieving	data	from	a	cookie	requires	some	string	manipulation	to	return
Unicode	to	regular	text,	using	the	built-in	decodeURI()	function	so	%20	becomes	a
space	character	once	more,	and	to	separate	the	name	and	value	items	of	data.
Within	the	cookie	string	multiple	pairs	can	be	separated	by	specifying	the	“;”
semicolon	as	the	argument	to	the	split()	method.	Similarly,	keys	and	values	can
be	separated	by	specifying	the	“=”	character	as	the	argument	to	the	split()
method.	Likewise,	where	the	value	is	a	comma-separated	list	of	items,	the	“,”
comma	can	be	specified	as	the	argument	to	the	split()	method	to	separate	them	as
array	elements.

It	is	useful	to	create	an	external	JavaScript	file	containing	“setter”	and	“getter”
utility	functions	that	can	easily	be	called	to	store	and	retrieve	cookie	data.

Begin	a	JavaScript	file	with	a	setter	function	that	has	parameters	for	key,
value,	and	expiry	arguments
function	setCookie(key,	value,	days)	{
const	d	=	new	Date()
d.setTime(d.getTime()	+	(days	*	86400000))
document.cookie	=	key	+	‘=’	+	encodeURI(value)	+

‘;expires=’	+	d.toUTCString()	+	‘;’
}

cookie.js

The	cookie	expiry	date	cannot	normally	be	read	by	JavaScript.	If	it	is
required	to	be	readable,	also	add	it	to	the	list	of	cookie	values.

The	long	number	used	to	set	the	expiry	here	is	the	number	of
milliseconds	in	one	day.

Then,	add	a	getter	function	to	accept	a	key	argument
function	getCookie(key)	{
if(document.cookie)
{
const	pairs	=	decodeURI(document.cookie).split(‘;’)
let	i,	name,	value
for(i	=	0	;	i	<	pairs.length	;	i++)
{
name	=	(pairs[i].split(‘=’)[0]).trim()
if(name	===	key)	{	value	=	pairs[i].split(‘=’)[1]	}
}
return	value

}
}

Notice	that	the	trim()	method	is	used	here	to	remove	any	whitespace
from	the	ends	of	the	name.

Next,	create	an	HTML	document	that	contains	an	empty	list	and	imports
the	external	JavaScript	file
<ul	id=”list”>	<script	src=”cookie.js”></script>

cookie.html

Now,	in	another	script	element,	create	a	self-invoking	function	that	sets	a
cookie,	then	gets	its	values
setCookie(‘User’,’Mike	McGrath,12345’,	7)

const	list	=	document.getElementById(‘list’)
let	i,	value	=	getCookie(‘User’)
if(value.indexOf(‘,’))
{
value	=	value.split(‘,’)

}
for(i	=	0	;	i	<	value.length	;	i++)
{
list.innerHTML	+=	‘’	+	value[i]

}

Save	the	HTML	document	and	JavaScript	file	in	the	same	folder	on	a
web	server,	then	open	the	web	page	in	your	browser	to	see	the	retrieved
cookie	values

A	cookie	may	be	deleted	by	setting	its	expiry	date	to	a	date	prior	to	the
current	actual	date.

Load	Events

The	DOM	allows	JavaScript	to	react	to	“events”	that	occur	on	a	web	page	by	the
script	author	providing	functions	that	will	be	executed	when	a	particular	event
happens.	These	functions	are	known	as	“event-handlers”,	and	can	react	to	events
such	as:

• load	–	fires	when	the	page	has	loaded	into	the	browser

• click	–	fires	when	the	user	clicks	a	mouse	button

• keydown	–	fires	when	the	user	presses	a	keyboard	key

• change	–	fires	when	the	user	modifies	an	input	field

• submit	–	fires	when	the	user	submits	an	HTML	form

To	react	to	a	load	event,	an	event-handler	function	name	can	be	nominated	by
assignment	to	the	window	object’s	onload	property,	using	this	syntax:

onload=function-name

Alternatively,	the	event	name	and	the	event-handler	function	name	can	be
specified	as	arguments	to	the	window	object’s	addEventListener()	method,	but	the
event	name	must	be	enclosed	within	quotes,	like	this:

addEventListener(‘load’	,	function-name)

An	event-handler	for	the	load	event	might	be	used	to	examine	the	browser’s
features,	and	can	usefully	check	for	cookie	data.

Create	an	HTML	document	that	contains	a	paragraph	with	a	link	to	the
cookies	example	here,	an	empty	paragraph,	and	imports	the	external
JavaScript	file	from	the	previous	example
<p>Link</p>
<p	id=”info”></p>
<script	src=”cookie.js”></script>

load.html

Next,	in	a	script	element,	nominate	an	event-handler	function	to	be
executed	when	the	page	has	loaded
addEventListener(‘load’,	welcome)

There	is	also	an	unload	event	that	fires	when	the	user	leaves	the	page.
Its	event-handler	can	be	nominated	by	assignment	to	the
window.onunload	property,	or	can	be	specified	to	the
addEventListener()	method.

Now,	add	the	event-handler	function	to	greet	the	user
function	welcome()	{
const	info	=	document.getElementById(‘info’)
if(getCookie(‘Name’))
{
info.innerHTML	=	‘Welcome	Back,	‘	+	getCookie(‘Name’)
}
else
{
let	name	=	prompt(‘Please	Enter	Your	Name’,	‘User’)
setCookie(‘Name’,	name,	7)
info.innerHTML	=	‘Welcome,	‘	+	name
}

}

The	second	argument	to	the	prompt()	method	is	the	default	input	value.

Save	the	HTML	document	and	open	it	in	your	browser,	–	enter	your
name,	follow	the	link,	then	click	the	back	button

Mouse	Events
Event-handler	functions	that	execute	when	the	user	clicks	on	a	particular	object
in	the	HTML	document	can	be	nominated	by	assigning	the	function	name	to	the
object’s	onclick	and	ondblclick	properties.	These	respond	to	the	“click”	event	that
fires	when	the	user	clicks	the	mouse	button	once,	and	the	“dblclick”	event	that
fires	when	the	mouse	button	is	pressed	twice	in	quick	succession.

Additionally,	an	object’s	onmousedown	and	onmouseup	properties	can	nominate
event-handler	functions	to	execute	when	the	mouse	button	gets	pressed	down,
firing	the	“mousedown”	event,	and	when	it	gets	released,	firing	the	“mouseup”
event.

Similarly,	an	object’s	onmouseover	and	onmouseout	properties	can	nominate
event-handler	functions	to	execute	when	the	mouse	is	placed	over	an	element,
firing	the	“mouseover”	event,	and	when	it	moves	off	the	element,	firing	the
“mouseout”	event.	These	are	often	used	to	create	a	rollover	effect,	such	as
changing	the	value	of	that	element’s	style.background	property	to	a	different	color
value.

Alternatively,	the	event	name	and	the	event-handler	function	name	can	be
specified	as	arguments	to	that	object’s	addEventListener()	method.	This	can	be
used	just	like	the	window	object’s	addEventListener()	method	in	the	previous
example	to	nominate	a	function	by	name,	or	you	can	write	a	function	definition
inline	as	the	second	argument.

When	an	event	occurs,	an	event	object	can	be	passed	to	an	inline	event-handler
function.	This	has	a	type	property	that	identifies	the	name	of	that	event.

Create	an	HTML	document	that	contains	two	paragraphs	and	a	button
<p	id=”box”>Target</p>
<p	id=”info”>Place	Mouse	Over	Target</p>
<button	id=”btn”>Click	Me</button>

mouse.html

Next,	in	a	script	element,	create	a	self-invoking	function	that	begins	by
initializing	two	variables
(function	()	{
const	box	=	document.getElementById(‘box’)
const	btn	=	document.getElementById(‘btn’)

//	Statements	to	be	inserted	here.
})	()

Any	visible	object	in	an	HTML	document	can	have	an	event-handler
assigned	for	its	click	event,	so	that	object	can	act	like	a	button.	Most
developers	prefer	to	nominate	event-handler	functions	with	the
addEventListener()	method,	rather	than	by	assignment	to	the	onclick
property.

Now,	insert	statements	to	nominate	inline	event-handlers	that	will	pass
arguments	to	a	second	function
box.addEventListener(‘mouseover’,

function	(event)	{	reactTo(event,	‘Red’)	})
box.addEventListener(‘mouseout’,

function	(event)	{	reactTo(event,	‘Purple’)	})
box.addEventListener(‘mousedown’,

function	(event)	{	reactTo(event,	‘Green’)	})
box.addEventListener(‘mouseup’,

function	(event)	{	reactTo(event,	‘Blue’)	})
btn.addEventListener(‘click’,

function	(event)	{	reactTo(event,	‘Orange’)	})

Finally,	add	a	second	function	to	display	the	event	type	and	change	the
first	paragraph’s	background	color
function	reactTo(event,	color)	{
document.getElementById(‘box’).style.background	=	color
document.getElementById(‘info’).innerText	=	event.type

}

Save	the	HTML	document	and	open	it	in	your	browser,	then	use	your
mouse	to	see	the	events	and	reactions

If	removing	an	object	that	has	event-handlers	attached,	you	should	also
remove	its	event-handlers	to	avoid	creating	memory	leaks.

Event	Values
In	addition	to	the	mouse	events	described	in	the	example	here,	there	is	a
“mousemove”	event.	This	can	pass	an	event	object	to	an	event-handler	function
with	x	and	y	properties	that	contain	the	current	window	coordinates	of	the	mouse
pointer.

There	is	also	a	“keydown”	event	that	fires	when	the	user	first	presses	a	key,	a
“keypress”	event	that	fires	when	the	key	is	pressed	down,	and	a	“keyup”	event
that	fires	when	the	key	is	released.	These	can	each	pass	an	event	object	to	an
event-handler	function	with	a	type	property	that	identifies	the	name	of	that	event,
and	a	keyCode	property	that	stores	the	numerical	value	of	the	last	key	pressed.

The	numerical	value	of	a	key	is	its	Unicode	value,	which	can	be	specified	as	the
argument	to	a	String.fromCharCode()	method	to	translate	it	to	a	character	value.

Event-handler	functions	can	be	nominated	to	onmousemove,	onkeydown,
onkeypress,	and	onkeyup	properties,	or	be	specified	as	arguments	to	an	object’s
addEventListener()	method.

Create	an	HTML	document	that	contains	an	empty	paragraph
<p	id=”info”></p>

values.html

Next,	in	a	script	element,	create	a	self-invoking	function	that	nominates
an	event-handler	function	for	three	events	and	passes	an	event	argument
to	that	function
(function	()	{
document.addEventListener(‘keydown’,

function	(event){	reactTo(event)	})
document.addEventListener(‘keyup’,

function	(event){	reactTo(event)	})
document.addEventListener(‘mousemove’,

function	(event){	reactTo(event)	})
})	()

Now,	begin	the	event-handler	function	with	a	statement	to	initialize	a
variable
function	reactTo(event)	{

const	info	=	document.getElementById(‘info’)

//	Statements	to	be	inserted	here.
}

Unicode	values	for	common	characters	are	the	same	as	ASCII	code
values,	where	lowercase	a-z	is	65-90	and	A-Z	is	97-122.

Then,	insert	statements	to	display	the	current	window	coordinate	values
of	the	mouse	pointer
if(event.type	===	‘mousemove’)
{
info.innerHTML	=
‘Mouse	pointer	is	at	X:’	+	event.x	+	‘	Y:’	+	event.y

}

Next,	add	statements	to	display	the	Unicode	value	of	a	keyboard	key
when	pressed
if(event.type	===	‘keydown’)
{
info.innerHTML	+=	‘<hr>’	+	event.type
info.innerHTML	+=	‘:	‘	+	event.keyCode

}

Finally,	add	statements	to	display	the	character	of	that	keyboard	key
when	released
if(event.type	===	‘keyup’)
{
info.innerHTML	+=	‘
’	+	event.type	+	‘:	‘	+

String.fromCharCode(event.keyCode)	+	‘<hr>’

}

Save	the	HTML	document	then	open	it	in	your	browser	and	move	the
mouse	pointer	over	the	window	to	see	its	displayed	coordinate	values
change	as	the	mouse	moves

Press	any	alphanumeric	keyboard	key	to	see	that	key’s	Unicode	number
and	character	value

The	keydown	and	keyup	events	work	on	all	keyboard	keys,	but
keypress	only	works	on	the	alphanumeric	keys.

The	coordinate	values	always	relate	to	the	window	position	even	if	the
event-handler	is	attached	to	an	object	other	than	the	document	object.

Check	Boxes
Radio	button	groups	allow	the	user	to	select	any	one	button	from	the	group,	and
the	HTML	name	attributes	of	all	radio	button	input	elements	in	that	group	share
the	same	name.	In	scripting	terms,	that	group	name	is	the	name	of	an	array	in
which	each	radio	button	object	can	be	referenced	using	its	array	index	value.

Unlike	radio	button	groups,	checkbox	button	groups	allow	the	user	to	select	one
or	more	buttons	in	that	group.	But	as	with	radio	button	groups,	each	name
attribute	shares	the	same	group	name.	That	group	name	is	also	the	name	of	an
array	in	which	each	checkbox	button	object	can	be	referenced	by	its	array	index
value.

Both	radio	button	objects	and	checkbox	button	objects	have	a	checked	Boolean
property,	which	is	true	when	the	button	is	selected	and	false	otherwise.	Looping
through	a	button	group	array	to	inspect	the	checked	property	of	each	object
determines	which	buttons	are	selected.	A	script	statement	can	also	assign	a	true
value	to	the	checked	property	of	a	button	to	select	it.

Create	an	HTML	document	that	contains	a	form	with	a	group	of	three
checkboxes	and	a	submit	button
<form	id=”pizza”	action=”echo.pl”	method=”POST”>
<fieldset>
<legend>Select	Pizza	Toppings</legend>
<input	type=”checkbox”	name=”Top”

value=”Cheese”>Cheese
<input	type=”checkbox”	name=”Top”

value=”Ham”>Ham
<input	type=”checkbox”	name=”Top”

value=”Peppers”>Peppers
</fieldset>
<input	type=”submit”>
</form>

checkbox.html

Next,	in	a	script	element,	create	a	self-invoking	function	that	nominates
an	event-handler	function	for	the	form’s	“submit”	event	and	checks	one
checkbox
(function	()	{

const	form	=	document.getElementById(‘pizza’)
form.addEventListener(‘submit’,

function	(event)	{	reactTo(form,	event)	})
form.Top[0].checked	=	true

})	()

When	multiple	buttons	in	a	checkbox	button	group	have	been	selected,
their	values	are	submitted	as	a	comma-separated	list.

Now,	begin	the	event-handler	function	by	declaring	three	variables	and	a
loop	to	determine	which	boxes	are	checked
function	reactTo(form,	event)	{
let	i,	ok,	summary	=	‘’

for(i	=	0	;	i	<	form.Top.length	;	i++)
{
if(form.Top[i].checked)
{
summary	+=	form.Top[i].value	+	‘	‘

}
}

//	Statements	to	be	inserted	here.
}

Then,	add	statements	to	confirm	the	choices	and	submit	them	to	the	web
server,	or	cancel	the	submission
ok	=	confirm(‘Submit	These	Choices?\n’	+	summary)

if(!ok)	{	event.preventDefault()	}

Save	the	HTML	document	on	a	webserver	then	open	it	in	a	browser,
make	your	choices,	then	confirm	submission

echo.pl

When	a	form	button	gets	clicked	it	triggers	the	form’s	default	event
action,	which	is	to	submit	the	form	data	to	the	web	server.	Calling	the
form	event’s	preventDefault()	method	stops	the	form	data	submission.

This	example	is	run	on	a	local	web	server	that	supports	the	python	server
side	script	that	processes	the	form	submission	and	provides	the
response	to	the	web	browser.

Select	Options
Options	presented	in	an	HTML	<select>	drop-down	list	object	are	uniquely
represented	in	the	DOM	by	an	options[]	array,	in	which	each	array	element
contains	the	option	specified	by	an	HTML	<option>	tag.	Upon	submission	to	the
web	server,	the	value	assigned	to	the	name	attribute	of	the	<select>	tag,	and	that
assigned	to	the	value	attribute	of	the	currently	selected	<option>	tag	are	sent	as	a
name=value	pair.

Importantly,	the	selection	list	object	has	a	selectedIndex	property,	which	contains
the	index	number	of	the	currently	selected	options[]	array	element,	and	this	can
be	used	to	retrieve	the	value	of	the	current	selected	option.

When	the	user	changes	the	selected	option	in	a	selection	list,	a	“change”	event
fires.	The	list	object’s	onchange	property	can	nominate	an	event-handler	function
to	execute	when	the	selected	option	changes.	Alternatively,	the	event	name	and
the	event-handler	function	name	can	be	specified	as	arguments	to	the	list
object’s	addEventListener()	method.

Create	an	HTML	document	that	contains	a	form	selection	list	and	a
submit	button,	plus	an	empty	paragraph
<form	action=”echo.py”	method=”POST”>
<select	id=”list”	name=”City”>
<option	value=”Rome”	selected>Rome</option>
<option	value=”London”>London</option>
<option	value=”New	York”	>New	York</option>
</select>
<input	type=”submit”>
</form>

<p	id=”info”></p>

options.html

Next,	in	a	script	element,	create	a	self-invoking	function	that	nominates
an	event-handler	function	for	the	form’s	“submit”	event	and	for	the
window’s	“load”	event
(function	()	{

const	list	=	document.getElementById(‘list’)
list.addEventListener(‘change’	,

function	()	{	reactTo(list,	event)	})
addEventListener(‘load’	,

function	()	{	reactTo(list,	event)	})
})	()

Notice	that	the	HTML	selected	attribute	selects	the	first	option	element,
which	is	represented	in	the	DOM	by	options[0]

Now,	add	the	event-handler	function,	which	will	display	the	event	and
current	list	selection	in	the	paragraph
function	reactTo(list,	event)	{

const	info	=	document.getElementById(‘info’)
let	index	=	list.options.selectedIndex
let	city	=	list.options[index].value
info.innerHTML	=	event.type	+	‘
Selected:	‘
info.innerHTML	+=	city	+	‘
Index:	‘	+	index

}

Save	the	HTML	document	on	a	web	server	then	open	it	in	a	browser,
select	an	option,	and	submit	the	form

echo.pl

Hierarchically,	this	selected	option	can	be	referenced	using
document.forms[0].	elements[0].options[1].	value	–	the	deepest	level
of	the	DOM.

Reset	Changes
An	event-handler	can	be	nominated	to	the	onfocus	and	onfocusout	properties	of
form	text	input	objects	and	textarea	objects	to	recognize	the	active	element.	A
“focus”	event	fires	when	the	user	selects	a	text	field,	and	a	“focusout”	event	fires
when	the	user	leaves	that	text	field.

Usefully,	an	event-handler	can	be	nominated	to	the	onreset	property	of	a	form
object	to	remove	content	related	to	form	input	when	the	form	is	returned	to	its
original	state	by	a	reset	button.

As	with	other	objects,	the	event	name	and	the	event-handler	function	name	can
be	specified	as	arguments	to	the	text	field	and	form	object’s	addEventListener()
method.

Create	an	HTML	document	that	contains	a	form	with	a	text	field	and
reset	button,	plus	an	empty	paragraph
<form	id=”code”	>
<input	id=”lang”	name=”Language”	type=”text”	>
<input	type=”reset”>
<input	type=”submit”>
</form>

<p	id=”info”></p>

reset.html

Next,	in	a	script	element,	create	a	self-invoking	function	that	nominates
an	event-handler	function	for	the	text	field’s	“focus”	and	“focusout”
events,	the	form’s	“reset”	event,	and	for	the	window’s	“load”	event

(function	()	{

const	form	=	document.getElementById(‘code’)
const	lang	=	document.getElementById(’lang’)
const	info	=	document.getElementById(‘info’)

lang.addEventListener(‘focus’	,
function	(event)	{	reactTo(event,	info)	})

lang.addEventListener(‘focusout’	,
function	(event)	{	reactTo(event,	info)	})

form.addEventListener(‘reset’,
function	()	{	defaultMessage(info)	})

addEventListener(‘load’,
function	()	{	defaultMessage(info)	})

})	()

Text	fields	also	have	an	onselect	property	to	which	an	event-handler	can
be	nominated	to	respond	to	a	“select”	event	that	fires	when	the	user
selects	some	of	its	text.

Now,	add	the	event-handler	function	for	the	text	field’s	“focus”	and
“focusout”	events,	to	display	the	event	type
function	reactTo(event,	info)	{
info.innerHTML	=	event.type

}

Then,	add	the	event-handler	function	for	the	window’s	“load”	and	the
form’s	“reset”	events,	to	display	a	message
function	defaultMessage(info)	{
info.innerHTML	=

‘Please	enter	your	favorite	coding	language’
}

Save	the	HTML	document,	then	open	it	in	your	browser,	to	see	the
default	message	appear	in	the	paragraph

Select	the	text	field	and	see	the	“focus”	event	fire,	then	type	in	the	name
of	your	favorite	coding	language

Hit	the	Tab	key	to	move	focus	onto	the	Reset	button	and	see	the
“focusout”	event	fire

Hit	the	Enter	key	(to	push	the	Reset	button)	to	clear	the	text	field	and	see
the	default	message	once	more

Validate	Forms
A	form	object’s	onsubmit	property	can	nominate	an	event-handler	function	to
validate	user	input	entered	into	a	form	before	it	is	submitted	to	the	web	server
for	processing.	Alternatively,	the	“submit”	event	name	and	an	event-handler
function	name	can	be	specified	as	arguments	to	the	form	object’s
addEventListener()	method.

The	simplest	level	of	form	validation	examines	a	text	input	where	an	entry	is
required	to	ensure	the	user	has	made	an	entry.	When	its	value	remains	an	empty
string,	no	entry	has	been	made,	so	the	validating	function	can	call	the
event.preventDefault()	method	to	prevent	form	submission.

A	higher	level	of	form	validation	can	examine	the	string	entered	by	the	user	to
ensure	it	meets	an	expected	format.	For	example,	where	an	email	address	is
expected,	the	format	requires	the	string	to	contain	an	“@”	character	and	at	least
one	“.”	character.	When	either	of	these	are	absent,	the	string	is	not	a	valid	email
address,	so	the	validating	function	can	prevent	form	submission.

A	form	element	can	be	referenced	by	quoting	its	name	attribute	value	in	the
form’s	elements[]	array	brackets.

Create	an	HTML	document	that	contains	a	form	with	two	text	fields	and
a	submit	button
<form	id=”contact”	action=”echo.pl”	method=”POST”>
<fieldset>
<legend>Please	Enter	Your	Details</legend>
Name:	<input	type=”text”	name=”Name”	value=””>

Email:	<input	type=”text”	name=”Email”	value=””>
</fieldset>
<input	type=”submit”>
</form>

validate.html

Next,	in	a	script	element,	create	a	self-invoking	function	that	nominates
an	event-handler	function	for	the	form’s	“submit”	event
(function	()	{

const	form	=	document.getElementById(‘contact’)

form.addEventListener(‘submit’	,
function	(event)	{	validate(form,	event)	})

})	()

Now,	add	the	event-handler	function	to	validate	input
function	validate(form,	event)	{
let	value	=	form.elements[‘Name’].value
if(value	===	‘’)	{
alert(‘Please	Enter	Your	Name’)
event.preventDefault()	;	return	}

value	=	form.elements[‘Email’].value
if((value	===	‘’)	||	(value.indexOf(‘@’)	===	-1)	||
(value.indexOf(‘.’)	===	-1))	{
alert(‘Please	Enter	A	Valid	Email	Address’)
event.preventDefault()	}

}

The	indexOf()	method	returns	an	integer	that	is	the	character	position	in
the	string,	or	-1	if	the	character	is	not	found.	For	details	see	here.

Save	the	HTML	document	on	a	web	server,	then	open	it	in	a	browser,
enter	your	details,	and	submit	the	form

echo.py

Summary
• The	document	object	has	title,	URL,	domain,	lastModified,	and	referrer	properties

that	describe	that	document.

• The	document	object	has	forms,	images,	links,	styleSheets,	and	scripts	child
objects	that	are	arrays	of	document	components.

• The	forms	array	represents	<form>	tags	and	has	an	elements	child	object	that	is
an	array	of	form	components.

• The	document	object	has	getElementById(),	getElementsByTagName(),	and
getElementsByClassName()	methods	that	can	be	used	to	reference	HTML
elements.

• The	innerHTML	and	innerText	properties	of	the	document	object	can	be	used	to
write	content	into	existing	elements.

• The	document	object	has	createElement(),	appendChild(),	and	setAttribute()
methods	that	can	add	content	to	a	document.

• The	document	object’s	cookie	property	has	“key=value”	pairs	that	can	store	a
small	amount	of	data	on	the	user’s	system.

• The	encodeURI(),	decodeURI(),	toUTCString(),	and	split()	functions	are	used	for
string	manipulation	with	cookie	data.

• The	DOM	allows	JavaScript	to	react	to	events	such	as	load,	click,	keydown,
change,	and	submit	in	response	to	user	actions.

• Event-handler	functions	can	be	assigned	to	an	object	property	or	specified	by
the	addEventListener()	method.

• An	event	object	can	be	passed	to	an	event-handler	function	and	the	event	can
be	identified	by	its	event.type	property.

• The	mousemove	event	object	has	x	and	y	properties	that	contain	the	current
window	coordinates	of	the	pointer.

• Radio	and	checkbox	button	objects	have	a	checked	boolean	property,	which	is
only	true	when	the	button	is	selected.

• A	selection	list	object	has	a	selectedIndex	property,	which	contains	the	index
number	of	the	currently	selected	options[]	array	element.

• The	form	submit	event	has	a	preventDefault()	method	that	can	be	called	to	stop
submission	of	a	form	to	the	web	server.

http://www.ineasysteps.com

http://www.ineasysteps.com

	Title
	Copyright
	Contents
	How to Use This Book
	1 Get Started in HTML
	Meet HTML
	Understand Structure
	Create Documents
	Validate Documents
	Bestow Titles
	Supply Metadata
	Describe Contents
	Add Styles
	Include Scripts
	Link Resources
	Summary

	2 Structure Web Pages
	Proclaim Headings
	Group Headings
	Include Navigation
	Complete Framework
	Create Sections
	Provide Asides
	Revise Divisions
	Summary

	3 Manage Text Content
	Insert Paragraphs
	Include Quotations
	Add Emphasis
	Add Modifications
	Add Phrasing
	Retain Formatting
	Use Superscript
	Display Code
	Give Advice
	Gauge Quantity
	Direct Language
	Create Hyperlinks
	Access Keys
	Fragment Links
	Protocol Links
	Summary

	4 Write Lists and Tables
	Unordered Lists
	Ordered Lists
	Description Lists
	Basic Table
	Span Cells
	Enhance Tables
	Control Columns
	Summary

	5 Incorporate Media Content
	Add Images
	Image Maps
	Reference Figures
	Select Pictures
	Embed Objects
	Embed Vectors
	Embed Frames
	Add Audio
	Add Video
	Indicate Progress
	Use Templates
	Insert Slots
	Employ Dialogs
	Paint Canvas
	Summary

	6 Create a Local Domain
	Install Abyss
	Install Python
	Configure Abyss
	Echo Script
	Test Environment
	Summary

	7 Produce Input Forms
	Submit Text
	Input Types
	Text Areas
	Check Boxes
	Hide Data
	Upload Files
	Push Buttons
	Image Buttons
	Add Logos
	Select Options
	Datalist Options
	Label Controls
	Summary

	8 Get Started in CSS
	Meet CSS
	Create Rules
	Apply Rules
	Select Type
	Select Class
	Select Identity
	Select Relatives
	Select Attributes
	Weigh Importance
	Paint Colors
	Set Backgrounds
	Summary

	9 Manage the Box Model
	Recognize Boxes
	Display Inline
	Define Dimensions
	Control Borders
	Add Padding
	Set Margins
	Position Boxes
	Fix Positions
	Stack Boxes
	Float Boxes
	Handle Overflow
	Layout Pages
	Summary

	10 Manipulate Text Content
	Suggest Font
	Set Size
	Vary Style
	Use Shorthand
	Align Text
	Control Space
	Decorate Text
	Change Direction
	Enhance Text
	Number Sections
	Summary

	11 Organize Tables & Lists
	Construct Columns
	Space Cells
	Collapse Borders
	Assign Features
	Choose Markers
	Position Markers
	Provide Navigation
	Make Dropdowns
	Summary

	12 Generate Effects
	Choose Cursors
	Show Focus
	Roll Over
	Push Buttons
	Reveal Elements
	Draw Corners
	Cast Shadows
	Blend Gradients
	Decorate Borders
	Transform Shapes
	Make Transitions
	Animate Elements
	Fit Objects
	Summary

	13 Control the Web Page
	Change Models
	Draw Outlines
	Use Columns
	Span Columns
	Use Flexbox
	Align Items
	Draw Grid
	Place Items
	Query Media
	Switch Navigation
	Summary

	14 Design for Devices
	Adapt Layouts
	Compare Schemes
	Combine Schemes
	Add Breakpoints
	Scale Images
	Hide Content
	Summary

	15 Get Started in JavaScript
	Meet JS
	Include Scripts
	Console Output
	Make Statements
	Avoid Keywords
	Store Values
	Create Functions
	Assign Functions
	Recognize Scope
	Use Closures
	Summary

	16 Perform Useful Operations
	Convert Values
	Do Arithmetic
	Assign Values
	Make Comparisons
	Assess Logic
	Examine Conditions
	Juggle Bits
	Force Order
	Summary

	17 Manage the Script Flow
	Branch If
	Branch Alternatives
	Switch Alternatives
	Loop For
	Loop While
	Do Loops
	Break Out
	Catch Errors
	Summary

	18 Use Script Objects
	Custom Objects
	Extend Objects
	Built-in Objects
	Create Arrays
	Loop Elements
	Slice Arrays
	Sort Elements
	Get Dates
	Extract Calendar
	Extract Time
	Set Dates
	Match Patterns
	Meet JSON
	Make Promises
	Fetch Data
	Summary

	19 Control Strings & Numbers
	Calculate Areas
	Compare Numbers
	Round Decimals
	Generate Randoms
	Unite Strings
	Split Strings
	Find Characters
	Trim Strings
	Summary

	20 Address the Window Object
	Meet DOM
	Inspect Properties
	Show Dialogs
	Scroll Around
	Pop-up Windows
	Make Timers
	Examine Browsers
	Check Status
	Control Location
	Travel History
	Summary

	21 Interact with the Document
	Extract Info
	Address Arrays
	Address Elements
	Write Content
	Manage Cookies
	Load Events
	Mouse Events
	Event Values
	Check Boxes
	Select Options
	Reset Changes
	Validate Forms
	Summary

	Back Cover

